Autonomous Hierarchy Creation
for Path Planning of Mobile Robots
in Large Environments

Jelena Gregori¢, Marija Seder and Ivan Petrovié

All authors are from University of Zagreb, Faculty of Electrical Engineering and
Computing, Laboratory for Autonomous Systems and Mobile Robotics (LAMOR),
Zagreb, Croatia {jelena.gregoric, marija.seder, ivan.petrovic}@fer.hr

Abstract. The main task of mobile robots in large environments such
as factories, warehouses, and open spaces is to transport goods and peo-
ple. Planning the path in large environments using classical graph-based
search is computationally too intensive. A representation by a hierar-
chical graph (H-graph) facilitates graph creation and reduces the com-
plexity of path planning. In this paper, we present an algorithm for
autonomously generating hierarchy of the environment from floor plans.
The hierarchical abstraction depicts the environment in levels, from the
most detailed to the most abstract representation of the environment,
where pre-computed partial paths at the most detailed level are graph
edges in a higher level. We use the E* algorithm to find partial paths
in the most detailed abstraction level, and we propose the extraction of
higher levels automatically from lower levels. We verified the proposed
H-graph creation on our University premises resulting in five abstract
levels.

1 Introduction

Mobile robots have increasingly been used in industry and households. Their
main task is to move through environment avoiding obstacles and living beings.
Until now, mobile robots have mostly performed their tasks in small environ-
ments that can be easily described using classical representations of space such
as occupancy grid maps [12] and topological graphs [2,11]. It is obvious that
the workspaces of mobile robots expand and encompass large, complex outdoor
and indoor environments. Spaces like multi-room floors, multi-floor buildings, or
a group of buildings are difficult to represent using classical approaches. Also,
path planning in a large graph becomes very inefficient. To solve the mentioned
problem of describing large environments, it is necessary to use a different ap-
proach and organize the space into simpler graphs to reduce the complexity and
increase the efficiency of path planning. A suitable choice is the hierarchical de-
composition of the environment based on hierarchical graphs (H-graphs) [3,4,8].

The H-graph is a combination of classical metric and topological maps at
different levels of abstraction (see Fig. 1). The H-graph uses a skeleton of pre-
calculated paths (partial paths) between the key points called the bridge nodes.

xim w0 yim

Fig. 1: Representation of FER buildings in reality and as an H-graph.

This approach to graph creation represents large environments simultaneously
at different resolutions, i.e., at different abstract levels. A lot of research on
creating the hierarchical graph exist in the literature [1,3-5,8,9,13|. The creation
of an H-graph is usually done manually, which is a time-consuming and complex
process. In order to speed up the process of graph creation and path planning,
it is necessary to aim for autonomous hierarchy creation. The algorithm for the
autonomous creation of an H-graph presented in 8] maintains consistency across
the hierarchical levels and keeps the model consistent even after changes in the
environment. However, the algorithm creates only three levels of the hierarchy.

This paper proposes autonomous hierarchy creation with extension to more
than three levels of abstraction. The proposed algorithm receives the floor plans
as input data and creates an H-graph as output. We follow the approach of
room extraction algorithm presented in [8] and expand it to create higher levels
automatically from lower levels. We also performed an autonomous selection of
nodes representing elevators inside the building and the passages between the
buildings. We apply the E* algorithm [10] to find partial paths at the most
detailed level represented by the occupancy grid map. Partial paths at higher
levels are formed by merging partial paths from lower levels. The E* algorithm
extends the standard D* algorithm by using interpolation based on the Level
Set Method [6] and provides a path that is very close to the optimal solution [7].
Using E*, we avoid the resulting partial paths to be a zigzag line with sharp turns,
angles of which are limited to an increment of 45° [7,9]. The process of graph
creation is done offline and without any human intervention. The generated H-
graph is a good basis for online and inter-building path planning. We showed the
efficiency of the H-graph creation of a multi-building environment at the Faculty
of Electrical Engineering and Computing (FER). The algorithm creates a graph
consisting of five abstract levels and can be easily extended to more if needed.

In this paper, we highlight three main contributions: i) autonomous cre-
ation of an H-graph with five or more levels; ii) generation of nodes in H-graph
that represent the elevators and the passages between the buildings; and iii)
autonomous creation of an H-Graph with natural close-to-optimal paths and
autonomous identification of bridge nodes.

The rest of the paper is organized as follows. Section II describes the concept
of the H-graph. Section III describes the autonomous hierarchy creation. Section
IV shows the algorithm validation on FER example concluded by Section V.

2 Modeling of the Large Environment Using H-Graph

Hierarchical decomposition is necessary to achieve feasible path planning in large
environments. In the following, the definition of the H-graph is given [9], together
with the classification of nodes and optimality conditions for graph creation.

2.1 H-Graph Definition

The H-Graph is a sequence of hierarchical levels L = Ly, Ly, ..., Lp, where D
is the depth of the hierarchy. Lg is the ’root level’, which represents the most
abstract description of the environment, i.e., the highest level of abstraction.
Analogously, the Lp level is the lowest level of hierarchical abstraction and
the most detailed description of environment. Each level L;(0 £ ¢ £ D) is
represented by graph G; = (N;, A;, C;, W;, T;), where N; is a set of nodes, A; is
a set of edges, C; is a set of Cartesian coordinates for N;, W; is a set of weights
for A; and T; is a set of partial paths. The union of graphs Gy UG; U ...UGp
represents the graph G = (N, A,C,W,T), where N = U2 | N;, A = U2 A;,
C=UL,C;, W=U2,W,;, T =UL,T,. An egde a(n;,ng,wy) € A is defined
by three elements n j, ng,wy, where ny,nxg € N, ny # ng and wy € W. Edges
are non-directed: a mobile robot can navigate between two nodes in both ways.
Cartesian coordinates ¢y € C are defined by (z,y, z), where x,y, 2 € IN. A weight
wy € W is a positive real number (w; € IR).

Nodes of the H-graph are classified into three groups: submap, end and bridge
nodes. Submap nodes, noted by S C N, represent a subset of nodes in a deeper
level of abstraction. Submap nodes can be found at all levels of hierarchical
abstraction except at the deepest level Lp. A node s € N; is a parent submap
node from the level L;, if it is composed of K > 1 child nodes from the level
Liy1. End nodes are start or goal points which can be selected from a robot
path planner. Bridge nodes, noted by B C N, were divided in two classes in [3]:
vertical bridge nodes are the vertical connections, i.e., elevators, that connect
two floors (submap nodes) in a building, and horizontal bridge nodes connect
two submap nodes as the horizontal connections, i.e., doorways. The concept
of vertical bridge nodes does not imply a connection between hierarchical levels
but a connection of the environment parts within the same level and allow the
robot movement in the vertical direction through environment.

Each submap node has its set of partial paths defined between bridge nodes.
The partial path T'(a, b, s) is defined by bridge nodes a,b € B and submap node
s € S as follows:

1] = q, T(|T|] = b,
i es, i=1,..[T), (1)
CL(T[]],T[] + 1}7wj,j+1) S Av .] = 17) |T| -1)

where |T'| denotes the number of nodes on the partial path T. The cost of the
partial path ¢(T) is defined as the sum of the weights of the edges on the partial
path. Partial paths are optimal-length paths calculated offline. Partial paths
are introduced to avoid time-consuming path corrections at deeper levels of
abstraction in the case of path replanning. On the other hand, partial paths
and their costs require extra memory space. However, achieving a short online
computational time is extremely important for path planning in large dynamic
environments.

2.2 Conditions for Optimality

To ensure optimal global path and reduce the computational complexity of path
replanning in real-time, we follow [9] and extend it for a higher number of hi-
erarchical levels. First, we put bridge nodes at the narrow passages to ensure
path optimality, and second we duplicated bridge nodes to maintain consistency
through hierarchy.

The indoor environment is geometrically divided into rooms and halls. At
level Lp, bridge nodes are located on the border between the two rooms (submap
nodes) and belong to both rooms, i.e., they have two parent submap nodes. To
ensure path optimality, bridge nodes must be placed in a way that the union
of the optimal partial paths between the bridge nodes gives the optimal global
path. Also, the positions of bridge nodes play an important role in solving the
problem of robots passing through narrow passages. The safest path in narrow
passages is the one in the middle of the passage, because in this way the robot
has the minimized risk of colliding with an obstacle. Therefore, we placed the
bridge nodes exactly in the middle of the passage, at the door that separates the
rooms. In this way, path optimality is achieved, and safety is increased.

We organize the higher levels of the hierarchy to allow optimal horizontal and
vertical hierarchical path planning. To that goal, we defined a new division of
bridge nodes: regular and marginal. Marginal bridge nodes represent connections
to a higher level of the hierarchy, and regular bridge nodes represent connections
between two submap nodes at the same level. We duplicate the marginal bridge
nodes to the higher level. A duplicated bridge node m® € Nj is defined as a newly
created node at level L;, which coordinates are equal to the coordinates of the
marginal bridge node m**! € N, at level L; ;. This two nodes are connected
with an edge a(m?, m** w), where w = 0. At level L;, these duplicated bridge
nodes are again divided into regular and marginal bridge nodes, where marginal
bridge nodes are at the borders of two submap nodes of level above and regular
bridge nodes are at the borders of two submap nodes of that level. At level Lp,
all bridge nodes are marginal and represent a connection with the level Lp_;.
End nodes appear only at the lowest level, bridge nodes can be found at all
levels except the root level Ly, and submap nodes are at all levels except the
lowest level Lp. For each submap node, partial paths between all possible pairs
of marginal bridge nodes are determined. Once partial paths are determined at
one level, they form the basis for calculating new partial paths at a higher level.
In addition to the above conditions for optimality, it must be considered that

edges 2 path, cost

FER
FER
N L nodes > [x, y, 7, n, m, bj

/] Building A L2
Floor 3
_] nodes 2 [x, y, z, n, m, b
Floor 2
v —j edges 2 path, cost
Flgor [} R L3
/ N\ des > [, y, 7, 1, m, b
" 4 W Building A nodes > [, y, 2, n, m, b
TS edges = path, cost
5 . L4
nodes 2 [x, y, z, b]
edges = path, cost
room 2 matrix
(a) (b)

Fig.2: (a) An illustration of the hierarchical division of FER; (b) structure as
output data from the autonomous hierarchy creation algorithm.

consistency must be maintained through the hierarchical levels of the model,
and the model must remain consistent after changes in the environment. This is
achieved by creating abstract levels from the most detailed level.

3 Autonomous H-Graph Creation

In this work, the autonomous hierarchy creation is based on the principles of
consistency and optimality, as described in the previous section. An H-graph is
created only once and offline. The H-graph is organized into a data structure
which is shown in Fig. 2(a) and Fig. 2(b). In this structure is a list of nodes at
each level. The nodes are described by the corresponding (x,y, z) coordinates.
The variables n and m indicate which nodes are children at the level below. The
variable b is the index of each node at some level. At each level is a structure
called edges that describes all partial paths of that level. The structure edges
consists of the matrix path that stores the path described in the coordinate space
and the real number cost that stores the price of the path. At each level, there is
also a substructure that leads to a lower level. At the lowest level, we have a set
of room matrices that contains a room occupancy grid maps. The occupancy grid
map is continuously updated as the robot moves in the environment according
to the detected obstacles by the robot sensors.

3.1 Creating Occupancy Grid Map from the Floor Plan

The input data given to the algorithm for the autonomous hierarchy creation
are floor plans of all floors in .png format and the corresponding parameter files
in .yaml format. The floor plan images could be obtained from CAD program or
automatically via SLAM, and must not contain details such as door markings,
room descriptions, elevations, etc. Each yaml file contains characteristic param-
eters that describe each floor plan: the name of image which is paired with yaml
file, map resolution and origin in meters. Additional parameters specify the cre-
ation of the occupancy grid map and the hierarchy: the radius of the described
circle around the robot’s footprint noted as the radius of the robot in the fol-
lowing, the size of the cell, and the maximal width of the narrow passage. The
algorithm read the list of yaml files. Loading the floor plan and its parameters
is followed by the creation of the grid map with the cell occupancy function.
Obstacles are extended by the radius of the robot so that the robot could be
considered as a point in space. The safety cost mask defines the values of the
cell occupancy function depending on the proximity of the obstacle. The cell
occupancy function is represented as a function of two variables and denoted
as z(z,y). The lowest value of the occupancy function is in cells outside the
safety cost mask and is equal to 1, while the highest value is in occupied cells,
as shown in Fig. 3. The safety cost mask is equal to half of the maximal width
of the narrow passage.

3.2 Finding Narrow Passages, Bridge Nodes and Rooms

The method for determining narrow passages, bridge nodes, and rooms is per-
formed on the previously created occupancy grid map with the safety cost mask.
We adapt the room extraction algorithm from [8] and extend the algorithm to
autonomously find locations of elevators. A narrow passage is defined as a set
of cells where the local minimum of the function z is located and the value of
the function is greater than 1. Therefore, the maximal width of the narrow pas-
sage that can be detected is equal to two widths of the safety cost mask. Each
group of cells which are defined as narrow passage is assigned a central node
with coordinates at the center of the narrow passage.

z]
40

] V\‘ v S e

- - 10
5 - 20
- 30
x [m] 10 40 {m]
- 50 m
15 60 Y

0

Fig. 3: Occupancy grid map with a safety cost mask represented as cell occupancy
function in 3D.

Bridge nodes must be placed in the middle of narrow passages and at the
boundary between two rooms. The position of the bridge nodes is not necessarily
determined at the door location, but it is certainly in the middle of a narrow
passage. Cells belonging to a room are separated from other rooms by walls and
narrow passages. The task is to find which narrow passages separate the rooms
at doors and not only between obstacles in the room. For this purpose, we find a
closed loop that passes through the boundaries of the room. If such closed loop
exists, the examined coordinates are declared as the bridge node. Otherwise, the
narrow passage lies inside the room and not at the border of the two rooms. In
the case when a room is filled with obstacles that form a closed area, that area
will be declared as a room, although in reality, it is not. But this case benefits
hierarchical planning since it has been shown that the size of the submap node,
i.e., the number of cells within one room, is closely related to the optimality
and computational efficiency of the path planning algorithm [13]. Furthermore,
the higher the parameter for the maximal width of the narrow passage is, i.e.,
the larger safety cost mask, the more found rooms will exist. The procedure of
determining the bridge nodes is described in more details in [8].

The described method for finding bridge nodes is also the method for finding
rooms. Rooms are rounded by the loop. Fig. 4(a) shows the found loop across
the boundaries of the rooms and the narrow passages. Nodes inside the room
represent one submap node at the higher level of the hierarchy. A room consists
of a set of cells with the same associated number. Bridge nodes are assigned to
the two rooms at whose boundaries they are located. Fig. 4(b) shows the narrow
passage (black line), bridge nodes (diamonds), and the rooms with their assigned
numbers and colors (filled color).

3.3 Creation of Higher Level Nodes

The described H-graph of FER has five hierarchical levels (D = 4). The most
abstract level Ly contains only one node. At level Lp is a graph created from
the occupancy grid map. The occupancy grid map at level L, is shown in Fig.

X [m]

(a)

Fig.4: (a) Loops across the occupied cells that surround the rooms (red) and
narrow passages (green); (b) map of the floor with division to rooms: narrow
passage (black line), bridge nodes (diamonds), and the rooms with their assigned
numbers and colors (filled color).

Fig.5: Nodes of: (a) level Lyg; (b) level Ls; (c) level La; (d) level Ly. For clarity
all bridge nodes are drawn at each level, but only the red ones are actually nodes
of the graph at that level. The black x sign indicates marginal bridge nodes.

5(a) along with the marginal bridge nodes at that level (black x). Bridge nodes
are located at each passage between two rooms.

The marginal bridge nodes (all bridge nodes) from level L, are duplicated
to the level above and they appear as nodes of the graph at level L3. In that
way, the bridge nodes connect levels L3 and L. Bridge nodes in level L3 are
shown abstractly and they have inherited the coordinates from the level below.
The bridge nodes from the most detailed level are stored in the structure with
their corresponding (z,y, z) coordinates and used to create a graph on level L.
The nodes at this level are the parent nodes for nodes of both rooms between
which they are located. The connections between nodes in the graph at level L3
are partial paths determined between all bridge nodes at the level below.

The marginal bridge nodes at level Lg are located at places of elevators and
at the ground floor intersections of two adjacent buildings. The bridge nodes at
the elevator locations play the role of vertical bridge nodes. Their determination
is done automatically under three conditions. First, comparing the positions of
the nodes on level L3, second, the size of the rooms to which these nodes belong
is taken into account, and third, the number of room doors is considered. Fig.
5(b) shows the nodes of level L3 composed of regular (red dots) and marginal
(black x) bridge nodes.

At the next level Lo, the graph consists of marginal bridge nodes from
level L3. Thus, the marginal bridge nodes from level L3 with the corresponding

(z,y, z) coordinates, are duplicated in level Lo, and used to create a graph on
that level. The marginal bridge nodes at level L, are determined as the bridge
nodes at the transition points from one building to another and they are located
on the ground floor where the two buildings meet. The nodes colored red in
Fig. 5(c) represent all bridge nodes at level Ly, while the marginal bridge nodes
(three black x) are duplicated to a higher level where they form a new, more
abstract graph. Blue dots are shown only for a reference to have a view of other
floors in a building, and they represent bridge nodes from lower level Ls.

At level Ly, the graph is composed of marginal bridge nodes from level L.
Fig. 5(d) shows the nodes of level L; colored in red, while all other dots are the
bridge nodes from level L3 colored in different color representing each building.
We can notice that the bridge nodes of level L, are at connections of buildings.

3.4 Finding Partial Paths

To complete the abstract graphs at higher levels, it is necessary to connect
selected nodes with edges. Connecting nodes is also performed from the most
detailed level. In this work, we use partial paths that connect two marginal bridge
nodes within a common submap node. Partial paths are determined within each
room submap node between all possible pairs of marginal bridge nodes that
belong to that room, shown in Fig. 6(a). Once the partial paths are determined
at the most detailed level, they are the basis for computing the new partial paths
at the higher level. The process of determining partial paths ends when the paths
are determined in the last level which contains bridge nodes.

=T
—

(a)

Fig. 6: Partial paths: (a) determined at the most detailed level within each room
submap node between all possible pairs of marginal bridge nodes of the room;
(b) at level L3 determined as the union of the partial paths from the level below.

Partial paths between the marginal bridge nodes at level L, are determined
by an E* algorithm. The E* algorithm search the graph from the goal node and
finds all possible paths in the graph. For this purpose, we single out an occupancy
grid map of each room. If the selected room has more than one marginal bridge
node, an algorithm performs a search of the entire room in order to find the

paths between all marginal bridge nodes within that room, storing the costs of
the found partial paths. If a room has N bridge nodes, there must be found
w partial paths within the room and E* must be called (N — 1) times
because one search connects the goal node with all other bridge nodes in the
same room.

At the level above, L3, the abstract graph consists of nodes and edges which
build a simple one-level graph. The nodes are marginal bridge nodes from level
L4, and the edges are partial paths determined at level L. At all higher levels,
the partial paths between two marginal bridge nodes are simply determined by
the union of the corresponding partial paths from the level below, as shown in
Fig. 6(b). In other words, a simple search using the A* algorithm finds the partial
paths between all marginal bridge nodes by concatenating the partial paths from
the level below. Partial paths from all levels and their costs are stored in memory.

4 Simulation Results

In this section we analyse the proposed algorithm according to the reduction of
nodes comparing to the plain graph search, and partial paths quality compared
to the ones obtained by the A* graph search. FER has four buildings marked
with letters: A, B, C, and D (see Fig. 2). The floor plan of each floor in each
building is individually conducted through the described algorithm. Each floor
plan is the basis for creating all abstract levels using the previously described
parameters: we selected a Pioneer-like robot with the radius 0.25 m, we selected
the size of the cell 0.1 m to ensure passable doorways in the grid representation
after enlargement of obstacles for the radius of the robot, and we selected the
maximal width of the narrow passage as 6 m according to the average width of
the room to create more submap nodes in the hierarchy. The lowest level contains
the occupancy grid map of all rooms, and the highest level contains only one
node called FER. The floor plans of buildings B and D were divided into two
parts due to their large dimensions and therefore considered as four buildings.

4.1 H-graph Analysis

Results of the proposed algorithm for autonomous H-graph creation is given in
Table 1 in terms of the number of submap or end nodes K, the number of bridge
nodes By and the number of marginal bridge nodes Bxmarginal- Expectingly, the
number of nodes decreases at higher levels of the hierarchy. At the most detailed
level, all bridge nodes are also marginal bridge nodes. Also, at each higher level,
bridge nodes are marginal bridge nodes from a lower level. The created H-graph
is shown in Fig. 1. The graph is completely connected by bridge nodes and the
corresponding partial paths, so it is possible to plan the robot’s path through
the whole FER.

Table 1: Review of nodes at each level.

Level K Bn BNmarginal
Lo 1 environment 0 0
L 6 buildings 18 0
Lo 27 floors 92 18
Ls 1 924 rooms 1882 92
Ly 1 992 344 nodes 1882 1882

4.2 H-graph and Plain Graph Paths

We tested the proposed hierarchy in the path planning example where the start
is on the third floor of building A and the goal is on the seventh floor of building
C. First, the rooms where the start and goal are located are searched by the
E* algorithm to find the path to the bridge nodes (doors). The rest of the
path is found by searching the marginal bridge nodes at each level. On the
other hand, path planning within the plain graph searches all nodes on each
floor through which the path passes. The results of the comparison are shown in
Table 2 and the path comparison is shown in Fig. 7. The results show that about
50 times fewer nodes need to be searched using the H-graph compared to the
plain graph. Searching fewer nodes significantly saves computational time. Path
planning within an H-graph results in a 2% longer path compared to a plain
graph because somewhere bridge nodes are not on the doors but in the middle
of the passage to form rooms with fewer end nodes. This proves that position
of the bridge nodes is indeed at optimal place because they do not significantly
affect the length of the path.

Table 2: Comparison of path planning in H-graph and plain graph.
Graph N [[m]

H-graph 5 497 189.4575
Plain graph 289 199 185.3772

4.3 Comparison of Partial Paths by E* and A*

We compared the partial paths creation by the E* algorithm to the standard
A* algorithm according to the following path characteristics: the length of the
path [, the number of points in which path changes direction na, the sum of the
all direction change angles > « and the number of points in which the change
of direction is greater than or equal to 45° nas,5.. Algorithms E* and A* are
executed at occupancy grid map of one room. The start is chosen within the
room, and the goal is set at the door of the room. The numerical results for the

90

I

85

y [m]

80

75

70
65

i i
ool eI

y[m] 50 99 30 25 30

Fig. 7: Path found within H-graph (blue) and within plain graph (red): (a) set
in the context of the H-graph; (b) zoomed in order to detect deviations.

Table 3: Comparison of E* and A* algorithm in map of room.

Algorithm { [m] no >Sal N> 450
E* 7.2504 4 93.74 1
A* 7.6569 7 315.00 7

initial planning are shown in Table 3 and the path comparison is shown in Fig.
8. The E* algorithm outperforms the A* algorithm in path length and direction
changes. On average, for the found paths from each node in room shown in Fig.
8 to the door, A* has about 3 % higher path cost and the path has significant
directional changes at several path points.

5 Conclusion and Future Work

We presented the autonomous hierarchy creation for path planning of mobile
robots in large environments. We demonstrate the necessary conditions of op-

58 60 62 64 66
x [m]

Fig. 8: Path found in the occupancy grid map with E* algorithm (red) and A*
algorithm (blue).

timality during the creation of H-graph. The test of the algorithm on FER
buildings demonstrated successful construction of the graph. We have shown
that the path planning algorithm in the H-graph explored 50 times fewer nodes
than in the classical non-hierarchical graph. Furthermore, testing shows that our
algorithm supports modular graph upgrades when it is needed. Future work will
focus on fast path replanning within created H-graph.

Acknowledgement

This work has been supported by the European Regional Development Fund
under the grant KK.01.2.1.02.0119 — Research and development of an advanced
unit for autonomous control of mobile vehicles in logistics (A-UNIT).

References

1. C. Galindo, J. A. Fernandez-Madrigal and J. Gonzalez, "Improving efficiency in
mobile robot task planning through world abstraction,” in IEEE Transactions on
Robotics, vol. 20, no. 4, pp. 677-690, Aug. 2004.

2. C. Paul Bonnington and Charles H.C. Little, "The Foundations of Topological
Graph Theory,” Springer-Verlag, New York, 1995.

3. D. Cagigas, "Hierarchical D* algorithm with materialization of costs for robot path
planning,” Robotics and Autonomous Systems, vol. 52, pp. 190-208, 2005.

4. H. Ryu, "Hierarchical Path-Planning for Mobile Robots Using a Skeletonization-
Informed Rapidly Exploring Random Tree*,” Applied Sciences 10, no. 21, 2020.

5. J. Chen, C. Liu, J. Wu and Y. Furukawa, "Floor-SP: Inverse CAD for Floorplans by
Sequential Room-Wise Shortest Path,” 2019 IEEE/CVF International Conference
on Computer Vision (ICCV), pp. 2661-2670, 2019.

6. J. Sethian, ”A fast marching level set method for monotonically advancing fronts,”
Proceedings of the National Academy of Sciences, vol. 93, pp. 1591-1595, 1996.

7. M. éikeé, M. Pakulovié¢ and I. Petrovi¢, "The path planning algorithms for a mobile
robot based on the occupancy grid map of the environment — A comparative
study,” 2011 XXIII International Symposium on Information, Communication and
Automation Technologies, pp. 1-8, 2011.

8. M. Seder, K. Juric-Kavelj and I. Petrovi¢, ”Automatic creation of hierarchical maps
for indoor environments,” in Proceedings of the Fifth International Conference on
Computational Intelligence, Robotics and Autonomous Systems, pp. 19-24, 2008.

9. M. Seder, P. Mostarac and I. Petrovi¢, "Hierarchical path planning of mobile robots
in complex indoor environments,” Transactions of the Institute of Measurement
and Control, vol. 33 (3—4), pp. 332-358, 2011.

10. R. Philippsen, ”A Light Formulation of the E* Interpolated Path Replanner,” Au-
tonomous Systems Lab, Ecole Polytechnique Federale de Lausanne, 2006.

11. S. Sam Ge, Q. Zhang, A. Thomas Abraham, B. Rebsamen, "Simultaneous Path
Planning and Topological Mapping (SP2ATM) for environment exploration and
goal oriented navigation,” Robotics and Autonomous Systems, vol. 59, 2011.

12. S. Thrun, W. Burgard and D. Fox, "Probabilistic robotics,” Cambridge, Mas-
sachusetts: MIT Press, 2005.

13. YW. Huang, N. Jing and E. Rundensteiner, "A Hierarchical Path View Model
for Path Finding in Intelligent Transportation Systems,” Geolnformatica 1, pp.
125-159, 1997.

