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Abstract

As robots are progressing towards being ubiquitous and an indispensable part of our
everyday environments, such as home, offices, healthcare, education, and manufactur-
ing shop floors, efficient and safe collaboration and cohabitation become imperative.
Given that, such environments could benefit greatly from accurate human action pre-
diction. In addition to being accurate, human action prediction should be computation-
ally efficient, in order to ensure a timely reaction, and capable of dealing with changing
environments, since unstructured interaction and collaboration with humans usually do
not assume static conditions. In this paper, we propose a model for human action pre-
diction based on motion cues and gaze using shared-weight Long Short-Term Memory
networks (LSTMs) and feature dimensionality reduction. LSTMs have proven to be a
powerful tool in processing time series data, especially when dealing with long-term
dependencies; however, to maximize their performance, LSTM networks should be
fed with informative and quality inputs. Given that, in this paper, we furthermore
conducted an extensive input feature analysis based on (i) signal correlation and their
strength to act as stand-alone predictors, and (ii) a multilayer perceptron inspired by
the autoencoder architecture. We validated the proposed model on a publicly available
MoGaze1 dataset for human action prediction, as well as on a smaller dataset recorded
in our laboratory. Our model outperformed alternatives, such as recurrent neural net-
works, a fully connected LSTM network, and the strongest stand-alone signals (base-
lines), and can run in real-time on a standard laptop CPU. Since eye gaze might not
always be available in a real-world scenario, we have implemented and tested a multi-
layer perceptron for gaze estimation from more easily obtainable motion cues, such
as head orientation and hand position. The estimated gaze signal can be utilized dur-
ing inference of our LSTM-based model, thus making our action prediction pipeline
suitable for real-time practical applications.

1https://humans-to-robots-motion.github.io/mogaze/
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1. Introduction

With the robots becoming more capable and sophisticated, we are witnessing a
growth in their presence and integration in private and professional human environ-
ments. Nowadays, such environments, besides cohabitation, often include close human-
robot collaboration and interaction, yielding novel challenges concerning system effi-
ciency and human safety. While robots are fully controllable, human behavior, on
the other hand, although nearly optimal with respect to the task, is inherently stochas-
tic. For example, imagine a healthcare worker treating a patient or a manufacturing
shop floor worker assembling products in an agile production system. Their goals are
well defined, but the execution and sometimes the environment are not completely
controlled. While carrying out the task, the healthcare worker needs to adapt to the
responses of the patient, while the worker on a manufacturing shop floor might change
the order of the task execution for justified reasons. We argue that robots in human
proximity should be aware of such changes and react accordingly. Having that in mind,
one of the main challenges in collaborative environments is to capture the uncertainty
and nuances of human behavior. Supervisory systems try to overcome these challenges
by taking advantage of the plethora of methods that revolve around human trajectory
prediction, safety regions assertion and action/goal prediction [1, 2, 3, 4, 5].

The problems of human action prediction and intention recognition have come un-
der the spotlight of the research community in recent years. They serve as independent
modules or are integrated into the human motion prediction either explicitly [6, 7] or
implicitly [8]. The advantages of embedding human intentions implicitly in the model
lie in the fact that those models can be trained jointly with the higher-level system
and are validated straightforwardly through its performance. The higher-level system
could be a fleet management system [9] that tries to reroute the robots out of a hu-
man’s path and is evaluated by the warehouse deliveries, the number of rerouting, and
collision number or a human trajectory prediction model [10] evaluated with the root
mean square error of the predicted trajectory. On the other hand, explicitly estimating
human actions enables the model to be crafted or trained independently of the higher-
level system. In practice, this means that training the action prediction module can be
done without the robots operating thus cutting costs. These models can also be inter-
preted more easily [11], allowing the higher-level system to have semantic meaning
and reasoning of performed actions.

In recent years, human action prediction applications ranged from robotized ware-
houses [9, 12] to sedentary object-picking domain [13, 14, 15] and full-body motions
[16, 17, 18]. State-of-the-art human action prediction frameworks are based on Markov
models [19], inverse optimal control [11] or conditional random fields [20], which try
to learn moving patterns with the respect to pertaining goals, usually assuming nearly-
optimal human behavior in the observed sequences. In [5] the authors propose a hybrid
deep neural network model for human action recognition using action bank features
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leveraging fusion of homogeneous convolutional neural network (CNN) classifier. In-
put features are diversified and the authors propose varying the initialization of the
weights of the neural network to ensure classifier diversity. Another approach based on
the Long Short-Term Memory networks (LSTMs) is proposed in [21] where the authors
craft a two-stream attention-based architecture for action recognition in videos. They
suggest that such an approach resolves the visual attention ignoring problem by using a
correlation network layer that can identify the information loss on each timestamp for
the entire video. Furthermore, in [22] authors leverage a bidirectional LSTM to learn
the long-term dependencies, and use the attention mechanism to boost the performance
and extract the additional high-level selective action related patterns and cues. The con-
volutional LSTMS are used in [23] to handle the long-duration sequential features with
different temporal context information and are compared to the fully connected LSTM.
In [21] the authors propose an end-to-end two-stream attention-based LSTM network
for human action recognition that selectively focuses on the effective features of the
original input image. The concept of utilizing shared weights for neural networks was
brought by de Ridder et al. in [24] with the focus on the feature extraction problem.
This approach has gained traction in transfer learning [25] and physics simulation ap-
plications [26]. Regarding collaborative environments, the state-of-the-art models infer
human actions by measuring different cues captured by wearable (eye gaze [27, 14, 28]
or even heart rate and electroencephalography [29]) or non-wearable sensors. The use
of non-wearable sensors such as motion capture systems or RGB cameras enables the
model to capture crucial cues such as gestures [30], emotion [31], skeletal movement
[32] or estimate eye gaze [33]. In works [28, 14, 34, 15, 35] authors have indicated
that the eye gaze is a powerful predictor of human action. A good overview of human
action prediction methods and their categorization by the type of problem formulation
can be seen in [36]. Several works embed the eye gaze feature into human action pre-
diction models using machine learning models such as support vector machine [14]
or recurrent neural networks (RNNs) [34]. In the human collaborative scenario, the
authors of [14] tested their algorithm relying on verbal instructions as additional fea-
tures for their model and the actions form a sequence, In [15] the authors calculate
the similarity between the hypothetical gaze points on the objects and the actual gaze
points and use the nearest neighbor algorithm to classify the intended object. To the
best of our knowledge, there does not exist a method that couples the human action
prediction model with the directly measured eye gaze and human joint positions in a
dynamic, changing environment. For example, in [14] the authors rely on gaze adding
verbal commands in the feature space. In [15] the scenario is static and the subject sits
while picking the objects who are always visible to the subject. Furthermore, in [36],
the multiple-model estimator is leveraged for intention prediction, but the inputs to this
model are extracted from a camera using convolutional networks and prior values that
are not applicable in the dynamic collaborative domain.

In the last few years, multiple datasets concerning motion and action prediction
have become publicly available but, to the best of our knowledge, none of them couple
these two problems. Examples of purely motion prediction datasets are: ETH [37],
KITTI [38] and UCY [39]. We encourage the reader to examine Table 2 in [40] for a
detailed listing of the datasets and their descriptions. These datasets, alongside meth-
ods trained and evaluated on them [41], offer enough diverse data to train and test
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human motion prediction models focused on answering the question "Where is a hu-
man going to be during the next N steps?", but they are not adequately labeled with the
context which would help to answer "What is (the goal of) the observed human mo-
tion?". On the other hand, datasets tailored for models focused on the second question,
like the CMU’s motion capture database [42], HumanEva [43] and G3D [44] excel
in action diversity, but they are focused on distinguishing between different actions
(jumping, catching, throwing), do not incorporate complicated motion patterns, and
usually are not long enough for a long or mid-term human motion prediction problem.
The MoGaze [34] dataset positions itself as an excellent blend of the aforementioned
datasets because all the recorded motions have a labeled purpose (an object picking).
Its subset has already been used by the authors for human motion prediction prob-
lems based on RNN networks and trajectory optimization [17, 45]. Therein, they used
the Euclidean distance of the right hand to each object as an action prediction signal,
improving their original motion prediction result. They also introduced the problem
of graspability, which focuses on the exact wrist position at the moment of grasping,
and placeability, defined as a probability distribution over possible place locations on
a surface the carried object could be placed on. Mentioned models are not evaluated
explicitly, but the authors compared a higher-level human motion prediction model’s
error for different graspability and placeability models thus validating them implicitly.

In this paper, we propose a novel human action prediction model based on shared-
weight LSTM networks [46], a part of which was published in our preliminary work
[47]. The novelty of the current paper with respect to [47] lies in the (i) expanded
feature dimensionality reduction method, (ii) a new gaze estimation algorithm, (iii)
exhaustive evaluation with an additional quality measure, and (iv) creation of a novel
dataset that validated our approach as a general method for human action recognition.
Similarly to related work, our model relies on the positions and orientations of human
joints, recorded by a motion capture system, and on eye gaze captured using a wearable
device, but with the following contributions: (i) to reduce the model complexity, we
perform feature extraction through correlation and a multilayer perceptron inspired by
the autoencoder architecture, (ii) architecture based on shared weight LSTM networks
enabling dynamic adding and removing of human action goals, which is typical for
collaborative environments, and (iii) since eye gaze might not always be available in a
real-world scenario, we introduce a neural network-based gaze estimation that serves
as an additional input to the proposed method and shows promising results. We have
tested our approach on the publicly available MoGaze [34] dataset and published the
code with a sample pretrained network. Additionally, we present SubMotion – a sim-
pler dataset that includes six subjects, two female and four male, in object-reaching
scenarios similar to the MoGaze. Our dataset records only the head orientation and
hand position – a setup that could be easily applied in a real-world application without
adding to workers’ discomfort or costs. We compared the accuracy of the proposed
model with alternatives such as the RNN network, fully connected LSTM network,
and the strongest individual signal predictors (baselines), based on the area under the
curve (AUC) score of the predicted goal accuracy and mean squared error (MSE) of
the predicted goal location. Our model outperformed all of the baselines and alterna-
tive methods in MSE distance on both datasets and had better accuracy on the MoGaze
dataset.
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Figure 1: Pipeline of the proposed method. Square brackets denote the dimension of the corresponding
tensor.

2. The Proposed Human Action Prediction Method

Our methodology follows the one published in our preliminary work [47] and is
based on shared-weight LSTM networks and feature selection using correlation as well
as feature extraction based on the autoencoder architecture. The goal of the proposed
model is to ascertain which object in the environment will the human pick next. As
we mentioned in the introduction, the creation of the MoGaze dataset with 1435 pick-
ing segments including the eye gaze, enabled us to craft a data-driven model for this
problem. The segments are labeled with an ID of the object the human is going to pick
and serve as ground truth for our framework. We design the proposed action prediction
model as a general model for full-body motion that works in real-time and successfully
captures relations between input cues and picked objects. Apart from that, we avoid
learning specific relations between objects in a dataset. The main reason is that the
objects can change their locations during operation and we want our model to handle a
varying number of objects in a scene.

Another important aspect that needs to be taken into account by an action prediction
model is long-term dependencies since goal inferring cues usually appear much earlier
than the actual picking action [14]. For example, imagine a human that intends to
pick a specific object from a shelf across the room. Prior to walking to it, they would
probably look at that object to ascertain its location and path towards it. While walking,
the gaze of the human would not be solely fixed on the object, but could also wander
around the scene, especially if there are dynamic obstacles to be negotiated. Given
that, a well-designed human action prediction model should take into account the fact
that the gaze becomes fixed early in the sequence and can wonder thereafter. In other
words, to successfully infer the goal, the model should be able to remember the most
important past cue values, e.g., early gaze fixation at the object, as well as capture
local tendencies, such as a human approaching the object. To achieve that, we propose
multiple LSTM networks with shared weights to serve as the classifier for human action
prediction.

However, relying on many inputs adds to the complexity and the network param-
eter number, which not only increases the run-time but can also impede the training
process by increasing the risk of overfitting. Given that, we further introduce a feature
selection method based on signal correlations and individual effectiveness to act as an
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action prediction cue. To objectively validate our hand-picked selection of features, we
also performed feature extraction with a multilayer perceptron (MLP) inspired by the
autoencoder architecture and compared the manual selection with a fully data-driven
approach.

The paper is organized as follows. In Section 2.1 we introduce the proposed shared-
weight LSTM method for timely human action prediction. We also propose feature
selection and extraction methods and the eye gaze estimation method. Section 3 brings
the details of the SubMotion dataset we recorded for the purpose of testing the pro-
posed framework. In Section 4 we do in-depth testing of the proposed framework on
both MoGaze and SubMotion datasets and give detailed analyses of results. Finally,
Section 5 concludes the paper.

2.1. Human action prediction framework
The proposed model fulfills two basic requirements: (i) to be fast enough so that

the supervisory system can react in time and (ii) to have good generalization power. To
address the latter, we crafted our model so that it can work in a changing environment
and handle the addition or removal of objects in the scene. For example, in the MoGaze
dataset, the objects are placed on three macro locations: two shelves and a table that
do not move during the experiments. If we gave the model distances to all the goals as
an input, the model could implicitly learn relations between those macro locations that
would not hold should they move during the recording. Also, the number of objects
in a scene could change and the transformation of a fully connected LSTM network to
accommodate this circumstance would not be a trivial task.

Having that in mind, we decided to approach this problem by training a single
classification model and our framework is illustrated in Fig. 1. For each observed
sequence of length T we gather the following input features F: joint positions that
are used to calculate Euclidean distances towards each of the N goal positions in the
dataset, and gaze and orientation unit vectors that are used to calculate the Euclidean
distance between them and the unit vector pointing towards the position of an object.
All features are normalized based on the average value in the training set. Each of
N sequences is labeled with 1 if it belongs to the object that is eventually going to
be picked, otherwise, it is labeled with 0. All the sequences in the training set are
aggregated and the dataset is balanced by randomly removing sequences that belong to
the “not-a-goal” class. Finally, we train a single LSTM network model for sequence
classification with a softmax activation on this data. Note that, during the training, the
model does not have access to absolute orientations and positions of the joints or the
goals. As a consequence, it learns only if the observed feature sequence (relative to an
object) belongs to a pertaining goal or not.

During runtime, we evaluate all selected features for each of the N goals and send
them as inputs to N LSTM networks with shared weights (feature selection and ex-
traction are explained in Section 2.3). For the MoGaze dataset, the number of goals
was N = 10, while for our novel dataset it was N = 5. We aggregate outputs of each
network via softmax [48] activation function and select the goal whose network has the
highest score. This approach enables us to easily add or remove goals if they change
during operation which was an important reason behind training only a single LSTM
model. Furthermore, by training only a single model that receives relative distances
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as input and classifies whether that input sequence of features is the pertaining goal or
not we remove any contextual environment location information. For example, in the
MoGaze dataset, the objects are placed on three macro locations, two shelves, and a
table, which do not move during the experiments. If we give the model, e.g. distances
to all the goals as an input, the model could implicitly learn relations between those
macro locations that would not hold for other datasets. By utilizing the shared weight
concept, we ensure the decision-making process for each goal is the same.

2.2. Preliminaries on LSTM networks

An RNN, introduced by Rumelhart et al. [49], is a neural network that consists of a
hidden state ht which is connected to its output yt as well as previous hidden state ht−1.
This property enables it to capture a temporal dynamic behavior of the process and
propagate the information through time because its output depends both on the input at
a given time step as well as on the hidden state at the previous time step. Formally, a
basic RNN can be described by:

ht = σ(Uhht−1 + Whxt + bh) (1)
yt = σ(Wyht + by) (2)

where σ is the sigmoid, the most commonly used activation function, and xt is the
network input. The next hidden state is calculated using hidden weights Uh and input
weights Wh while output weights Wy are used for calculating the output. The model
also incorporates hidden layer and output bias - bh and by. RNN networks have been
successfully used in a plethora of time-series prediction problems, including action
sequence prediction [16]. However, the main deficiency of the RNN model is the
vanishing and exploding gradient problems for longer sequences making it unfit for
problems that have long-term dependencies that need to be captured.

The LSTM networks, introduced by Hochreiter et al. [46], is a derivative of RNN
networks with the introduced cell state and gates, formally:

ft = σ(U f ht−1 + W f xt + b f ) (3)
it = σ(Uiht−1 + Wixt + bi) (4)

ot = σ(Uoht−1 + Woxt + bo) (5)
gt = tanh(Ught−1 + Wgxt + bg) (6)

ct = f t ◦ ct−1 + it ◦ gt (7)
ht = ot ◦ σ(ct) (8)

yt = σ(Wyht + by) (9)

where tanh is the hyperbolic tangent function and the operator ◦ is the Hadamard prod-
uct. The cornerstone of an LSTM model is the cell state ct that propagates information
through time. Every iteration of the LSTM network first forgets irrelevant information
in ct using the forget gate ft , and then adds new information with the input gate it . The
ct is then used for future iterations of the LSTM network as well as for updating current
hidden state ht using the output gate ot . Finally, the output of any given iteration is
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Figure 2: Orientations assigned to joints. Head, torso, pelvis and shoulders orientation is selected to match
forward looking direction while hand orientations are selected to match forearm direction.

calculated in the same manner as in the RNN model. LSTM networks have seen appli-
cations in similar problems, such as pedestrian trajectory prediction [50], and we have
selected them as our backbone due to their ability to capture long-term dependencies.

2.3. Feature dimensionality reduction

In previous sections, we discussed the proposed model based on LSTM networks
for human action inference. For our application, the input features for our model are
time series of human joint positions and orientations as well as the eye gaze of the sub-
ject. The proposed framework processes these features by numerous matrix additions
and multiplications. Each additional input feature adds to the dimensionality of these
matrices, thus increasing the number of operations and execution time. Moreover, it
could potentially also create the need for increasing the number of hidden dimensions
in the network architecture. This is certainly an unwanted side effect, not only for
previously stated reasons but also due to the limited amount of training data. Having
this in mind, we assert that it is important to craft a feature dimensionality reduction
method that will indicate which of the recorded joint orientations and positions should
be the most relevant inputs to our model. To solve this problem, we took two different
approaches.

The first is based on time series analysis - it uses signal correlations to ascertain
similarities between features. Our intuition is that features that correlate highly can be
substituted by only a single feature from that group. This approach was first proposed
by Hall et al. in [51] as used in [51, 52, 53]. In order to choose the most representative
feature of the group, we have ranked each feature using the area under curve (AUC)
score and selected the highest-ranking feature. The AUC for each feature is calculated
for a time span of three seconds (360 frames), as proposed in [34], using an average
of accuracy curves on the train set. The accuracy curves are obtained for each feature
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Figure 3: Correlations of selected input features. The Euclidean distances are in the left part of the table,
while gaze and orientations are in the right part.

by checking if the joint is closer to the actual goal than to any other object (Euclidean
distance) or if the difference between the orientation vector of a joint and a vector from
which that joint sees the object smallest for the goal (orientation distance).

At this point, it is important to clarify the method we used for extracting the joint
orientations because the authors give them relative to the humanoid configuration’s
initial pose, while we need to use them with respect to the world scene. We decided
to use a “T-pose” with a human looking towards the x axis as the initial configuration
and define all orientations of joints in that pose as [1, 0, 0]. This way we ensure that
orientations of the head, torso, and pelvis tend to align with the motion direction which
we argue is an intuitive way to define orientations of the joints given our application.
An example of orientations assigned to joints of interest is shown in Fig. 2.

Now that we have all set up for feature selection, we calculated correlations be-
tween all of the feature distances towards all the goals, and the comparison can be seen
in Fig 3. Euclidean distances of all the joints correlate highly and less so with the hand
because of the reaching motion. Orientations of all joints also correlate highly, but less
so with the hand orientation. Furthermore, the gaze correlates weakly with all the other
features, except the head indicating that the head orientation could be useful in a gaze
estimation problem (when no dedicated gaze tracking equipment is available). The
correlation analysis implies that a good subset of features would include the eye gaze,
hand position, and orientation of one of the following joints: head, shoulders, pelvis,
and torso. We have then proceeded to calculate the AUC score of the proposed input
features which we henceforth call baselines since we see each as a potential sole fea-
ture for action prediction. Theoretically, a good data-driven model should score better
than any single feature, i.e., than any baseline. Finally, the eye gaze scored 155.0, head
orientation 71.4, and hand position 83.7, and they were selected as input features for
our model. Other baselines scored significantly less than 70. One can notice that we
did not analyze joints like toes, knees, and elbows. The main reason is that they cor-
related poorly with each other and scored very low on the AUC metric which supports
our intuition that these joints are of less importance for our application.
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The second approach we took is based on autoencoders. Autoencoders are mul-
tilayer perceptrons (MLPs) with two main parts: an encoder that maps the inputs to
the hidden layer or codes the inputs, and a decoder that reconstructs the input from the
hidden layer. If the hidden layer is large enough, the autoencoder can completely re-
cover the input signal at the output. However, in practice, the dimension of the hidden
layer is usually much smaller thus forcing the autoencoder to approximate the input
by preserving only the most significant information contained within. Because of that,
autoencoders are widely used in feature extraction [54, 55] and selection [56, 57] ap-
plications.

We have followed this intuition behind autoencoders and implemented an MLP-
based feature extraction. The proposed MLP has an architecture similar to an autoen-
coder with an input layer that takes all the recorded joint positions and orientations,
which is then followed by one hidden layer of a smaller dimension. Finally, the output
layer consists of three fully connected neurons, since we wanted to match the num-
ber of features used by the correlation-based feature selection method. We tested all
commonly used activation functions such as hyperbolic tangent and ReLu [58], and
decided to use the sigmoid function as it demonstrated the best performance. Unlike
the vanilla autoencoder, our data-driven feature extraction MLP is not trained to match
the input data, but is directly connected to the backbone network and trained in an end-
to-end fashion. The intuition behind this approach was to enable the training process
to refine useful information using data. The extracted input features are composed of
a linear combination of all feature input candidates and don’t perfectly match any of
them. However, by comparing results with the hand-picked features we are able to
validate our merit-based approach. The parameter number of the entire model is also
reduced because the addition of the fully connected MLP is outweighed by reducing
the input dimension of the backbone network.

2.4. Gaze estimation
Even though the eye gaze has proven to be the most accurate baseline for human

action prediction, it might not always be available in real-time practical applications. It
requires the user to wear it on their head the whole time, which can be inconvenient and
hinder the person’s task execution, especially when performing complex tasks. How-
ever, the absence of gaze measurements would make our inference with the proposed
shared-weight LSTM networks unviable, since we trained the model to expect gaze in
the input along with other motion cues. To alleviate this issue, we propose to estimate
the eye gaze from other, more easily obtainable features, such as head orientation and
hand position.

Head orientation and hand position can be obtained in real-time from practical
wearable sensors, e.g., IMUs mounted on a person’s helmet and watch [59, 60]. While
the problem of gaze estimation might seem intractable in the general case, due to the
human eye gaze presenting an additional degree of freedom compared to the head ori-
entation, we assert that the hand position in collaboration tasks might provide addi-
tional information that correlates significantly to the eye gaze. For example, if a person
is reaching for an object with their hand, our assumption is that the person will also be
looking towards the object in question, thus connecting the gaze to the other motion
cues. The proposed estimation procedure relies on having a dataset of human motion
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while wearing the gaze tracking equipment and then employing a data-driven model
to capture the mapping of the subject’s head orientation and hand position to their eye
gaze. Our gaze estimation model is an MLP that consists of three layers, where the
hidden layer is of dimension 10 and the activation function is a rectified linear unit
(ReLU). The inputs of our network are hand position and head orientation vectors,
while the output of the network is the eye gaze vector. We trained our network using
stochastic gradient descent. Once the model is learned, it is utilized during test time
to infer the gaze which is then used as an input to the LSTM networks. In practice,
this would mean that we can perform a one-time recording of the worker’s gaze during
collaboration tasks, learn the gaze estimation model using that data, and then perform
action prediction during future runs in real-time without requiring the worker to wear
the uncomfortable gaze tracking equipment. Potentially, an “average model” could be
learned across multiple participants that could generalize well to other people for the
same tasks, but this question is out of the scope of current research.

3. The novel SubMotion dataset

In order to demonstrate the general application of the proposed algorithm, we have
recorded our own dataset which aims to complement the much more comprehensive
MoGaze dataset. Unlike the MoGaze dataset, which uses a specialized recording suit
and proprietary software to obtain the configuration of the entire human body, our
dataset records the positions, and orientations of only two joints: the head and (right)
hand. Since it includes only a small subset of human motion features, we dubbed it
the SubMotion dataset. Furthermore, the SubMotion setup could be easily embedded
in a real-world application without adding to the worker’s discomfort. While we have
also recorded our data using the OptiTrack system, position of hand and orientation of
head could potentially be extracted with wearable sensors in workers’ helmets, gloves,
or watches. We recorded six times less amount of data than the MoGaze dataset to
demonstrate that the proposed algorithm can be trained without the abundant amount
of data. This section describes the dataset recording setup and the method we used to
obtain the segments we trained and tested our model on.

3.1. Experimental setup

We have used the OptiTrack motion capture system with 12 Flex13 cameras cover-
ing the entire workspace. Human participants wore a helmet and a glove with reflecting
markers that captured the head and hand locations and orientations. We have chosen a
minimal set of wearable equipment which can be easily worn by a worker in a collab-
orative human-robot scenario without impeding their efficiency or causing discomfort
and fatigue. The workspace consisted of three tables on which five objects were placed
with an obstacle in the middle. Unlike in the MoGaze dataset, objects in our dataset
are static and we don’t need to track their position during the recording.

We have recorded the experiment with a total of six subjects, two female and four
male, in an object-reaching scenario. Subjects also varied in height, ranging from
155cm to 195cm. Each subject was introduced to the elements of the scene and shown
the position of each object. This step was particularly important because the exact
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Figure 4: The SubMotion dataset analysis. We compensated lower average segment duration of Subject 5 by
recording more segments to balance the dataset.

positioning of the helmet on the subject’s head can vary between subjects. The MoGaze
dataset takes advantage of OptiTrack’s software for full-body tracking which yields
orientation of the head as a property of the obtained human body configuration. In our
case, the helmet is defined as a rigid body and its orientation is relative to the orientation
the helmet had at the initialization time. Since the head orientation is a crucial input
feature for the proposed method, we needed to calibrate its orientation for each subject.
We instructed the subject to look at each object at the beginning of the experiment and
thus were able to extract reference orientations of the helmet corresponding to each
object. This data was used to calculate the helmet’s transformation matrix for each
subject using MATLAB’s ABSOR [61] tool for least-squares estimation of the rotation
based on the Horn’s [62] quaternion-based algorithm.

3.2. Dataset Recording

After the described initialization phase, we recorded two scenarios per subject. In
the first scenario, each subject began the recording segment at the same starting point
where they waited for the instruction on which object to pick. After the instruction,
the subject identified the object, moved to its proximity, picked it, and placed it back
on its spot. Subjects were instructed to pick the objects using only the hand that has
been recorded. Then they returned to the starting point and waited for the next instruc-
tion. We have generated the order of instructions randomly ensuring that each object
is picked an equal number of times. In the second scenario, subjects were allowed to
walk freely in the scene. Once they decided which object they are going to pick next,
they communicated their intention and carried on to execute it as in the first scenario.

We have recorded a total of 30 minutes of data at 120 FPS which is 6 six times
fewer than the amount of data present in the MoGaze dataset. The data was split
into segments for each subject and the segments were labeled with the object that is
eventually going to be picked. The starting point of each segment is when the subject
would reach the starting position in the first scenario or when they would communicate
the intention in the second scenario. The final point is the moment when the object gets
picked. We have analyzed the distribution of segment lengths and the total amount of
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segments per subject as can be seen in Fig. 4. We can see that, on average, we recorded
more than the three seconds per segment for each subject, which is important because
the proposed algorithm is evaluated on the last three seconds of each segment. The
SubMotion dataset can be made available on request.

4. Experimental Results

In this section we present and discuss results of the proposed method on two
datasets: the MoGaze and SubMotion. Unlike our previous work in [47], where we
trained a model on data belonging to one half of the subjects and performed testing
on the other half, in this paper we decided to train a unique model for each subject.
Such a decision was motivated by observing different motion patterns and data capture
quality between subjects, which manifested mostly on the eye gaze. Also, as body
proportions, gait and behavior patterns tend to be rather individual, it seems natural
to assume that the action prediction models will work better if they are individually
trained. our evaluation was performed by k-fold cross-validation in order to demon-
strate the statistical significance of our results. In practice, we randomly partitioned the
data for each subject in the MoGaze dataset into five equally sized subsamples, while
the SubMotion dataset was partitioned into three subsamples. Each model was tested
on one subsample and training was done on the union of the rest.

We tested multiple proposed configurations including the multiple RNN and LSTM
networks with shared weights as backbones, with and without MLP for feature extrac-
tion. We have explored the option of using one LSTM with information about the entire
scene as an input and we tested for different dimensions of the hidden layer to obtain
the best possible result. The configurations were compared in three quality measures:
i) Area under Curve: Following our previous work, we continued to use the AUC score
as a scalar value representing the accuracy of a model. It is calculated as the average
accuracy for each time step in the three-second evaluation window.
ii) Mean Squared Error (MSE) While the AUC score shows in how many frames the
proposed method guessed the right goal, it fails to encapsulate how much of the method
was when it got the goal wrong. For example, guessing the wrong goal which is 15 cm
from the right goal is not the same as guessing the goal which is 1 m away. Having
that in mind, we introduce the normalized MSE of the expected goal location for each
frame as:

MSE = N
||lg −

∑i=N
i=1 pili||∑i=N

i=1 ||lg − li||
(10)

where li is the location of i-th object, lg is the location of the goal object, N is the num-
ber of objects and pi is the probability that the i-th object is the goal and is calculated as
the output of the corresponding network divided by the sum of all the network outputs.
We use the average distance between objects as the normalization factor.
iii) Execution time: We tracked the average execution time for each of the proposed
models to ascertain if they are sufficiently computationally efficient and could enable a
potential supervisory system to react accordingly.

Our size of the evaluation window follows from [34] and equals three seconds (360
frames). All of the models were trained and tested on the Intel Core i7-7700HQ CPU.
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The main reason why we decided to use a CPU rather than a graphical processing unit
was to show that the proposed model is indeed lightweight and can be easily incor-
porated into any supervisory system without additional hardware dependencies. The
models were implemented in Pytorch and we have made the backbone network pub-
licly available2. We trained the model for 100 epochs and used the batch size of 64 for
MoGaze and 16 for SubMotion, leveraging Adam [63] optimizer with the learning rate
of 0.01. The forementioned parameters were obtained experimentally via exhaustive
testing.

4.1. MoGaze results
We compared the results of the selected baselines, namely the gaze, head orienta-

tion, and hand distance, with the following neural network models:

• LSTMn: denotes multiple LSTM classifiers with shared weights and hidden di-
mension n. The input for these classifiers are features selected by their individ-
ual effectiveness and correlation as in [47]. The best result was achieved for
LSTM128.

• MLPn: denotes multiple LSTM classifiers with shared weights and hidden di-
mension n. The input for these classifiers is all features that first pass through an
MLP feature extraction with the hidden dimension of 1 − 8. The best result was
achieved for MLP128 with a hidden dimension of 2.

• RNNn: denotes multiple RNN classifiers with shared weights and hidden dimen-
sion n. The input for these classifiers are features selected by their individual ef-
fectiveness and correlation as in [47]. The best result was achieved for RNN128.

• FULLn: denotes an LSTM that takes the selected features for all objects as input
and uses a softmax layer to perform classification of the estimated goal. The best
result was achieved for FULL32.

• ALLn: denotes an LSTM that takes all available features as input and uses a
softmax layer to perform classification of the estimated goal. The best result that
was in accordance with the run time constraints was achieved for ALL4.

We evaluated baselines by interpreting the inverse of the distance towards each goal
as the score at any given time point and treating these scores in the same manner as the
network outputs to obtain the prediction. The results of the 5-fold cross-validation can
be seen in the Fig. 5 and Table 1. The eye gaze has proven to be the best performing
baseline with almost double the AUC score compared to the head orientation and hand
distance baselines. This result is in accordance with our previous findings which indi-
cated that the gaze baseline acts as the strongest predictor for the object that the human
is going to pick, and furthermore, it can distinguish the actual goal among the nearby
objects with pinpoint accuracy [47]. The eye gaze also had the smallest MSE but with
a smaller margin indicating that subject often fixated their gaze at the goal but was also
often browsing around the environment.

2https://github.com/petkovich/ensemble-lstm
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(b) Average accuracy before picking the object.

Figure 5: Average values of the MoGaze cross-validation. Additionally, standard deviation of the best
performing model (LSTM128) is highlighted.

Our proposed model based on the shared-weight LSTM networks outperformed in
AUC all the baselines and succeeded to beat the gaze by 1.1%. Following the argument
presented in [47], we claim that it is hard, if not impossible, to beat the eye gaze
significantly in this quality measure. On the other hand, our model had smaller MSE
than the gaze baseline by 14.7%. This means that our method, on average, missed the
actual goal location by 0.49 times the average distance between all objects while the
eye gaze missed it by 0.57. If we imagine a supervisory system that has to reroute a
robot to help the human with executing a task at the goal location, a smaller estimated
goal location error could lead to better efficiency of the system. The shared-weight
LSTM networks outperformed the shared-weight RNN networks demonstrating LSTM
superiority in this time series classification problem. It also achieved a much better
result in the full LSTM network, which was expected having in mind that the positions
of the objects change during the recording. The use of MLP did not have a positive
effect on the result in this case, implying that our feature selection method helped not
only to reduce the complexity and execution time of the model, but also to improve the
result. Execution times suggest that the proposed framework works at 400 Hz on the
CPU which implies it can be seamlessly integrated into the decision-making loop with
modern-day sensors. For example, MoCap systems used for recording of both datasets

AUC MSE Execution Time [ms]
Gaze 168.0 206.3 -
Hand 87.1 339.0 -
Head 96.0 237.8 -

LSTM128 169.9 175.9 1.7
MLP128 166.6 178.2 2.5
RNN128 149.5 218.2 0.9
FULL32 124.4 248.5 2.1

ALL4 102.9 304.6 4.1

Table 1: MoGaze dataset results.
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Figure 6: The goal adding and removing experiment. The left figure shows the output of the network with
10 goals that are not changed during the experiment. The right image starts with 9 goals and the eventually
picked object is added at frame 100, removed at frame 180 and finally added at frame 220. The network
quickly adapted to the addition and removal of the goal and finally succeeded to infer the picked object.

were running at 120 Hz.
One of the main advantages of the proposed framework is its ability to quickly adapt

to dynamic and unknown environments. For example, in the collaborative environment,
a new interesting item can appear during the operation. Also, some items that have
previously been present in the scene can disappear, i.e. they can break, be consumed or
become unnecessary. Because of that we have implemented and tested the capability of
the proposed framework to handle adding and removing objects (goals) from the scene.
Removing the potential goal is done trivially by removing the input connection to the
LSTM in Fig. 1 forcing its output to 0. Adding a goal is done in a similar manner,
by attaching a new copy of the same LSTM to the action prediction pipeline. The
hidden state ht and cell state ct of the attached LSTM are inherited from the object
closest to the new object at the time of adding. We have also tested initializing the
LSTM states with zeros and random values but the proposed method has shown the
best results. We have tested adding and removing goals on several experiment runs and
the example of one is shown in Fig. 6. It is important to note that fully connected action
prediction models such as the FULL32 do not have the capability to reduce or expand
input dimension.

4.2. SubMotion results

We continued with experimental validation of the proposed framework on our Sub-
Motion dataset described in Section 3. In this case, we compared the network results
to the baselines: head orientation and hand distance with models defined as in the pre-
vious section using the same abbreviation conventions. Since we have fewer data per
subject at our disposal, we decided to reduce the degree of the cross-validation to three.
For the same reasons, model complexity has been scaled back and generally, the best
performing models had two to four times smaller hidden dimensions than the best cor-
responding MoGaze model. Also, for this application, the MLP feature extraction had
a hidden dimension of 1. The results of the 3-fold cross-validation can be seen in Fig. 7
and Table 2.
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One can notice that the best performing baseline on this dataset is the orientation
of the subject’s head, similarly to the performance of the gaze on the MoGaze dataset.
However, it has proven to be a much stronger cue for action prediction than the same
feature in the MoGaze dataset. The exact cause of such a phenomenon is unclear but
there are a few possible explanations we would like to mention. Firstly, we calibrate
the position of the helmet on each subject individually as described in the Section 3,
while the joint orientations on the MoGaze dataset follow from the predefined human
body configuration and are prone to change depending on the exact fit of the marker
suit on each subject. Secondly, it is possible that subjects are aware that eye gaze and
position of particular joints are measured which can lead to the manifestation of the
Hawthorne effect [64] introducing a bias into both datasets. Having that in mind, we
proceed carefully with the interpretation of obtained results.

As the only additional feature for our model, apart from the head orientation, is
the Euclidean distance of the right hand from all objects, no method was able to beat
the head orientation baseline on the SubMotion dataset. Similar to the MoGaze dataset
results, the LSTM model outperformed the RNN model and the shared-weight LSTM
networks have performed better than the full LSTM network. On the other hand, the
MSE analysis has once again shown the advantages of the proposed model which out-
performed the head baseline by 8.8%. The MLP embedding produced an even better
result, outperforming the baseline by 11.3%. This is a promising result showing that,
although the proposed model is not correct most of the time (lower AUC), it produces
smaller errors distance-wise (lower MSE). The full LSTM network performed poorly
even though the objects did not move between the segments in this dataset, which
additionally justifies the use of the shared-weight method. Compared to the more com-
plicated models used on the MoGaze dataset, execution times were reduced and small
enough to ensure real-time operation.

The main motivation for recording the SubMotion dataset was to complement the
MoGaze dataset and show that similar results can be achieved using a much smaller and
lightweight setup. Furthermore, we wanted to explore the effect of transfer learning
approaches by training a single human action prediction model on the MoGaze dataset
and testing it on the SubMotion dataset. Unfortunately, we were unable to achieve
any sensible result with such an approach which probably follows from the previous
argument about differences between the head orientations on these datasets. We tried
to leverage gaze in the MoGaze dataset as a comparable signal to the head orientation
in the SubMotion dataset but the dynamics of these signals differ a great deal which

AUC MSE Execution Time [ms]
Hand 129.9 296.2 -
Head 253.1 173.5 -

LSTM32 240.9 158.2 1.1
MLP32 240.2 153.9 1.2
RNN32 229.0 191.8 0.7
FULL16 191.8 197.7 1.9

Table 2: SubMotion dataset results.
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Figure 7: Average values of the SubMotion cross-validation. Additionally, standard deviation of the best
performing model (MLP32) is highlighted.

rendered such an approach invalid.

4.3. Gaze Estimation results

In this section we report the performance of the proposed shared-weight LSTM net-
works when coupled with the eye gaze estimation procedure proposed in Section 2.4.
Evaluating our action prediction LSTM networks model with the estimated gaze, which
we dubbed EG-LSTM, required us to partition the MoGaze dataset into three sets. The
first set was used for gaze estimation training, meaning that we fed the head orientation
and hand position signals as inputs to an MLP proposed in Section 2.4 and used the
recorded gaze as a supervisory signal during learning. Then we utilized the learned
model to estimate the gaze signal on the second and third set from the head orientation
and hand position. We calculated the MSE between ground-truth gaze data and gaze
predictions, with the average MSE on the second and third set evaluating to 0.0621.
The second set with the estimated gaze was then used as a training set for the shared-
weight LSTM networks, while the third set was used for evaluating the shared-weight
LSTM networks with the estimated gaze. This way of partitioning the datasets is trans-
ferable to real-world applications. If there exists a pre-recorded dataset that contains
gaze measurements, it can be used to train the proposed MLP. Then we can infer the
gaze estimates during a person’s activity in real-time when the gaze measurement is un-
available and use that data to train and infer with the shared-weight LSTM networks.
We compared the average accuracy of EG-LSTM before picking the object with the
shared-weight LSTM networks trained with head orientation and hand position as well
as the hand, head, and estimated gaze baselines. The results of our analysis are de-
picted in Fig. 8. In our evaluation, the EG-LSTM achieved the AUC score of 138.26,
outperforming the LSTM trained with head orientation and hand position by 16%. This
implies that the estimated gaze signal contained additional information that was utilized
in learning the EG-LSTM model to achieve better average accuracy. Its performance
matched the ground-truth gaze baseline, having the AUC score within 0.5%, although
the accuracy curves were qualitatively different. Gaze baseline is more accurate at an
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Figure 8: Average accuracy before picking the object. The EG-LSTM outperforms the LSTM model without
estimated gaze as an input feature.

earlier stage of about 1 s before picking the object, while EG-LSTM was more accu-
rate in the last half of a second before picking. This behavior is consistent with results
from earlier sections, where the LSTM relied on the hand position motion cue in close
proximity to the goal. Our findings demonstrate that the shared-weight LSTM net-
works have the potential to work well in specific situations even when human eye gaze
measurements are unavailable, which is practical for many real-world applications.

5. Conclusion

In this paper we have introduced a human action prediction framework based on
shared-weight LSTM networks and feature dimensionality reduction. The idea behind
our framework was to enable a supervisory system or a robot to have a timely and
efficient reaction to accurately inferred human actions. For this paper, we decided to
focus on the object picking problem, where we strived to predict which object in the
scene the human is going to pick next since this represents a strong proxy of typical
human-robot collaboration tasks and can be elegantly validated.

We have carefully analyzed MoGaze, a publicly available dataset that captures
long sequences of full-body everyday manipulation tasks along with the subject’s eye
gaze. As the MoGaze dataset captures the motion of 21 joints, we crafted a feature
dimensionality reduction method based on correlation and presented an alternative
method based on a multilayer perceptron inspired by the autoencoder architecture. The
MoGaze dataset was recorded using a specialized body suit with reflective markers
and eye gaze tracking hardware. In order to demonstrate the general applicability of
our method, we created a smaller dataset recording only the orientation of the subject’s
head and the position of their hand – a setup that can be more easily incorporated into
workers’ helmets, gloves, or wearable watches.

The proposed model consists of multiple LSTM networks with shared weights
trained to classify whether or not the observed sequence relative to an object is the
goal or not. By comparing the output of all LSTM networks during runtime we infer
which object the subject is going to pick next. This model follows from our previous
work [47] with a novel autoencoder embedding as an additional feature processing unit.

19



Furthermore, we have implemented and tested a multi-layer perceptron for estimating
gaze from more easily obtainable motion cues such as head orientation and hand po-
sition. The estimated gaze signal is then utilized during inference of our LSTM-based
model in cases when gaze measurements are unavailable, which can often happen in
practical applications.

We have validated the proposed models exhaustively on both datasets and com-
pared them with the baselines, RNN networks, and the LSTM network that has loca-
tions of all the goals as the input. We measured the area under curve score, which
represents the total accuracy of the model, and the mean squared error, which shows
how much on average we missed the expected location of the goal and the execution
time of our model. The results have shown that the eye gaze is the most powerful cue
for human action prediction problems followed by the orientation of the head if the eye
gaze is not available. Our method succeeded to beat the baselines in the MSE on both
datasets and AUC on the MoGaze dataset. It is computationally efficient enabling it to
run in real-time on a standard laptop CPU. We also tested the proposed model coupled
with the eye gaze estimation procedure, demonstrating that the gaze estimate improves
the model performance, when compared to using only the head and hand motion as
features, thus enabling better performance when gaze measurements are unavailable.
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