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Abstract: Autonomous manipulation systems operating in domains where human intervention
is difficult or impossible (e.g., underwater, extraterrestrial or hazardous environments) require
a high degree of robustness to sensing and communication failures. Crucially, motion planning
and control algorithms require a stream of accurate joint angle data provided by joint encoders,
the failure of which may result in an unrecoverable loss of functionality. In this paper, we
present a novel method for retrieving the joint angles of a robot manipulator using only a
single RGB image of its current configuration, opening up an avenue for recovering system
functionality when conventional proprioceptive sensing is unavailable. Our approach, based
on a distance-geometric representation of the configuration space, exploits the knowledge of
a robot’s kinematic model with the goal of training a shallow neural network that performs
a 2D-to-3D regression of distances associated with detected structural keypoints. It is shown
that the resulting Euclidean distance matrix uniquely corresponds to the observed configuration,
where joint angles can be recovered via multidimensional scaling and a simple inverse kinematics
procedure. We evaluate the performance of our approach on real RGB images of a Franka
Emika Panda manipulator, showing that the proposed method is efficient and exhibits solid
generalization ability. Furthermore, we show that our method can be easily combined with a
dense refinement technique to obtain superior results.
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1. INTRODUCTION

Autonomous manipulation systems are ideal for perform-
ing various tasks in environments where human presence is
limited, such as underwater or orbital laboratories, as well
as hazardous (e.g., radioactive, toxic) environments. In
addition to effective planning and control algorithms, these
systems require a high degree of robustness to sensing
and communication failures, as a timely intervention by
humans may be impossible. We propose a method for
recovering the joint angles (i.e., the configuration) of an
articulated robotic manipulator using only a single RGB
image, providing an alternative source of proprioceptive
data that can be used when data from joint encoders is
unavailable. This is a challenging task for multiple reasons:
fundamentally different robot configurations may result
in similar images and certain configurations may have
diminished observability due to physical occlusion by other
parts of the robot. However, even a rough estimate of the
joint configuration may enable the use of simple control
methods to steer the robot to an approximate desired
state, enabling the planning and execution of critical re-
covery protocols (Ortenzi et al. (2018)).

⋆ This work has been supported by the European Regional Devel-
opment Fund under the grant KK.01.1.1.01.0009 (DATACROSS).

The problem of recovering a robot configuration from
spatial constraints such as gripper pose is known as inverse
kinematics and features a variety of well known solutions
(Lynch and Park (2017)). However, previous work has
also explored instances of this problem where spatial con-
straints may result from a variety of sensing modalities,
such as depth or RGB images. Widmaier et al. (2016)
use synthetic depth images to train semantic classifiers
for direct joint angle regression in order to estimate the
robot arm pose. Bohg et al. (2014) also use depth images
to train a random forest classifier for pixel-wise part clas-
sification, while using joint encoder readings to initialize
an incremental update scheme. Conversely, our method
aims to recover joint configuration using only a single RGB
image, which necessitates first finding the appropriate set
of spatial constraints using 2D-to-3D regression.

The constraints resulting from regressed 3D keypoints may
be under-determined and therefore correspond to multiple
configurations. Instead, we use a distance-geometric model
that integrates structural data (e.g., link lengths) to re-
move ambiguity. Distance geometry is highly relevant for
applications such as molecular conformation, sensor net-
work localization (SNL) and statics (Liberti et al. (2014)).
For instance, SNL is commonly framed as an Euclidean
distance matrix (EDM) completion problem (Dokmanic



et al. (2015)) and tackled through semidefinite program-
ming (SDP) (Biswas et al. (2006)). Marić et al. (2022)
consider a large class of articulated robot manipulators
and elaborate on the equivalence of the distance geometry
problem and distance-based inverse kinematics. Further-
more, Moreno-Noguer (2017) tackles the problem of 3D
human pose estimation from a single RGB image and
demonstrates that representing human poses with EDMs
instead of Cartesian coordinates results in more precise
and less ambiguous pose estimates. Our work is partly
inspired by these observations, and we show that the
problem of recovering robot’s joint angles is in general
highly related to distance geometry.

To the best of our knowledge, the only similar approaches
to ours are that of Zuo et al. (2019) and Labbé et al.
(2021), in the sense that only a single RGB image is
used as an input for joint angle estimation. Zuo et al.
(2019) train a joint keypoint detector to recognize a
predefined, specifically chosen set of 17 keypoints in the
image displaying a 4-DoF toy robot. These keypoints are
then fed to a nonlinear non-convex 2D-to-3D optimization
algorithm in order to recover the 6D pose together with
joint angles. Although our distance-geometric method is
also keypoint-based, it only requires a number of keypoints
equal to the robot’s DoF, placed in a robot-invariant
manner. Furthermore, the optimization proposed in Zuo
et al. (2019) is complex, which diminishes its potential to
improve from scaling the model and data size. On the other
hand, Labbé et al. (2021) use a dense, rendering-based
deep iterative matching approach (Li et al. (2018)) to
jointly learn the 6D camera-to-robot pose and joint angle
updates. Although primarily concerned with estimating
the 6D pose, Labbé et al. (2021) also demonstrate that
joint angles, if unknown, can be accurately reconstructed,
at least with a sufficient number of iterations. Overall,
the dense approach seems to generally outperform sparse
approaches in terms of accuracy due to incorporating
global information, at the cost of high computation time.
We demonstrate that using our method in conjunction
with a dense refinement offers the best of both worlds.

In this paper, we propose a novel method for recovering
the joint angles of an articulated robotic manipulator using
only a single RGB image, based on a distance-geometric
representation of the configuration space and the knowl-
edge of a robot’s kinematic model 1 . Instead of training
a single large model to directly predict the solution, our
method divides the problem into a set of smaller sub-
problems in a theoretically justified manner. First, state-
of-the-art keypoint detectors (Lee et al. (2020)) are used
to detect joint keypoints in the image corresponding to
the robot’s joints, which are insufficient for configuration
recovery on their own. Then, our method takes the full
set of inter-point distances and uses a learned 2D-to-
3D regression to produce an EDM corresponding to the
associated 3D keypoints. Following the approach in (Marić
et al. (2022)) this EDM is extended to include distances be-
tween auxiliary points determined by the robot’s structure,
removing ambiguity related to joint angle recovery. Given
a complete EDM, joint angles can be computed using
parameter-free transformations; classical multidimensional

1 https://github.com/iwhitey/distance-geometric-robot-joint-
angles

scaling (MDS) and kinematic transformations. The former
maps an EDM to a geometrically centered set of 3D
points, while the latter calculates the joint angles based on
these points, forming a fully-differentiable set of kinematic
transformations 2 that supports batching and can be ran
on a GPU. In addition to generating the complete EDM,
ground-truth joint angles are used to compute the loss in
the configuration space. Finally, our method is evaluated
on a large set of real images displaying a 7-DoF robot arm
in various configurations. We opt for a shallow architecture
for all our experiments since the primary goal of this work
is to develop a geometrically meaningful learning-based
framework. The proposed method exhibits solid general-
ization ability, while being simple and computationally
efficient.

2. METHODOLOGICAL BACKGROUND

Euclidean distance geometry is an important tool in sev-
eral applications whose aim is to reconstruct a complete
set of distances (or points that realize them) in Euclidean
space, given an incomplete set of distances as an input.
In addition to a small subset of distance geometry which
relates to EDMs, this section describes a kinematics proce-
dure responsible for generating a set of 3D points sufficient
for recovering the robot’s configuration as well as distance
constraints emerging from kinematics.

2.1 Euclidean distance matrices

Let P ∈ Rn×d denote a matrix representing a set of
n points in a d-dimensional Euclidean space. Then, the
pairwise distances du,v between points can be calculated
using the Euclidean norm:

du,v = ∥pu − pv∥. (1)

For the sake of notation simplicity, EDMs and individual
distances are assumed to be squared in the remaining of
the paper. Expansion of (1) reveals that EDM is a function
of the Gram matrix G = PP⊤:

edm(G) = diag(G)1⊤ + 1diag(G)⊤ − 2G, (2)

with diag(G) representing the diagonal entries of G in the
form of a column vector and 1 stands for column vector
filled with ones.

Equation (2) establishes a one-way connection between an
EDM and a Gram matrix. Consider an inverse problem,
i.e. recovering the set of points that generated the distance
matrixD. LetD be a squared EDM. Then, a Gram matrix
that satisfies (2) can be determined via

G = −1

2
JDJ, (3)

where

J = I− 1

N
11T (4)

denotes a geometric centering matrix. Moreover, G is a
real symmetric matrix, hence it can be factored into a
canonical form via eigenvalue decomposition:

2 We refer to this set of transformations as an IK layer in the rest
of the paper.



G = UΛUT (5)

where Λ = diag (λ0, λ1, . . . , λn−1) contains the non-
negative eigenvalues λi and U is an orthonormal matrix.
Now, assuming the eigenvalues are sorted in the descend-
ing order, the point set P̂ ∈ Rn×d can finally be recovered
by taking:

P̂⊤ =
[
diag

(√
λ0,

√
λ1, . . . ,

√
λd−1

)
,0d×N−d

]
U⊤. (6)

Computing the collection of points P̂ from a distance
matrix D using (3), (4), (5) and (6) is also known as
classical multidimensional scaling (cMDS). Note how in
(6), all but the d largest eigenvalues are discarded. Assum-
ing that G is generated by a d-dimensional set of points,
all but the d largest eigenvalues will be zeros. If this is
not the case, we can assume the presence of noise which
is handled by the truncation (Dokmanic et al. (2015)).

Additionally, plugging the estimated P̂ in (2) yields an
EDM that equals D. However, distances are preserved
under rigid transformations, thus P̂ and the original P are
not generally equal. Absolute position and orientation of
the point set can be recovered through Procrustes analysis
(Schönemann (1966)), assuming that a set of at least d
fixed points (i.e. anchors) is known beforehand. Then,
a rigid transformation that aligns the anchors in P to
their corresponding points in P̂ can be found. Finally, the
original set of points P can be recovered by applying the
obtained rigid transformation to all the points in P̂.

2.2 Distance-based kinematics

Consider an n-DoF robotic manipulator comprised of
single-axis revolute joints, forming a kinematic chain.
The procedure introduced in Marić et al. (2022) defines
a sparse set of points whose positions are sufficient for
recovering the full set of joint angles determining the
robot’s configuration. As shown in Figure 1, a set of points
pi centered at the joint coordinate frames are introduced,
which we associate with the keypoints detected in the
RGB image of the robot by our network. Then, ”virtual”
auxiliary points qi are placed at a unit distance along the
joints’ rotation axes z̃ using joints’ orientation Ri

qi = pi +Riz̃, (7)

adding information on the relative orientation of neigh-
bouring joints required for joint angle recovery. Finally,
the model is completed with the addition of three points,
x, y and z, corresponding to the root coordinate frame,
defined by distances

∥p0 − x∥ = ∥p0 − y∥ = ∥p0 − z∥ = 1,

∥x− y∥ = ∥x− z∥ = ∥y − z∥ =
√
2.

(8)

The proof in Marić et al. (2022) shows that the distances
between these points are sufficient for recovering the full
set of joint angles for a large variety of manipulator
structures.

Our training data is generated from ground truth joint
angle vectors Θ ∈ C corresponding to the robot observed
in the image I, where C ⊆ Rn represents the configu-
ration space. This allows us to simply generate the full

distance-geometric robot description. Each data point is
constructed by sequentially taking the position pi and
orientation Ri of a parent joint i, as well as its joint angle
θi, giving the position and orientation of the child joint j
as

Rj = RiRz (θi)Ri,j ,

pj = pi +RiRz (θi)pi,j .
(9)

The relative positions and orientations pi,j and Ri,j of
neighbouring joints, are completely defined by the robot’s
structure. Thus, the distances between the set of the four
neighbouring points can also be defined from structural
parameters as

∥pi − qi∥ = ∥pj − qj∥ = 1

∥pi − pj∥ = ∥pi,j∥
∥pi − qj∥ = ∥pi,j +Ri,j z̃∥
∥qi − pj∥ = ∥pi,j − z̃∥
∥qi − qj∥ = ∥pi,j − z̃+Ri,j z̃∥ ,

(10)

indicating their invariance to changes in joint angles. Con-
versely, the distances corresponding to the remaining non-
neighbouring pairs exist as a function of the configuration
Θ. Using the constructive procedure in (7) and (9), to-
gether with distance constraints stated in (8) and (10), we
construct a complete EDMD ∈ Rn̂×n̂ that uniquely (up to
a rigid transformation) represents a set of 3D points associ-
ated with the configuration Θ observed in the RGB image.
Concretely, for an n-DoF articulated robot comprised of
single-axis revolute joints - one auxiliary point per joint to
determine the axis of rotation, and two additional points
are required to fully define the base coordinate frame.
Finally, a single data sample used for training the model
can thus be formalized as D := (Θ,D).

qi

j

i

i

j

j

q

i

qi
jq

j
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Fig. 1. Visualization of neighbouring revolute joints. Each
joint is rotated by an angle θ around its rotation
axis (dashed lines). Auxiliary points q are placed
along these axis. Points p correspond to the position
of coordinate frames defined in the center of their
respective joints (placed below for better visibility).

3. METHOD

This section is dedicated to describing the system dis-
played in Figure 2 as a pipeline through which the pro-
posed method is implemented. First, given the input RGB
image and 2D joint keypoint detections, one needs to
bridge the gap between 2D and 3D information. Theoreti-
cally, infinitely many sets of n̂ points which are equal up to
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Fig. 2. System overview. In the image space, EDM is constructed from detected 2D joint keypoints and fed to a 2D-
to-3D EDM regression network (black), which outputs the complete EDM in the 3D space. The cMDS layer maps
the complete EDM to a set of geometrically centered points, from which an IK layer computes the joint angles.
Estimated joint angles are shown as an image of the robot rendered in the respective configuration.

a rigid transformation, and generated as described in Sec-
tion 2.2, can map to a single feasible robot configuration
Θ. As inter-point distances remain identical irrespective of
such point set transformation, we associate a configuration
Θ with a single unique EDM. Therefore, instead of di-
rectly predicting the points, we predict the corresponding
distance matrix. We frame the distance matrix regression
problem as learning a mapping ζ : Rn×n

+ 7→ Rn̂×n̂
+ , where

R+ = {x ∈ R : x ≥ 0}, n equals the number of joints, and
n̂ = 2n+2. Note that we don’t use auxiliary points in the
image space, only keypoints directly corresponding to the
robot’s joints. The mapping is implemented as a shallow
feedforward neural network that takes an EDM computed
from 2D joint keypoints as input and outputs a complete
EDM which is treated as if it was generated by a set of 3D
points comprised of joint correspondences and auxiliary
points. We define a distance-based loss as:

Ld = ∥D̂−D∥F , (11)

where ∥ · ∥F denotes Frobenius norm, while D̂ and D
are the predicted and ground-truth EDMs, respectively.
Due to the fact that EDMs are symmetric matrices,
the actual implementation works with upper-triangular
elements from which the full EDM is computed afterwards.
This amounts to using n(n − 1)/2 elements instead of
n2 with no loss of information. The ground-truth EDMs
are computed from ground-truth configurations Θ via a
function f : Θn 7→ Dn̂×n̂ based on equations described in
Section 2.2. Figure 3 demonstrates that EDM regression
and joint angle recovery are highly related, by depicting
a mean absolute joint angle error as a function of mean
absolute EDM error, using the Kinect dataset (unseen
during the learning process). Note that the model used
for this figure is trained for EDM regression, i.e. using
the loss function (11), while the joint angles are only
computed during inference via cMDS and IK layers. We
use our library 3 for most of the distance-geometry and
kinematics-related computation.

After the complete EDM D ∈ Rn̂×n̂ is estimated, the
cMDS layer (a set of fixed, differentiable transformations
described in Section 2) is used to obtain the geometrically
centered set of points which generate the respective EDM.
This mapping can be formally defined as Ω : Rn̂×n̂

+ 7→
Pn̂×d. The set of points is then fed to an IK layer which
computes the joint angles Θ. Note that what we refer to
as an IK layer is not an inverse kinematics solver; it is a
sequence of differentiable kinematics transformations that,

3 https://github.com/utiasSTARS/graphIK

given the estimated set of points, compute the joint angles
by computing the respective coordinate frame positions
and orientations together with the axis of rotation for
each joint (Marić et al. (2022)). The default configuration
(corresponding to zero joint angles) of the robot is known
from its model (an Unified Robotics Description Format
file), hence the joint angles can be computed. This allows
us to define a loss in the configuration space between the
predicted and ground-truth configuration:

Lc = |Θ̂−Θ|, (12)

with |·| denoting the L1 norm. We use a linear combination
of the two losses as a final loss to train the model:

L = Lc + λLd, (13)

with λ set to 0.5. Note that Lc causes the gradients to
be propagated through IK and cMDS layers, while Ld

is applied directly at the output of the EDM regression
network and serves to provide the model with additional
information.

The EDM regression network is comprised of twoDense →
BatchNorm → ReLU → Dropout layers, and an output
Dense → ReLU layer. The respective hidden and output
layer sizes are 512 → 512 → 120, which amounts to ∼ 350k
parameters. The output size is determined by 4 n̂(n̂−1)/2,
where n̂ = 2n+ 2 and n = 7 for the Franka Emika Panda
robot. Among other necessary conditons, EDM elements
must be positive, which is enforced by the last ReLU (Nair

4 The number of non-zero elements in strictly upper triangular
EDM.

Fig. 3. Joint angles vs EDMs, using mean absolute error
(MAE). The model is trained for EDM regression
only. The errors are highly correlated; Pearson cor-
relation coefficient is 0.94.



and Hinton (2010)) activation. We use Adam (Kingma
and Ba (2014)) for optimization, with initial learning rate
α = 1e − 3, linear warmup (Ma and Yarats (2021)) over
2k iterations, a batch size of 64 EDMs, and a dropout
(Srivastava et al. (2014)) ratio of 0.5. The training is
carried out for 100 epochs and learning rate is reduced
by a factor of 2 after 50 epochs. The model is initialized
as proposed by He et al. (2015).

4. EXPERIMENTS

All our experiments were conducted on images of a 7-DoF
Franka Emika Panda robot observed in various configu-
rations, using three different datasets. We report mean
absolute error as a joint angle error metric. Training and
evaluation were carried out on a single NVIDIA RTX
A5000. Using the setup described in Section 3, inference
takes 1.6ms and requires 1.5GB of GPUmemory. In reality,
it would be limited by the running time of the chosen
keypoint detector.

4.1 Dataset

For our experiments, we use the DREAM dataset intro-
duced by Lee et al. (2020) in their recently proposed
state-of-the-art method for single-view camera-to-robot
pose estimation. The dataset is comprised of real and
synthetic parts. The synthetic part is photorealistic and
generated with domain randomization. We focus on the
real part of the dataset, which is split into 4 different
Panda-3CAM datasets - Realsense, Azure, Kinect, and
Orb which contain 5944, 6394, 4966 and 32315 samples,
respectively. Each of these datasets is comprised of RGB
images of the 7-DoF Franka Emika Panda robotic ma-
nipulator, captured using different cameras with different
intrinsic parameters. The robot is observed in various
configurations, including images with joint occlusions and
even out-of-view joints. Besides RGB images, the datasets
contain 2D joint keypoint annotations together with their
3D correspondences and ground-truth robot configuration.
The camera-to-robot pose is different and fixed for each
dataset, except for Orb which is captured from 27 different
viewpoints. For all our experiments we used 8x subsampled
version of the Orb dataset for training, which we refer to as
Orb in the rest of the section. We automatically adjusted
all the 2D joint keypoint annotations in all the datasets so
that they match the Panda’s coordinate frame definitions
exactly.

4.2 Results

The results of applying our method on the Panda-3CAM
datasets are displayed in Table 1. For evaluating on Kinect
and Azure datasets the model is trained on Realsense
and Orb, while for Realsense evaluation we trained it on
the Kinect and Orb datasets. The results show that our
method gives solid joint angle approximations on unseen
data, while being simple and computationally efficient.
The top 50% predictions mostly correspond to images
which display configurations relatively close to coplanar
with respect to the image plane, for a given robot-camera
pose. However, the datasets also contain images with
joint occlusions and highly non-coplanar configurations

Table 1. Results on the Panda-3CAM datasets.
The mean absolute joint angle error and stan-
dard deviation are reported. The error corre-
sponds to predictions on all test images, or top
50% predictions closest to the ground-truth

joint angles.

Dataset num. images all [10◦] top 50% [10◦]

Realsense 5944 1.261 ± 0.218 0.562 ± 0.08

Kinect 4966 1.061 ± 0.2 0.344 ± 0.04

Azure 6394 1.433 ± 0.264 0.733 ± 0.092

with respect to the image plane, making the task more
difficult for a sparse, keypoint-based method such as ours.
By manual inspection, we detected that Azure dataset
contains more such images compared to the other two
datasets, which reflects on the results. The more thorough
error analysis is left for future work.

Fig. 4. Input image (left) and rendered joint angle pre-
dictions - our method (middle), our method with
refinement (right)

4.3 Deep refinement

The proposed distance-geometric method exhibits solid
generalization in addition to being lightweight, thus it can
be easily used in conjunction with a refinement procedure
without introducing noticeable computational complexity.
To this end, we use the publicly available pretrained
RoboPose model, introduced by Labbé et al. (2021) and
trained using a deep iterative matching procedure (Li et al.
(2018)) on the DREAM dataset. This procedure can be
briefly described as follows. First, the joint angles are
initialized randomly within joint angle limits and used
to render an RGB image of the 3D robot model in this
configuration. Then, the rendered and input RGB images
are fed to a convolutional backbone. The backbone outputs
the 6D pose update together with a joint angle residual
which are used to update the input and the process is
repeated iteratively.

We combine our method with RoboPose by using it to
initialize the deep refinement procedure. The results are
shown in Table 2. Clearly, the combined approach outper-
forms both our method (Table 1) and RoboPose applied
independently. This is because our model provides a good
initial guess, thereby making the refinement task much
easier in contrast to using a feasible random configura-
tion as an initial guess. An exemplary robot configuration
estimated by our method and the combined approach is
displayed in Figure 4 in the form of a rendered image.
Furthermore, the goal is to obtain an accurate estima-
tion using as few iterations as possible, hence the results
were generated using 3 iterations, where each iteration
requires a rendering operation and a forward pass of a deep



CNN backbone. On the contrary, RoboPose, when applied
independently, requires at least 10 iterations to achieve
similar accuracy. Note that we have not trained the model
from scratch in order to adjust it to our initialization
- it is pretrained using a feasible random configuration.
Since our method provides an estimate much closer to the
actual solution, we would expect retraining the model to
introduce further improvements.

Table 2. Results on the Panda-3CAM datasets
before and after combining the deep refinement
model with our method. The mean absolute
joint angle error is reported on all images.

Dataset #images RoboPose [10◦] Ours + RoboPose [10◦]

Realsense 5944 1.221 0.585

Kinect 4966 1.368 0.613

Azure 6394 0.93 0.544

5. CONCLUSION

In this paper, we have proposed a novel distance-geometric
framework for recovering the joint angles determining the
configuration of the robot from a single RGB image. In
addition to being geometrically meaningful, our method is
computationally efficient and exhibits solid generalization
ability when tested on a large set of images displaying a
state-of-the-art 7-DoF robot. We also show that, due to its
computational efficiency, it can be easily used in conjuc-
tion with a dense refinement approach to obtain superior
results. We believe that a modular approach is promising
in the long-term, i.e. tackling the larger problem through a
set of smaller, simpler problems. If one can detect the joint
keypoints and recover the respective EDM in the 3D space
accurately, the joint angles can accurately be recovered
since the leap from EDMs to joint angles is done via deter-
ministic, parameter-free transformations. This is valuable
since interpreting and analyzing deep models is often hard
due to their nature; thus, if possible, it is appealing to
design models that aim to solve smaller pieces of the
problem. Finally, due to the sensitivity of sparse methods,
achieving robustness requires incorporating global, dense
information, but in a computationally efficient way. As
future work, we intend to explore the adequacy of different
architectures for this task, including scaling the data size
and model capacity in order to investigate the potential of
our approach more thoroughly.
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