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Abstract—Accurate localization constitutes a fundamental
building block of any autonomous system. In this paper, we
focus on stereo cameras and present a novel approach, dubbed
SOFT2, that is currently the highest-ranking algorithm on the
KITTI scoreboard. SOFT2 relies on the constraints imposed by
the epipolar geometry and kinematics, i.e., it is developed for con-
figurations that cannot exhibit pure rotation. We minimize point-
to-epipolar-line distances, which makes the approach resilient
to object depth uncertainty, and as the first step, we estimate
motion up to scale using just a single camera. Then, we propose
to jointly estimate the absolute scale and the extrinsic rotation
of the second camera in order to alleviate the effects of varying
stereo rig extrinsics. Finally, we smooth the motion estimates in
a temporal window of frames by using the proposed epipolar
line bundle adjustment procedure. We also introduce a multiple
hypothesis feature matching approach for self-similar planar
surfaces that accounts for appearance change due to perspective.
We evaluate SOFT2 and compare it to ORB-SLAM2, OV2SLAM,
and VINS-FUSION on the KITTI-360 dataset, KITTI train
sequences, Málaga Urban dataset, Oxford Robotics Car dataset,
and Multivehicle Stereo Event Camera dataset.

Index Terms—Stereo visual odometry, road vehicle localization,
point-to-epipolar-line metric, online calibration.

I. INTRODUCTION

Localization constitutes a fundamental building block of
any autonomous system. This is especially emphasized for
autonomous vehicles that participate in urban traffic and need
to maintain highly accurate estimates of their pose for navi-
gation purposes. The localization can rely on proprioceptive
sensors, like the wheel odometry and inertial measurement
units, and exteroceptive sensors like cameras, laser range
sensors and even radars. Indeed, localization of autonomous
vehicles typically relies on the fusion of most of the aforemen-
tioned sensors, but, nevertheless, each modality should operate
as accurately as possible to produce a reliably functioning
autonomous system.

Visual localization is one of the key actors in modern local-
ization systems for mobile robots and autonomous vehicles.
Cameras offer a rich source of information at a fraction of
the price of other competitive hardware. When it comes to
estimating relative pose between two calibrated camera views,
a reference approach boils down to the algebraic 5-point
method [1] in combination with RANSAC [2]. An iterative
approach that can estimate the relative pose between two views
from an arbitrary number of points (but 5 minimum) was
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presented in [3], where it was also shown to be approximately
twice as fast as the 5-point method. It is also an established
results that minimizing reprojection errors in the image domain
leads to better results since uncertainties are isometric in
the image domain with respect to the 3D uncertainties of
triangulated points from stereo setup [1]. Furthermore, it
has also been previously shown that minimizing point-to-line
distances produces greater robustness in odometry [4]. It is
also worth noting that when a rigidness criteria is optimized on
features with Gaussian noise from two relative views, the result
suggests that it is optimal to minimize the point-to-epipolar-
line metric [5].

All this makes cameras an attractive sensor modality and
visual localization has been a subject of research for several
decades now [1], [4], [6]. However, a unique recipe for
successful visual odometry is difficult to define, thus multiple
groups of approaches have been developed over the years.
For example, one could tackle the problem by finding a rich
set of features and track them over the frames to compute
the odometry [7]–[11]. Another approach would be to dis-
regard features and work directly on pixel intensities [12],
[13], or even try to combine the best of both worlds [14],
[15]. Furthermore, by assuming that the camera is placed
on a specific vehicle and has limited maneuverability due to
kinematic constraints, it is possible to further increase the
performance of algorithms [16]. All of the aforementioned
approaches have their benefits and drawbacks and for some
further insights, comparison of visual odometry approaches
for flying robots can be found in [17]. When cameras are
combined in pairs, in the so-called stereo setup, they can
also provide depth of the scene jointly with the standard
image. Even though we are recently witnessing advent of deep
monocular methods that can also estimate depth [18]–[20],
stereo odometry for mobile robots and autonomous vehicles
still offers many challenges and researchers are continuously
striving to develop ever more accurate and reliable methods
or leverage novel visual modalities [21]–[25]. This is an
interesting notion despite the fact that to determine the relative
pose between two views only 3 non-colinear 3D points are
required and that lately a certifiable point cloud registration
technique has been introduced [26].

An important factor in driving the process of obtaining
accurate and robust stereo odometry was and still is the KITTI
dataset [27], which has been acting as a public benchmark
for road vehicles since 2012. Multiple stereo vision methods
currently achieve less than 1% translation error [9], [22],
[28]–[33], demonstrating the ability of cameras to produce



highly accurate road vehicle trajectories. Besides the KITTI
dataset, several other public datasets have been recorded by
road vehicles with a suite of sensors operating in an urban
environment, such as the KITTI-360 dataset [34], the Málaga
Urban dataset [35], the Oxford Robotics Car dataset [36],
and the Multivehicle Stereo Event Camera Dataset (MVSEC)
[37] – all of which have been used in the present paper
for experimental evaluation. Although other high quality au-
tomotive datasets are also publicly available [38]–[42], they
are more oriented towards object detection, classification,
semantic segmentation, and are either missing stereo cameras
or ground truth trajectory for odometry evaluation.

In this paper we propose SOFT2, a highly accurate au-
tomotive stereo visual odometry designed for operation in
real-time – the successor to our SOFT odometry [9], [22].
SOFT2 currently scores 0.53% in translation error and 0.0009
deg/m in rotation error rendering it currently the highest
ranking algorithm on the KITTI scoreboard1, over all sensor
configurations. We introduce the following novelties: (i) rel-
ative pose estimation (up to scale) is based on minimizing
the point-to-epipolar line distance from frame to frame in
a single camera and also in a window of frames in a type
of epipolar line bundle adjustement, (ii) we estimate the
absolute scale jointly with the relative orientation of the second
camera, thus performing online calibration at each frame,
and (iii) we develop a multiple hypothesis feature matching
method based on perspective correction for self-similar planar
textures – this mostly affects features on the road and thus
enhances translation estimation. To summarize, by focusing
on the point-to-epipolar line distance minimization we obtain
increased robustness to feature position uncertainty, lens radial
distortion, and motion blur, while by maximally utilizing data
from just a single camera, we account for possible variations
in the stereo pair extrinsic parameters and rig inflextion
during operation. SOFT2 omits 3D projections to avoid depth
uncertainty and consequently does not offer mapping and loop
closing – it is strictly an odometry algorithm. Finally, we also
compare SOFT2 to ORB-SLAM2 [10], OV2SLAM [33], and
VINS-FUSION [11], [43], on the KITTI-360 dataset, KITTI
train sequences, Málaga Urban dataset, Oxford Robotics Car
dataset, and Multivehicle Stereo Event Camera Dataset.

The paper is organized as follows. In Section II we present
fundamentals of stereo vision and odometry to set the grounds
for the paper. Section III then presents an overview of the
proposed system to acquaint the reader with the whole picture
of the SOFT2 pipeline. Then, Sections IV and V describe
in details each of the modules and core paper contributions,
i.e., our 2D-2D method that minimizes the point-to-epipolar
line metric, scale and online extrinsic rotation calibration, and
multiple hypothesis matching for self-similar planar surfaces,
like the road, via perspective correction of feature appearance.
Section VI presents experimental results and comparison to
three competitive approaches on five different automotive
datasets, while Section VII concludes the paper.

1http://www.cvlibs.net/datasets/kitti/eval_odometry.php

II. STEREO VISUAL ODOMETRY BACKGROUND

In this section we give a brief background on stereo vision
and stereo odometry that we find necessary to setup the
grounds for the proposed method. We assume that the reader
is familiar with notions from the fields of computer vision and
geometry of pairwise views, while for details on the subject
we direct the reader to [44].

Stereo visual odometry relies on a pair of cameras to
estimate the ego-motion, i.e., the accumulated relative dis-
placement of the cameras. Mathematically, the displacement
between the two views is defined by the translation vector
t ∈ R3 and the rotation matrix R ∈ SO(3) that belongs to a
special class of matrices called the special orthogonal group –
matrices whose columns/rows form an orthonormal basis and
have determinant of one. Together, the pair (R, t) forms the
so-called special Euclidean group

SE(3) =

{[
R t
0 1

]
| t ∈ R3, R ∈ SO(3)

}
, (1)

and the final stereo pair trajectory is obtained by successive
concatenation of the estimated relative displacements.

The stereo pair is set apart at a known distance, known
as the baseline, while the orientation of the two cameras is
targeted to be equal in order to make the camera image planes
as parallel as possible. Unlike the monocular counterpart, the
stereo setup, thanks to the known baseline, allows to resolve
the scale and obtain a metric trajectory. Given that, besides the
intrinsic calibration parameters, the extrinsic parameters of the
stereo setup, namely the relative orientation and translation of
one camera with respect to the other, need to be determined.
This is usually performed in a standard fashion using a known
calibration target, and toolboxes such as Kalibr [45] offer to do
both simultaneously. However, although intrinsic and extrinsic
calibration parameters appear as fixed design parameters, due
to various influences and motion they can change during the
operation, thus inevitably introducing additional errors to the
odometry system.

Assuming that the stereo setup is calibrated, the standard ap-
proach in feature based stereo odometry proceeds by detecting
and matching feature pairs in the stereo image. This approach
is facilitated by the fact that the geometry of pairwise view
sets the so called epipolar constraint for the feature pair. Let
x′, x ∈ R3 be the homogeneous coordinates of the same point
P projected on the two camera image planes. Then, the two
image points satisfy the epipolar constraint

x′T[t]×Rx = 0, (2)

where [t]× ∈ R3×3 is the skew-symmetric matrix of the rel-
ative position vector and R is the relative orientation between
the two views. Furthermore, t and R form together the epipolar
matrix E = [t]×R, and the constraint is usually written as

x′TEx = 0. (3)

Since for the calibrated stereo pair we know the relative pose
of the cameras and their intrinsic parameters, we can use the



Fig. 1: Illustration of epipolar lines for the KITTI 01 sequence. The camera principal point (red) approximately coincides with
the epipoles of the current (green) and previous (blue) frame – for better visualization, points are at the centers of the enlarged
circles. Squares illustrate detected features in the current frame, while the tails connect them with matched features from the
previous frame. Green lines represent epipolar lines associated to previous frame features. Color differentiates ground features
from the other features. Our approaches minimizes the perpendicular distance of all features to the pertaining epipolar lines.

epipolar constraint to more efficiently search for matches in
the stereo pair of images. Namely, in ideal conditions, for the
point x in the first camera, the corresponding image point x′

should lie on the epipolar line in the second camera.
The geometry of pairwise views can also be applied to

images taken by the same camera, but at displaced locations.
However, in this case, we aim to determine the unknown
relative pose defined by (R, t) ∈ SE(3) between the views.
For the monocular example, we can obtain the definite relative
orientation R, but the relative position t only up to scale. In
this case, the epipolar matrix is first estimated from point cor-
respondences, typically with the 5-point method [1] followed
by the singular-value decomposition (SVD) to obtain (R, t). In
this paper we assume that the camera is placed on a platform
that cannot exhibit pure rotation, like the Ackermann drive or
a rail vehicle.

The stereo setup, on the other hand, offers the possibility to
estimate the definite t with proper scale. One approach would
be to have image correspondences triangulated in both stereo
views to obtain two 3D point clouds, and apply an algorithm
from the iterative closest point (ICP) family to estimate the
relative pose. However, it was shown in [1], [4] that motion
estimation obtained by minimizing the points reprojection
error in the image space yields more accurate results than
minimizing the Euclidean error in 3D space. The reason being
that point uncertainties in the Euclidean space can be highly
anisotropic, while in the image space their projections have a
more balanced uncertainty. In such approaches, the 3D point
cloud is triangulated from the previous stereo view and the
points are projected on the image plane in the current view.
For a 3D point X =

[
X̃ Ỹ Z̃ 1

]T
in homogeneous

coordinates this evaluates to the following expression

x̃ỹ
1

 = π(X,R, t) =

fx 0 cx 0
0 fy cy 0
0 0 1 0

[R t
0 1

]
X̃

Ỹ

Z̃
1

 , (4)

where x =
[
x̃ ỹ 1

]T
are homogeneous image coordinates,

π(·) is the projection function, fx and fy are the focal lenghts,[
cx cy

]T
is the image principal point, and (R, t) is the

relative pose between the two stereo views. To estimate (R, t)
one would then typically minimize the following objective
function for both images of the stereo setup

argmin
R,t

∑
i

||xi − π(Xi, R, t)||2, (5)

where xi is the image point in the current stereo view, while
π(Xi, R, t) is the projected image point from the 3D point
cloud constructed from the previous stereo view. Unlike a
pure ICP approach, which is a 3D-3D method, minimizing
(5) is a 3D-2D method, since it requires estimated feature
depth before reprojection. On the other hand, the proposed
approach is a 2D-2D method, since it works directly on image
coordinates and does not require feature depth. Note that the
projection function π(·) also entails a nonlinear part in charge
of correcting lens distortions, mostly the radial distortion [45].

III. SOFT2: GENERAL SYSTEM OVERVIEW

The SOFT2 pipeline is depicted in Fig. 2. Upon receiving
a pair of stereo images from the left and right camera (L and
R), we detect and match features, producing left and right
camera features sets, FL and FR, respectively. The correction
of feature patch appearance due to perspective is an optional
step and described at the end of this section; at the moment
we leave it out of discussion. By relying solely on FL, we
iteratively estimate the epipolar matrix E using the whole
set of inliers [3], from which we can determine the relative
rotation R and translation direction t̂. Then, by including FR,
we estimate jointly the scale s and relative orientation of the
right camera with respect to the left one. This step produces
absolute relative motion defined by the rotation matrix R
and translation vector s t̂. To enhance our final estimate, we
include information from the temporal window of previous left
camera frames in a bundle adjustment procedure, which yields
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Fig. 2: Pipeline of the proposed stereo odometry approach. Triangles represent left and right cameras (L and R), respectively.

our final odometry (R∗, t∗). In all the steps we use point-to-
epipolar-line distance minimization, rather than point-to-point
distance minimization. In essence, our approach facilitates
optimization in the essential matrix space and by focusing on
the improvement of rotation accuracy we can expect a great
boost in overall performance, since rotation error produces
superlinear growth of the position error. Moreover, feature
displacement due to radial distortion or blur due to increase
in vehicle speed or diminishing lighting conditions, will not
as much affect the optimization since the effects will coincide
with the direction of the epipolar lines.

The motivation behind our approach lies in the fact that
we target SOFT2 for high accuracy automotive localization
and operation in real time, and consequently have decided to
rely on the epipolar geometry and constraints imposed by the
platform kinematics; specifically:

• ground vehicles, and similar configurations, do not exhibit
pure rotation and always have a translational component,
thus escaping singularity in essential matrix computation

• during forward motion, which is dominant in ground ve-
hicles, the principal point and the epipole approximately
coincide making epipolar lines direction in line with the
radial distortion and blur (see Fig. 1)

• orientation and translation direction can be estimated
using a single camera, thus making odometry more
robust to stereo calibration errors or possible stereo rig
deformations during operation

• absolute scale and second camera extrinsic rotation with
respect to the first can be estimated jointly, thus increas-
ing accuracy by continuous online calibration

• feature matching can be enhanced by taking into account
appearance change due to varying perspective (both in
stereo and time), thus allowing to also include close-by
ground features that boost translation estimation accuracy.

The SOFT2 pipeline is similar in structure to its predeces-
sor SOFT [9], [22]; however, with the following important
differences leading to better performance:

1) SOFT computes only rotation in a 2D-2D manner,
while absolute translation is determined by triangulating
features via stereo and estimating odometry through
reprojection error, i.e., in a 3D-2D manner. On the other
hand, SOFT2 computes rotation, translation direction,
scale, and extrinsic stereo camera rotation jointly and

continuously by minimizing the point-to-epipolar-line
metric making it a 2D-2D method.

2) SOFT uses only 5 points selected by RANSAC to
estimate E via the 5-point method [1], while SOFT2
uses the dominant hypothesis to select all the inliers to
compute E using an iterative method [3].

3) SOFT smooths odometry estimates by averaging over
previous frames through spherical linear interpolation
(Slerp) [46], while SOFT2 uses the proposed bundle
adjustment based on the point-to-epipolar-line metric.

4) To enhance feature matching, SOFT2 introduces a mul-
tiple hypothesis perspective correction (MHPC) matcher
that can take into account patch appearance change due
to perspective.

The main motivation behind the proposed MHPC matcher is to
obtain a set of appropriately distributed informative features –
the key to any accurate vision-based motion estimation – and it
is especially effective for ground (road) features that are close
to the cameras and can aid greatly in translation estimation.
However, to achieve this we already need to know the relative
displacement of the camera. Given that, the “feature detection
and matching” block from Fig. 2 becomes a two step process.
In the first step, preliminary relative motion (Ř, ť) needs to
be determined, either by constant velocity assumption or by a
computationally light odometry – in our case we used SOFT
[22]. In the second step, we detect feature patches in the image
and use the odometry information from the first step to correct
the patch appearance in order to better match them in stereo
and time. Note that this mostly shows improvement for stereo
cameras with larger baselines, like the one used in the KITTI
dataset; otherwise, the computational overhead might not be
cost-beneficial. An interesting future direction would be to
explore deep learning methods for obtaining features that are
trained to handle such perspective changes [47]–[49].

All these enhancements lead to SOFT2 scoring 0.53% in
translation error and 0.0009 deg/m in rotation error render-
ing it currently the highest ranking algorithm on the KITTI
scoreboard. In the following, we describe each of the SOFT2
building blocks depicted in Fig. 2. We describe the feature
detection and matching block last, which we can consider as
the odometry front-end, and focus first on the other blocks
that constitute the SOFT2 back-end, since therein most of the
methodological novelties are concentrated.



IV. SOFT2 BACK-END

Our final goal is to determine rotation and translation of the
stereo camera displacement by estimating the essential matrix
E. Thus, we focus on estimating the rotation and translation
up to scale from a single camera first. Without the loss of
generality we assume that the reference camera is the left
camera. Then we use the right camera to estimate jointly the
scale and relative orientation of the right camera with respect
to the left camera. This enables us to treat our odometry as
a monocular one for as long as possible before resorting to
information from the right camera – and when we do, we
try to compensate for the errors in stereo extrinsics at each
frame. Finally, to gain further robustness, we compute the final
essential matrix from a temporal window of previous poses.

A. Iterative essential matrix estimation
In SOFT2 we base the essential matrix estimation, from

which we obtain the rotation and translation up to scale, on
the iterative method proposed in [3]. The state is parameterized
as follows

E(ξ) = E(α, β, γ, θ, φ) = R(α, β, γ)
[
t̂(θ, φ)

]
× , (6)

where (α, β, γ) are the Euler angles, (θ, φ) are spherical
coordinates of the translation t̂ parameterized as a unit sphere
vector (no scale information). We use RANSAC with multiple
5-points hypotheses, but after the selection of inliers by the
dominant hypothesis, contrary to the 5-point method [1], we
use all the inliers to compute the final essential matrix in
order to exploit information from all the relevant points. The
criterium used to define the optimization problem is based
on calculating the signed distance between an image point in
homogeneous coordinates x and a line l = [l1 l2 l3]

T

d(x, l) =
lTx√
l21 + l22

. (7)

Given that, we can now write the objective function as the sum
of symmetric squared point-to-epipolar-line distances from the
current to the previous frame [44]

min
ξ

∑
i

d2(xi, l
′
i(ξ)) + d2(x′i, li(ξ)), (8)

where l′i(ξ) = E(ξ)Tx′i and li(ξ) = E(ξ)xi are epipolar
lines associated to points x′i and xi in the previous and
current view, respectively. Note that the objective function
introduces a kind of temporal symmetry, producing the same
result independently of the order in which the frames are
reproduced.

If we were to stack all the distances into a single column
vector r(ξ) = [d(x1, l

′
1(ξ)) . . . d(x′1, l1(ξ)) . . . ]

T, then our
optimization problem can be simply written as

min
ξ

1

2
r(ξ)Tr(ξ). (9)

Note that to compute this symmetric distance we only need
to transpose the essential matrix – no matrix inversions are
needed. To minimize (9), and all the subsequent optimization
problems, we used the Levenberg-Marquardt algorithm.

B. Scale and extrinsic rotation estimation

In order to estimate proper absolute scale we need to
complement the approach from previous section with data
from the right camera. Although only the scale needs to
be estimated, we jointly estimate the rotational part of the
right camera extrinsics. Extrinsic values obtained during initial
calibration are not necessarily valid throughout the operation,
e.g., stereo camera rig is not perfectly rigid, especially when
the baselines are of the size as in the KITTI dataset. Since the
scale estimate is mainly dependent on extrinsics, improving the
accuracy of extrinsic parameters by online estimation directly
improves the scale accuracy.

We approach this problem by modeling the rig mount as a
rigid beam where the left camera and the baseline are fixed,
while the right camera can only rotate around its focal point.
Naturally, this is an approximation, since the whole stereo rig
bends, but such a simplification enables us to obtain method
that can work in real time and still enhance results. At this
step, our state contains the Euler angle parameterization of
the extrinsic rotation R(ζ) = R(α̃, β̃, γ̃) of the right camera
around its focal point and the absolute scale s of the translation
of the left camera due to motion that needs to be estimated.
Note that we use ( ·̃ ) to emphasize that these Euler angles
differ from (α, β, γ) that are part of the left camera motion.

As in the previous section, we base our approach on
minimizing the symmetric point-to-epipolar-line metric, but
with the following constraints. Lets assume we have a pair
of stereo images – the current and the previous frame. Given
that, we have at our disposal previous images from the left
and right cameras, i.e, L9 and R9, and current images from the
left and right camera, i.e., L and R. Our optimization problem
minimizes the point-to-epipolar-line metric between the image
pairs (R, L9), (L, R9), and (R, R9) and can be written as
follows

min
ζ,s

∑
j

1

2
rj(ζ, s)

Trj(ζ, s), (10)

where the summation iterates over the following set of com-
binations j ∈

{
(R,L9), (L,R9), (R,R9)

}
. E.g., for the image

pair (R,L9), the cost amounts to

r(R,L9)(ζ, s) =[
d(xR1 , l

′L9

1 (ζ, s)) . . . d(x′L
9

1 , lR1 (ζ, s)) . . .
]T
,

(11)

where d(xR1 , l
′L9

1 (ζ, s)) represents the distance between the
point in the current right camera and the epipolar line associ-
ated to the matched point in the previous left camera image.
To obtain the required epipolar lines, the pertaining epipolar
matrix is computed from the resulting rotation and transla-
tion that is obtained by concatenating the necessary SE(3)
transforms. For example, as illustrated in Fig. 3, transform for
getting from R to L9 evaluates to

(RRL9 , tRL9) =

[
R(α, β, γ) st̂(θ, φ)

0 1

] [
R(ζ) b

0 1

]
, (12)

where b is the stereo baseline.
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Fig. 3: Illustration of the scale and extrinsic rotation es-
timation. Dashed colored lines designate the epipolar lines
cost pairs used in the cost function. Variables colored in red
represent estimation variables.

Note that R(α, β, γ) and t̂(θ, φ) are known at this point
since we estimated them previously from the left camera
images, while ζ and s are the current optimization variables.
We also assume that during the motion between the two
stereo frames the extrinsic rotation of the right camera did
not change. Given that, we now have the odometry result
with the absolute scale. Furthermore, note that unlike the
classical geometric reprojection error (5), in our equations
the triangulated 3D point Xi does not appear anywhere, i.e,
SOFT2 is a completely 2D-2D approach and the relative pose
estimation is invariant to object depth uncertainty.

C. Epipolar lines bundle adjustement

In our previous odometry, dubbed SOFT, we improved
rotation accuracy by introducing epipolar constraints between
several consecutive frames. Although fast and effective, the
SOFT approach is suboptimal, since it computes frame-to-
frame epipolar matrices independently and fuses the results
afterwards in the quaternion space. In this paper, we propose
a geometrically optimal solution for determining sequence of
rotations in a window of poses, thus we extend the iterative
method to compute a kind of epipolar lines bundle adjustment.

In other words, as the result of feature tracking, multiple
epipolar lines connect not only the neighboring but also other
left camera poses in the temporal window, thus creating
multiple constraints. However, since we are performing bundle
adjustment (BA) on just a single camera, the origin and
absolute scale are unobservable, but the relative scale is. For
example, lets consider BA of three consecutive poses from two
consecutive motions, e.g., 1-2 and 2-3, as illustrated in Fig. 4.
Without BA, essential matrices E12 and E23 are estimated
separately, and motions (R12, t̂12) and (R23, t̂23) up to scale
are extracted. Conversely, when BA is used, the essential
matrix E13 puts an additional constraint to the estimate of the
two relative motions, since (R13, t13) is the SE(3) product of
motions (R12, t12) and (R23, t23). However, the three motions
in the essential matrix space, E13, E12, and E23, have unit
length translations, and to apply the E13 constraint, we must

switch to the SE(3) space, which has one additional variable
– the scale, unobservable in the essential matrix space. To
make the problem observable, we first set t12 to be a unit
vector, which fixes the overall scale of the bundle. Then, the
SE(3) constraint will hold only if the whole bundle is scaled
uniformly, and to ensure this, since in the bundle all translation
vectors are unit, we need to introduce the relative scale sr as
an additional variable in the optimization process. Given that,
for our working example, the initial relative scale is computed
as s23 = ||t23||/||t12||, since at this stage we already have
the absolute translations from the odometry, and the essential
matrix representing motion 1-3 can be constructed by the
following SE(3) matrix multiplication

(R13, s13t̂13) =

[
R12 t̂12
0 1

] [
R23 s23t̂23
0 1

]
, (13)

where E13 = R13

[
t̂13
]
×. Therefore, three poses can be

represented with 11 variables, 5 for each consecutive essential
matrix (6DOF minus scale), and 1 for the relative scale. Given
that, our optimization problem can be written as

min
ξ,sr

∑
j

1

2
rj(ξ, sr)

Trj(ξ, sr), (14)

where ξ and sr contain parameters for all consecutive motions
and j iterates over the set of all possible frame combinations.
For example, having consecutive motions 1-2 and 2-3, ξ would
contain parameters for E12 and E23, sr would be the relative
scale of translations t23 and t12, and j ∈ {12, 23, 13}. Given
that, if j = {13}, the pertaining cost evaluates to

r13 = [
d(x11, l

′3
1 (ξ, sr)) . . . d(x′31 , l

1
1(ξ, sr)) . . .

]T
,

(15)

where d(x11, l
′3
1 (ξ, sr)) represents the distance between the

point in L1 and the epipolar line associated to the matched
point in L3. Note that we only estimate the parameters of the
motion between the consecutive frame pairs. For example, as
illustrated in Fig. 4, if we have a window of 4 frames we
would optimize over the variables of E12, E23, E34, i.e., 17
parameters, while E13, E24, and E14 would act as additional
dependent costs in the optimization function. In general, a
window of N poses can be represented by 5(N − 1) +N − 2
variables. In our implementation, for computational efficiency
reasons, we do not perform epipolar line BA at each step,
but instead every N -th frame. Moreover, we do not correct
the history of all the poses in the window – just the current
pose as it would be in the case of real-time operation. To
integrate the obtained correction into a real-time output, we
compare the odometry trajectory segment containing the last
N frames with the bundle adjusted trajectory of that segment,
and obtain an accumulated SE(3) error over these N frames.
Then, every N -th frame, we correct the odometry output to
compensate for the error accumulated over the last N poses.
The correction is small enough so as not to affect the odometry
smoothness, but the improvement in accuracy over a longer
period is noticeable. Note that our epipolar line BA corrects
only the rotation and translation direction, and not the scale.



L1 L2

L3

L4

E12(ξ) E23(ξ, s23
) E34(ξ, s34)

Fig. 4: Illustration of the epipolar lines BA for 4 frames. Note
that we use only left camera images. Dashed lines represent
the additional epipolar lines cost pairs that are used in the cost
function besides the ones from consecutive frames. Variables
colored in red represent estimation variables.

V. SOFT2 FRONT-END

The most important factor for any vision-based odometry is
having a set of informative features distributed appropriately to
yield accurate rotation and translation estimation. Given that,
we also devoted considerable attention to further enhancing
the feature matching process. Our SOFT2 pipeline requires
features matching between the left and the right camera, be-
tween the current and previous stereo frame, and across several
frames in the past to perform the proposed bundle adjustment.
Features should also be localized with subpixel precision in
order to achieve the presented accuracy. Original SOFT [22]
features do satisfy these requirements and they performed well
on the tested datasets. Indeed, if the scenery is visually rich
and informative, majority of standard feature matchers will
do the job. However, in low contrast and monotonous scenes,
better matcher quality can make the difference in odometry
accuracy.

A. Motivation behind perspective correction

Having both distant and close features in the view is of the
utmost importance for any visual odometry – the larger the
span, the less ambiguity between the rotational and transla-
tional part of estimated motion. Contrary to indoor operation,
scenes analyzed from road vehicles in normal conditions often
contain distant features – at least the horizon or even the
sky. But in order to accurately resolve for translational part
of the motion, having at least several features close enough
to the camera is mandatory. Adequate distance depends on
the stereo baseline, and as a rule of thumb, features can be
considered close enough if they are less than forty stereo
baselines away. However, the closer the features, the more
accurate the translation, and consequently also the rotation.

While in general case one cannot always rely on having
nearby features, for road vehicles the situation is different,
and the source of nearby features is always present – the road.
However, standard feature detector-descriptor-matcher combos
usually do not result with many matches on a road surface.
The reason is obvious: the road is often of low texture and

self similar. Even if a standard method detects the match on
such a surface, there is large probability that it is an outlier.
Besides these two reasons, there is also another one, perhaps
less evident – the perspective change. Usually, features seen
from the left camera appear pretty much the same in the right
camera, even with large stereo baselines. The difference in the
appearance is small, since the majority of features reside either
on a distant plane or on a plane with the normal vector pointing
more or less to the viewer. However, the road plane is different:
it is parallel to the camera optical axis, and close features
residing on the road are subject to noticeable change in the
appearance as the stereo baseline grows. Motivated by these
facts, we propose a multiple hypothesis perspective correction
(MHPC) patch matching for self-similar planar textures, in
order to enhance odometry in weakly informative scenes with
large stereo baselines, but at the cost of higher computational
burden. Note that although in our case this affects mostly the
road features (i.e. ground features to be more exact), it can be
applied to any patch lying on a surface with a known normal.
In the following, we first describe the perspective matching of
features and then our approach to ground plane estimation.

B. Multi hypothesis perspective correction matcher

In Algorithm 1 we provide the pseudocode for the proposed
MHPC matcher. As input, our algorithm requires current and
previous stereo images, odometry and estimated ground plane
from the previous step. Then, in line 1, we detect features
in the left image FL, specifically corners, by using good-
features-to-track [50]. Since we want to have strong corners
equally distributed across the image, we divide the image
into bins 50× 50 pixels large and select the strongest corner
from each bin until the preferred number of features per bin
is selected or until no features are left in the bin. Since in
the following steps the patch prediction requires an already
computed displacement, in lines 2 through 6 we determine
the initial transform (Ř, ť) either from a constant velocity
model or light visual odometry. In our implementation, we use
SOFT [22], but only for patch prediction. The reason behind
lies in speed and accuracy – with more accurate prediction,
search area for the patches can be reduced to few pixels only,
which lowers the search time and possibility for false matches.
Processing time spent on the prediction is minor compared to
the time gained due to the reduction of the search area.

Then, for each feature in the left image we do the following.
In line 9, we generate two hypotheses: the patch is either on
the ground or not (note that here we require ground plane
estimation which is described later in Section V-C). Given the
hypotheses, we generate patch predictions, i.e, hypothetical
appearances of patches in the right camera. For the first
hypothesis, we compute the 3D point as the intersection of
the feature back-projected ray with the ground plane, that we
obtained by prediction based on (n̂, d) and (Ř, ť). Then, we
project the 3D point to the right image, take 9 × 9 regular
patch coordinates around the projected point, and find the
corresponding patch pixels in the left image to generate the
patch corrected for perspective. For the second hypothesis,



Algorithm 1 MHPC matcher

Require: Images L, R, L9, R9; odometry from the previous
step (R∗, t∗); ground plane from the previous step (n̂, d).

Ensure: Matched stereo features FL, FR
1: Detect strong and evenly distributed features:
FL ← get_features(L)

2: if const_velocity_model then
3: (Ř, ť)← (R∗, t∗)
4: else
5: (Ř, ť)← SOFT(L,R,L9,R9)
6: end if
7: for i = 1 : |FL| do
8: /* Matching in current stereo images */
9: Features get two hypothetical patch transforms:

F ′L,i ←
{

gnd_tf(FL,i,R, Ř, ť, n̂, d),norm_tf(FL,i, ∅)
}

10: Compute NCC along the epipolar line:
(F ′R, stereo_ncc)← epipolar_ncc(F ′L,i,R)

11: stereo_ncc← sort(stereo_ncc)
12: diff_scores← diff(stereo_ncc)
13: k ← find_index(diff_scores > diff_th)
14: if k > 10 || k = ∅ then
15: F ′L,i ← ∅, F ′R ← ∅
16: else
17: Keep matches with k highest NCC scores:

F ′R ← F ′R[&stereo_ncc[1 : k]]
18: for j = 1 : k do
19: /* Matching in previous stereo images */
20: if ground_hypothesis(F ′R,j) then
21: (F ′L9 ,F ′R9)← gnd_tf(F ′R,j ,R9,L9, Ř, ť, n̂, d)
22: else
23: δ ← get_disparity(F ′L,i,F ′R,j)
24: (F ′L9 ,F ′R9)← norm_tf(F ′R,j ,R9,L9, Ř, ť, δ)
25: end if
26: Compute NCC locally around the projected point:

(F ′L9 , lp_ncc)← local_ncc(F ′R,j ,L9)
(F ′R9 , rp_ncc)← local_ncc(F ′R,j ,R9)

27: lp_ncc← max(lp_ncc),ncc_rp← max(rp_ncc)
28: final_nccj ← ncc_stereo + lp_ncc + rp_ncc
29: end for
30: Select the match with the best overall score:

FR,i ← F ′R,j(&max(final_ncc))
31: end if
32: end for

we assume that the patch normal is oriented directly towards
the camera and would apply the corresponding perspective
transformation. However, this requires disparity and since it
is not available at this point, for stereo we simply copy the
patch. Then, in line 10, we correlate both patch appearance
hypotheses with all the positions along the epipolar line in the
right image via normalized cross correlation (NCC), and store
all the NCC scores and potential matches FR9 . Since the road
is self-similar, the best NCC score is usually not dominant nor
the highest score is necessarily the correct one. Therefore, we

Fig. 5: Example of six road features where each triplet
illustrates: road feature as seen from the left camera (left
patch), prediction generated with SOFT2 (middle patch), and
corresponding feature found in the right image (right patch).

sort all the scores from highest to lowest in order to analyze
the differences. This is carried out in lines 11 and 12.

In lines 13 through 17, starting with the highest score,
we search for the difference between the neighboring scores
that is large enough to present a noticeable distinction. If
we do not find a difference larger than some threshold after
the first 10 scores, e.g., all the first 10 matches have a very
similar score, we discard this feature since it is too ambiguous.
Otherwise, we consider all matches prior to this difference
as valid matching hypotheses. Then, for each potential stereo
match, we search for the corresponding matches F ′L9 and F ′R9

in L9 R9, by projecting the 3D points in lines 18 through 25.
If the match has emerged from the ground plane hypothesis,
the patch is generated using the same principle as in the
stereo matching case. Otherwise, we assume that the patch
is on a plane with a normal vector pointing towards camera
and we generate the corrected patch accordingly. Note that
ground hypothesis does not require disparity since the 3D point
is determined from the ground plane, while for the normal
hypothesis we require the disparity δ. Subsequently, in lines
26 and 27, we search for the generated patch in the left and
right previous images in a narrow area around the projection
of the predicted point and select the highest NCC score. In
the end, each hypothesis starting from the current left image
will have three NCC scores: current left L relative to current
right R, previous left L9, and previous right R9 image. To
consider the match, all three NCC scores must be above a user
defined value and the best results were obtained by setting the
threshold between 0.7 and 0.8. We compute the overall score
in line 28 as the sum of the three scores. Finally, in line 30
we select the match with the best overall score. Fig. 5 shows
an example of correctly predicted and matched road features.

Note that the incorrect starting hypothesis will have wrong
disparity, which in turn will lead to incorrectly predicted
position in the previous images with a likely lower NCC score.
Consequently, correct prediction suppresses false matches in
the overall score and raises the probability for a correct match.
Our matches are computed with subpixel precision by fitting a
parabola to the surrounding NCC values and we forward them



Fig. 6: Detected ORB-SLAM2 features (up) and SOFT2 features (down) in the frame 390 of KITTI sequence 01. Road features
are marked in purple, while others are in cyan.

Fig. 7: Example of six road features where each triplet
illustrates: feature as seen from the left camera (left patch),
prediction generated with SOFT2 for 5 frames into the past
(middle patch), and feature found in the left image 5 frames
into the past (right patch).

to the optimization stage in floating point precision. Also, since
each feature carries the information whether it resides on the
ground plane, for the subsequent ground plane detection we
can use only the ground features, thus making it faster and
more reliable. Fig. 6 compares ORB-SLAM2 features with
features detected with SOFT2. We can see that SOFT2 features
are more evenly distributed across the image with plenty of
close features available for accurate ego-motion estimation.

Finally, to enable bundle adjustment, we also need to
establish matches with frames that are more distant in the
past. For this, we employ the same mechanism as described in
previous paragraphs: whenever a successful stereo match from
the current to the previous frame is found, we continue the
search further into the past until the size of bundle adjustment
window is reached or until the overall matching score drops
below a threshold. Since in our case objects in the scene
dominantly move towards the camera, the predicted patches
are always generated with downsampling. This is why we
only generate predictions for past frames; otherwise, we would
need to up-sample patches which would result in information
loss and consequently lower matching precision. Fig. 7 shows
matched road patches between the current left image and a 5
frames old left image.

C. Ground plane estimation

Following the SOFT2 approach, to avoid uncertainty due to
3D triangulation, the ground plane is estimated via homogra-
phy. Homography states that two features residing on a planar
surface in space, are related to scale λ by the homography
matrix H [44]

λx′ = Hx, (16)

where x′ and x are homogeneous image coordinates in two
different views. The homography matrix is then given by:

H = R− tn̂T

d
, (17)

where in our case (R, t) is the relative transformation from
the previous to the current left camera frame, while n̂ is the
normal vector of the plane and d is the distance to the plane
with respect to the current left camera frame. Matrix H has
8 degrees of freedom, but 4 correspondences are required for
solving (16). Homography can be decomposed to obtain (R, t),
n̂, and d, but this process is very sensitive to noise and can eas-
ily become numerically unstable [24]. Therefore, we choose
to estimate the ground plane via nonlinear optimization.

To reduce the probability of ending in a local minimum,
the number of optimization parameters is usually reduced by
decoupling the camera motion from the ground plane. We
apply the same idea here and exploit the knowledge of (R, t̂)
estimated from the essential matrix. Given that, we optimize
only for three parameters describing the ground plane – the
ground plane normal vector n̂ (parameterized in spherical
coordinates), and the distance to ground d. There are a couple
of advantages to this approach. First, with predetermined
(R, t̂), the number of optimization parameters is reduced to
three, which makes optimization faster and more reliable.
Second, the number of minimum correspondences required
for solving the problem is also reduced to three – raising
the probability that a sample will belong to the ground plane
and reducing the number of RANSAC iterations. In the end,
the optimization approach is encouraged by the fact that the
initial solution is always close to the final solution – for
ground vehicle applications the estimated camera height and



the ground plane normal reside in a narrow range of values.
Given that, we estimate the ground plane via

min
n̂,d

∑
i

1

2
(x′i −Hxi)T (x′i −Hxi). (18)

We use (18) in conjunction with a 3-point sample RANSAC
to find a hypothesis with the maximum number of inliers and
the final solution is estimated by using all the inliers. Since
translation estimated based on E is always of unit length, the
distance to the ground is up to scale, and the metric distance
is obtained by simple rescaling after the scale estimation step.
This way, just like the motion itself, all parameters of the
ground plane up to scale are determined by a single camera.

VI. EXPERIMENTAL RESULTS

We evaluated SOFT2 on five publicly available automotive
datasets: KITTI-360 [34], KITTI [27], Málaga [35], Oxford
[36], and MVSEC [37]. We did not consider any synthetic
datasets, since we believe that these do not model accurately
enough real system challenges that we are targeting in this
paper. Vibrations, temperature change, initial calibration er-
ror, calibration parameters drift, synchronization issues, and
possible unknown sources of error are components of every
real visual odometry system. For reference, we also process
every sequence with the publicly available ORB-SLAM2 [10],
OV2SLAM [33], and VINS-FUSION [11], [43] implemen-
tations and compare the results to SOFT2. Each algorithm
comes with a parameter file tuned for the KITTI dataset,
provided by the authors, which we used on all the datasets
(for OV2SLAM we selected the “accurate” option). In order
to ensure fair comparison and put an emphasis on the odometry
drift, we turned off the loop closing option of the competing
approaches. Moreover, note that the epipolar line BA of
SOFT2 does not correct the pose history within the temporal
window – only the current pose every third frame.

Regarding evaluation, as in the vein of [10], we used two
different metrics: absolute translation root-mean-square error
(ATE) tate [m] [51] and average relative translation trel [%]
and rotation rrel [deg/m] error [27]. The relative error, which
is more tailored for odometry, is used on datasets that have
accurate and reliable vehicle pose ground truth (translation
and rotation), i.e., on the KITTI train sequences and manually
selected segments from the Oxford dataset. ATE is used for
datasets which, unfortunately, do not offer full vehicle pose
ground truth, i.e., on the Málaga and MVSEC datasets.

A. The KITTI-360 dataset

The KITTI-360 dataset [34] consists of 9 sequences and
was recorded across several suburbs of Karlsruhe, Germany,
with a driving distance of 73.7 km. It contains recordings of a
color stereo pair set at a baseline of 0.6 m with an image rate
of 10 Hz and rectified images resolution of 1408×376 pixels.
It also includes a Velodyne HDL-64E laser and OXTS3003
GPS/IMU sensor. Surround view of 360 degrees is accom-
plished with two additional fisheye cameras mounted at vehicle
sides, but these images were not used in this evaluation.

Although the KITTI-360 dataset was initially targeted for
semantic instance labeling from annotated 3D primitives, as
of 2021 accurate ground truth poses have also been provided,
which enables odometry evaluation as well. Authors note
that the ground truth poses are obtained from a large-scale
optimization taking OXTS measurements, laser scans and
multi-view images as input, thus are not identical to the raw
OXTS measurements. However, ground truth poses are not
available for each frame, occasionally they are missing while
passing under the bridges, during backwards drive, and in
general at random locations. Therefore, we had to modify
the original KITTI evaluation script to skip each segment
in which either the beginning or the ending ground truth
pose is missing. Also, since each sequence has a block of
missing poses at the beginning, for evaluation we started each
sequence from the first frame that has ground truth pose
available. Nevertheless, despite these minor issues, the ground
truth appears more accurate and reliable than in the other
datasets, which is the reason why we use this dataset first
to analyze how each module of the SOFT2 pipeline enhances
the odometry accuracy.

In Table I we show errors for the competing odometries and
SOFT2 for which we included novel modules step-by-step to
assess their contributions as well as BA with N = 3 (note
that sequences 01 and 08 were not available at the time of
writing). The visual odometry (VO) baseline column shows
the error for the proposed approach when we use only the
principle of minimizing the point-to-epipolar-line metric for
motion and scale and extrinsic estimation with the older SOFT
matcher. The following column includes the multi hypothesis
perspective correction (MHPC) matcher, and we can already
notice improvement on several sequences. The SOFT2 column
now includes the MHPC matcher (both in stereo and time) and
the epipolar lines bundle adjustment over three frames in the
past (thus, VO + MHPC + BA3 = SOFT2). We can see that
in this case the improvement is the strongest and that we have
the lowest translational error on the majority of sequences, and
on par average rotational error when compared to OV2SLAM.
Regarding larger BA window size, when increased to N = 5 it
reduced rotational and translational error, but on average only
around 2%, and for larger window size the gain was even
smaller. The other three odometries exhibited larger error for
tracks 07 and 10 during the moments when moving traffic
occupies a larger part of the scene. In urban sequences, with
plenty of distinctive features, OV2SLAM results are close
to SOFT2. However, SOFT2 outperforms on open road and
highway sequences. In Fig. 8 we can see the alignment of
several trajectories with respect to ground truth. We have
also submitted SOFT2 to the recently available KITTI-360
Semantic SLAM trajectory evaluation benchmark and obtained
absolute pose error of 0.7 m and relative pose error of 0.84%,
which placed SOFT2 as the highest ranking approach among
both visual and laser-based approaches2.

2http://www.cvlibs.net/datasets/kitti-360/leaderboard_semantic_slam.php
?task=trajectory
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Fig. 8: Estimated trajectories along with the ground truth for three KITTI-360 sequences.

TABLE I: Experimental evaluation on the nine KITTI-360 sequences (trel[%], rrel[deg/100 m]). VO is the base - essential matrix
+ scale and extrinsic with older SOFT matcher. Note that SOFT2 column represents the version that includes multi hypothesis
perspective correction matcher with epipolar line BA, i.e., SOFT2 = VO + MHPC + BA3.

VO VO+MHPC VO+MHPC+BA3 OV2SLAM ORB-SLAM2 VINS-FUSION
Sequence trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel

00 0.305 0.158 0.332 0.156 0.294 0.132 0.297 0.126 0.333 0.149 1.144 0.555
02 0.407 0.218 0.379 0.205 0.365 0.196 0.418 0.174 0.584 0.226 1.001 0.464
03 0.469 0.146 0.314 0.134 0.227 0.104 0.588 0.148 0.486 0.169 1.727 0.273
04 0.437 0.209 0.493 0.211 0.453 0.191 0.428 0.166 0.515 0.216 1.045 0.431
05 0.340 0.263 0.304 0.237 0.304 0.233 0.382 0.205 0.459 0.247 0.877 0.604
06 0.400 0.185 0.385 0.170 0.354 0.159 0.368 0.151 0.523 0.177 1.151 0.486
07 0.919 0.142 0.370 0.152 0.306 0.129 1.754 0.177 5.075 0.973 4.706 0.516
09 0.601 0.169 0.524 0.143 0.492 0.125 0.859 0.160 1.073 0.184 1.993 0.759
10 1.234 0.250 1.008 0.240 0.871 0.225 1.946 0.262 1.730 0.434 3.145 0.645
avg 0.461 0.194 0.427 0.184 0.392 0.168 0.559 0.163 0.814 0.238 1.429 0.532

We also ran an execution time analysis for this dataset on a
laptop machine with an Intel CORE i7 2.7 GHz processor with
8 threads. The first step, which determines initial displacement
using SOFT, takes 20 ms, where 10 ms is for matching and
10 ms for optimization. The MHPC matcher had an execution
time of 40 ms on 6 threads when processing 1 feature per
50×50 pixels bin on 1408×386 KITTI-360 images. Note that
on average more than 1 corner per bin is processed, because if
the first corner is not successfully matched, the process repeats
with the next one until one match is successful or no corners
are left in the bin. Estimation of the essential matrix takes
another 5 ms with 300 RANSAC iterations, while scale and
extrinsic estimation finishes in 1 ms. In the end, BA with a
window size of N = 3 takes 12 ms per frame. Note that BA
can be executed in a separate thread. To sum up, the setup used
for the presented results (BA with N = 3) had an execution
time of 20 + 40 + 5 + 1 + 12 = 78 ms per frame.

B. The KITTI dataset

The KITTI dataset was recorded in urban, rural, and high-
way scenarios by two stereo pairs (color and grayscale) set at
a baseline of 0.54 m [52]. Image rate was 10 Hz, with a resolu-
tion somewhat smaller than the original 1392×512 pixels due
to rectification. High accuracy OXTS3003 GPS/IMU unit was

employed for recording the ground truth trajectory. Odometry
part of the dataset contains eleven train tracks with the
ground truth, plus eleven test tracks without the ground truth.
Test tracks can be evaluated online by uploading resulting
trajectories to a designated server. Evaluation results contain
translation and rotation error and they can be published and
compared on the official KITTI scoreboard. Currently, SOFT2
is the highest ranking algorithm over all sensor configurations
with trel = 0.53 % and rrel = 0.0009 deg/m errors.

One of the challenges of the KITTI dataset lies in the values
of default calibration parameters with which the images were
rectified and evaluation of a particular odometry algorithm, at
one point, can be interpreted as evaluation to robustness to
calibration errors. Since dataset also provides raw images to-
gether with calibration board images taken every day after each
recording, this challenge can be alleviated by recomputing
calibration parameters and obtaining lower reprojection and
odometry error. This is not necessarily a drawback per se, since
certain amount of error in calibration parameters will always
be inherent to real systems and motivates development of novel
calibration methods. Note that the results presented in this
paper were obtained using the default calibration parameters,
while the result on the online scoreboard used parameters that
were obtained with our calibration procedure [53].
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Fig. 9: Result of the extrinsic estimator showing change in
relative rotation of the right camera with respect to the left
camera and the effect on trajectory error with and without
estimation. ORB-SLAM2 error is also shown for reference.

TABLE II: Experimental evaluation on the 11 KITTI dataset
train sequences (trel[%], rrel[deg/100 m])

SOFT2 OV2-SLAM ORB-SLAM2 VINS-FUSION
Seq. trel rrel trel rrel trel rrel trel rrel
00 0.65 0.29 0.79 0.28 0.88 0.31 1.29 0.63
01 1.05 0.13 3.70 0.29 1.44 0.19 2.29 0.42
02 0.67 0.23 0.79 0.22 0.77 0.28 1.37 0.50
03 0.70 0.24 0.98 0.17 0.75 0.20 1.47 0.50
04 0.52 0.15 1.13 0.19 0.46 0.19 1.35 0.72
05 0.57 0.22 0.76 0.23 0.62 0.26 1.49 0.74
06 0.60 0.23 1.13 0.28 0.89 0.27 1.35 0.71
07 0.45 0.29 1.03 0.57 0.89 0.50 1.21 0.90
08 0.91 0.26 1.11 0.31 1.03 0.31 1.83 0.72
09 0.75 0.22 0.96 0.20 0.86 0.25 1.82 0.53
10 0.74 0.22 0.52 0.18 0.62 0.29 2.64 1.01
avg 0.71 0.24 1.01 0.26 0.87 0.29 1.57 0.63

We would also like to mention the non-rigidity of the
KITTI camera rig. While majority of approaches consider
the extrinsic parameters constant, for large baseline rigs, such
as the one used in KITTI, the assumption of constant rigid
transformation between the cameras might need to be revisited.
From the KITTI setup photograph, one can notice relatively
large and heavy lenses. During the drive, inertial forces act on
these lenses, create torque thus tilting the cameras – which
is more prominent for the right camera since it does not
have a vertical support like the left one. Instead, it resides
on a loose end of the profile and is subject to additional
dislocation due to profile flexing. As a consequence, during

strong turns, the right camera tilts more than the left one.
Given that, the angle between the cameras changes during
the turn and all objects in view are triangulated with a bias,
which propagates further to the resulting camera translation.
In our case, SOFT2 addresses this issue by estimating online
the extrinsic rotation parameters, and the effectiveness is
most easily observable on the KITTI sequence 01 – highway.
Figure 9a shows extrinsic angles estimated during the sequence
with rx, ry , and rz representing rotations about camera’s
right-hand x, y, and z axes, where the z axis is along the
direction of the camera’s optical axis. The most important
angle is ry , since it directly defines the triangle from the
baseline to the object, which defines camera-to-object distance
and consequently the magnitude of camera translation, i.e., the
scale. Angle ry increases by approximately 0.1 deg during the
first turn at the beginning of the sequence, and then increases
again twice at the end of the sequence corresponding to two
sharp turns at the highway exit. Figure 9b shows the odometry
path error. At the first road curve, frames 0 to 100, the
traveled path is constantly overestimated due to increased ry
and both SOFT2 without the extrinsic estimator and ORB-
SLAM2, the second best on this sequence, result in longer
path traveled compared to the ground truth path. Then, over
a nearly straight drive the scale is underestimated and both
algorithms result in shorter path than the ground truth. This is
due to errors in calibration and correction of this effect is out
of the scope of this paper. Thereafter, during two strong turns
at the highway exit, scale is overestimated and the traveled
path length rapidly increases. On the other hand, SOFT2
with the activated extrinsic estimator is not affected by the
change in ry , resulting with nearly linear error curve during
the whole sequence. Naturally, our estimator cannot correct
for the initial errors in the baseline and intrinsic parameters,
hence the sloped error line.

Table II shows SOFT2 results for each train sequence
together with ORB-SLAM2, OV2SLAM, and VINS-FUSION.
Note that VINS-FUSION results are not in proportion to the
result achieved on the official KITTI rank list – in our tests, the
error was about 50% larger than expected. We tried to improve
the results by modifying the default parameters: increasing
the number of features, solver time and solver iterations,
but the results were similar. Also, VINS-FUSION often has
initialization problems, which causes larger trajectory error at
the beginning (This is reported as Issue #84: Reproducing
KITTI Stereo result). Although OV2SLAM is the most accu-
rate algorithm out of the three on the KITTI rank list, in our
tests it is outperformed by ORB-SLAM2 on the KITTI training
sequences. However, on the KITTI-360 training sequences,
OV2SLAM performs much better than ORB-SLAM2. The
reason behind this could be different robustness of algorithms
to challenges of the KITTI dataset calibration. In conclusion,
although different, all the approaches exhibited qualitatively
similar errors on each KITTI train sequence; however, as can
be seen from Table II, our approach achieved the lowest error
on average. SOFT2 has the most advantage over the competing
algorithms on the highway scene – sequence 01.
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Fig. 10: Estimated trajectories along with the ground truth for three Málaga sequences.

TABLE III: Experimental evaluation on the Málaga dataset

SOFT2 OV2-SLAM ORB-SLAM2 VINS-FUSION
Seq. start frame stop frame length [m] tate [m] tate [m] tate [m] tate [m]
05 1261229234.473050 1261229424.206370 1696.45 4.13 13.95 28.41 15.21
06 1261229737.377720 1261229936.379589 1133.92 9.00 10.46 14.44 18.59
07 1261229995.330167 1261230073.780891 643.33 4.35 4.97 8.14 8.52
08 1261230087.681000 1261230569.035530 4673.49 15.41 38.34 162.28 186.42
10 1261230734.837048 1261231591.245032 5814.70 14.57 19.45 18.79 26.83
11 1261231654.045614 1261231796.996934 2148.00 10.49 59.91 444.85 111.50

C. Málaga dataset

The Málaga dataset was recorded in an urban environment
of Málaga with a Point Grey Bumblebee 2 stereo camera
having resolution of 1024 × 768 pixels and frame rate of
20 Hz. Bumblebee 2 ensures precise synchronization between
the stereo pair with automatic gain and white balance control
[54]. However, Bumblebee 2 dynamic range in conjunction
with auto-exposure algorithm were inadequate for outdoor
conditions, leaving the image often over or under exposed
with blooming and vertical smear artifacts. These effects
significantly deteriorate odometry accuracy and in extreme
cases they leave no room to detect features. The ground truth
trajectory was recorded with a low cost Xsens MTi-28A53G35
yielding position data at 1 Hz with errors of up to 20 meters,
which is nowadays inadequate for estimating odometry error
with KITTI-like metrics. While the position data could still
provide good reference over longer trajectory distance, the
orientation data is below the needed accuracy, especially the
heading angle which drifts ±45 deg from the actual value
during the drive. That prevented us from using the relative
metric for odometry evaluation, since the results would reflect
only the sensor heading erratic behavior.

Given that, for the Málaga dataset we evaluated the odom-
etry with the absolute metric which does not depend on the
vehicle orientation. We used the dataset extracts that contain
loop closure, and carefully selected starting and ending frame
for each extract, thus choosing the pair with approximately
the same pose. We also evaluated sequence extract 11, since
it is the only one that contains highway with the vehicle

driving at 70 km/h. This extract is very challenging, since
there are almost no close features except for the ones residing
on moving traffic. Large amount of outliers were present
in SOFT2, while ORB-SLAM2 completely lost track at one
moment. In general, the best results for ORB-SLAM2 were
obtained with setting minThFAST to 3 due to low contrast
on the road. We also believe that the lack of near FAST
features is the reason for under-scaled ORB-SLAM2 trajec-
tory. In general, all algorithms had issues dealing with sudden
change in exposure due to direct sunlight and moving vehicles
occupying larger part of the image. These effects are the cause
behind the unexpectedly large error values in Table III (VINS-
FUSION also had problems with initialization on sequence
11). Evaluation was performed on rectified 1024×568 images
– we cut out the upper part of the image since it contained
mainly the sky and just slowed down the evaluation process.

The main challenge in obtaining state-of-the-art results on
the Málaga dataset lies in the low dynamic range of the
camera. This is further exacerbated by the fact that cameras
are slightly tilted upwards (in order to remove the car chassis
from the view), making the sky dominate in the image and
dictating the overall exposure, thus frequently leaving road,
the only close and static object in the scene, completely dark.
Table III shows the results obtained on the Málaga dataset,
while Fig. 10 plots the results for three extracted sequences.

D. Oxford Robotics Car dataset

The Oxford dataset was recorded in central Oxford with a
Point Grey Bumblebee XB3 trinocular stereo camera having
resolution of 1280× 960 pixels and frame rate of 16 Hz [55].
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Fig. 11: Estimated trajectories along with the ground truth for three Oxford segments.

TABLE IV: Experimental evaluation for the Oxford dataset (trel[%], rrel[deg/100 m])

SOFT2 OV2-SLAM ORB-SLAM2 VINS-FUSION
dataset start frame stop frame offset [sec] trel rrel trel rrel trel rrel trel rrel

2014-05-14-13-59-05 1400075963932033 1400076150344330 12.20 1.35 0.97 2.74 1.03 2.15 0.98 4.74 1.33
2014-05-19-12-51-39 1400503987511809 1400504417267370 13.18 1.52 0.71 2.86 0.70 2.69 0.96 6.06 1.97
2014-05-19-13-20-57 1400505700597042 1400506098919265 13.25 1.84 0.92 3.62 0.91 2.18 1.05 8.63 2.77
2014-11-14-16-34-33 1415985043842007 1415985331240621 0.0 2.60 1.10 5.73 0.85 7.81 3.73 7.23 1.51

avg 1.82 0.89 3.68 0.83 3.54 1.57 6.93 2.04

Therein a good contrast of the road and nearby objects was
achieved by ignoring the sky and the authors implemented
a custom auto-exposure algorithm. However, the resulting
exposure can be very unstable with constant oscillations and
overexposed images, which is sometimes so strong that several
subsequent frames turn-out completely white. Unfortunately,
this impedes evaluation using complete Oxford individual
sequence, since it is impossible for any visual odometry
algorithm to reconstruct the trajectory during the oversaturated
segments. The pose of the vehicle was recorded with the No-
vAtel SPAN-CPT ALIGN inertial and GPS navigation system
at 50 Hz. Although the measured poses are more accurate than
on the Málaga dataset, the quality of GPS reception and the
accuracy of the fused INS solution varied significantly, and
authors do not recommend using them directly as ground truth
for benchmarking localization algorithms [55]. Furthermore,
many segments contain time offset between GPS/INS and
camera which have to be determined by the user, and some
contain invalid GPS/INS timestamps (e.g. 2014-8-11-10-22-
21). Consequently, we had to search a subset of relatively
complete segments containing valid data, good GPS/INS
trajectory, and good image quality. We extracted two out
of the first twenty sequences and used three segments for
evaluation interrupted by two periods of oversaturation and
one subsegment from a night drive.

Images were recorded in raw format and rectification look-
up tables were provided. For our experiments, we used the
outer left-right pair with the baseline of 24 cm. We cut out 140
pixels both from the top and bottom of the image to remove the
sky and the car chassis. By examining Fig. 11a we can notice
overestimated trajectory scale in all the competing algorithms,

which might might suggest inaccuracies in calibration. SOFT2
extrinsic estimator reveals slight tilt between the stereo pair
and keeps the scale relatively accurate. This is one of the
reasons why SOFT2 outperforms other algorithms in transla-
tion accuracy, although OV2SLAM has slightly better rotation
accuracy. By comparing to KITTI, we can notice that the
error is several times larger, suggesting probably less accurate
GPS/INS poses, calibration or both. Table IV shows the final
results obtained on the selected segments, while Fig. 11 plots
the results for three specific segments.

E. MVSEC dataset

The MVSEC dataset is primarily targeted at stereo event
cameras, but it also includes the Skybotix VI-sensor which we
used for our evaluation [23]. The VI-sensor is an integrated
stereo camera with image resolution of 752 × 480 pixels,
11 cm baseline, and frame rate of 20 Hz. Ground truth was
generated by fusing IMU data with lidar loop closings from
the Cartographer in 2D. Since full 6DOF pose is not available,
we evaluate odometry with the absolute metric only.

Images were recorded in raw format and calibration pa-
rameters are provided. The VI-sensor is not ideal for outdoor
conditions, due to small resolution and baseline. Part of the
image is also in this case occupied by the car chassis, making
the usable image area even smaller. We cut out this part of the
image since the chassis is glossy and reflects features from the
environment introducing large amount of outliers. Similar to
the Málaga dataset, sky dictates the auto-exposure algorithm
often leaving the road and all nearby objects completely dark,
thus significantly lowering the odometry accuracy. Table V
shows the absolute translation errors for MVSEC outdoor
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Fig. 12: Estimated trajectories along with the ground truth for three MVSEC sequences.

tracks, while Fig. 12 shows an example of estimated trajec-
tories. We can notice reduced accuracy for the night drives
due to lack of features. Fig. 12c shows that VINS-FUSION
had problems with initialization on that track, but nevertheless
achieved the most accurate score in the end.

VII. CONCLUSION

In this paper we have presented SOFT2 – a stereo visual
odometry approach targeted for high accuracy and real-time
road vehicle localization. SOFT2 is based on several princi-
ples, namely it exploits constraints imposed by the epipolar
geometry and vehicle kinematics. Specifically, throughout the
whole pipeline we rely on minimizing the point-to-epipolar
line distance and rely on single camera images for as much as
possible (in our case the left camera). This way, we alleviate
any issues related to stereo calibration that are present in the
system or occur during operation. Second, we utilize right
camera images to jointly estimate the scale and extrinsic
rotation with respect to the left camera, thus performing also
online extrinsic calibration at each step. Third, we smooth
motion estimates in a temporal window of frames by using the
proposed epipolar line bundle adjustment procedure, leading
to more accurate and robust odometry. Note that these assump-
tions also introduce a limitation for cases when cameras can
exhibit pure or close-to-pure rotations, i.e., when the trajectory
does not have a large translational component in the overall
motion. In such cases and datasets, e.g., hand-held or aerial
vehicle applications, SOFT2 is not expected to perform well.
We decided to sacrifice generality in order to obtain gain in
accuracy for road vehicle applications. Furthermore, the back-
end of SOFT2 omits 3D projections to avoid depth uncertainty
and consequently does not offer mapping and loop closing
– it is strictly an odometry algorithm. In the front-end part,
we introduce a multiple hypothesis feature matching method
for self-similar planar textures that accounts for changes in
feature appearance due to varying perspective – this has
the most effect on the road features affecting the accuracy
of translation estimation. In the experiments we tested and
compared SOFT2 to ORB-SLAM2, OV2SLAM, and VINF-

TABLE V: Experimental evaluation for the MVSEC dataset

SOFT2 OV2-SLAM ORB-SLAM2 VINS-FUSION
outdoor tate [m] tate [m] tate [m] tate [m]

day1 4.22 2.62 13.93 5.38
day2 8.55 10.95 17.58 16.04

night1 25.71 87.84 136.26 23.13
night2 14.43 17.98 34.50 48.44
night3 14.21 15.71 37.47 30.85

FUSION on five different public datasets: KITTI-360 dataset,
KITTI train sequences, the Málaga Urban dataset, Oxford
Robotics Car dataset, and Multivehicle Stereo Event Camera
dataset. Finally, we evaluated SOFT2 on the KITTI benchmark
and SOFT2 is currently the highest ranking algorithm on the
scoreboard achieving trel = 0.53 % and rrel = 0.0009 deg/m
errors, outperforming even 3D laser based approaches.
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