
1

Mixtures of Gaussian Processes for Robot Motion
Planning using Stochastic Trajectory Optimization

Luka Petrović1, Ivan Marković1, Ivan Petrović1

Abstract—Robot motion planing methods based on trajec-
tory optimization can efficiently generate feasible and optimal
trajectories by minimizing a suitable cost function, even in
high-dimensional spaces. However, the main drawback of these
methods lies in their proneness to infeasible local minima,
especially in complex environments. To mitigate this issue, we
propose a novel motion planning method that represents trajec-
tories as samples from a mixture of continuous-time Gaussian
processes (MGP) and employs stochastic optimization in order
to update the MGP parameters in a cost-minimizing manner.
The contributions of the proposed trajectory optimization method
arise from the introduced mixture representation and stochastic
gradient estimation, dominantly enabling better exploration of
the trajectory space and including non-differentiable optimizing
costs. We evaluated the proposed method in multiple simulation
benchmarks featuring 7DOF robot arms and a 10DOF mobile
manipulator. We also conducted a real-world experiment with a
14DOF dual arm robot. The experimental results demonstrated
that the proposed method achieves higher success rate than sev-
eral state of the art methods, while the advantages stemming from
MGPs and stochastic optimization, like trajectory smoothness,
support of non-differentiable cost functions, multiple trajectory
solutions, and the ability to tackle high-dimensional planning
problems, are inherently kept.

I. INTRODUCTION

Motion planning is a crucial robotics task necessary for
efficient and safe robot motion and interaction in real world
environments. The goal of motion planning is to produce
feasible robot trajectories in configuration space that reach the
goal optimally according to a given criterion. Feasibility of a
trajectory often refers to collision avoidance and constraints
assurance, such as robot joint limits, while optimality often
corresponds to trajectory smoothness, minimization of accel-
eration, executed path length, or a similar qualitative metric.
The rapid growth in complexity of both robots and operating
environments has accentuated the need for efficient high-
dimensional motion planning methods. Take for an example a
mobile manipulator working with objects in an unstructured
environment or a personal household robot operating in a com-
plex and dynamic environment. Such high degree-of-freedom
(DOF) systems require reliable motion planning to perform
assigned tasks, while satisfying various constraints and moving
through an environment without collisions. Computational
efficiency is also particularly important, since trajectory re-
planning might be needed in constantly changing and dynamic

1 Authors are with the University of Zagreb Faculty of Electrical Engi-
neering and Computing, Laboratory for Autonomous Systems and Mobile
Robotics, Croatia. E-mail: {name.surname@fer.hr}

This research has been supported by the European Regional Development
Fund under the grant KK.01.1.1.01.0009 (DATACROSS).

environments. The two most common approaches to motion
planning in high-dimensional spaces include sampling-based
approaches and trajectory optimization.

The sampling-based approaches [1], [2], [3] build upon
the notion of connecting randomly sampled points from the
free configuration space – they check the drawn samples
for collisions in the environment to figure out if a sample
configuration is a part of the free configuration space or not.
Sampling-based approaches often provide formal guarantees
on finding the solution and most of them exhibit probabilistic
completeness, i.e. the probability of generating a solution
approaches one as more time is spent [3]. The most prominent
sampling-based approaches are probabilistic roadmaps (PRM)
[1] and rapidly exploring random trees (RRT) [4], [5]. Both
demonstrated the ability to find solutions in configuration
spaces with many DOFs and kinodynamic constraints [6],
[7]. Even though sampling-based methods do not explicitly
optimize a cost function, authors in [3] proposed adaptations of
RRT and PRM that were proven to be asymptotically optimal.
Nevertheless, many sampling-based methods are computation-
ally inefficient for challenging high-dimensional problems,
especially if the environment is dynamic and replanning is
needed. They may suffer from the curse of dimensionality
and frequently spend sizable computational effort for sampling
parts of the configuration space that might be irrelevant for the
task. Furthermore, sampling-based approaches rarely take into
account trajectory smoothness and consequently the obtained
paths necessitate post-processing to avoid jerky or redundant
motion. To mitigate the mentioned deficiencies, methods com-
bining potential fields with sampling based planning [8], [9]
have been introduced. However, they are unable to optimize
secondary costs (e.g. motor torque minimization) and for high-
dimensional spaces they either rely on human demonstrations
or still require significant computational effort.

The trajectory optimization approaches encode the trajec-
tory as a sequence of states and optimize an arbitrary state-
dependent objective function that is in most cases a sum
of a smoothness cost and a collision-avoidance cost. While
computationally efficient, they lack formal guarantees and
sometimes converge to infeasible local minima. They can
be divided in two categories: gradient-based approaches and
stochastic optimization approaches.

The most prominent gradient-based trajectory optimization
approaches are the Covariant Hamiltonian optimization for
motion planning (CHOMP) [10], [11], Trajectory Optimiza-
tion for Motion Planning (TrajOpt) [12], [13], and Gaussian
process motion planning (GPMP) [14] and its extensions [15],
[16], [17]. GPMP parameterizes the robot trajectory with



2

a few support states and exploits efficient continuous-time
Gaussian process (GP) interpolation to query the trajectory
at any time of interest, circumventing the CHOMP’s need
for a large number of states or TrajOpt’s need for trajectory
post-processing. The GPMP2 algorithm [15], [17] casts the
motion planning problem as probabilistic inference, leveraging
a sparse GP prior and sparsity-exploiting optimization tools to
achieve notably fast performance. While efficient, gradient-
based trajectory optimization methods often perform poorly
in complex environments as they are unable to avoid local
minima due to limited exploration ability and are unable to
optimize costs that are non-differentiable.

Stochastic trajectory optimization methods combine sam-
pling and trajectory optimization to overcome the local minima
problem present in gradient-based optimization. Contrary to
sampling-based approaches, which sample in the configuration
space, stochastic trajectory optimization methods sample in the
trajectory space, which may be more sample-efficient. Stochas-
tic trajectory optimization for motion planning (STOMP) [18]
explores the space around an initial trajectory by taking a
batch of noisy trajectories, evaluating their cost, and cal-
culating a stochastic gradient estimate to update the initial
trajectory in a cost-minimizing manner. Stochastic multimodal
trajectory optimization algorithm (SMTO) [19] utilized varia-
tional Bayesian expectation maximization to successfully find
multiple solution trajectories, but it is orders of magnitude
computationally slower than STOMP. A particle swarm filter
method for trajectory optimization [20] displayed being less
prone to local minima than gradient-based methods, but it
did not showcase its performance in highly cluttered en-
vironments. Another group of methods uses cross-entropy
optimization [21], [22], [23]. In [21], authors rely on drawing
trajectories from the set of feasible paths. The proposed frame-
work generates smooth trajectories; however, sampling whole
collision-free trajectories can become infeasible in complex
environments. In [22], [23], we represented trajectories as
samples from a heteroscedastic GP and the method displayed
good performance in cluttered environments emanating from
the underlying cross-entropy optimization.

In this paper, we propose a novel motion planning method
that leverages advantages of both the trajectory optimization
and sampling-based approaches, while retaining computational
efficiency. Opposed to representing trajectories as samples
from a heteroscedastic GP in [23], the proposed method repre-
sents trajectories as samples from a mixture of continuous-time
GPs, which better covers the configuration space with regards
to criteria such as smoothness and torques while perform-
ing similarly in collision avoidance. Furthermore, while the
method in [23] employs a cross-entropy-based optimization,
the proposed method utilizes an update rule similar to gra-
dient descent but employing a stochastic gradient estimation
technique. Due to this update rule, it is significantly more
sample efficient than the method in [23] and thus requires less
computational resources. It is also able to optimize multiple
different optimization criteria, while the method in [23] is not
well-suited for this task due to its sample inefficiency.

The main features of the proposed method are: (i)
continuous-time GPs as mixture components lead to solution

trajectories that can be queried at any time of interest and do
not require post-processing, (ii) the proposed MGP initializa-
tions cover large parts of trajectory space alleviating the local
minima problem while retaining smoothness, (iii) the proposed
stochastic gradient estimation allows for optimizing costs that
are non-differentiable, and (iv) the MGP representation allows
finding multiple solution trajectories to a given problem.
These features bring advantages to our method and make it
unique since none of the other existing trajectory optimization
methods possess all of them. We evaluated our method in
multiple simulation benchmarks featuring 7 DOF robot arms
and a 10DOF mobile manipulator. We also conducted a real-
world experiment with a 14DOF dual-arm robot. The results
demonstrated that the proposed method achieves a higher
success rate than several state-of-the-art methods, while the
advantages stemming from MGPs and stochastic optimization,
like trajectory smoothness, support of non-differentiable costs,
multiple trajectory solutions, and the ability to tackle high-
dimensional planning problems, are inherently kept.

II. THEORETICAL BACKGROUND

In this section, we present the continuous-time GP suitable
for motion planning and the general framework for formulating
trajectory optimization problem as probabilistic inference. We
closely follow developments from [17], as our method inherits
the benefits of the proposed representation. For a more in-
depth treatment, we refer the reader to [24], [25].

A. Robot trajectories as Gaussian Processes

We consider the robot’s trajectory as a sample from a
continuous-time GP [26]

θ(t) ∼ GP(µ(t),K(t, t′)) (1)

that is parameterized with N support states at discrete time
instants, θi ∈ RD, i ∈ N , where D is the state dimensionality.
This implies that, for any collection of times t = {t0, . . . , tN},
µ(t) is a vector-valued mean function and K(t, t′)) is a matrix-
valued covariance function [17], defined as

µ = [µ(t0) . . .µ(tN )]T , K = [K(ti, tj)]|i,j,0≤i,j≤N . (2)

A vector-valued GP provides a theoretically grounded
continuous-time trajectory representation, where trajectories
are deemed as functions that map time to robot state. A
structured kernel that belongs to a special class of GP priors
is generated by a linear time-varying stochastic differential
equation (LTV-SDE)

θ̇(t) = F (t)θ(t) + v(t) +L(t)w(t), (3)

where F and L are system matrices and v is a known
exogenous input. The white noise process w(t) is itself a GP
with zero mean value w(t) ∼ GP(0,Qc(t)δ(t − t′)), where
Qc(t) is a positive semi-definite power-spectral density matrix.
A similar dynamical system has been extensively utilized
to represent trajectory distributions in estimation [27], [28],
calibration [29] and motion planning [17], [23].

A paramount advantage of representing continuous-time
trajectories in motion planning with GPs generated by the



3

LTV-SDE in (3) is the opportunity to query the planned
trajectory state θ(τ) at any time of interest τ [27]. The
exactly sparse block tridiagonal precision matrix supports
computationally efficient, structure-exploiting GP interpolation
with O(1) complexity. As shown in [15], state θ(τ) at τ ∈
[ti, ti+1] is a function only of its neighboring states. Efficient
GP interpolation enables keeping a relatively small number
of support states even in cluttered environments with small
obstacles, which reduces the computational burden compared
to the discrete-time representation. It can also be exploited
for providing a dense trajectory on the output, which can be
directly executed without the need for post-processing.

We represent robot dynamics with the double integrator
linear system with white noise injected in the acceleration.
The trajectory generated by (3) is defined by the Markovian
θ(t) consisting of position and velocity in the configuration
space with the following system matrices

F (t) =

[
0 I
0 0

]
, L(t) =

[
0
I

]
, (4)

providing a constant velocity GP. By applying this motion
model, the joint acceleration is minimized, minimizing the
energy consumption in the process and fostering a physical
meaning of smoothness [17].

B. Trajectory optimization as probabilistic inference
To formulate motion planning as probabilistic inference, we

cast the motion planning problem as searching for the max-
imum a posteriori (MAP) continuous-time trajectory starting
from a prior distribution on the space of trajectories and an
arbitrary likelihood function. More formally, we look for the
posterior density of θ given a collection of events e which
can be calculated via Bayes’ rule

p(θ|e) =
p(θ)p(e|θ)

p(e)
∝ p(θ)p(e|θ), (5)

where p(θ) represents the prior on trajectory θ and p(e|θ) is
the likelihood of an event e given trajectory θ.

In previous works [15], [30], a prior distribution on the
space of trajectories, whose role is to encourage the smooth-
ness of the trajectory, is a GP defined by the mean µ and
covariance K

p(θ) ∝ exp
{
−1

2
‖θ − µ‖2K

}
, (6)

while the likelihood function, whose role is to encourage pos-
terior trajectories that are collision-free, is commonly defined
as a distribution in the exponential family

L(θ; e) ∝ exp

{
−1

2
‖h(θ, e)‖2Σ

}
, (7)

where h(θ, e) is an arbitrary vector-valued cost function with
covariance matrix Σ.

The optimal trajectory θ∗ is then found by minimizing the
negative logarithm of the posterior p(θ|e) as follows [17]

θ∗ = arg min
θ

{
-log

(
p(θ)p(e|θ)

)}
(8)

= arg min
θ

{
−1

2
‖θ − µ‖2K −

1

2
‖h(θ, e)‖2Σ

}
. (9)

If a prior on the space of trajectories is given as a GP, the neg-
ative logarithm reduces the MAP problem to nonlinear least
squares that can be solved with iterative optimization tech-
niques such as Gauss-Newton or Levenberg-Marquardt [15].

III. PROPOSED METHOD FOR TRAJECTORY OPTIMIZATION

In this section we derive the proposed method for trajectory
optimization, which we dubbed Mixture of Gaussian Processes
for Trajectory Optimization (MGPTO). First we introduce
robot trajectory representations as mixtures of Gaussian pro-
cesses, then we formulate the trajectory optimization problem
with an MGP trajectory prior. Afterwards, we present the
procedures for stochastic gradient estimation and for weights
update of the MGP. At the end, we present the MGPTO
method in the form of an algorithm.

A. Robot trajectories as mixtures of Gaussian processes

A single GP trajectory representation allows searching for
a collision-free trajectory in the neighborhood of the mean
trajectory, which is often initialized as a constant-velocity
straight line, but it does not allow thorough exploration of
the environment, which is needed for local minima avoidance.
Therefore we consider a continuous-time trajectory as a sam-
ple from an MGP, allowing for broader initialization and thus
better coverage of the environment. The MGP model is defined
as a linear superposition of multiple GP components

p(θ(t)) =

M∑
m=1

πmGP(µm(t),Km(t, t′)), (10)

where πm are the mixing coefficients such that 0 ≤ πm ≤ 1,∑M
m=1 πm = 1. Since our main idea is to represent trajectories

as samples from an MGP and employ optimization in order to
update the MGP parameters in a cost-minimizing manner, we
will need to formulate the MGP in terms of discrete latent
variables to make this problem soluble. Our development
is similar to the Gaussian mixture model widely employed
in machine learning [31], where the latent variable, which
is usually unknown, represents which Gaussian component
generated which observation. In our case the problem is a bit
different, since we know in advance which MGP component
generated which trajectory.

First, we introduce the latent variable z that is an M -
dimensional discrete random variable

p(z) ∼ Categorical(π), (11)

where the values of z have a 1-of-M encoding, meaning that
only a particular vector element zm is equal to 1, while all
other vector elements are equal to 0. A certain vector element
zm being equal to 1 refers to the m-th mixture component.
The joint distribution p(θ, z) can be defined in terms of the
marginal and conditional distribution

p(θ, z) = p(z)p(θ|z). (12)

The marginal distribution p(z) is specified in terms of the
aforementioned mixing coefficients p(zm = 1) = πm, while
the conditional distribution, given a particular value for z, is



4

a GP, p(θ|zm = 1) = GP(µm(t),Km(t, t′)). Given that, the
marginal p(θ) can then be computed by summing over all
possible states of z

p(θ) =
∑
z

p(z)p(θ|z) =

M∑
m=1

πmGP(µm(t),Km(t, t′)).

(13)
Thus the marginal distribution of θ is an MGP of the
form (10). We have therefore found an equivalent formulation
of the MGP involving an explicit latent variable. This for-
mulation implies that every trajectory θk has a corresponding
latent variable zk that determines from which GP component
the pertaining trajectory was generated.

1) Drawing trajectory samples: To draw a sample from an
MGP involving a latent variable, we first sample the latent
variable z with the roulette wheel selection where a given
mixture weight πm is the probability of zm = 1. A sample
trajectory can then be generated from the mixture component
corresponding to the selected latent variable zm with

θ = µm +AmZ, (14)

where Am is a lower triangular matrix obtained by Cholesky
decomposition of the covariance matrix, Km = AmA

T
m, and

Z is a vector of N standard normal variables Z ∼ N (0, I).
2) Initialization of the mixture components: With the GP

trajectory representation, selecting the initial mean is rela-
tively straightforward since a constant-velocity straight line
minimizes the joint accelerations and thus provides the notion
of smoothness. However, with the MGP trajectory represen-
tation we have to select an initial mean for multiple GPs.
We introduced the MGP representation in order to achieve
better exploration and improve success rate in comparison to
the state-of-the-art methods in finding feasible trajectories in
complex environments. To accomplish this goal, we have to
somewhat sacrifice smoothness since searching for trajectories
that are far from the constant-velocity straight line in the con-
figuration space requires larger joint accelerations. We propose
an initialization technique of the MGP mixture components
that tries to cover distant portions of the configuration space
while retaining relatively small joint accelerations.

An initial mean µm is generated similarly to sampling a
random trajectory with (14) but with a deterministic Zm

µm = µ0 +AmZm, (15)

where µ0 is a constant-velocity straight line in the configura-
tion space. The elements of Zm corresponding to the velocity
of the m-th robot joint are set to either 1 or −1 during
the first half of robot trajectory, and to the opposite value
during the second half of trajectory (so that the total integral
of injected noise is 0), while all other elements are set to
0. By exerting acceleration only on a single robot joint at
a time, the initialized trajectories remain smooth, while still
exhibiting significant deviation in the task space in different
directions, allowing for better exploration of the environment.
An example of the proposed initialization and its comparison
to a single GP is shown in Fig. 1, both for an omnidirectional
planar robot platform and a 7 DOF robot arm.

B. Probabilistic inference with an MGP prior
We formulate trajectory optimization as probabilistic infer-

ence as in Section II-B, but instead of a GP prior we use the
prior distribution given as an MGP with its mixing coefficients
πm, means µm, and covariances Km. The conditional distri-
bution p(θ|z), given a particular value for z, is the following
mixture component

p(θ|zm = 1) ∝ exp{−1

2
‖θ − µm‖

2
Km
}, (16)

which corresponds to the GP prior in (6), similarly to the case
of [15]. Then, the marginal distribution p(θ) that represents
an MGP prior can then be written as

p(θ) ∝
M∑
m=1

πmexp{−1

2
‖θ − µm‖

2
Km
}. (17)

The optimal trajectory θ∗ is found by minimizing the negative
logarithm of the posterior distribution p(θ|e) given in (5)

θ∗ = arg min
θ

{
-log

(
p(θ)p(e|θ)

)}
(18)

= arg min
θ

{
-log

M∑
m=1

πmexp
{
−1

2
‖θ − µm‖

2
Km

− 1

2
‖h(θ, e)‖2Σ

}}
.

(19)

While the negative logarithm reduced the MAP problem to
nonlinear least squares when a GP prior was used, in our case
when the prior is an MGP, the negative logarithm does not
simplify the problem due to the summation operator inside
the logarithm. In the following we elaborate on how to solve
this issue.

C. Stochastic gradient estimation
Suppose that we know the value of latent variable z, i.e.

which element zm = 1, and that it remains constant. Then the
value of m-th mixing coefficient becomes p(zm = 1) = πm =
1, while all other mixing coefficients are zero. In this case, the
summation operator within the optimization problem in (19)
disappears, and the problem becomes equivalent to (9)

θ∗ = arg min
θ

{1

2
‖θ − µm‖

2
Km

+
1

2
‖h(θ, e)‖2Σ

}
. (20)

In order to allow optimizing trajectory costs that are non-
differentiable, we employ derivative-free stochastic optimiza-
tion, instead of the gradient descent optimization proposed
in [15]. The introduced stochasticity could additionally en-
hance exploration and help alleviate the local minima problem
present in gradient-based methods. Given that, first we convert
the deterministic problem in (20) to a stochastic one by
applying the expectation operator

θ∗ = arg min
θ

{
E
[

1

2
‖θ − µm‖

2
Km

+
1

2
‖h(θ, e)‖2Σ

]}
.

(21)
Next we take the gradient with respect to θ to minimize the
pertaining expectation

∇θE
[
(θ − µm)TK−1m (θ − µm) + hT (θ, e)Σ−1h(θ, e)

]
= 0

(22)



5

(a) 2D GP with a straight-line mean and
its sample trajectories

(b) 2D MGP with three mixture compo-
nents and its sample trajectories

(c) 7D MGP with four mixture compo-
nents. Red trajectory is a straight line in
the configuration space, while one of ini-
tial trajectories (black) is almost collision-
free.

Fig. 1: Comparison of GP and MGP initializations for a planar omnidirectional robot and a 7 DOF robot arm.

leading to

E [θ] = µm −Km E
[
∇θ
(
hT (θ, e)Σ−1h(θ, e)

)]
︸ ︷︷ ︸

δθ̂m, the gradient estimate

. (23)

To further simplify the gradient estimation problem, we as-
sume that the cost h(θ, e) of each configuration θi depends
only on that configuration, meaning that future or past costs do
not impact the current cost. This implies that the covariance
matrix Σ is isotropic, i.e. Σ = σI , leading to

δθ̂m = E
[
∇θ
(∑N

i=1 σh
2(θi)

)]
, (24)

where σ is a scalar parameter that can be utilized for cost
weighting. In this paper, we set σ = 1 for simplicity.

Existing trajectory optimization methods [10], [15] achieved
computational efficiency by employing an iterative gradi-
ent descent update using an analytical gradient requiring
a smooth differentiable optimization criteria. On the other
hand, STOMP [18] proposed a gradient estimation update that
circumvents the analytical requirement and can optimize non-
differentiable costs. Inspired by STOMP and work in the path
integral reinforcement learning [32], we propose an estimated
gradient formulation as follows

δθ̂m =

K∑
k=1

zkmP (θ̃
k
)(θ̃

k
− µm) (25)

with probability metric

P (θ̃
k
) = exp(− 1

λ
f(θ̃

k
)), (26)

where θ̃
k

is a single sampled trajectory, zkm is the corre-
sponding latent variable, K is the total number of sampled
trajectories, and f(θ̃

k
) corresponds to the state-dependent cost

function, f(θ̃
k
) =

∑N
i=1 σh

2(θ̃
k

i ). The parameter λ deter-
mines the sensitivity of the exponentiated cost. The variable
zkm in (25) ensures that only samples from the m-th mixture
component partake in gradient estimation for that component.

In other words, to estimate the gradient of the trajectory
cost, first we draw K sample trajectories θ̃

k
and then evaluate

the pertaining trajectory cost f(θ̃
k
) for each sampled trajec-

tory. Afterwards, the probability metric in (26), normalized to
unity similarly as in [18], is calculated for each trajectory cost
and finally the gradient is computed following (25). Intuitively,
trajectories with lower cost are desirable, as they are farther
from the obstacles. If a trajectory cost of a certain sampled
trajectory θ̃

k
is particularly small compared to other sampled

trajectories, the probability P (θ̃
k
) of that trajectory is very

high. Then the trajectory cost gradient δθ̂m points in the
direction of that trajectory sample. The trajectory mean µm
updated with the pertaining gradient moves toward the part
of trajectory space with smaller trajectory costs, i.e. with
desirable properties. The proposed gradient estimation in (25)
and update rule in (23) represent the generalization of STOMP
for a continuous-time GP. Unlike the discrete-time trajectory
representation utilized in STOMP, the continuous-time GP
representation includes velocities which can be useful for
optimizing costs that can explicitly reason about time [33].
It also supports the aforementioned efficient interpolation that
can be exploited for querying the trajectory at any time of
interest, resulting in dense collision checking and bypassing
the need for post-processing.

D. Updating the MGP weights during optimization

The assumption that the variable z is constant and known
allows us to carry out the same optimization technique when
sampling from the whole MGP, and not just from a single
mixture component. Unlike the previous section, where we
had K trajectories from a single component, now we have
K trajectories sampled from the whole mixture. Since the
information about the trajectory origin, i.e. the corresponding
latent variable zkm in known and kept, we can utilize trajec-
tories sampled from the m-th mixture component to estimate
the gradient and update the mean for that component. We do
this for each of M mixture components, following the gradi-
ent estimation procedure (25). Essentially, the latent variable
formulation enabled us to split the challenging optimization
problem in (19) into M simpler ones that can be solved using
the update rule (23).



6

However, we do not want to solve those M simpler prob-
lems independently. Since each mixture component covers a
different part of trajectory space, some will have smaller cost,
and therefore, higher chance of converging to a feasible solu-
tion trajectory. We want to explore around initializations that
are closer to finding a feasible solution and neglect mixture
components with higher trajectory cost. In other words, we
also want to update the mixture weights between iterations to
ensure that trajectories with smaller costs have higher mixture
weights, so that computational time is not spent exploring
around trajectories that have high costs, i.e. that are prone to
collision. Therefore, we propose to update the mixture weights
by utilizing a probabilistic metric similar to (26)

πm = exp(− 1

λ
f(µm)). (27)

Given that, after updating each of the M means µm, we
evaluate their costs f(µm) and update their weights πm. In
the subsequent iterations the components with higher mixture
weights get more trajectory samples and get more explored.

E. MGPTO algorithm

In this section we present the MGPTO method in the form of
an algorithm, summarized in Algorithm 1, which uses results
from previous subsections. As inputs, the algorithm requires a
state-dependent cost function f(θ̃

k
) to be minimized as well

as the start and goal states θ0, θN of the trajectory. A state-
dependent cost function f(θ̃

k
) can be non-differentiable and

pertain to any type of trajectory constraints or quality metrics.
The mixture component means µm are initialized using the
technique proposed in Section III-A. To initialize the mixture
component covariances Km, first the integral of the LTV-SDE
in (3) is calculated at support states and the corresponding
covariance matrix is written in the lifted form [27]. The
underlying GP is then conditioned on the goal state to generate
initializations of the covariance matrices Km that are suitable
for motion planning [17], [23]. After initialization, the main
loop of the algorithm is iterated until a given convergence
criterion is satisfied. The main loop consists of two for loops.
In the first for loop, the K trajectory samples θ̃

k
with the

corresponding latent variables zkm are drawn with (14). For
each sampled trajectory, its respective state-dependent cost
is evaluated and the probability metric P (θ̃

k
) is calculated

following (26). In the second for loop, the gradient is estimated
for each of the M mixture components using (25) and each
of the M means are updated with

µm = µm + Kmδθ̂m. (28)

After updating, the state-dependent cost of each new mean
f(µm) is calculated, which is used at the end to compute
the new mixture weights following (27). Note that we also
normalize (27) to unity for correct probability representation.

Algorithm 1 MGPTO

Input: Start and goal states θ0, θN , a state-dependent cost
function f(θ̃

k
(t))

Precompute: Initial means µm and covariances Km
1: while convergence criterion not satisfied do
2: for k = 1 . . .K do
3: Draw a sample trajectory
4: θ̃

k
(t) ∼

∑M
m=1 πmGP(µ(t),K(t, t′))

5: Evaluate trajectory cost f(θ̃
k
(t))

6: Evaluate probability P (θ̃
k
) = exp(− 1

λf(θ̃
k
))

7: end for
8: for m = 1 . . .M do
9: Normalize probability Pm(θ̃

k
) =

zkmP (θ̃
k
)∑K

k=1 z
k
mP (θ̃

k
)

10: Estimate gradient
11: δθ̂m =

∑K
k=1 z

k
mPm(θ̃

k
)(θ̃

k
− µm)

12: Compute new mean µm = µm + Kmδ̂θm
13: Evaluate cost of new mean f(µm)
14: end for
15: Compute mixture weights πm =

exp(− 1
λf(µm))∑M

m=1 exp(− 1
λf(µm))

16: end while

IV. IMPLEMENTATION DETAILS OF THE PROPOSED
METHOD

In this section we discuss the implementation details neces-
sary for better comprehension and full reproducibility of the
proposed MGPTO method.

A. Convergence criteria

In Algorithm 1, the optimization runs until a convergence
criterion is satisfied. There are several different convergence
criteria that we implement for different purposes. For example,
when searching for a single collision-free trajectory, we termi-
nate the optimization when one of the means µm of mixture
components becomes collision free, i.e. its collisions cost be-
comes 0, and that mean is outputted as the solution trajectory.
Alternatively, our approach also allows to search for multiple
different solution trajectories, i.e., when a collision-free mean
µm is found, the pertaining m-th mixture component is pruned
from the mixture and the mixture weights πm for the remain-
ing components are recalculated. The proposed convergence
criterion can thus be utilized to find multiple modes of the cost
function corresponding to multiple solution trajectories, which
has not been extensively studied in the literature. Multiple
different solutions allow selecting a single solution based on
how the trajectory may appear, which homotopy class it should
belong or according to secondary criteria, e.g. the distance
from singular configurations or energy consumption. Selecting
one of the solutions obtained by MGPTO circumvents the
need to replan with different initialization or cost function
which might be the case with methods that produce a single
solution. Furthermore, if changes in the environment that block
a certain path occur during planning time, having alternative
solutions that avoid the blocked pathway bypasses the need
for replanning. Multiple solutions may also be of use in task-
level motion planning [19]. In any case, we can terminate the



7

optimization if too much computational effort was spent by
setting a tmax parameter for maximum allowed processing
time. When optimizing secondary costs (e.g. motor torques),
the algorithm stops when the trajectory cost converges, i.e.
when it does not decrease for several iterations.

B. Collision avoidance

Similarly as in [15], [23], we deem the robot body as a set
of spheres. For a given robot configuration θi, we calculate the
hinge loss for each sphere representing the robot’s body and
sum it into a single scalar, resulting in the following obstacle
cost function

h(θi) =

S∑
j=1

c
[
d
(
x(θi, Sj),O

)]
(29)

where x is the forward kinematics of a robot, O is the set of
obstacles in the environment, d is the Euclidean signed dis-
tance function, c is the hinge loss function and S is the number
of spheres that represent the robot model. Representing a robot
as a set of spheres enables easy computation of the signed
distance by subtracting the sphere radius from the calculated
distance between a sphere center and its closest obstacle. By
precomputing the Euclidean signed distance for the task space
represented with a voxel grid of desired resolution we generate
the Euclidean signed distance field (SDF), which is used for
fast evaluation of the obstacle cost function. When accurate
geometry modeling is required, robot representations based on
meshes and convex primitives might be better suited, although
at higher computation costs. In such cases, any other collision
checking tool, e.g. Flexible Collision Library (FCL) [34], can
be coupled with our algorithm.

C. Torque optimization

Given a robot dynamics model, the feed-forward torque,
needed at each joint to track the desired trajectory, can be
computed using inverse dynamics algorithms [35]. The motor
torques at any time instant ti are function of the robot joint
states and the pertaining derivatives

τ (ti) = f(θi, θ̇i, θ̈i). (30)

While the joint states and joint velocities at time instant ti
are a part of each sampled trajectory due to the underlying
constant-velocity model, joint accelerations are calculated by
forward finite differentiation.

We construct the cost function that is utilized to minimize
the robot motor torques similarly as in [18], by adding the
magnitude of torque for each of the J robot joints

h(θi) =
J∑
j=1

∣∣τ j(ti)∣∣ . (31)

Obtaining torque derivations can be challenging and the ab-
solute value operator makes the cost function in (31) non-
differentiable at 0. This is an example of a state-dependent
cost that the proposed stochastic optimization method can
optimize, unlike the gradient-based methods. Even if we define

a differentiable cost function, analytical derivatives of the in-
verse dynamics function (30) are often unavailable in practice,
incurring additional computational burden for gradient-based
methods.

D. Joint limits

MGPTO method deals with joint limits by clamping the
sampled trajectories θ̃

k
at the limit values, similarly as in [18].

The updated means µm at each iteration respect the joint
limits, since the sampled trajectories θ̃

k
stay within the limits

and the stochastic gradient update is essentially a convex
combination of sampled trajectories. Moreover, since the esti-
mated gradient δθ̂m is smoothed through the covariance matrix
Km with the underlying constant-velocity model, the updated
means µm smoothly touch the joint limit, thus avoiding jerky
motion. Given that, MGPTO handles the joint limits during
optimization, unlike GPMP2 and CHOMP that handle joint
violations as a post-processing step by smoothly projecting
joint violations on the output trajectory, which can sometimes
lead to the post-processed trajectories that are in collision.
Moreover, another advantage of the MGP representation is
that it includes velocities as part of the state-space, unlike the
discrete representation in STOMP, meaning that MGPTO can
also enforce joint angular velocity limits in the same manner,
which STOMP is currently unable to do.

V. EXPERIMENTAL RESULTS

In this section we present the results of experimental vali-
dation of the proposed method and its comparison to the state-
of-the-art trajectory optimization techniques GPMP2 [15],
STOMP [18] and the method proposed in [23]. We conducted
five experiments in different motion planning scenarios:

• box obstacle benchmark,
• robot arm in a complex environment benchmark,
• torque optimization benchmark,
• mobile manipulator scenario,
• dual-arm robot real-world experiment.

The aim of the box obstacle benchmark was to show the
benefits of the proposed mixture representation, which allows
for determining multiple modes of the cost function unlike
the state-of-the-art methods relying on a single straight-line
initialization. On this experiment we also conducted extensive
analysis of MGPTO hyperparameters to determine their opti-
mal values for achieving the best performance. The aim of the
robot arm in a complex environment benchmark was to attest
the benefits of the MGP prior in aiding better exploration and
avoiding local minima to find feasible solutions to the planning
problem. The torque optimization benchmark aimed to show
the ability of MGPTO to optimize a cost function consisting
of multiple cost functionals which may be non-differentiable.
State-of-the-art gradient-based methods (TrajOpt, CHOMP,
GPMP2) are not able to optimize such costs. The goal of
the mobile manipulator scenario experiment with a 10 DOF
mobile manipulator was to showcase the ability of MGPTO to
successfully find solution trajectories for high DOF robots in



8

cluttered environments. And finally, the dual-arm robot real-
world experiment aimed to verify the effectiveness of MGPTO
for high DOF motion planning in a real-world environment.

For GPMP2, we used its open-source C++ library [15], [36]
and the respective MATLAB toolbox based on the GTSAM
library [37], while we opted for our own implementation
of STOMP and the method in [23]. All experiments were
performed on a single core of a 2.8-GHz Intel Core i7-7700HQ
processor with 16 GB of RAM. In our evaluation, every
mixture component was initialized with the same covariance
matrix Km, instead of having M different ones. We also
used the aforementioned efficient GP interpolation for dense
collision checking, similarly as in [15]. Since the support
states of sampled trajectories are equidistant in time and
the covariance matrix Km is constant and time-invariant for
every mixture component, we precomputed the employed
interpolation matrices [15], instead of computing them every
time interpolation was needed. This provided a significant
boost to the computational efficiency of MGPTO.

A. Box obstacle benchmark

The first benchmark consisted of a simple environment with
a single floating box obstacle, as shown in Figure 2a. We
conducted 100 unique planning experiments, all with different
start and goal states with start points being on the left-hand
side of the box and end points being on its right-hand side. To
make this experiment non-trivial, for every planning problem
we ensured that the robot arm is relatively close to the box
obstacle at start and end points and that the initial constant-
velocity straight line passes through the box obstacle. While
this problem is relatively easy to solve for state-of-the-art
methods, benchmarking the algorithm in this environment
has several advantages. First, it is easily reproducible due to
the simplicity of the environment and thus allows for a fair
comparison. A box in the robot’s workspace can be seen as a
generalization of any obstacle. For this reason we conducted
a comprehensive hyperparameter analysis of MGPTO on this
benchmark as its simplicity allows to gain intuitive insight
about the impact of various hyperparameters. Furthermore,
there are multiple solutions to the problem that are obvious to a
human – a robot arm can move over, under or behind the box.
The proposed setup can thus be utilized to demonstrate the
ability of MGPTO to find multiple modes of the cost function
corresponding to multiple solution trajectories.

In this experiment we measured the success rate, average
algorithm execution time, and the average number of different
solution trajectories for MGPTO and compare it to GPMP2,
STOMP and the method in [23]. The average execution
time for MGPTO corresponds to the time to find the first
feasible solution. Due to the simplicity of the experiment,
we set the maximum execution time for every method to
tmax = 1 s after which the optimization is terminated. We
evaluated the performance of MGPTO with regards to its three
hyperparameters: (i) M , the number of mixture components,
required for mixture initialization in (10) and further mixture
updates in (27), (ii) K, the number of trajectories sampled at
each iteration, required for gradient estimation in (25), (iii) Qc,

the power spectral density matrix parameter of the underlying
white noise process which determines how noisy the sampled
trajectories are, required in (3). We tested twelve different
parameter sets, evaluating the impact of each parameter with
four different values, ceteris paribus. For MGPTO, GPMP2
and the method in [23], we set the total trajectory time, i.e.
the timespan in which the robot moves from start to goal
state, to ttotal = 10 s and we parameterized trajectories with
10 support states with 10 interpolation states in-between for
which the trajectory cost was evaluated, resulting in total of
101 states. Using less support states with more interpolated
states in-between leads to the optimal performance of GPMP2
[17] and this also applies to MGPTO since we utilize a similar
underlying GP framework. We parameterized the STOMP
trajectory with N = 100 discrete states. For GPMP2, the
parameters ε = 0.2 and Σ = 0.2 were chosen for which we
empirically determined that they lead to the best results in
this experiment. For STOMP, the parameter that determines
the number of noisy trajectories generated at each iteration
was set to K = 10, which was demonstrated to achieve good
performance [18]. For the method in [23], we empirically
determined its parameter K = 200 that led to the best results
in this experiment. In all of our experiments, we set the
parameter λ that determines the sensitivity of the cost in (26)
as λ = 0.1, which was also chosen in [18] as the optimal
value.

The results of this experiment are shown in Table I. MGPTO
was able to solve every planning problem with multiple combi-
nations of parameters. Out of four tested values for parameter
determining the number of mixture components, M = 15
demonstrated the best performance. More different mixture
initializations lead to faster exploration of the environment and
to a larger number of different solutions found. Note that the
maximum number of different mixture initializations in this
case was exactly 15 since our initialization technique proposed
in Section III-A exerts acceleration only on a single robot
joint at a time to keep the trajectory smooth. Since there are
7 robot joints, there is a maximum of 15 initializations; one
constant-velocity straight-line and two initializations for every
robot joint exerting either positive or negative acceleration
during the first half of robot trajectory. The optimal value of
parameter K was found in the range from 30 to 70. If there are
multiple mixture initializations, then the number of trajectories
sampled at each iteration K smaller than 30 does not allow
for exploration around every initialization. If K is too large
then much of the computation time is spent on evaluating the
cost for large number of trajectories which slows down the
convergence. The optimal value of parameter Qc was found in
the range from 1 to 5. For small values of Qc, MGPTO does
not explore much around initial trajectories and sometimes
fails to find collision-free trajectories. For values of Qc larger
than 5 there is too much noise in the sampled trajectories
which sometimes do not even resemble the initial trajectory
around which they were sampled. In such cases MGPTO
becomes reliant on luck which means that it sometimes fails to
find collision-free trajectories and that two different runs of the
method result in potentially vastly different solutions. MGPTO
greatly outperformed STOMP which often failed to find a



9

TABLE I: Performance of MGPTO with various combination of hyperparameters and comparison with trajectory optimization
methods GPMP2, STOMP and the method in [23] in the box obstacle scenario.

MGPTO GPMP2 STOMP Method in [23]
M 3 5 10 15 15 15 15 15 15 15 15 15
K 50 50 50 50 30 70 100 200 50 50 50 50
Qc 1 1 1 1 1 1 1 1 0.1 2 5 10

Success rate (%) 42 90 90 100 100 100 97 80 87 100 100 98 100 47 100
Time to first solution (ms) 433 452 452 177 203 312 339 720 290 238 304 330 94 469 252

Average number of solutions 0.6 1.52 2.73 6.33 5.9 4.4 3.7 1.83 2.96 5.61 4.82 4.55 1 1 1

(a) An example of three different so-
lution trajectories in the box obstacle
benchmark

(b) An example where MGPTO
finds a collision-free trajectory while
GPMP2 and STOMP fail in the robot
arm in a complex scenario benchmark

Fig. 2: A simulated WAM arm in two scenarios: (a) an
environment featuring a single box obstacle (first benchmark),
(b) an environment featuring a table and a drawer (second
benchmark). Plotted lines depict the end effector trajectories.

collision-free solution. STOMP was particularly troubled when
the start or end point was initially close to the box obstacle.
GPMP2 solved every planning problem and it was almost
twice as fast as MGPTO, while the method in [23] demon-
strated similar performance to MGPTO in this benchmark.
However, the advantage of MGPTO stems from the fact that
the mixture representation allowed finding multiple solutions,
while GPMP2 and the method in [23] went above the box
obstacle in most cases. Figure 2a presents an example where
MGPTO finds three qualitatively different solutions.

B. Robot arm in a complex environment benchmark

The robot arm planning benchmark consisted of a simulated
WAM robotic arm in an environment featuring a table and
a drawer cabinet, as shown in Figure 2b. We conducted
100 unique planning experiments, all with different start and
goal states with start states being near the table and end
states being inside the cabinet. This is a typical scenario
for benchmarking trajectory optimization methods, featuring
a realistic environment with challenging local minima.

In this benchmark we compared MGPTO with GPMP2,
STOMP, the method in [23] and GPMP2 with random restarts
(GPMP2-RR) that is a commonly used approach to allevi-
ate the local minima problems in gradient-based trajectory
optimization [10]. Following our hyperparameter analysis in
Section V-A, for MGPTO we chose the number of mixture
components M = 15 and the number of sampled trajectories
in each iteration K = 50. The experimental setup in this
benchmark is more complex than the box scenario so larger Qc

TABLE II: Comparison of MGPTO with GPMP2, STOMP
and the method in [23] in robot arm planning benchmark

MGPTO GPMP2 GPMP2-RR STOMP Method in [23]
Success rate (%) 98 51 86 35 100

Execution time (ms) 792 82 460 1844 1471

is warranted for better exploration and being less prone to the
local minima. We empirically determined that Qc = 2 leads
to the best performance. As in our previous experiments, we
set the total trajectory time ttotal = 10 s. The trajectories for
MGPTO, GPMP2 and the method in [23] were parameterized
with N = 10 equidistant support states and 10 interpolation
steps in-between. For GPMP2, the parameters ε = 0.2 and
Σ = 0.2 were chosen for which we empirically determined
that they lead to the best results on this experiment. In GPMP2-
RR, the optimizer is first initialized with a straight-line and
then, on failure, reinitialized with a random trajectory. We
allowed for a maximum of 20 restarts. For the method in [23],
we empirically determined its parameter K = 400 that led to
the best results in this experiment. For STOMP, the parameter
K was set to K = 10, which was demonstrated to achieve
good performance [18]. Due to stochastic nature of results, we
repeated every planning experiment with MGPTO, GPMP2-
RR, the method in [23] and STOMP 10 times to correctly
assess the success rate and computation time. We set the
maximum execution time for every method to tmax = 3 s
after which the optimization is terminated.

The results of the experiment are shown in Table II. MGPTO
outperformed GPMP2 and STOMP regarding the success rate.
STOMP achieved both the worst success rate and execution
time due to its inability to explore. While the baseline GPMP2
often fails, the stochasticity introduced by random restarts
helps in achieving higher success rates. GPMP2 is an order of
magnitude faster than MGPTO and STOMP. This is expected
since it is a classical gradient-based trajectory optimization
method. The method in [23] is well-suited for this type of
problem and was able to solve every problem instance but
required significantly more computation time than MGPTO.
Note that MGPTO was actually able to solve every problem
in the dataset on separate occasions, but it did not solve every
problem every time and thus the reported success rate is not
100%. However, the sheer ability to solve every problem on
this dataset is an indication of benefits of the MGP prior in
aiding better exploration of the environment. It also implies
that, on failure, MGPTO can be executed again to retry finding
a solution trajectory. An example of a case where our method
finds a solution, while GPMP2 and STOMP fail is depicted in
Figure 2b. The trajectory obtained with method in [23] was



10

(a) An example of obtained trajectories

(b) Sum of absolute motor torques
through time

(c) Joint angles through time

Fig. 3: Comparison of MGPTO with and without torque
optimization in an environment featuring a single box obstacle
(torque optimization benchmark).

Fig. 4: Baxter’s right arm configurations during execution of
a trajectory obtained with MGPTO and the sum of absolute
motor torques. The green dot depicts end-effector’s goal pose.

qualitatively similar to the solution found by MGPTO and thus
we omit it for clarity.

C. Torque optimization benchmark

The torque optimization benchmark featured a simulated
7 DOF Kuka LBR iiwa robotic arm in an environment fea-
turing a single box (Figure 3a), similar to the setup in
Section V-A. We conducted 100 unique planning experiments
with different start and goal states where the robot arm
starts from the left side of the box and finishes on the right
side. Besides collision avoidance, the optimized trajectory
cost f(θ̃

k
), required in (26), included the criteria for torque

minimization, described in (31).
In this experiment we tested MGPTO with and without

torque optimization cost in order to demonstrate its effective-
ness in minimizing secondary costs that are non-differentiable.
We compared the results with STOMP since it is, to the
best of authors’ knowledge, the only state-of-the-art trajectory
optimization method that demonstrated the ability to minimize

TABLE III: Comparison of MGPTO with STOMP in torque
optimization benchmark

MGPTO STOMP No torque cost
Avg. sum of torques (Nm) 42.34 44.02 60.24

Execution time (s) 5.66 11.98 0.44

motor torques. As in our previous experiments, we set the
total trajectory time ttotal = 10 s and we parameterized the
trajectory with N = 10 equidistant support states with 10
interpolation steps in-between. Guided by our hyperparameter
analysis in Section V-A, we chose the number of mixture
components M = 15, the number of sampled trajectories in
each iteration K = 50 and the covariance matrix parameter of
the white noise Qc = 1.

The average sum of absolute motor torques and the average
execution times of MGPTO and STOMP in this experiment
are shown in Table III. The MGPTO with torque optimization
improved the average sum of absolute motor torques during
the trajectory around 30% when compared to MGPTO with-
out torque optimization, and around 4% when compared to
STOMP. Furthermore, the runtime of MGPTO compared to
STOMP was significantly shorter which stems from the fact
that some of the mixture components in MGPTO initially
cover parts of the configuration space with lower torques,
while STOMP needs more time to explore. MGPTO thus
converges faster, attesting the benefits of using mixtures in-
stead of a single straight line initialization. An example of
the obtained trajectories in simulation is shown in Figure 3a,
while the corresponding sum of absolute robot motor torques
is shown in Figure 3b. When the torque cost was optimized,
the resulting trajectory moved the robot arm upwards resulting
in configurations that required lower gravity compensation
torques. Since the arm movements are relatively slow, most
of the motor torques are used for gravity compensation and
thus torques near the start and end states remain the same with
and without optimization. We omit the trajectory obtained with
STOMP from the illustration since it was qualitatively very
similar to the trajectory obtained with MGPTO. Joint angles
through time for the torque-optimized trajectory, depicted in
Figure 3c, demonstrate that our trajectories retain smoothness
even when multiple different optimization criteria are included
in the cost function.

We also conducted a real-world experiment featuring the
7 DOF right arm of the Rethink Robotics Baxter robot. The
resulting trajectory and the corresponding sum of absolute
motor torques through time are shown in Figure 4 and the
accompanying video. The results of the experiment were
qualitatively similar to those obtained in simulation, thus
verifying MGPTO’s performance in real-world scenarios.

D. Mobile manipulator experiment

We conducted the mobile manipulator trajectory planning
experiment to demonstrate the ability of MGPTO to find
collision-free trajectories for high DOF robots in complex
environments. The simulated mobile manipulator consisted
of a simulated WAM robotic arm mounted on top of an
omnidirectional platform in an environment featuring two



11

(a) 3d view of the first trajectory (b) 2d view of the first trajectory (c) 3d view of the second trajectory (d) 2d view of the second trajectory

Fig. 5: An example of two trajectories obtained with MGPTO on a simulated mobile manipulator in a static environment.

tables, a drawer cabinet and a generic static obstacle (see
Figure 5). The system has 10 DOF corresponding to mobile
platform’s 3 DOF pose and robot arm’s 7 joint angles. We
planned the trajectory of the whole system, simultaneously
planning the motion of the platform and the robotic arm.

We chose the number of mixture components M = 5. This
choice of M leads to initial mixture component trajectories
differing in trajectories of the mobile platform, while the initial
trajectories of the robot arm are locally identical. Using more
mixture components, which would change initial trajectories
of the attached robot arm, would not lead to noticeably
better exploration since the movement of the mobile platform
has more impact on the global pose of the whole mobile
manipulator than the movement of the attached robotic arm.
The number of sampled trajectories in each iteration was set to
K = 30, while the covariance matrix parameter of the white
noise was set to Qc = 1. For both parameters we empirically
determined that they lead to satisfactory performance with
regards to computation time. As in our previous experiments,
we set the total trajectory time ttotal = 10 s. The trajectory was
parameterized with N = 20 equidistant support states and 10
interpolation steps in-between. The maximum execution time
was set to tmax = 5 s. To assess the required computation
time, we repeated this experiment 30 times. Every take resulted
in successfully finding at least one collision-free trajectory and
the average algorithm time to first solution was 841 ms, while
the worst case computation time was 988 ms. In most cases,
MGPTO was able to find two distinct trajectories belonging
to different homotopy classes. The resulting trajectories are
shown in Figure 5. The trajectory in Figures 5a, 5b was found
every time, while the trajectory in Figures 5c, 5d was found in
23 out of 30 experiment runs. The average computation time
to find the second solution trajectory was 1801 ms.

E. Dual-arm robot real-world experiment

We conducted the dual-arm robot real-world experiment
to demonstrate the ability of MGPTO to find collision-free
trajectories for high DOF robots in real environments. We
planned the motion of the Rethink Robotics Baxter robot that
features two 7 DOF robotic arms giving it a total of 14 DOF.
Our laboratory environment consisted of a table and a drawer,
resembling the simulated environment used in Section V-B.
We planned the trajectory of the whole system, simultaneously
planning the motion of both arms. The left arm was tasked
with moving from the top shelf of the drawer to the left side

of the robot, while the right arm simultaneously moved from
the table towards the middle shelf of the drawer.

As in our previous experiments, we set the total trajectory
time ttotal = 10 s. The trajectories were parameterized with
N = 10 equidistant support states and 10 interpolation
steps in-between. The computation time to find the solution
trajectory was 2404 ms with parameters M = 15, K = 50 and
Qc = 1. The results of the experiment are shown in Figure 6
and the accompanying video.

F. Discussion

In the box obstacle benchmark, we demonstrated the ability
of MGPTO to find multiple solutions to the planning problem.
This feature is unique to MGPTO as none of the state-of-
the-art trajectory optimization methods are able to do so.
The robot arm in a complex environment benchmark showed
the improvement of MGPTO over prior techniques, namely
STOMP and GPMP2, in finding a collision-free trajectory for
a 7 DOF manipulator in cluttered environment. The torque
optimization benchmark showcased the ability of MGPTO
to optimize the sum of absolute robot motor torques during
the trajectory and demonstrated improvement in comparison
to STOMP. State-of-the-art gradient based methods, such as
GPMP2, are unable to optimize a cost function consisting of
multiple cost functionals which may be non-differentiable. The
qualitative mobile manipulator experiment and the real-world
dual-arm robot experiment showed the ability of MGPTO to
successfully find solution trajectories for high DOF robots in
cluttered environments.

One may argue that MGPTO should be significantly slower
than STOMP due to the fact that MGPTO conducts M
trajectory updates at each iteration. However, the computa-
tional burden stemming from sampling K trajectories at each
iteration is much higher than the gradient estimation procedure
in (25) and the mean update rule in (23). Thus, if we sample
the same number of trajectories K with MGPTO and STOMP,
a single MGPTO iteration will be just slightly slower than
a single STOMP iteration. On the other hand, some of our
mixture component initializations cover parts of trajectory
space with smaller cost already in the beginning and MGPTO
will therefore often converge in much less iterations, being
more sample efficient and faster in practical applications, as
shown in the experiments.

When compared to GPMP2, MGPTO showed better explo-
ration of the environment, although being slower. MGPTO
successfully found solutions to motion planning problems that



12

Fig. 6: Baxter’s dual-arm configurations during execution of a trajectory obtained with MGPTO. The left arm was tasked with
moving from the top shelf of the drawer to the left side of the robot (green dot), while the right arm simultaneously moved
from the table towards the middle shelf of the drawer (yellow dot).

GPMP2 was not able to solve. GPMP2 is more appropriate
for environments with low complexity, such as the box ob-
stacle scenario, due to its computational efficiency. However,
MGPTO outperforms it in complex motion planning problems
due to its high capacity for exploration, as well as the ability
to explicitly handle joint limits and non-differentiable costs
pertaining to arbitrary qualitative metrics or constraints.

Compared to [23], MGPTO achieved similar exploration of
the environment while being less computationally demanding.
The method in [23] focuses solely on collision avoidance,
while MGPTO possesses unique features such as explicit
handling of joint position and velocity limits while retaining
smoothness, ability to find multiple solutions and the ability
to optimize secondary criteria which makes it more suitable
for general motion planning problems.

VI. CONCLUSION

In this paper, we proposed a novel motion planning algo-
rithm dubbed MGPTO that represents trajectories as samples
from a mixture of continuous-time GPs and employs stochastic
optimization in order to update the MGP parameters in a
cost-minimizing manner. We evaluated MGPTO in multiple
simulation benchmarks featuring 7 DOF robot arms and a
10 DOF mobile manipulator. We also conducted a real-world
experiment with a 14 DOF dual arm robot. The experimental
results demonstrated that the proposed method achieves higher
success rate than several state-of-the-art methods, while the
advantages stemming from MGPs and stochastic optimization,
like trajectory smoothness, support of non-differentiable costs,
multiple trajectory solutions, and the ability to tackle high-
dimensional problems, are inherently kept.

An interesting avenue for future work would be coupling
MGPTO with algorithms for learning from demonstration. The
initial parameters of the proposed MGP representation could
be learned from human demonstrations on a given task [38]
and the proposed stochastic trajectory optimization would en-
able generalized skill reproduction. Another potential direction
lies in adapting MGPTO for dynamic environments, especially
since the ability to find multiple solution trajectories can be
exploited when a particular trajectory becomes infeasible due
to changes in the environment.

REFERENCES

[1] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[2] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.
[3] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal

motion planning,” The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[4] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach
to single-query path planning,” in IEEE International Conference on
Robotics and Automation (ICRA), vol. 2, 2000, pp. 995–1001.

[5] S. M. LaValle, J. J. Kuffner, B. Donald, et al., “Rapidly-exploring
random trees: Progress and prospects,” Algorithmic and computational
robotics: new directions, vol. 5, pp. 293–308, 2001.

[6] R. Kindel, D. Hsu, J.-C. Latombe, and S. Rock, “Kinodynamic motion
planning amidst moving obstacles,” in IEEE International Conference
on Robotics and Automation (ICRA), vol. 1, 2000, pp. 537–543.

[7] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,”
The International Journal of Robotics Research, vol. 20, no. 5, pp. 378–
400, 2001.

[8] Z. Tahir, A. H. Qureshi, Y. Ayaz, and R. Nawaz, “Potentially guided
bidirectionalized rrt* for fast optimal path planning in cluttered environ-
ments,” Robotics and Autonomous Systems, vol. 108, pp. 13–27, 2018.

[9] N. Garcı́a, J. Rosell, and R. Suárez, “Motion planning by demonstration
with human-likeness evaluation for dual-arm robots,” IEEE Transactions
on Systems, Man, and Cybernetics: Systems, vol. 49, no. 11, pp. 2298–
2307, 2017.

[10] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp: Gradient
optimization techniques for efficient motion planning,” in IEEE Int.
Conf. on Robotics and Automation (ICRA), 2009, pp. 489–494.

[11] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith,
C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa, “Chomp: Covariant
hamiltonian optimization for motion planning,” The International Jour-
nal of Robotics Research, vol. 32, no. 9-10, pp. 1164–1193, 2013.

[12] J. Schulman, J. Ho, A. X. Lee, I. Awwal, H. Bradlow, and P. Abbeel,
“Finding locally optimal, collision-free trajectories with sequential con-
vex optimization.” in Robotics: science and systems, vol. 9, no. 1, 2013,
pp. 1–10.

[13] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” The International
Journal of Robotics Research, vol. 33, no. 9, pp. 1251–1270, 2014.

[14] M. Mukadam, X. Yan, and B. Boots, “Gaussian process motion plan-
ning,” in IEEE International Conference on Robotics and Automation
(ICRA), 2016, pp. 9–15.

[15] J. Dong, M. Mukadam, F. Dellaert, and B. Boots, “Motion planning as
probabilistic inference using gaussian processes and factor graphs.” in
Robotics: Science and Systems, vol. 12, no. 4, 2016.

[16] E. Huang, M. Mukadam, Z. Liu, and B. Boots, “Motion planning
with graph-based trajectories and gaussian process inference,” in IEEE
International Conference on Robotics and Automation (ICRA), 2017, pp.
5591–5598.

[17] M. Mukadam, J. Dong, X. Yan, F. Dellaert, and B. Boots, “Continuous-
time gaussian process motion planning via probabilistic inference,” The
International Journal of Robotics Research, vol. 37, no. 11, pp. 1319–
1340, 2018.

[18] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“Stomp:stochastic trajectory optimization for motion planning,” in IEEE
International Conference on Robotics and Automation (ICRA), 2011, pp.
4569–4574.

[19] T. Osa, “Multimodal trajectory optimization for motion planning,” The
International Journal of Robotics Research, vol. 39, no. 8, pp. 983–1001,
2020.



13

[20] J.-J. Kim and J.-J. Lee, “Trajectory optimization with particle swarm
optimization for manipulator motion planning,” IEEE Transactions on
Industrial Informatics, vol. 11, no. 3, pp. 620–631, 2015.

[21] M. Kobilarov, “Cross-entropy randomized motion planning,” in
Robotics: Science and Systems, vol. 7, 2012, pp. 153–160.

[22] L. Petrović, J. Peršić, M. Seder, and I. Marković, “Stochastic optimiza-
tion for trajectory planning with heteroscedastic gaussian processes,” in
European Conference on Mobile Robots (ECMR). IEEE, 2019, pp. 1–6.

[23] ——, “Cross-entropy based stochastic optimization of robot trajectories
using heteroscedastic continuous-time gaussian processes,” Robotics and
Autonomous Systems, p. 103618, 2020.

[24] T. D. Barfoot, State Estimation for Robotics. Cambridge University
Press, 2017.

[25] P. S. Maybeck, Stochastic models, estimation, and control. Academic
press, 1982.

[26] C. E. Rasmussen, “Gaussian processes in machine learning,” in Summer
School on Machine Learning. Springer, 2003, pp. 63–71.

[27] T. D. Barfoot, C. H. Tong, and S. Särkkä, “Batch continuous-time
trajectory estimation as exactly sparse gaussian process regression.” in
Robotics: Science and Systems, vol. 10, 2014, pp. 1–10.

[28] S. Anderson, T. D. Barfoot, C. H. Tong, and S. Särkkä, “Batch nonlinear
continuous-time trajectory estimation as exactly sparse gaussian process
regression,” Autonomous Robots, vol. 39, no. 3, pp. 221–238, 2015.

[29] J. Peršić, L. Petrović, I. Marković, and I. Petrović, “Spatiotemporal
multisensor calibration via gaussian processes moving target tracking,”
IEEE Transactions on Robotics, vol. 37, no. 5, pp. 1401–1415, 2021.

[30] M. Mukadam, J. Dong, F. Dellaert, and B. Boots, “Steap: simultaneous
trajectory estimation and planning,” Autonomous Robots, vol. 43, no. 2,
pp. 415–434, 2019.

[31] C. M. Bishop, Pattern recognition and machine learning. springer,
2006.

[32] E. Theodorou, J. Buchli, and S. Schaal, “A generalized path integral
control approach to reinforcement learning,” The Journal of Machine
Learning Research, vol. 11, pp. 3137–3181, 2010.

[33] A. Byravan, B. Boots, S. S. Srinivasa, and D. Fox, “Space-time
functional gradient optimization for motion planning,” in 2014 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2014, pp. 6499–6506.

[34] J. Pan, S. Chitta, and D. Manocha, “Fcl: A general purpose library for
collision and proximity queries,” in 2012 IEEE International Conference
on Robotics and Automation. IEEE, 2012, pp. 3859–3866.

[35] R. Featherstone, Rigid body dynamics algorithms. Springer, 2014.
[36] J. Dong, B. Boots, and F. Dellaert, “Sparse gaussian processes for

continuous-time trajectory estimation on matrix lie groups,” arXiv
preprint arXiv:1705.06020, 2017.

[37] F. Dellaert, “Factor graphs and gtsam: A hands-on introduction,” Georgia
Institute of Technology, Tech. Rep., 2012.

[38] S. Cho and S. Jo, “Incremental online learning of robot behaviors
from selected multiple kinesthetic teaching trials,” IEEE Transactions
on Systems, Man, and Cybernetics: Systems, vol. 43, no. 3, pp. 730–
740, 2012.


