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Abstract: This work proposes a complete autonomous navigation system for a tracked
vehicle. The system enables a complete autonomous execution of waypoint and patrolling tasks
selected by the user. It also enables user-vehicle shared autonomy, switching between the user
teleoperation and the vehicle autonomous operation. Our navigation system uses the model
predictive control scheme based on a navigation function. We propose the navigation function
which takes into account changing environments, any-shape footprint, and non-holonomic
motion of the tracked vehicle. Besides the waypoint and patrolling tasks, we implemented a
fail-safe scenario in case of the user-vehicle communication loss, in which the vehicle returns
autonomously to the previously visited goal where the communication was stable. The efficiency
of the proposed system is validated by experimental results on the Komodo tracked vehicle.
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1. INTRODUCTION

Unlike human teams, robots and remotely controlled vehi-
cles can easily access dangerous sites, remove existing and
potential threats and find and extract victims. Recently,
the use of the Unmanned Ground Vehicles (UGV) for
military purposes raise great attention (Czarnowski et al.,
2018; Nohel et al., 2020). However, these UGVs are semi-
autonomous and not suitable for completely autonomous
tasks.

The paper presents the autonomous navigation of the
Komodo UGV made by DOK-ING company (see Fig.
1). It can sustain the conditions in the extremely hot
zone, in which humans cannot survive. We propose the
control architecture for the Komodo UGV, which enables
user-vehicle shared autonomy, switching between the user
teleoperation and the vehicle autonomous execution of the
GPS-based waypoint and patrolling tasks. In our previous
work (Selek et al., 2019) we presented the autonomous
execution of the waypoint and patrolling tasks on a Husky
A200 mobile robot. Here, we redesign our previous control
architecture for the vehicle weighing 17 tons and driving
at around 4 times higher speeds. The vehicle’s footprint
is narrow and long, which requires a complex calculation
of collision with the obstacles. Furthermore, the caterpil-
lar tracks constrain the motion of the vehicle requiring
the employment of kinodynamic planners or RRT-based

* The authors thank DOK-ING company for providing the Komodo
UGV for the development and testing the autonomous navigation
system.

Fig. 1. Komodo UGV made by DOK-ING company.

high dimensional planners (Li et al., 2016; Yoon et al.,
2017). However, these planners provide a solution that
usually requires post-optimization and the additional tra-
jectory tracking controller (Li et al., 2016; Klanc¢ar and
Blazi¢, 2019). To avoid computationally intensive decou-
pled planning and tracking control, we propose a model
predictive control (MPC) scheme based on a navigation
function (Ogren and Leonard, 2005; Seder et al., 2017).
We design the navigation function to take into account the
non-circular footprint and non-holonomic motion. Then,
we employ the navigation function as a cost function inside
the model predictive control scheme.

On top of the proposed navigation, we implemented the
user interface for task assignment and supervision based on
the Quantum geographic information system (QGIS). Fur-
thermore, we developed the communication module which
connects QGIS and the Robot Operating System (ROS)
holding the navigation software. The communication mod-
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Fig. 2. Control system architecture of a tracked UGV.
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ule allows multi-user task assignment and supervision via
the client-server framework. Besides the waypoint and pa-
trolling tasks, we implemented the fail-safe scenario in case
of communication loss. In that case, the vehicle returns
to the previously reached goal where the communication
connection was permanent.

The contribution of the paper comprises of the following;: i)
a complete autonomous navigation system for the tracked
vehicle weighing 17 tons and driving up to 4 m/s, ii)
graph search suitable for non-holonomic vehicles with a
non-circular footprint, and iii) task supervision with the
fail-safe scenario in case of communication loss.

The paper is structured as follows: Sec. 2 describes the
system architecture, Sec. 3 presents our solution for the
autonomous navigation of a tracked UGV, Sec. 4 presents
experimental results, and Sec. 5 concludes the paper.

2. CONTROL SYSTEM ARCHITECTURE

The control system architecture is presented in Fig. 2. The
system consists of QGIS integration with ROS navigation
software. Modules developed in this work are presented
with blue blocks, while the gray blocks represent stan-
dard ROS packages or known inputs. All ROS software
components are installed on the vehicle’s Linux computer.
The user’s Linux computer is used to visualize all ROS
topics from the vehicle’s Linux computer remotely. The
user’s Windows computer has a QGIS user interface de-
ployed and the communication module connecting QGIS
and ROS. In the following, we shortly describe three main
submodules: the autonomous navigation system deployed
on the vehicle, task assignment, and supervision system
deployed on the remote user computer, and the communi-
cation module deployed on both computers.

2.1 Autonomous navigation

The velocity controller built specifically for the Komodo
UGV calculates the odometry by transforming the mea-
sured velocity of each caterpillar tread to the translational-
rotational velocity pair in the local vehicle frame. It also
transforms the control inputs in the local vehicle frame
to the command velocity of each caterpillar tread. The
EKF fuses odometry with the GPS and IMU data to give
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Fig. 3. Communication between the user-facing QGIS
software and the vehicle.

the absolute geo-referenced position of a vehicle and a 6D
position estimate in the global map frame. The mapping
module continuously builds a 2.5D occupancy gridmap of
the environment from Velodyne’s data for fast visualiza-
tion on a remote computer. This module also extracts a 2D
range data of possible colliding obstacles and serves as the
input for the anyshape navigation. Anyshape navigation
provides the optimal control inputs for the vehicle, taking
into account the vehicle’s motion model and constraints
on the vehicle’s controls and states.

2.2 Task assignment and supervision

This module is implemented as a QGIS plugin developed
in our previous work (Selek et al., 2019). The user can
select waypoint and patrolling tasks. A waypoint is a
goal point in the physical world that the vehicle needs
to reach. The user can select the points one by one
on a map containing geo-referenced data. On the other
hand, patrolling focuses on completing a whole sequence of
reference points. Furthermore, the user can supervise the
position of the vehicle in the map. If the vehicle does not
move, the user can find out its current position through the
Home position request. During the motion, the user can
track the route of the vehicle through the View positions
request.

2.3 Communication module

Communication between the user-facing QGIS software
(client) and the ROS module on the vehicle (server) is
achieved using one of the ZeroM(Q messaging patterns —
Publish (PUB)/Subscribe (SUB) pattern (Hintjens, 2013).
This classic pattern, which is based on the TCP/IP proto-
col, enables the stacking of PUB/SUB sockets on the server
and clients according to functional needs. In our case, two
SUB sockets and one PUB socket are installed on the user
side, and for compatibility, there are two PUB sockets and
one SUB socket on the server-side. The data sent by the
PUBs are sent to all tethered SUBs (see Fig. 3). Thus,
the communication module allows multi-user connection
to the vehicle.

The fail-safe scenario in case of communication loss is im-
plemented on the vehicle’s computer and can be triggered
from the remote user’s Linux computer. Usually, when the
connection signal weakens, a delay of data from sensors
(e.g. Velodyne) occurs on the remote user’s computer.
The module allows the user to cancel all current missions
and return the vehicle to the previously visited goal. The
module simply remembers the last visited goal. On user
request, it cancels the current set of goals received from
QGIS and sends the remembered goal to the navigation
module.
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Fig. 4. The top and side view of the Komodo UGV with
the position of sensors and center of rotation (x,y).

3. AUTONOMOUS NAVIGATION OF A TRACKED
UNMANNED GROUND VEHICLE

This section presents autonomous navigation based on a
model predictive control scheme. A prerequisite of the
control scheme is a kinematic model and constraints of
the vehicle which we identified through the odometry
calibration procedure. Then we present the navigation
function that takes into account the vehicle’s rectangular
footprint and holonomic constraints. Finally, we present
the model predictive control scheme that integrates the
vehicle motion model and the navigation function.

3.1 Kinematic model and constraints

The Komodo UGV drives on caterpillar tracks, which
velocities are accessible over CAN bus. To provide reliable
odometry, we developed a ROS driver which decodes and
encodes CAN messages received from and sent to the
tracks’ motors, and implements the kinematic model of
the UGV. The Komodo UGV can be described with a
differential drive kinematic model, where the translational
velocity v in its forward direction (x axis in Fig. 4) is the
mean value of the left and right track velocities, vy, and
vR, while rotational velocity w around the vehicle’s vertical
z axis is determined as the difference in the right and left
track velocity divided by the distance b between tracks:
v = YLtUR
w= UR%ULi (1)

To take into account uncertainty in the center of rotation,
wheel skid and small errors in left and right track veloc-
ities, we used the extended kinematic model with three
parameters for calibration (Ivanjko et al., 2007):

v = cL-VL+CRVR
= , 9
W = SRVR—CL'VL ( )
cpb ?

where parameters c¢;, and cg compensate the error in left
and right track velocities, and ¢, compensates the error
of the center of rotation. These parameters can be found
by performing two special trajectories: straight motion
and in-place rotation. Optimization computes parameter
values that minimize the pose and orientation error of
the last point between the simulated trajectory and the
real trajectory. We repeated the calibration experiment 10

times and obtained the average values ¢y, = cg = 1 and
Cp = 1.5.

By integrating the velocities in (2) over time, we write a
discrete kinematic model of the vehicle:
z(k+1) = z(k) + v(k)T cos(6(k + 1)),
y(k+1) =y(k) + v(k)Tsin(6(k + 1)), (3)
0k +1)=0(k)+w(k)T,
where T is the sampling time, z(k), y(k) and 0(k) are
vehicle position and orientation at discrete time k.

According to the differential model it is not possible
to achieve the maximal translational and the maximal
rotational velocity of the vehicle at the same time. For
example, the maximal translational velocity is achieved
when the rotational velocity is zero, and vice versa. It is
straightforward to derive the following constraint on the
velocities:

Iv(k)—;(k—l)\ < Gmax \w(k)—;(k—l)\ < Qo @)

|w(k)] < Wmax  [v(k)|< — 222w (k)| +vmax,

Wmax
where vUmax, Wmax, Gmax, Omax are maximal translational
and rotational velocities and accelerations of the vehicle.

3.2 Navigation function

Denote S C R? a bounded set of UGV states, also called
the configuration space, where sg¢ = [r¢,va,0c]T € S is
the goal state. The navigation function N : § — [0, c0)
is used to safely control the vehicle towards locations
where N decreases, where the minimum is at the goal,
N(sg) = 0. The easiest way to create the navigation
function is to employ the graph search algorithm such
as D* and use the calculated cost-to-goal values as the
navigation function values. Such a discrete navigation
function needs to be modified to obtain a unique value for
any configuration inside the sampled search state (Ogren
and Leonard, 2005).

A graph is created by sampling the configuration space
of the vehicle, where each sample represents a node of
the graph, while edges are defined between two neigh-
bor (close) samples. The configuration space is easy to
compute if the vehicle’s footprint is escribed by a circle.
Then, all obstacles in the environment need to be enlarged
for the radius of the circle and what remains free is the
configuration space.

A rectangular footprint of the Komodo UGV (see Fig. 4)
requires complex geometric transformations for calculating
the configuration space. We used the efficient grid-based
C-space algorithm for fast calculation of the discretized
configurations in dynamic environments (Lau et al., 2013).
C-space defines a 3D grid map of the environment (posi-
tions and orientations), where the orientation resolution is
defined such that no point inside the footprint translates
more than one grid cell if the robot changes its orienta-
tion by one increment (see Fig. 5-left). Merging discrete
orientations into orientation intervals leads to a compact
configuration space representation called the orientation
interval graph (OIG). OIG reduces the search space for
path planning significantly (Pakulovi¢ et al., 2013). Each
orientation interval represents a node of OIG, while edges
are defined between two neighbor nodes if their x or y coor-
dinates differ for only one increment and their orientation
intervals overlap.
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Fig. 5. Discretized configurations of the vehicle: (left)
admissible configurations (blue) and colliding con-
figurations (red); (right) two neighbor grid locations
with their orientation intervals representing the nodes
A,B,C,D, E, where edges are defined between the
neighbor nodes that contain the orientation aligned
with the forward or backward transition on that edge:
{A,C} and {B, E} are edges, while {B, D} is not an
edge since it requires moving sideways.

A graph search algorithm computes a path as a sequence
of edges in OIG. Since OIG extends the changes from the
dynamically updated C-space, a suitable choice is the D*
search algorithm due to its fast replanning in changing
graphs. However, such a path does not take into account
the feasibility of edge transitions for non-holonomic ve-
hicles. For example, some transitions may require mov-
ing sideways. Therefore, we introduce the holonomic con-
straints in OIG by redefining edges only between neighbor
nodes that contain the orientation aligned with the for-
ward or backward transition on that edge. For example,
Fig. 5 (right) shows two grid locations with orientation
intervals as nodes A, B,C, D, E. The transition between
nodes C' and A contains forward direction orientation,
while the transition from A to C' contains backward direc-
tion orientation. A similar case is for transition between F
and B. The transition between B and D requires moving
sideways and these nodes are not connected with an edge.

Each node of OIG has a desired orientation set to be
aligned with the edge transition, where preferred ones are
in the forward direction as the UGV sensor field of view
is limited to a forward direction. After searching with D*,
the path cost of each node is calculated as a sum of inter-
states translations and rotations between their desired
orientations. The navigation function N of a continuous
state is defined as the path cost of the closest discrete
state plus the distance from that state (translational and
rotational difference).

The navigation function is presented in Fig. 6, where
arrows indicate the desired orientations while lighter colors
indicate higher costs. Transitions to cells that do not have
all admissible orientations are weighted 10 times more than
the others. The control applied to such navigation function
will repel the vehicle away from the obstacles.

3.3 Model predictive control

Model predictive control (MPC) is applied to find optimal
controls u(k) = [v(k),w(k)]T for the UGV over a predic-
tion horizon H that minimize the values of the navigation
function N at current state s = [z, y, 0]7:

y[m]

Fig.
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Fig. 7. Velocity profile, and Lyapunov function during the
MPC execution.

J(s) = min 350, Nis(k). (5)

In horizon interval, future robot state s(k) is predicted
using kinematic model (3), while control actions are con-

strained by (4). Optimal control sequence {u}}g ~* that
minimizes (5) defines the best feasible future trajectory
and its first control action is applied to the robot in current
time. In next time sample the procedure repeats.

To prove the convergence of the MPC scheme the value
function J (employed as a Lyapunov function) needs
to decrease each time sample. To lower computational
burden, we used a fixed candidate optimization to solve
the MPC problem (Seder et al., 2017). It considers only
nine values of acceleration combinations {0, famax} X
{0, £@max} to produce the circular control sequences. An
example of the MPC execution is presented in Fig. 6 with
the velocity profiles and Lyapunov function in Fig. 7.
Backward velocity is limited to 0.5 m/s, while forward
velocity is limited to 4.167 m/s. Note the slow backward
motion at the beginning, while shortly the vehicle rotated
to move forward due to the desired forward orientations.

4. EXPERIMENTAL RESULTS

The experiments are performed on the Komodo UGV
with the proposed control system architecture. First, we
present the experimental setup describing the used sensors,
network devices, and computers. Then we present the
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Fig. 8. Experimental setup of the autonomous UGV.

results of Komodo UGV executing the tasks selected by
the user and a fail-safe scenario.

4.1 Experimental setup

The experiment was conducted on a system illustrated
in Fig. 8, and it consists of UGV and a base station
that monitors UGV’s missions. UGV is equipped with a
rugged box Teguar PC, GPS dual-antenna receiver Trim-
ble BX992 with integrated IMU, CISCO industrial switch,
Velodyne HDL-32¢, and MPUS5 radio system. The rugged
box PC runs Linux Ubuntu 16.04 and it is equipped with
an i5 CPU and 8 GB RAM. Velodyne HDI-32e is used
for map building, and GPS Trimble gives a precise global
position. IMU, integrated inside the Trimble receiver, is
used for orientation estimation for all three axes. The
base station is also equipped with the radio MPU5 module
which is the main communication channel between UGV
and the base station. The base station consists of two
PCs equipped with i7 CPU and 8 GB RAM. One PC is
running Windows 10 and is used for mission assignments
from QGIS. The other PC is running Ubuntu 16.04 and is
used for visualization of all ROS processes on the Teguar
PC and to trigger a fail-safe scenario. The UGV is shown in
Fig. 4 with its dimensions and sensor placement. Velodyne
is positioned on the front of the vehicle with a field of view
limited to a forward direction.

4.2 Task execution and supervision

Three scenarios are performed: Waypoint, Patrolling, and
Fail-safe. In the Waypoint scenario carton boxes were
placed in front of the vehicle to form a U-shaped obstacle,
see Fig. 9(a). The user sets the Waypoint tasks in QGIS
by selecting the goal positions, Fig. 9(d). All Velodyne
readings collected during the experiment in Fig. 9(b)
describe the environment of dimension 100mx100m. The
lighter representation of the environment is the 2.5D
occupancy gridmap in Fig. 9(c), where each location cell
of 0.2mx0.2m contains the information of the maximal
height of the Velodyne points inside it. Each time step a
subset of Velodyne points whose height is above 0.5m and
below 3m is compressed into the 2D laser scan for obstacle
detection. These obstacles change OIG and initiate path
replanning (see Sec. 3.2).

The trajectories of the three scenarios are presented in
Fig. 10. The goals set for each scenario are noted with
capital letters. The paths to each goal are plotted only
as a reference, consisting of grid cell position and desired
orientations. Accumulated 2D scan readings for obstacle
detection show static obstacles and sometimes detected

a floor plane due to the error in the estimation of a 6D
pose. Algorithm performance for these three scenarios is
presented in Fig. 11. Planning time never exceeds 20 ms
which is related to the reduced number of search nodes,
where grid cell is 1 m, and more nodes related to disjunc-
tive orientation intervals only appear near the detected
obstacles. The MPC execution time goes to candidate
trajectory generation and optimization according to the
navigation function and never exceeds 30ms. Lyapunov
function mostly decreases between the selected goals ex-
cept in the case when newly detected obstacles increase
the costs of the navigation function. In Waypoint scenario,
the velocity and Lyapunov function reach zero when the
vehicle reaches the region of 0.5m around the goal. In Pa-
trolling scenario, the goals are executed one after another
when the vehicle reaches the region of 4m around the goal
so the velocity and Lyapunov function do not reach zero.
In Fail-safe scenario, the current goal (marked as F) is
canceled by the user, and the velocity decreases to make
the turn to the previous goal.

5. CONCLUSION

We presented the autonomous navigation system for the
Komodo UGV. We demonstrated the necessary modifi-
cations of the navigation algorithm to include holonomic
constraints of the tracked vehicle. The experiments on the
Komodo UGV demonstrated successful execution of the
user-set, waypoint, patrolling and fail-safe scenarios. Fur-
thermore, experiments show that our navigation system
provides fast and reactive motion among obstacles on a flat
terrain. Future work will focus on extending the navigation
system for operation on uneven terrains.
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