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Abstract

Modern logistic solutions for large warehouses consist of a fleet of robots that transfer goods, move racks, and perform other
physically difficult and repetitive tasks. The shopfloor is usually enclosed with a safety fence and if a human needs to enter the
warehouse all the robots are stopped, as opposed to only the ones in the most immediate vicinity of the human, thus significantly
limiting the warehouse efficiency. To tackle this challenge, an integrated safety system is needed with human localization as one of
its essential components. In this paper, we propose a novel human localization method for robotized warehouses that is based on a
suite of wearable visual sensors installed on a vest worn by humans. The proposed method does not require any modifications of
the warehouse environment and relies on the already existing infrastructure. Specifically, we estimate the human location by fusing
stereo visual-intertial odometry data and distances to the known absolute poses of the detected ground-markers which robots use for
their localization. Fusion is performed by building a pose graph, where we treat estimated human poses relative to markers as graph
nodes and odometry estimates as graph edges. We conducted extensive laboratory and warehouse facility experiments, where we
tested the reliability and accuracy of the proposed method and compared its performance to a state-of-the-art visual SLAM solution,
namely ORB-SLAM?2. The results indicate that our method can track absolute position in real-time and has competitive accuracy
with respect to ORB-SLAM?2, while ensuring higher localization reliability when faced with structural changes in the environment.

Furthermore, we provide publicly the experimental datasets to the research community.

Keywords: visual odometry, human localization, warehouse automation, sensor fusion

1. Introduction

The scale of products available today is largely the result of
intense development of production and logistic services. The
pressure on the demand-supply chain has resulted in large ware-
houses that are fully automated and the product flow is sup-
ported by a fleet of autonomous robots. Such automated ware-
house systems, where robots bring products to humans, are
characterized by significantly improved productivity and flexi-
bility [1]], but they also require knowledge about the locations of
both products and robots, as well as an optimized fleet manage-
ment system in charge of the robot control. To avoid hazardous
situations, the robot-working area, i.e. the shopfloor, is usually
enclosed with a safety fence to prevent humans from entering it.
In case such a scenario happens, all the robots are stopped and
remain still until the human exits. Although it is not intended
for the humans to enter the shopfloor frequently, in the case of
unexpected events, such as robot hardware failure or the drop
of a product, the human needs to intervene and fix the prob-
lem. In the case of large warehouses, this means that many
robots are standing idle and causing high opportunity costs.
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Sectional lockouts can be applied in the scenarios where the
worker’s tasks are limited to maintenance of the robots which
can autonomously or manually come to the maintenance sec-
tion. However, when workers must perform a picking task or
resolve an issue in the warehouse, sectional lockouts cannot be
applied as the worker needs to be able to freely access the whole
warehouse.

In [2]] authors give an extensive overview of safety mech-
anisms for human-robot collaboration during a manufacturing
process, and works [3] and [4] present two frameworks where
humans and robots closely interact in an industrial environment.
However, direct interaction in the warehouse is not necessary
and a different approach should be applied. With human safety
and warehouse efficiency in mind, it would be ideal if only the
robots which are in the immediate vicinity of the human are
stopped while others continue to operate. Having such a sys-
tem would ensure human safety; however, to make the ware-
house work at peak efficiency, we would also need to know the
location of the human workers in the warehouse. In this paper,
we assume that a relative ranging safety system is available in
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the warehouse and, indeed, it is one of the technologies devel-
oped withing the scope of the Horizon 2020 project SafeLoéH
Given that, we then concentrate on the human localization as-
pect that enables the fleet management system to account for
human presence and thus replan the paths of the robots, not
only to ensure efficiency, but also the comfort of human workers
(note that each robot carrying a rack filled with goods weighs
close to 900 kg).

Until recently, localization solutions for warehouse environ-
ments have been oriented towards automated robots and prod-
ucts, but to our knowledge, no solution for human localization
in the automated warehouse environment has been developed.
In [5]] authors divide real-time localization technologies into the
following categories: ultra-wideband (UWB), radio frequency
identification (RFID) systems, vision systems, and Wi-Fi tech-
nology. Though UWB and RFID have been successfully used
for forklift localization, we find the approach with visual sen-
sors more appropriate for our case since visual features that al-
ready exist for the robot localization could also be used for hu-
man localization. Visual systems can be implemented by plac-
ing a set of cameras throughout the environment that can track
people within their fields of view [6,7]. In our case, such an ap-
proach has two major drawbacks: large warehouses would re-
quire numerous sensors and installation and calibration of such
a system would be very time-consuming. With this in mind, we
are focusing on a visual localization framework based on a suite
of wearable sensors that are placed on the so-called Safety Vest,
depicted in Fig.[T} worn by human workers that enter the ware-
house shopfloor (note that the vest also ensures worker safety
thanks to the previously mentioned safe relative ranging).

Since our approach relies on wearable sensors, the choice is
limited to small, lightweight, and low-power consuming ones.
In [8] authors used a backpack equipped with 2D laser scanners
and inertial measurement units (IMUSs) to localize in an indoor
environment. Their solution was extended with cameras in [9)]
to improve the localization with the aim of reconstructing inte-
riors in 3D. We find the solution based on a backpack equipped
with laser scanners inappropriate for our use case, since hu-
mans have to use this system for prolonged periods of time,
pick goods, and repair robots, thus would find the backpack
heavy and cumbersome. On the other hand, a camera as a vi-
sual sensor fulfills the size and weight requirements and is also
low-cost, informative, and highly available [10]. Furthermore,
cameras are passive sensors, meaning they do not emit any sig-
nals in the environment and there is no limit on the number
of cameras that can be used simultaneously in the same envi-
ronment [11]. Given that, we opted for a solution with a set
of cameras aided with an IMU. Several visual indoor localiza-
tion solutions have been presented recently in the literature. For
example, localization with a wearable omnidirectional camera
and with a smartphone equipped with Google’s Tango sensor
was presented in [12] and [13], respectively. In [14] authors
used wheel odometry and detection of ground-markers for fork-
lift localization and the solution we propose is similar to this
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Figure 1: Safety Vest with the sensor setup that consists of an IMU-aided stereo
camera and a downward looking monocular camera. This placement of the
sensors was chosen since it will not disturb the human when performing the
usual tasks. Furthermore, cameras cannot get obstructed by hands and this part
of the human body is the most stable and has the smallest chance of doing
abrupt motion that could blur the images.

approach. The main difference is that we do not have wheel
odometry at our disposal, since sensors are worn by humans,
and thus we use visual odometry computed with an IMU aided
stereo camera. Moreover, wheel odometry is susceptible to drift
due to wheel slippage and is less accurate than visual odometry
solutions [[15].

There exist numerous localization solutions based solely on
IMU and camera sensors, such as [16]], [17], and [[18]], which are
well known simultaneous localization and mapping (SLAM)
solutions, and [19]], which uses convolutional neural network
for indoor localization. A natural question arises: “Why not
use some of the existing visual SLAM solutions since they do
not require any modifications to the warehouse but build the
map in which they localize the agent afterward?” For exam-
ple, the state-of-the-art visual odometry and SLAM solutions,
like ORB-SLAM?2 [20], DSO [21] and SVO [22], showed im-
pressive accuracy on the datasets like KITTI [23] and EuRoC
[24]. Unfortunately, our problem requires a different approach
from the standard visual SLAM for several reasons. First, the
carry-on prerequisite constrains the size and the weight of the
data processing equipment. With frequent loop-closings, which
are expected in a typical warehouse, the constrained process-
ing power could not be sufficient to execute some heavy-duty
SLAM apporaches in real-time. Second, visual SLAM builds a
map of distinctive features under the assumption that they are
and will remain static. This cannot be guaranteed in a ware-
house, where racks are frequently moving and changing their
positions. Third, as visual aliasing is often present in warehouse
environments the risk of wrong loop-closing arises. Therefore,
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Figure 2: The concept of the proposed visual human localization system.

we are in a need for a solution that infers unambiguous human
pose by detecting stable features in the environment. In an au-
tomated warehouse we have at our disposal markers that are
placed on the ground and originally are intended to be used by
robots for localization. The positions of these markers are static
and known, and their map is lightweight for processing. We de-
cided to use these markers to ensure unambiguous human pose
estimation and to minimize the expensive and time-consuming
modifications of the warehouse.

In this paper, we propose a new concept for human local-
ization in robotized warehouses based on wearable sensors that
estimates globally the pose of the human with high reliability.
The system is based on the fusion of two complementary human
pose estimators: (i) relative human pose estimator, i.e. odome-
try, based on a horizontally-looking stereo camera aided by an
IMU, and (ii) an absolute human pose estimator based on the
detection of ground-markers using a wearable down-looking
monocular high-resolution camera. The former estimator regu-
larly updates the relative human pose with respect to the initial
pose as the human moves through the environment, while the
latter one provides global pose corrections each time a ground-
marker is detected by the algorithm presented in [25]], thus pre-
venting pose error accumulation with time which is inherent
to the former estimator. To validate the proposed human lo-
calization system, we conducted extensive experiments in two
settings: (i) a laboratory environment covered with a motion
capture system providing localization ground truth, and (ii) a
robotized warehouse testing facility that we partially covered
with AprilTags and used TagSLAM [26] to provide localization
ground truth. We also provide publicly the recorded datasets to
the research communityP}

The rest of the paper is organized as follows. In Section 2]
we present the concept of our visual human localization sys-
tem in robotized warehouses, and give short overview of our
previously developed visual odometry and marker detection al-
gorithms for the completeness of the paper. The fusion of infor-
mation from the visual odometry and the ground-marker detec-
tion algorithm is described in Section (3| A detailed description

2https://z::nodo.org/communities/safelog/

of the equipment used and dataset recording, followed by ex-
perimental analysis, is given in Section[d] Finally, the paper is
concluded in Section

2. The proposed visual human localization system

Research presented in this paper is part of the Horizon 2020
project SafeL.og, whose goal is to develop a system for safe and
interactive collaboration between robots and humans in robo-
tized warehouses. In such warehouses, routing and control is
carried out by the so-called fleet management system (FMS)
that knows the positions and trajectories of all the robots all the
time. However, when we introduce humans in the warehouse,
we add agents that FMS cannot control directly, but only give
them tasks and suggestions. Moreover, if locations of the hu-
mans are unknown to the FMS they can interfere with the robot
routing, leading to decreased human comfort, safety issues, in-
ferior performance or even complete halt of the warehouse. To
tackle this challenge, a new concept needs to be introduced that
would enable the FMS to change the tasks or reroute the robots
to ensure continuous optimal performance and aid human com-
fort and safety. Such a concept requires estimating human tra-
jectories, which is an interesting research topic in itself [27],
but first we need to be able to localize the humans.

2.1. The concept of the system

The concept of the proposed visual human localization sys-
tems is illustrated in Fig.[2] Since one of our prerequisites is to
have a wearable vest with on-board sensors, we found that cam-
eras are the most suitable choice and can provide enough infor-
mation for accurate localization. Cameras are also appropriate
due to low power consumption, price, and also low weight since
the whole Safety Vest should be kept light for ergonomic rea-
sons. Additionally, the placement of the camera setup at the
lower back proved to be optimal because during typical human
motion, camera view does not get obstructed and, since it is the
most stable part of the body, camera images do not get blurred
often. The cameras also do not record the worker and the im-
ages are deleted once used for the pose estimation, so the pri-
vacy of the workers is not affected.
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Figure 3: The marker used for localization in the warehouses. Each marker has
a specific ID and a different combination of the 9 rectangular patterns, so-called
DataMatrix.

The sensor setup consists of two cameras mounted on the
Safety Vest (cf. Fig.[I): a monocular camera, pointing to the
floor, and an IMU-aided stereo camera, pointing in the horizon-
tal direction. The stereo camera is in charge of the visual odom-
etry that continuously estimates the pose of a human. However,
it can only estimate the relative motion of the human and the
localization error grows unbounded with time. Given that, it
needs to be corrected from time to time and in this paper our
idea is to reuse markers that already exists on the floor of the
warehouse that robots use for localization. An example of such
a marker is shown in Fig. 3] These markers are detected with
the downward-looking monocular camera and when a marker is
recognized the algorithm provides a global pose of the human,
so we can consider it as an indoor GPS-like system. The mark-
ers are available at fixed regular intervals of 1.2 m throughout
the environment. Whenever a ground-marker is recognized the
accumulated error in the human pose estimated by the visual
odometry is corrected by applying sensor fusion implemented
within a graph optimization framework. Below, for complete-
ness, we provide brief overviews of our stereo visual odometry
(Section[2.2) and marker-based localization (Section 2.3)) algo-
rithms originally presented in [28]] and [25]], respectively, while
the proposed fusion algorithm is presented in Section 3]

2.2. Stereo visual odometry pose estimation

The first source of pose estimation, the visual odometry
(VO), computes the pose change between two consecutive im-
age pairs and thus has a constant estimation frequency. We use
the SOFT VO algorithm since it is an in-house developed so-
lution and at the time of writing it is the highest-ranking stereo
visual odometry solution on the KITTI odometry benchmark
[23]. The key to SOFT’s performance lays in the careful se-
lection of features through the estimation process. Features
are found on the gradient image with the corner and the blob
masks. Extracted features are paired with the existing feature
set in a matching process. A sum of absolute differences is
used as a similarity measure, but since SAD is susceptible to
outliers, matching is performed in a circular manner. If the
feature is successfully matched through two subsequent stereo

Figure 4: Matching ORB features in the downward-looking camera image to
the reference marker image.

pairs, it is considered trustworthy. After the circular matching,
the remained set of trustworthy features is further matched with
normalized cross-correlation. The tracking step takes matched
features but uses only a subset of them based on their age, po-
sition, feature strength, and class. It has been shown in [28§]]
that stereo VO performs better when features with a variety in
spatial, temporal, and class distribution are used. In [28]] two
stereo VO solutions were presented: one based solely on the
stereo images and one aided with IMU measurements. Our im-
plementation in this paper relies on the IMU aided stereo VO.

2.3. Marker-based pose estimation

The marker detection algorithm provides a global pose of
the human by computing the transformation matrix between
the camera and the ground-markers sparsely placed on the floor
throughout the warehouse. Each ground-marker is unique and
has a known global pose in the warehouse. As shown in Fig.[3]
we can see that the marker detection algorithm has to detect
and identify a ground-marker a bit larger than 10 cm with sev-
eral DataMatrix codes sized 1.4 cm. For a robot this is not a
problem, since its camera is placed several centimeters above
the floor; however, as can be seen from Fig. |I|, the camera suite
is placed on the lower back of the human and the marker detec-
tion algorithm needs to achieve the same result from more than
a meter height.

The marker detection algorithm consists of the following
three main steps:

o detection of a ground-marker and finding the region of in-
terest (ROI) around the ground-marker

¢ ground-marker identification
e computation of the relative camera pose.

The ground-marker detection and ROI search is performed by
matching detected ORB features [29] in the input image with
the ORB features from the reference image as illustrated in
Fig. @] The cropped image is forwarded to the marker iden-
tification step where the ground-markers are identified with
the DataMatrix identification algorithm implemented in libdmix
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Figure 5: Steps of the marker-based pose estimation algorithm: a) ground-marker in the original image, b) result of the morphological opening, ¢) image correlated
with a double kernel, d) thresholded correlation image, ) marker with the computed orientation, f) the double kernel.

[3Q]. After finding the ground-marker’s ID we know the abso-
lute pose of the ground-marker in the global coordinate frame.
To compute the camera pose in the global coordinate frame,
we need to determine the relative transformation between the
ground-marker and the camera. The steps of computing the rel-
ative transformation are shown in Fig. 5] First, the cropped
image of the ground-marker, depicted in Fig. [5a is blurred
through morphological opening resulting with image shown in
Fig.[5b] This is followed by correlation with the double kernel,
shown in Fig. [5), resulting with the correlated image shown in
Fig. The thresholding of the correlated image produces 9
distinct pixel clusters, as can be seen in Fig.[5dl The centers
of those pixel clusters are treated as points that are forwarded
to the Perspective-n-Points (PnP) method which then computes
the relative transformation as illustrated in Fig. [5¢] For more
detailed description of the marker detection, please confer [25].

Even though ground-markers are placed on the floor in
regular intervals of 1.2 m, due to erratic human motion
the downward-looking monocular camera does not always
necessarily see each ground-marker. Moreover, even if
the ground-marker is seen, the image might be blurred,
ground-marker might be partially covered, or the brightness
might be inappropriate, which can cause the ground-marker
not to be detected. All these issues cause an infrequent
marker-based pose estimation that in our experiments can
sometimes be absent for more than half a minute.

3. Stereo Odometry and Ground-Marker Fusion

As described in the previous section, a VO algorithm pro-
vides relative estimates of the human location which are locally
accurate but for longer trajectories global inconsistencies oc-
cur. On the other hand, the marker detection algorithm provides
a globally accurate location but rarely and unpredictably, i.e.,
only when a human passes over a ground-marker on the floor
and the marker detection algorithm recognizes it. Given that,
we can see that these two algorithms complement each other,
and our idea is to fuse the information they both provide to get
a reliable and globally consistent pose estimate. We have im-
plemented this information fusion of the VO and marker detec-
tion algorithms within a graph optimization framework. In the
following, we first introduce the graph optimization framework
and then our sensor fusion implementation within that frame-
work.

3.1. Graph optimization framework

Graph optimization is nowadays the most popular approach
in mobile robotics and related fields for solving localization
problems and over the past years most modern visual localiza-
tion solutions are based on such a framework. [31]]. One of the
main reasons stems from the fact that, unlike typical filtering
based approaches, it can constantly linearize the whole graph
around the most recent estimates. In our graph optimization



approach we keep track of all the states, environment map fea-
tures, and measurements. The goal of the optimization is then
to minimize the discrepancy between the measurements and es-
timated positions of states and map features.

When an agent moves through the environment, as shown
in Fig. [ its trajectory Xo., from the moment it started its
motion up to the moment ¢, consists of a set of states X =
{Xo, X1, ..., Xx}. The state X;, at time instant k, consists of the
position and orientation of the agent Xy = {x, Yk, Zk> Wk> Yks Ok}s
while the map consists of a set of discrete features M =
{My, M, ..., M}}. Generally, both the agent’s states and the ob-
served features are represented in the graph as nodes. The nodes
are connected with edges which define the relations between
them. The relations arise from two models which are also used
in Bayesian filtering methods: process model and measurement
model. The process model describes the relation between the
successive agent states in time, i.e., it describes the agent ego-
motion, while the measurement model describes the relation
between the map features and the sensor readings for a given
agent state. Under the assumption that both state and measure-
ment variables are Gaussian, we can model these relations as

Xi = fXp—1, up) +wi,  wi ~ N(O, Q) (D

2 = hXi, Mj) + v, v ~ N(O,R) )

where X; is the state of the agent at the timestamp k, zx ; is the
measurement of the feature M; at the timestamp k, uy is the
traveled distance of the agent from the timestamp k& — 1 to the
timestamp k, wy and vy are Gaussian process and measurement
noise with zero mean and covariance matrix Q and R, respec-
tively, while f(Xj_1, uz) and h(Xy, M) are the process and mea-
surement models, which generally can be nonlinear.

For the process and measurement models given in (I)) and
(2), we can define the graph optimization criterion for finding
the optimal states of the agent X* and features M* as follows:

* * _ . L . 2 L . A2
XM = argmin Y 1= 01, )l + ) e ~hCG M)

oM iy
3)
Minimization of (3) is a complex problem due to optimiza-
tion of both the agent states and the map features, large num-
ber of graph edges, and generally nonlinearity of the process
S (Xj—1,ur) and the measurement model (X, M;). In this pa-
per we use the g20 nonlinear optimization framework [32].

3.2. Graph optimization for stereo odometry and ground-
marker fusion

We have made the following adjustments to the graph opti-

mization framework to handle our use case, i.e., to fuse human

pose estimations in a robotized warehouse provided by stereo

visual odometry and ground-marker detections. The poses of

the human and ground-markers are formulated as the members
of the SE(3) group

R, ¢ R, t;
X,-:[O 1}, G,:[Of 11] @)

Figure 6: A two-dimensional visualization of an agent (black triangle) moving
through an environment with features (red circles). Dashed poses are previ-
ous agent poses and the black curve connecting them represents the trajectory.
When the agent is sufficiently close to a feature, sensors are able to measure the
relative pose of the agent with respect to the feature (green dashed lines).

Once a ground-marker is detected, a marker node G; and a cur-
rent human pose node X; get connected with an edge N;; com-
puted by the marker detection algorithm. Current pose estimate
node X; and the previous pose estimate node X;_; get connected
with an edge U(;_); computed with the stereo visual odometry.
The transformations N;; and U;_1); are also SE(3) group mem-
bers and used to compute the current pose estimates as follows

X = Ui-niXi-1, Xi = NijGj. ®)

The poses of the ground-markers G; are known, which signifi-
cantly reduces the complexity of the graph optimization, mean-
ing that minimization of criterion (3)) is performed only for find-
ing the optimal human poses X*

X' = argmin UK = UgoiXia Iy, + 11X = NyGllg, . (6)
Lk i

The workflow of the proposed approach is depicted in Fig.
and summarized in Algorithm [} The initialization begins
with the detection of the first ground-marker Gy shown in
Fig. This first ground-marker should be placed at the ware-
house entrance to enable the fusion initialization. When the
first ground-marker is detected, the marker detection algorithm
computes the transformation between the marker pose and the
current camera (human) pose Xj; the transformation is repre-
sented with a graph edge Nyy. After the initialization, visual
odometry starts to compute human pose change as they move
through the warehouse. With the detection of the subsequent
ground-marker G, Fig.[7b] a pair of two transformation esti-
mates are created: one between the current human pose X; and
detected ground-marker G, denoted as N;;, and one between
the current pose X; and previous pose X represented with the
edge Up;. The transformations are temporally synchronized
meaning than the visual odometry estimate is interpolated so



GQ G2
Gl 1Nu X 1
Xo Xy
N()[) N(JO‘
o y, Go y,
(a) (b)
4 ‘\G3>‘ N 3N33G3 )
: X5 X5 Uis
U12 ‘ U12
‘\GlNll X] {Gl"}V11 X]
X Uo1 X Uo1
Nuo‘} Noo
% DAL Y
(© ()

Figure 7: Construction of the pose graph with the pose nodes obtained from
visual odometry (X;) and the ground-marker nodes (G;). Green nodes and edges
represent the output of the visual odometry algorithm, while orange nodes and
edges represent the output of the marker detection algorithm.

that the estimate’s timestamp matches with the marker detec-
tion pose timestamp. As the human wearing the camera setup
continues to move through the warehouse, the odometry is con-
tinuously updated, as illustrated with the green dashed line and
circle in Fig.[/c| but the new information is added to the graph
only when the ground-marker G is detected (marker G, was
not detected and therefore node X, was not added to the graph),
as we can see in Fig.[7d New pose nodes and edges, N33 and
U3, are added to the graph and the graph optimization is ex-
ecuted to correct both the newest pose estimate and the whole
trajectory, i.e., poses of all the nodes are optimized. For the op-
timization implementation of the pose graph we used the g20
framework [32]. The graph optimization runs in parallel to the
visual odometry and the ground-marker detection in a separate
thread as described in Algorithm T}

One could argue that for our use case the graph optimization
is not necessary and that we could only correct the accumulated
odometry drift by setting the pose estimate from the marker de-
tection algorithm as the new pose estimate. This is partially true
since we do not need the whole trajectory, but only the newest
pose estimate. However, in that case the computed transforma-

Algorithm 1 Proposed fusion based human localization

1: main thread:

2: repeat

3: if marker-based pose estimation input then

4 Set initial pose

5: until pose initialized.

6: Initialize graph

7: repeat

8: if VO pose estimate then

9: if marker-based pose estimates in queue then
10: Create marker-odometry pair
11: Push pair to the pose graph
12: Set optimization flag
13: if marker-based pose estimation input then
14: Add marker-based pose estimate to queue

15: until end of the recording.
16: optimization thread:

17: repeat

18: if optimization flag set then
19: Optimize graph

20: Return optimized graph

21: until Killed from the main thread

tion matrix by the ground-marker detection algorithm can ex-
hibit significant orientation errors resulting with unacceptably
large location errors. Therefore, we optimize over the whole
graph to force the pose consistency and yield a reliable location
estimate.

4. Experiments

We tested the proposed visual human localization system on
two datasets we collected in the warehouse testing areas of
Safelog project partners, namely Fraunhofer IML in Dortmund
(Dataset 1) and Swisslog in Augsburg (Dataset 2). In the fol-
lowing, we first briefly describe the experimental sensor suite
and its calibration, as well as common steps in the datasets col-
lection and results evaluation. Then, we present and compare
the results on both datasets obtained with the proposed method
and ORB-SLAM?2.

4.1. Experimental sensor suite

The experimental sensor suite that we used consisted of two
cameras: a monocular downward-looking camera and an IMU-
aided stereo camera, and both were placed at the lower-back
part of the Safety Vest worn by humans. Figure [§] shows a
zoomed-in photo of the sensor suite mounted on the Safety
Vest. The monocular camera is a FLIR Chameleon3 CM3-U3-
50S5M-CS with a Computar, 12mm, 2/3”, 5 MP lens, while the
IMU-aided stereo camera is PerceptIn Ironsides. Both cameras
were installed on a thick aluminum metal plate which ensured
rigid and fixed displacement between the cameras and enabled
mounting of the cameras on the Safety Vest. The intrinsic and
extrinsic parameters of the sensor setup were obtained through
calibration using the Kalibr package [33] and OpenCV library.



Camera calibration was conducted before every experimental
run. The camera setup recorded a calibration board with April-
Tag patterns [34] from various poses to get the intrinsic and ex-
trinsic parameters. The calibration of extrinsic parameters was
more challenging since the stereo camera and monocular cam-
era have very small overlapping field of view, as can be seen
from the setup shown in Fig.[8] For that reason, to improve cal-
ibration accuracy, we placed an additional camera that shared
sufficient view with both cameras in the setup. By adding the
transformation from the stereo camera to the newly added cam-
era, and the transformation from the newly added camera to the
monocular camera, we could obtain the transformation between
the stereo and the monocular camera.

In order to evaluate the localization performance a dataset
needs ground truth data; however, the general problem of ob-
taining ground truth in a warehouse environment is the lack of
a precise tracking sensor that could cover such an area. Given
that, the first dataset (Dataset 1) that we recorded covers a
smaller area which has ground truth available since it was cov-
ered with a motion capture system. The second dataset (Dataset
2) covers a larger area, but the ground truth is available only at
specific parts of the warehouse and was obtained by elaborate
placement of fiducial markers and the SLAM method proposed
in [26]. Additionally, for comparison we used a state-of-the-art
stereo visual SLAM solution, i.e., ORB-SLAM?2. Note that we
did not aim to outperform a state-of-the-art visual SLAM algo-
rithm in a general case. In this paper we show that the proposed
approach, that relies on stereo VO and detecting very small
ground-markers for pose correction, yields comparative per-
formance in warehouse environments, keeps the real-time con-
straints, but can outperform ORB-SLAM?2 in scenarios when
the environment is not static.

While collecting both datasets the human wearing the Safety
Vest would be positioned at the starting point from which one
ground-marker could be seen. This is part of the initialization
procedure during which the ground-marker detection algorithm
computed the transformation between the camera setup coordi-
nate system and warehouse global coordinate system. After the
initialization, the human walked through the testing area and
performed usual motion such as fast and slow walk, crouching,
bending, grabbing objects from the racks etc. At the end of the
recording sequence, the human returned to the starting position.

For evaluation we present three trajectories: the odome-
try trajectory obtained from the stereo visual odometry al-
gorithm without ground-marker corrections, the fusion tra-
jectory obtained from the fusion of odometry and ground-
marker detections, and the orbslam? trajectory obtained by the
ORB-SLAM2 algorithrrﬂ We distinguish two types of trajec-
tories: offline and online. The offline trajectories are generated
once the experiment is over and all the measurements are avail-
able. Although such a trajectory evaluation approach is stan-
dard in SLAM benchmarks [23] [24]], we also measure localiza-
tion quality of the online trajectory, which is a set of poses gen-
erated only with the measurements collected up to that moment,

3We used the following source code of the ORB-SLAM2 implementation
for the evaluation https://github.com/raulmur/0RB_SLAM2.
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Figure 8: The zoomed-in photo of the experimental sensor suite mounted on
the Safety Vest.

i.e., no future information is used in the optimization process.
For example, in the moments before and after the loop closure,
the offline trajectory will have a smooth transition, whereas the
online trajectory will have a discontinuity.

As the evaluation metric we used the absolute trajectory er-
ror (ATE) as is commonly done in SLAM and odometry eval-
uation [23]]. Also, before the evaluation the trajectories were
transformed with the Kabsch algorithm [35] 36] to get the best
fit between the estimated and the ground truth trajectories. This
transformation is also commonly performed and is an option in
the package we used for evaluation [37]. A small modification
of the ORB-SLAM?2 implementation was necessary as it pro-
vides only the offline trajectory at the end of the sequence. The
problem was solved by sending the newest pose estimate to the
standard output. Since we were modifying the ORB-SLAM2
source code to get the online trajectory, all tests were per-
formed with the offline trajectories unless indicated that they
were performed with the online trajectories. All the evaluations
were perfomed on the Lenovo P51 notebook with Intel Core
17-7700HQ CPU @ 2.80GHzxS8.

4.2. Results on the Dataset 1

The testing area was approximately 5x3m? large and
equipped with the Optitrack motion capture system. The
recording area contained one real rack while other racks and
walls were imitated with plastic boxes, as can be seen in Fig.[9]
The height of the boxes was set in a way to allow the motion
capture sensor to record the ground truth pose of the camera
setup and prevent the camera setup to record the outside of the
arena. The floor of the testing arena had 6 ground-markers with
known poses and the dataset contains nine different sequences
of a human carrying out typical tasks while walking and crouch-
ing. This dataset was analyzed in two scenarios. The first is



Figure 9: The experimental arena for collecting Dataset 1. Walls and racks
were imitated with plastic boxes and the arena was covered with the Optitrack
motion capture system. (By courtesy of Fraunhofer IML)

the standard operating conditions scenario that contains 9 se-
quences with the human walking in the warehouse and carrying
out typical tasks. The second scenario is the non-static envi-
ronment case where we simulated a varying warehouse rack
distribution due to robots redistributing the racks around the
warehouse and carrying them to the picking stations.

4.2.1. Standard operating conditions scenario

In Table [T we show the absolute trajectory errors of the three
offline trajectories for 9 sequences in total (DM01-DMO09).
Furthermore, we include the information about the total trav-
eled distance and the number of detected ground-markers for
each sequence. From the table we can see that orbslam2 had
the lowest error on 7 out of 9 sequences. It had no informa-
tion about the environment, but by consecutive motion and map
building it managed to generate a very accurate trajectory for
all sequences. This result is expected since it is a state-of-the-
art SLAM method and the recordings fulfill the assumption of a
static environment with non-reflecting surfaces. On the other
hand, the recordings had to be replayed with a significantly
lower rate because of frequent track losses in real-time runs,
while the odometry and fusion were able to provide the pose es-
timate at the frequency slightly over 30 Hz. We can see that in
all but one sequence the fusion had lower error than the odome-
try, indicating that the challenging marker detection indeed im-
proved the accuracy of the trajectory. Since the traveled dis-
tance was not very long, the odometry also produced an accu-
rate trajectory, which is noticeable especially for the sequence
DMO3. The frequency of the ground-markers for this dataset
was relatively high and we had a detection every 6—8 meters,
during which an error, either accumulated through odometry
drift or ground-marker pose detection error, did not reach high
values. Compared to ORB-SLAM?2, the fusion trajectory error
is competitive; in the worst case it was 9.1 cm greater, indicat-
ing that for the case of the Dataset 1 the proposed method is
capable of yielding performance close to the state-of-the-art vi-
sual SLAM.

To qualitatively assess the trajectories, we plot them in
Fig. [10] for sequences DMO1 and DMO09. Figure [I0a] shows an
almost perfect fit between the fusion and ground truth trajecto-
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Figure 10: Trajectories for two sequences from Dataset 1

ries for DMOI1. The trajectory computed only with odometry
had a slightly modified shape and the most noticeable differ-
ence between it and the fusion trajectory is at the lower end of
the trajectory. The misalignment of orbslam?2 trajectory comes
from the drift in the z-axis which cannot be seen from the cur-
rently shown perspective. However, in Fig.[T0b] we can see that
orbslam2 was closer to ground truth than other approaches for
DMO09 sequence.

The results for the online trajectories are shown in Table [2]
As expected, on all sequences the online trajectories showed
poorer performances than the offline trajectories. The online
fusion trajectory managed to keep the absolute trajectory error
under 0.3 meters on all sequences. The online orbslam? trajec-
tory had a more significant error on sequence DMOI. In this
sequence, the online orbslam? trajectory got deformed due to
the error in the orientation estimation, which is not present in
the offline orbslam?2 trajectory. The difference between the on-
line and offline orbslam? trajectories, and the ground truth are
shown in Fig. ]

4.2.2. Non-static environment scenario

The warehouses are not static environments because by def-
inition the robots move racks during the operation. Since the
safety system based on relative ranging is still under develop-
ment, it was not possible to change the environment live while
recording the dataset. Therefore, to simulate redistribution of




DMO1 | DMO02 | DMO03 | DM04 | DMO05 | DM06 | DM07 | DM08 | DM09 || DM12345
fusion 0.044 | 0.098 | 0.107 | 0.098 | 0.104 | 0.072 | 0.051 | 0.066 | 0.091 0.185
odometry 0.058 | 0.122 | 0.053 | 0.115 | 0.100 | 0.141 | 0.135 | 0.070 | 0.080 0.678
orbslam2 0.120 | 0.057 | 0.057 | 0.029 | 0.022 | 0.038 | 0.032 | 0.025 | 0.020 0.550
distance traveled | 24.0 324 20.4 22.5 25.8 20.6 20.3 25.0 18.0 125.1
markers detected 4 5 3 5 5 5 8 3 3 22

Table 1: The offline trajectory results for Dataset 1. The first three rows show the absolute trajectory error in meters for each sequence, the fourth row shows the
total distance traveled during the recording, and the last row contains the number of detected ground-markers (note that 2 markers are always detected at the start

and end of sequence).

DMO1 | DMO02 | DM03 | DM04 | DMO5 | DM06 | DM07 | DMOS | DM09 || DM12345
fusion 0.073 | 0.109 | 0.144 | 0.095 | 0.158 | 0.104 | 0.092 | 0.069 | 0.167 0.268
orbslam2 | 0.244 | 0.108 | 0.101 | 0.047 | 0.031 | 0.049 | 0.026 | 0.036 | 0.030 0.592

Table 2: The online trajectory results for Dataset 1. The rows show the absolute trajectory error in meters for each sequence.

y [m]

x [m]

Figure 11: Comparison of the online (blue) and the offline (cyan) orbslam?2
trajectory with ground truth (purple) for sequence DMO1.

racks during operation, we merged multiple sequences with dif-
ferent rack positions. All the sequences started and ended at
the same location and we ensured that in all the cases both ap-
proaches managed to track features between the sequence end-
ing and starting images without losing the location estimate.
We merged the sequences DM01-DMOS5 into a single sequence
and tested the localization quality of the proposed algorithm
and ORB-SLAM?2. In Table [} the column DM12345 shows
the results of the merged sequences, where we can see that the
proposed approach achieved the lowest error. Furthermore, in
Fig. [I2] we show the absolute error of the proposed solution
and ORB-SLAM?2, from which we can see that for the major-
ity of the experiments our solution was closer to the ground
truth. In one of the runs, at about 30 s, ORB-SLAM?2 lost track
of the features and this period is marked with the value of -1.
From the last row of Table 2] we can see that in the non-static
scenario the online fusion trajectory had lower error than the
online orbslam2, although both errors are slightly higher than
their offline counterparts.

4.3. Results on the Dataset 2

Dataset 2 is a close approximation of a real use case sce-
nario. The size of the warehouse testing arena was approx-
imately 12x13m? and was filled with metal racks as can be
seen in Fig. [I3] The main challenge of this dataset collec-
tion was acquiring the ground truth values. In contrast to the
Dataset 1 arena, this testing facility was not equipped with a
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Figure 12: The absolute error of the proposed solution (blue) and multiple runs
of ORB-SLAM?2 on the sequence DM 12345. The value -1 signifies that no pose
estimates are produced by ORB-SLAM?2 due to losing tracks of features.

motion capture system. After considering all the constraints, we
decided to use two approaches for localization evaluation. The
first approach was to mark several checkpoints on the floor of
the testing arena, whose position was known, and walk through
those points during the experiment. The second approach was
to accurately compute the location of the cameras with April-
Tag markers [34] that we additionally installed on the racks (cf.
Fig.[I4) and we used TagSLAM [26] to obtain the map of the
markers. To ensure the most accurate AprilTag map creation
(containing marker location and orientation), we measured by
hand the positions of all the markers which were used to ini-
tialize the SLAM algorithm. The mapping was done in a sep-
arate experiment, during which we focused solely on detecting
the AprilTag markers. Once the map was obtained, we used
it to compute the localization ground truth data for subsequent
experiments. Covering the whole testing arena with AprilTag
markers on the racks densely enough, so as to obtain smooth
ground truth data for the whole trajectory with our Safety Vest,
proved to be unfeasible as during the map building process the
optimization would become unstable and crash. Because of that
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Figure 13: The experimental arena for collecting Dataset 2. The arena was
13x12m? large, populated with metal racks filled with goods and ground-
markers on the floor. (By courtesy of Swisslog)

Figure 14: AprilTag markers placed around the warehouse used for localization
with the TagSLAM algorithm. (By courtesy of Swisslog)

we focused on two sections of the arena for which we were able
to get areliable ground truth estimate. We assume that the accu-
racy of the ground truth positioning at those sections is under 20
centimeters. For this dataset we did not conduct comparison be-
tween offline and online trajectories, since results in Section
for Dataset 1 showed that the online error was not significantly
larger than the offline error, and, furthermore, ground truth does
not cover whole trajectories of Dataset 2, which might preclude
such an accurate analysis.

We divided the dataset is divided in three scenarios. The first
is the standard operating conditions scenario that contains 4
sequences with the human walking in the warehouse and car-
rying out typical tasks. The second scenario is the kidnapped
human scenario in which cameras were briefly covered to sim-
ulate a situation in which the sensors field of view would get
obstructed and localization would fail. Finally, the third sce-
nario is the non-static environment case where the racks were
redistributed between the sequences.

4.3.1. Standard operating conditions scenario

For this scenario we again evaluated the orbslam?2, fusion and
odometry trajectories, as we did for Dataset 1. All sequences
started and ended at the same point, from which the starting
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AGO1 | AGO2 | AGO3 | AG04

fusion 0.328 | 0.191 | 0.303 | 0.719

odometry 0.548 | 0.327 | 0.303 | 0.692

orbslam2 0.128 | 0.514 | 0.661 | 0.532

distance traveled’| | 170.6 | 140.9 | 839 | 117.0
markers detected 7 4 3 5

Table 3: The results for the Dataset 2. The first three rows show the absolute
trajectory error in meters, the fourth row is the total distance traveled for each
of the recordings in meters, and the last row is the number of detected ground-
markers for the sequence.

ground-marker could be detected. An example of two trajecto-
ries can be seen in Fig.[T5]as well as the sections covered with
ground truth obtained by AprilTags and TagSLAM. The abso-
lute trajectory errors for all 4 sequences are shown in Table [3]
where the error was computed only for those sections of the tra-
jectory where the ground truth pose was available. Indeed, we
cannot quantitatively assess the accuracy of the whole trajec-
tory, but we assert that visual inspection coupled with quantita-
tive evaluation at the two sections covered with AprilTags acts
as a good indicator of the performance of the algorithms.

From Table [3] we can see that on some sequences
ORB-SLAM2 had better accuracy, while on the others the pro-
posed approach dominated. For example, on the AGO1 se-
quence, shown in Fig. @ orbslam?2 had the lowest error, while
odometry had the worst performance — this is also confirmed by
the drift that can be seen in the top-left corner of the figure. On
the AG02 sequence, even though the ratio of traveled distance
and detected ground-markers was high, fusion still had the low-
est error. The reason for this is the detection of a ground-marker
in the vicinity of the evaluation zone. A trajectory with marker
detections close to the evaluation zone has a lower impact of the
odometry error on the result. Furthermore, not only the number
of detected ground-markers is important, but also the accuracy
of the marker pose estimate. If the marker detection algorithm
returns a pose estimate with large orientation error, it will intro-
duce translation error in further pose estimation with odometry.
Another interesting example is the AG03 sequence, shown in
Fig. [I5bl where odometry and fusion had the same score that
was better than orbslam2. Nevertheless, even though odome-
try was fairly accurate up to the trajectory parts covered by the
AprilTags, at the end it still drifted as can be seen in the top left
corner of the image. Finally, results for AG04 suggest similar
relative performance of the algorithms as in the AGO1 case.

In conclusion, the results for the Dataset 2 indicate that all
the algorithms had poorer performance than on the Dataset 1,
which is expected due to environment complexity and the low
ratio of the number of detected ground-markers with respect
to the traveled distance; however, even in this case the pro-
posed approach can yield competitive performance with respect
to ORB-SLAM?2.

4.3.2. Kidnapped human scenario

One of the known localization problems in mobile robotics is
the so-called kidnapped robot problem, where the robot is taken
from its current location during localization and then placed
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to an arbitrary location. The robot then needs to relocalize it-
self in the environment. Analogously, in our case, we have the
kidnapped human problem. The problem could occur in situa-
tions where the input images of the cameras on the Safety Vest
worn by a human are not usable, for example when the camera’s
field of view gets obstructed.

We simulated this scenario by temporally covering cam-
eras with hands while walking through the warehouse test-
ing area. Without images, neither the visual odometry nor
the ground-marker detection could estimate the camera setup
movement. After the cameras were uncovered both algorithms
continued to estimate the pose, but with the assumption that
human did not move while the cameras were covered. This sce-
nario is depicted in Fig. [T6] which shows odometry and fusion
trajectories for four moments of the sequence. The trajectory
computed with the proposed method is colored in blue, whereas
the trajectory computed solely with visual odometry is green.
Red obstacles represent the racks in the testing arena. Before
we covered the cameras, as seen in Fig. [[6a] both trajectories
were pretty much aligned, and visible difference comes from
the detection of a ground-marker (designated with a red arrow)
which corrected the blue trajectory. In Fig. we can see the
moment where the cameras were covered (dashed orange cir-
cle). During this period, the human moved from the lower left
side to the lower right side of the bottom three racks as seen
in Fig. Afterwards, both trajectories continued their nor-
mal operation by concatenating newly estimated odometry tra-
jectories on top of their last pose estimates. Figure [[6d] shows
one correction of the blue trajectory when a ground-marker was
detected. Even though the pose was not completely corrected
with the first detection and the whole trajectory could not be
corrected (at some points it still passes through racks), through
consecutive corrections the current position of the blue trajec-
tory was accurate and came back to the starting point as seen in
Fig. This is taken to be the true pose since all the sequences
started and ended at the same point.

4.3.3. Non-static environment scenario

The scenario in which racks are not static, but some of them
change their position during the localization process, was also
tested on the Dataset 2. Again, the beginning and ending of all
the sequences occurred at the same position with very similar
appearance, thus we concatenated two recordings with different
rack distributions to simulate the changing environment (since
this was not possible to be done live during localization due to
safety reasons). Again, the proposed approach uses the ground-
markers map that always remain fixed, while ORB-SLAM?2
builds a map during the first traversal and later the map fea-
tures might change their position, thus we hypothesize that this
could have detrimental effect on the trajectory estimation. Since
sequences with different rack distributions were recorded dur-
ing two separate visits to the testing facility, only one of them
had ground truth with AprilTags; thus, for this experiment we
could not reliably test the accuracy as for the standard operat-
ing conditions scenario. Therefore, to assess the performance in
this case, we tracked the number of times the localization algo-
rithm did not return a pose estimate. Namely, when localization
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fails, both the proposed approach and ORB-SLAM?2 stop send-
ing pose estimates. The proposed approach waits for another
ground-marker to be detected, while ORB-SLAM2 tries to relo-
calize in the built map of the environment. Given that, missing
pose estimates can act as an indicator of localization reliability
and in these experiments we use this metric as a proxy for the
evaluation of the algorithms performance.

The sequences we used in this experiment are AG02 and
AGO03, since we managed to merge them without any local-
ization loss. The results are illustrated in Fig. [T7] where we
show the localization losses by the algorithms. Note that
ORB-SLAM?2 has variable performance, which is why we
present 5 different runs. From the figure we can see that the
proposed algorithm did not have any localization losses, while
the mean value of ORB-SLAM?2 losses for 5 runs was 16.1%
and 11.9% for the merged AG02 and AGO3, respectively. For
reference, on the unmodified testing facility sequences only
ORB-SLAM? had some losses; specifically, 11.4% on AGO02.

There are 4 repetitive localization gaps between 5 runs of the
AGO2 sequence and 2 repetitive gaps in 5 runs of the AG03
sequence. In Table [d we can see how much the fusion pose es-
timate moved while the ORB-SLAM?2 was unable to localize.
We can see in Fig. [17] that localization gaps for multiple runs
of ORB-SLAM?2 are almost concurrent, thus Table [] shows
only the gap interval of one run. This observation shows that
the localization gaps are not caused by, e.g., the stereo camera
being kept still at locations where ORB-SLAM?2 lacked fea-
tures, while the proposed algorithm showed to be more robust.
From this we can conclude that the proposed algorithm showed
more reliable localization performance when faced with chang-
ing environment conditions that are expected in robotized ware-
houses.

5. Conclusion

In this paper we have proposed a novel approach for human
localization in integrated robotized warehouses. The approach
relies on a setup of wearable visual sensors, which consists of
a downward-pointing camera for detecting ground-markers and
a stereo camera for visual odometry. The human location is
calculated by fusing the information about the global location
inferred from a memory-light map of ground-markers and es-
timated ego-motion yielded by the stereo visual odometry. To
evaluate the proposed approach, we recorded two datasets: the
first in a laboratory environment covered with a motion cap-
ture system, and the second in a realistic testing facility that
was partially covered with AprilTags to generate ground truth.
Furthermore, we compared the performance of the proposed ap-
proach to a state-of-the-art visual SLAM solution, namely the
ORB-SLAM?2 algorithm. Results on both datasets showed that
the proposed approach yields a robust and real-time localization
with accuracy comparable to ORB-SLAM?2, without requiring
any modifications to the existing warehouses. Furthermore,
comparing to ORB-SLAM?2, our approach is computationally
more lightweight and robust to changes in the environment that
can occur frequently in a robotized warehouses due to robots
redistributing racks and carrying them to the picking stations.
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Figure 16: The kidnapped-human scenario captured in four timesteps. Red squares represent the racks present in the testing arena. Blue and green trajectories
with the corresponding pose arrows represent the fusion and the odometry estimations respectively. The red arrow represents the last detected pose with the ground
stickers detection. With help from the sticker detection, the blue trajectory manages to return to the starting position, whereas the green trajectory drifts away.
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Sequence | Interval [s] | Distance [m]
0-8.2 1.8
20.3-25.7 6.2
AGO2 44.1-56.9 6.6
127.3-143.3 5.8
0-7.0 2.3
AGO3 74.3-97.4 7.2

Table 4: The localization gap intervals and the distances between poses of the
fusion trajectory at the beginning and the end of each interval.
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Figure 17: Loss of localization in time for 5 different runs of ORB-SLAM?2 and
the proposed algorithm on the merged sequences AG02 and AGO3.

For future work we plan to integrate the proposed localiza-
tion with the relative ranging safety system to yield an inte-
grated solution capable of localizing humans and guaranteeing
their safety in an environment teeming with robots that have
limited perception capabilities.
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