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Abstract. Validation and testing based on simulated scenarios is at the
heart of the automotive industry for all vehicle development phases, since
it enables perfect repeatability of the experiments and control of certain
parameters. However, simulations alone can hardly capture all the com-
plexities of the real world, thus true driving scenarios also represent an
indispensable part of the process. Although invaluable, they offer very
little freedom in changing the parameters, which motivates approaches
for automated conversion of real-world driving scenarios to so-called log-
ical scenarios, which can offer higher abstraction level. To be able to
perform the complex process of converting real-world driving data, pri-
marily it is necessary to be able to perform vehicle motion classification.
For that purpose, this paper proposes and analyzes five different neural
network models. The networks were trained and evaluated on a custom
generated dataset to classify lateral vehicle behaviours in three main
classes with respect to road lanes: lane keep, lane change right and lane
change left. The dataset represents highway driving scenarios on a road
with 7 lanes in the curvilinear coordinate system. Model training and
evaluation was performed on four different subsets, each of them having
a different signal-to-noise ratio. In the end, the best overall result was
achieved with the network model composed of a bidirectional long-short
term memory and multi-scale convolutional neural network layers.
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1 Introduction

Scenario based simulation testing [1] and validation [2] represent standard
practice in automotive industry for almost all phases of vehicle development [3].
The main motivation behind this lies in the ability to make a large number of
tests with perfect repeatability and, depending on the abstraction level, with
parameter changes to emphasize certain critical situations. There are two pos-
sible paths for generating driving scenarios: (i) manually from prior knowledge



and experience, or (ii) from recorded real world driving as described in Menzel
et al. [4]. The generated scenarios from real world data are much more valuable
for testing and validation, but their abstraction level allows only the replay of
the exact same scenario, hence the name replay scenarios or concrete scenarios
[4]. In other words, it is not possible to change any parameters, like the vehicle
velocity or the time instant of the started lane change. On the other hand, high
level abstraction scenarios, know as logical scenarios [4, 5] are usually the result
of manually generated scenarios and as such allow most, if not all, parameters
to be changed. In order to increase the abstraction level of replay scenarios, it
is necessary to have the capability to classify all vehicle motions, and based on
those classification results recreate scenarios from the ground up. Manual con-
version from a replay scenario to a logical scenario is possible, but the process
is slow and with an increased number of scenarios it becomes impractical, thus
automated scenario generation becomes a necessary step in the process.

The terms scene, situation and scenario, were defined within the automotive
field by Ulbrich et al. [6], while the aforementioned concrete and logical scenarios
were introduced by Menzel et al.[4]. Additionally, authors in [7] define a data-
driven approach for generating driving scenarios for testing and validation with
ISO 26262 [3] as the reference. Abstract scenario description with sequential acts
and event triggering was proposed by Bash et al. [8] and has been used widely
in both academic and industry applications, while a more mathematical descrip-
tion was provided by Andreotti et al. [9]. As a solution to the problem of how
to generate a large number of testing scenarios, Zhao et al. [10] suggested a con-
version of real world driving data through automated classification algorithms
based on big data and ontology [11]. Practical solutions to automated scenario
generations are mostly very specialized, and depend on the used methods, type
and number of vehicle motions recognizable by the method, and format of the
input and output data. For example, Lages et al. [12] and Made el al. [13] base
their automated conversion on laser sensors. In [14-17] vehicle motion classifica-
tion has been mostly based on some form of a machine learning algorithm. Other
than learning methods, some authors like Hiilnhagen et al. [18] used fuzzy logic,
while a hybrid method with neural networks and fuzzy logic has been presented
by Lin et al. [19]. Sonka et al.[20] used probabilistic and fuzzy classification
achieving combined accuracy of up to 95%.

This paper compares the performance of five different neural networks for
the problem of classifying lateral vehicle motion.With the assumption that the
vehicle is driving in a highway scenario and that the vehicle position is given in
the curvilinear coordinate system. Such interpretation of input data allows to
neglect most, if not all, dependencies on the scenario recording process, as long
as the recorded data can afterwards be successfully converted to the assumed
format. Using only lane change based labels for lateral behaviour allows the
output data to be used in most driving simulators. The performance of the
five different neural networks was analyzed on a custom generated dataset and
defined three main classes with respect to road lanes: lane keep, lane change right
and lane change left. Final results showed that the best overall score was achieved



with the network model composed of bidirectional long-short term memory and
multi-scale convolutional neural network layers.

2 Problem Description

To achieve a more generalized level of input data and an increase the ease of
use, the input data format is defined in the shape of an array that consists of
vehicle trajectory and road lane coordinates in the curvelinear coordinate sys-
tem [21]. The curvilinear coordinate system, widely used both in related work
and industry, is a road reference curve based coordinate system SD where S is
position on the road curve and D is lateral deviation from the road centre curve.
This coordinate system allows an easier description of vehicle movement, the
ability of easy target road change and the manipulation of vehicle trajectory in
the position and time domains, respectively. Conversion from and to curvilinear
coordinates is done by referencing the vehicle relative position to the road cen-
terline, which is usually stored in a separate road description file. Road lane lines
can also be represented in curvilinear coordinates as an array of lateral distances
D, calculated with regard to the vehicle’s specific position on road S. The size
of the input array (m + 2) X n depends on the number of samples n and the
number of lane lines m. This approach enables importing many different types
of recorded data as long as they can be converted to this specific, but simple
format. An example of the data can be seen in Fig. 1la. Additionally, for faster
learning and convergence, the input data is normalized so that it is in range [0, 1]
by the expression (1), where a; represents a single value from the array and a
represents the whole array.

a; — min(a)

4= max(a) — min(a)’ )

A prerequisite for generating logical segments from trajectory data is classified
data, usually both in the lateral and the longitudinal direction and the process
is illustrated in Fig. 1b. Simply put, it is necessary to have the capability to
recognize the exact moment when the vehicle initiates and finishes the lane
change, and this paper covers lateral classification with three possible classes:
lane keep (0), lane change right (1), and lane change left (2). For simple highway
driving scenarios the longitudinal classes can be described in between lateral
classes with time, start velocity, and end velocity. The chosen classification is
a simplification of the one described in [11,14,20], and they closely match the
scenario description language of the dSPACE ASM ModelDesk [22] that was
used for scenario generation in this paper.

3 Proposed Neural Network Models for Lane Change
Classification

Driven by the work done in vehicle motion classification using neural net-
works [23], in this section five different neural network models with different
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Fig. 1: Vehicle motion classification problem for automated logical scenarios.

levels of complexity are proposed. This was done in order to determine which
model is suitable for this specific classification task. The tested models range
from simple fully connected (FC) and convolutional neural networks (CNNs),
to combinations of convolutional and long-short term memory (LSTM) network
layers, and in the following each of them is presented.

Model 1: Simple FC. A Fully Connected (FC) network [24] is an introduc-
tory network for simple classification problems. The proposed network model is
composed of 4 fully connected layers and a softmax layer, where FC layers are
composed of the following neuron numbers per layer (256,128,64,32) as shown
in Fig. 2a. The main advantage of the FC neural networks is that no special
assumptions about the structure of the input data is needed.

Model 2: Simple CNN. This network model is proposed in order to
consider the spatial nature of input data, as they represent vehicle position
in reference to road lane lines. The model is composed of three convolutional
layers each containing 32 filters and kernel dimensions of 7, 5 and 3, respectively.
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Fig. 2: Two straightforward neural network models for vehicle motion classifica-
tion.

Convolutional layers are followed by a FC layer with 64 neurons, and a softmax
layer for output as shown in Fig. 2b. The advantage of convolutional layers,
which are inspired by visual perception, is that they take tensors as input data
and can understand spatial relations (correlation between nearby pixels in the
image) [25].

Model 3: CNN + LSTM. Models that combine CNN and LSTM lay-
ers were initially developed for visual time series prediction and the purpose of
generating textual descriptions from sequences of images [26]. A network model
based on a combination of convolutional layers with LSTM layers is proposed
because of its ability to tackle spatio-temporal information in input data. Con-
figuration of a simple CNN model is extended with an LSTM layer with 32
neurons inserted after 3 convolutional layers and before the FC layer, and the
output softmax layer, as shown in Fig. 3a.

Model 4: Simple Bi-LSTM. This model was chosen to see how a temporal
model deals with structured input data and how structured input data will
influence the model’s classification capability [16]. Composition of the network is
based on two bidirectional LSTM (Bi-LSTM) layers with 64 cells, accompanied
by a FC layer with 64 neurons and a softmax layer as output, as shown in
Fig. 3b. The model based on Bi-LSTM is capable of running input data in both
directions, which allows to preserve information from both past and future.

Model 5: Bi-LSTM + MSCNN. This network model was taken from
[16] in which it was applied for driver behaviour recognition and it achieved
accuracy of 85.27%. According to [16], the advantage of the Bi-LSTM over LSTM
in this application is: “Compared to vanilla LSTM, bidirectional LSTM (Bi-
LSTM) architecture can use the bidirectional information of the trajectory which
prompts us to introduce a Bi-LSTM module to model the dynamic evolution of
trajectories.”. The structure of the model is composed of two main branches
which are a Bi-LSTM and multi-scale CNN (MSCNN) followed by a FC layer
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Fig. 3: Neural network models using convolutional and LSTM layers and a bidi-
rectional LSTM model.
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Fig. 4: Model 5: Bi-LSTM + MSCNN

with 32 neurons, and a softmax output layer. The Bi-LSTM module is composed
of two LSTM layers each containing 64 cells, while the MSCNN branch has
three parallel convolutional layers, accompanied by a FC layer with 64 neurons.
Convolutional layers each consist of 32 filters and kernel sizes of 7,5 and 3,
respectively.

4 Training and Evaluation

4.1 Dataset Generation

In order to train and evaluate the aforementioned neural network models, a
custom dataset was created using dSPACE ASM ModelDesk simulation Toolbox
[22]. Although there are trajectory based datasets, such as HighD[27], they lack
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Fig. 5: Base scenario for dataset generation

labels for lane changes and this work can be seen as a step in development of
automated annotation of such real world data. Since the goal was to generate
a large amount of diverse scenarios, simulated logic scenarios were run in the
loop while changing parameters for each loop pass. Base scenarios consisted of
multiple lane keep and lane change segments stacked one after the other, where
the base scenario is shown in Fig. 5. The road was set as a straight highway
with 7 lanes all going in the same direction and curvatures were unnecessary
due to conversion to the curvilinear coordinate system (which would neglect all
curvatures). Vehicle positions were recorded as lateral deviations on the road.
The parameters were changed in two ways: either randomly by using a uniform
distribution, or linearly by growing with a preset step value. Parameters that
were changed during the simulation were: duration of each block, lateral and
longitudinal velocity, lateral offset, and lane change type. Recording of the data
was done with a sample rate of 0.02 seconds, after which subsampling of 1:40 was
applied to reduce the total size of the dataset and training time. This resulted in
2912 driving scenarios where vehicles drove 1002 km, in duration of more than
20 hours with 975 left lane changes and 1145 right lane changes.

The generated dataset was divided in a 80:20 ratio, where 80% was used for
learning and 20% for evaluation. To enrich the dataset, it was further augmented
with white noise based on the following expression 2 and shown in Fig. 6:

SNR =10log,, <P-""l) . (2)

Pnoise
White noise was applied on the training dataset in steps of signal to noise ratios
of 70, 50 and 30 dB, to simulate a more realistic input data. These values ware
chosen as representative examples of noise distributions. During the training of
models, noise was progressively increased starting with training on data without
any noise and ending with fully noisy data at 30 dB signal-to-noise ratio as
shown in Fig. 7.
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Fig. 6: Division of the dataset for training

Evaluation was compiled from four non-overlaping chunks of data with ap-
plied different levels of noise, starting without any noise and ending with 30 dB
signal-to-noise ratio, same as the last part of training data. Adam [28] was used as
the training optimizer based on stochastic gradient descent since it is well suited
for problems that are both large in data and the number of parameters. The
following metrics for evaluation were used: accuracy calculated as frequency of
prediction matching labels, categorical cross-entropy for the loss function, and
confusion matrix macro parameters: True positive (TP), True negative (TN),
False positive (FP) and False negative (FN).

Table 1 shows the evalution results, from which it can be see that the best
overall score was achived by the Bi-LSTM + MSCNN model. This is most likely
due to its ability to combine spatio-temporal features of backward and forward
temporal looking capability of Bi-LSTM and spatial characteristics of MSCNN
module. The worst performing model was the simple FC because it makes no
assumptions about the spatio-temporal correlation of the input data, followed
by the simple CNN whose performance was significantly better but does not
have the capability to learn temporal aspects of data. CNN + LSTM model
showed initial poor performance, but gradually got better as it learned on noisy
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7777777/
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Fig. 7: The dataset in the training process



Table 1: Evaluation results of the analyzed network models on the custom lane
change detection dataset

Model Value Without Noise Noise 70 dB  Noise 50 dB  Noise 30 dB
Name Epoch=30000 Epoch=40000 Epoch=50000 Epoch=60000
Accuracy 74.4889% 74.0898% 74.6113% 74.3476%
Loss 0.6881 0.6923 0.6911 0.6952
Simple TP 0.44 0.44 0.44 0.4333
FC TN 1.4366 1.44 1.4399 1.4333
FP 0.5566 0.56 0,56 0.5667
FN 0.5566 0.56 0,56 0.5667
Accuracy 72.0325% 75.4199% 88.1666% 88.9023%
Loss 0.6589 0.6963 0.3227 0.3106
Simple TP 0.38 1.1933 0.8233 0.8
CNN TN 1.3799 1.06 1.82 1.8
FP 0.62 0.42 0.1733 0.2
FN 0.62 0.3184 0.1733 0.2
Accuracy 79.1458% 90.1328% 90.513% 90.9863%
Loss 0.5148 0.3038 0.2712 0.2586
CNN-+ TP 0.7333 0.89 0.86 0.8533
LSTM TN 1.7333 1.8867 1.86 1.8566
FP 0.2667 0.1066 0.1399 0.1499
FN 0.2667 0.1066 0.14 0.1499
Accuracy 96.6529% 94.8645% 97.2591% 97.2929%
Loss 0.1049 0.1375 0.0852 0.0976
Bi-LSTM+ TP 0.9667 0.94 0.9667 0.9667
MSCNN TN 1.9667 1.9399 1.9667 1.9667
FP 0.0333 0.06 0.0333 0.0333
FN 0.0333 0.0599 0.0333 0.0333
Accuracy 94.7434% 96.9804% 93.1367% 93.3509%
Loss 0.1401 0.1212 0.2233 0.1458
Simple TP 0.9367 0.96 0.92 0.9067
Bi-LSTM TN 1,94 1.9533 1.9167 1.9067
FP 0.0667 0.04 0.08 0.0933
FN 0.0666 0.04 0.2899 0.0933

data. That is in correspondence with results from [29], which states that LSTM
is less susceptible to perturbation in data if noise is present. This model could
provide better results if LSTM layer is replaced by Bi-LSTM which would make
it backward and forward looking capable. The simple Bi-LSTM model, that does
not include the MSCNN part, has initially showed good accuracy until data with
larger noise was introduced. Figure 8 shows the results of classification for all
models, after having completed the whole learning process (60000 epochs), on
the typical examples of lane change left and lane change right without added
noise. According to Table 1, which contains five different architectures of neural
networks, the final architecture recommendation would be: series of convolutional
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Fig. 8: Evaluation results

layers whose outputs are combined with input and feed into LSTM and then into
series of fully connected layers followed by softmax.

5 Conclusion

This paper investigated lane change classification with neural networks for
automated logical scenario conversion. The lane change classification problem



was categorized into three classes of lateral vehicle motion: lane keep, lane change
right, and lane change left. This classification problem was tackled by five differ-
ent deep learning models with varying complexity. Neural network models were
trained and evaluated on a custom dataset that was generated using the dSPACE
ASM ModelDesk. The resulting dataset was composed of 7 road lane lines and
lateral deviation of the vehicle on the road. The road was set as a straight high-
way going in one direction, as curvelinear coordinates were used, which neglects
all curvature features of the road. Best overall results were achieved with the
network model composed of Bi-LSTM and MSCNN layers, achieving accuracy
of up to 97.2%, due to its ability to learn spatio-temporal features of input data.
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