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Abstract

For robots and autonomous system that rely on visual data for operating in the real world, camera calibration is an indispensable
step as it relates image information to the geometric structure of the 3D world. Although it is convenient to consider a several
decades old problem as something that is swiftly solvable with a dedicated toolbox, we should still push calibration methods to
their practical limits in order to gain valuable insights, and especially when robots are operating in circumstances that concern
human safety. In this paper we propose a camera setup calibration procedure with emphasis on visual odometry accuracy. We focus
on target-based calibration and two popular datasets are used for evaluating visual odometry and SLAM algorithms, namely the
EuRoC and KITTI datasets. Our procedure consists of: (i) introducing a novel highly accurate corner detection algorithm robust
to challenging illumination conditions, (ii) investigating different lens distortion models, (iii) incorporating static and dynamic
board deformation models, (iv) ex-post analysis of reprojection error sensitivity and calibration parameter uncertainty, and (v) grid
search method based on odometry accuracy when board poses do not constrain calibration parameters well enough. The whole
process significantly reduced the reprojection error when calibrating the camera setups of the EuRoC and KITTI datasets. We
tested four different odometries, namely SOFT, ORB-SLAM2, VINS-FUSION, and VISO2 – all four showed higher accuracy with
the proposed calibration parameters. Moreover, with the proposed calibration method our SOFT2 scored 0.53% in translation and
0.0009 deg/m in rotation error rendering it currently the highest ranking algorithm on the KITTI scoreboard.
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1. Introduction

Camera calibration is an indispensable step for reliably relat-
ing image data captured by visual sensors to the real-world en-
vironment. Therefore, to be able to provide geometrical infer-
ence and correct for non-linearities in the optical system, they
need to be calibrated both intrinsically and extrinsically. Given
the fact that “higher-level” downstream processes, such as lo-
calization and navigation in general, rely on calibration data,
the accuracy and reliability thereof is directly dependent on the
results of the calibration procedure. Although it is convenient
and mind assuring to consider a several decades old problem
as something quickly solvable with a toolbox, we should still
strive to push the methods to their practical limits when sys-
tems that depend upon them are to be used in circumstances
that concern human safety. In this paper we focus on the prob-
lem of calibrating one of the most widely used visual sensors
in robotics and autonomous systems, namely the stereo cam-
era. We focus on the EuRoC and KITTI datasets, inspired by
their significance in the visual odometry community and mo-
tivated by our experience of achieving the higest localization
score during the EuRoC competition [1] and of currently hold-
ing the highest odometry rank on the KITTI score board [2].

Camera calibration consists of determining an optimal set of
specific parameters: (i) intrinsic parameters that define the pro-
jection equation and relate 2D pixels to the 3D environment,
(ii) lens distortion parameters that correct the nonlinearities in-
troduced by the light gathering apparatus, and (iii) extrinsic
parameters that define relative poses between the cameras in
a multi-camera system. The underlying model is usually the
pinhole camera model, while it is also worth mentioning the
unified projection model that encompasses both standard cam-
eras as well as catadioptric vision systems [3]. Lens distortions
can be captured by parametric models, such as the Conrady-
Brown model [4] or Kannala-Brandt model [5], or by a generic
model [6] that densely relate the pixels with the 3D environ-
ment in a purely mathematical way, without offering a physical
interpretation of the underlying physics. Additionally for the
stereo camera setup, the extrinsic calibration also entails relat-
ing one camera’s coordinate frame to the other. The accuracy
of the stereo extrinsic calibration is also of great importance as
it affects the process of reasoning about the 3D world structure
from a pair of simultaneously captured displaced images. Be-
sides the fact that the calibration optimization process, when
taken as a whole, involves optimizing over non-linear functions
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and non-Euclidean domains, it is also a process highly sensitive
to the experimental design. The design of the experiment is the
one in charge of making all the parameters identifiable, i.e., ob-
servable. If the calibration procedure is not strictly defined, it is
not surprising that two independent practitioners can obtain dif-
ferent calibration solutions for the same system (putting aside
changes in the system introduced by environmental and stress
factors). What can be even more puzzling, is that downstream
processes will work seemingly well with different sets of pa-
rameters, until proven otherwise during the operation. Given
that, some works aim at guiding the user during the experiment
so that the process gathers as much as useful information as
possible [7, 8].

Calibration methods can be target-based [9, 10], i.e., they can
rely on a dedicated known target for calibration, and targetless
[11, 12, 13], i.e., they can rely on tracking existing features
in the 3D environment. The calibration with targets is carried
out using a known calibration pattern, most often the checker-
board pattern, since it facilitates detection of salient features
like corners, and resolves the scale ambiguity by knowing the
inner corner distances. Reprojection error, i.e., the measure of
distances between the detected and model reprojected corners
in the image, is used as the optimization criterion. A classical
calibration procedure consists of capturing multiple images of
the calibration target with varying poses. Another approach is
one-shot calibration which aims at calibrating a single or mul-
tiple cameras from a single image of multiple calibration tar-
gets [14, 15]. Such an approach is very practical for calibrat-
ing multiple cameras and when calibrations needs to be per-
formed often; however, this also presents a challenge of having
smaller variability in the distance and orientation of the calibra-
tions boards. The calibration boards are typically assumed to
be perfect realizations of the designed calibration pattern; how-
ever, imperfections are present in the form of printing errors,
plastic deformations and dynamic deformations of the assumed
planar board and researchers have investigated models that can
capture such imperfections and achieve smaller calibration er-
rors [16, 17, 18]. Calibration methods can also be offline, in the
sense that calibration is performed prior to operation, or they
can run online during the operation of the robot or autonomous
system [19, 20]. Offline and target-based methods have the ad-
vantage of a completely controlled experimental design, while
online and targetless methods are presented with the challenge
of extracting useful information during limited maneuverabil-
ity. Online methods are an important tool for long-term reli-
able operation of robots and autonomous systems, but they have
not yet superseded classical target-based methods. A popular
state-of-the-art framework for camera calibration is the Kalibr
toolbox [21, 22, 23] offering calibration of multiple cameras,
visual-inertial units, and rolling shutter cameras. Its pattern is
based on AprilTags, while circle and ring planar calibration pat-
terns can also be used [24].

An important instrument in advancing visual localization al-
gorithms for robots and autonomous systems are public datasets
as they enable evaluation and comparison of different ap-
proaches. Regarding visual odometry and SLAM, several
datasets have been published over the years: the KITTI dataset

[25, 26], Málaga Urban dataset [27], KITTI-360 dataset [28],
The EuRoC micro aerial vehicle dataset [29], Oxford Robotics
Car dataset [30], Multivehicle Stereo Event Camera Dataset
(MVSEC) [31], and a Stereo Event Camera Dataset (DSEC)
[32]. Most datasets were recorded with a suite of sensors and
were mounted on a vehicle driving in an urban environment, the
only exception being the EuRoC dataset which is specialized
for micro aerial vehicles. Regardless of the dataset, a visual
camera setup requires prior calibration – ideally for each se-
quence when outdoor recording is performed in diverse weather
conditions. Usually, datasets provide camera calibration pa-
rameters which introduces dependence on the default calibra-
tion parameters, but sometimes the datasets also includes cal-
ibration images enabling researchers to conduct calibration by
themselves. The EuRoC dataset provides two separate calibra-
tion datasets recorded with a stereo setup, one with the single
AprilTag target, and another with the single checkerboard tar-
get. The AprilTag dataset consist of 1449 images, where in
about 1000 images whole or partial AprilTag is captured. The
checkerboard dataset consists of 2376 images, where in about
2000 images whole or partial checkerboard is captured. Images
are recorded at 20 Hz and neighboring images of the target are
highly redundant for calibration purposes. A smaller subset of
images is sufficient for calibration purposes, while the Apriltag
target is preferred to the checkerboard target, since it is larger
(0.66×0.66 m vs. 0.42×0.36 m), contains more corners (144 vs.
42), and has the ability to be reliably matched between stereo
pairs even in the case of partial visibility due to AprilTag coded
ID. Given that, AprilTag target poses yiled more constraints to
the system and to more accurate parameters. The KITTI cal-
ibration dataset consists of a single shot of 12 checkerboard
targets acquired with one grayscale stereo pair and one color
stereo pair. Boards consist of 5 × 7, 11 × 7 and 15 × 5 corners
with a spacing of 10 cm. The KITTI dataset has been recorded
during several days, and each day has its own corresponding
dataset recorded the day after the drive. Therefore, there are
5 calibration datasets in total, each consisting of a single im-
age. As discussed earlier, accuracy of “higer-level” downstream
methods such as visual odometry and SLAM greatly depend on
the accuracy of the calibration, thus having more accurate pa-
rameters can improve the overall performance of the system.
For example, authors in [33] proposed to calibrate a discrete
stereo deformation field above the two rectified image planes
for the KITTI dataset, which would be able to correct deviations
of the real camera system from the default calibration model.
The authors showed that the calibrated deformation field im-
proves the accuracy of the recovered camera motion.

In this paper we propose a camera setup calibration approach
with emphasis on enhancing visual odometry accuracy. We fo-
cus on two popular datasets used for evaluating visual odom-
etry and SLAM algorithms, namely the EuRoC and KITTI
datasets. We present an improved corner detection algorithm,
robust to poor lightning conditions, which detects line segments
and extracts corner position with sub-pixel accuracy using line
intersections. We investigate different lens models, namely
the Conrady-Brown model and the Kannala-Brandt model, and
also include static and dynamic board deformation modeling
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in the calibration procedure. We also conduct ex-post anal-
ysis of reprojection error sensitivity and calibration parame-
ter uncertainty. The whole process significantly reduced the
reprojection error when calibrating the camera setups of the
EuRoC and KITTI datasets. Finally, we tested four method-
ologically different odometries, namely our SOFT [1, 2], ORB-
SLAM2 [34], VINS-FUSION [35, 36], and VISO2 [37] – all
four showed higher accuracy with the proposed calibration pa-
rameters. Moreover, our SOFT2 with the proposed calibration
method scored 0.53% in translation error and 0.0009 deg/m in
rotation error rendering it currently the highest ranking algo-
rithm on the KITTI scoreboard1. The present paper is an ex-
tension of our preliminary work published in [38] with the fol-
lowing novelties: (i) improved corner detection accuracy, (ii)
addition of static and dynamic board deformations, (iii) param-
eter uncertainty analysis, and (iv) investigation of both the Eu-
RoC and KITTI datasets. Although our approach focuses on
two specific datasets, it is still applicable to any camera setup,
and we believe it to be relevant to the community due to its
general insights, and relevance that EuRoC and KITTI had and
probably will in the forthcoming years.

2. Proposed camera calibration setup

The primary goal of this paper is to investigate calibration ap-
proaches for obtaining a set of calibration parameters that can
produce more accurate trajectories for a general visual odom-
etry algorithm. The proposed calibration approach consists of
three steps. The first step is a robust corner detection algorithm
that can reliably extract corners in the calibration pattern under
realistic conditions. Having the corners extracted and thus the
structure of the calibration pattern, the next step is to choose a
lens model that can best capture the distortion effects on the im-
age. Furthermore, it is often the case that the target boards are
imperfect due to printing errors and plastic deformations (less
than ideal planar board or board leaning on the wall) and that
they are carried and manipulated by hand to capture a diverse
set of board poses (during this process the board can exhibit
dynamic deformations that differ throughout the calibration im-
ages). To account for these effects, as the third step we exploit
models proposed in [16, 18] to capture static and dynamic de-
formations. In the paper the experimental analysis is concen-
trated on the stereo cameras of the KITTI and EuRoC datasets,
but the approach is applicable to multiple camera setups, as well
as calibration of monocular cameras.

Given that, calibration essentially comes down to the prob-
lem of finding an optimal set of parameters p by minimizing an
objective function F(p, z) based on the square of residuals

F(p, z) = e(p, z)T e(p, z), (1)

where residuals are reprojection errors of detected corners lo-
cations z in the images

e(p, z) = z − π(p, X) (2)

1http://www.cvlibs.net/datasets/kitti/eval_odometry.php

Figure 1: Detected blobs for one fo the boards of the KITTI calibration se-
quence 2011-10-03, magnified 2×. Positive vertical edges are shown in red,
negative vertical in yellow, positive horizontal in blue, and negative horizontal
in green color. Best viewed in color.

with X being a 3D point and, for brevity, function π(·) captures
all the previously mentioned models that participate in project-
ing a 3D point to the image. The set of optimal parameters,
including camera intrinsics, lens distortion coefficients, and ex-
trinsics, is then determined via

p∗ = argmin
p

F(p, z). (3)

The steps of the proposed calibration approach are experimen-
tally analyzed on two popular datasets for evaluating visual
odometry and SLAM algorithms in mind, namely the EuRoC
and KITTI datasets.

2.1. Corner detection

Calibration images are usually recorded in indoor or outdoor
environments without the possibility or much concern about the
lightning which should ideally be diffuse. Most commonly, one
or more direct light sources are present, and under certain an-
gles, the board can reflect the light directly to the camera. Very
often, the light reflected from the white squares is so bright
that it saturates the corresponding pixels and the excess charge
spills into the adjacent ones. Consequently, white squares ap-
pear larger than the black ones. Given that, instead of having a
unique corner at the intersection of two edges, there can occur
four edges intersecting at two different locations (as can be seen
on examples in Fig. 3). We address this issue with the observa-
tion that opposite edges share the same slope, but differ in the
offset. Therefore, in order to correctly capture this geometry,
we propose to fit two parallel lines into the two subsets of edge
points – one line for the edge of one black square, and a paral-
lel line into the other. In the end, we replace estimated parallel
lines with a virtual line of same slope with a mean offset. Cor-
ner is located at the intersection of the two virtual lines. The
proposed method starts with the extraction of edge points based
on a robust Canny detector as follows.

At the beginning, image data is converted to a floating point
representation in order to minimize information loss in subse-
quent operations. Then, the image is smoothed with a Gaus-
sian filter of optional size (noisier images will benefit from a
larger filter size). We have used sizes from 1 × 1 pixels (no
smoothing) to 9×9 pixels for different calibration datasets. The

3



smoothed image is convolved with the Sobel filter, resulting
with image gradients in the horizontal (Gx) and vertical (Gy)
directions. From these two gradients, the magnitude and direc-
tion are computed as follows:

G =

√
G2

x + G2
y , Θ = atan2 (Gy,Gx). (4)

Non-maximum pixels are suppressed from the gradient mag-
nitude image, together with maximum pixels below some
threshold. Checkerboard edges are usually the strongest edges
in the scene, and proper threshold selection removes the major-
ity of surrounding edges, speeding up the subsequent search for
checkerboard corners. All the remaining edge pixels are local-
ized with sub-pixel precision and paired with the correspond-
ing direction. Then, pixels are set into one of the four direc-
tion quadrants: horizontal positive, horizontal negative, vertical
positive, and vertical negative. Adjacent pixels belonging to the
same direction quadrant are grouped into blobs. Four quadrants
result in four possible blob types, each representing one of the
square sides: top, bottom, left or right. Fig. 1 shows detected
blobs for one of the boards of the KITTI calibration sequence
2011-10-03.

To initially locate the corners, we search for a “+” configu-
ration of blobs, i.e., four different types of blobs connecting at
a single point. In reality, blobs of interest often do not “touch”,
but the ends of all four types reside in a small radius of sev-
eral pixels. When such a configuration is found, we try to fit
two horizontal parallel lines into the left and right blob. If we
express the horizontal line with the following equation

Ax + y + C = 0, (5)

then we can find the resulting parallel lines by minimizing the
following criterion

argmin
A,C1,C2

∑
i

(Axi + yi + C1)2

A2 + 1
+
∑

j

(Ax j + y j + C2)2

A2 + 1
, (6)

for all inlier points (xi, yi) from the left blob i, and all inliers
points (x j, y j) from the right blob j. We do an equivalent com-
putation for vertical lines, except for switching the coordinate
axes for numerical stability. Since the number of points is small,
instead of using RANSAC, we test each possible hypothesis to
determine the one with the maximum number of inliers. Min-
imal configuration for hypothesis generation consists of three
points, where at least one point from each blob has to be se-
lected. Although we do not employ edge direction information
directly in the optimization formulation, we use it during the
inlier selection. A point is selected as an inlier only if its dis-
tance from the line is bellow the distance threshold, and if the
angle between its direction and line normal vector is below the
angle threshold. Naturally, points in blob i are tested against
the [A,C1] line, while points in blob j are tested against the
[A,C2] line. Once [A,C1,C2] is estimated, we choose a vir-
tual [A, (C1 + C2)/2] line as our estimate where the unique line
would be in the ideal image. This is based on the assumption
that the white square spills equally on both black squares in the
local region of interest.

Table 1: KITTI reprojection error of our method, libcdetect, and OpenCV 4.2.0
cornerSubPix() function.

libcdetect OpenCV ours
date err. [px] err. [px] err. [px]

09-26 0.117022 0.116382 0.095147
09-28 0.128945 0.122802 0.099808
09-29 0.135855 0.128055 0.106468
09-30 0.135186 0.127309 0.106887
10-03 0.138393 0.129011 0.104743

Although overexposure is the most common phenomenon,
the proposed approach is robust towards edge shifting in gen-
eral, whether it is caused by overexposure, underexposure, bias
in the edge detector, or even inaccurate printing. Furthermore,
corner quality can be assessed a priori in the image space with
different metrics, from simple number of inliers supporting the
corner to total linear and angular variance of the fitted points
re-weighted accordingly and fed into the calibration estimation
with different weights. As a final comment, in reality it is of-
ten difficult or impossible to realize diffuse lightning; however,
this problem can be alleviated by using matte surface calibra-
tion boards, since glossy surfaces have a strong reflection index
and should be avoided if possible.

Regarding the results on the datasets, in Fig. 2 we compare
the proposed corner detector (upper image, green) with origi-
nal one (lower image, yellow) used in the default KITTI cali-
bration. Magnified reprojection error reveals that the original
corner detector is noisier than the proposed one, which also re-
flects on the reprojection error. Figures 3a and 3b show the
proposed corner detector applied on an overexposed and under-
exposed KITTI calibration boards. Table 1 compares reprojec-
tion errors between the original, OpenCV 4.2.0 cornerSubPix()
function, and the proposed corner subpixel refinement method
(all used the same lens model). Error reduction for proposed
method is notable on all the KITTI calibration images. Regard-
ing the EuRoC dataset, in Fig. 3c we show the proposed corner
detector applied to the EuRoC calibration board. The origi-
nal image is darkened in order to make the overlay drawings
more visible. Edge points of interest reside in the area between
the smaller and larger green circle, which are user defined in-
put parameters. Smaller circle is introduced due to erratic edge
measurements in the corner vicinity.

2.2. Lens model
The most widely used projection model is the pinhole cam-

era model which relates 3D coordinates of an object and its
projection onto the image plane. Real lenses do not fit the pin-
hole camera model accurately enough, and therefore the pin-
hole model is usually accompanied with an appropriate lens dis-
tortion model. The most commonly used distortion model is the
Conrady-Brown model proposed in [39] and [40, 4]. Distortion
is modeled both in radial and decentering direction; therefore,
also being known as the radial-tangential (rad-tan) distortion
model, while the most common implementation is a simplified
version presented in [4] (e.g., in OpenCV and Kalibr) as:

r =

√
x2 + y2, (7)
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Figure 2: Reprojection error for the proposed line intersection method with dynamic board deformation (up, green) versus libcdetect (down, yellow) magnified 50×
for the left frame 0 of KITTI calibration sequence 2011-10-03.

(a) Overexposed corner on a KITTI
board

(b) Underexposed corner on a KITTI
board

(c) Overexposed tag on a EuRoC board

Figure 3: Corner detection on challenging calibration images from the KITTI
and EuRoC datasets (magnified 16×). Red dots – positive vertical edge points,
yellow dots – negative vertical edge points, blue dots – positive horizontal edge
points, green dots – negative horizontal edge points, parallel red lines – lines
fitted to (6), green lines – final virtual lines whose intersection defines corner
position. The area between the two green circles – a user defined parameter – a
disc region around the corner in which edge segments can be considered linear
(depends on the lens distortion).

x′ = x
1 + k1r2 + k2r4 + k3r6

1 + k4r2 + k5r4 + k6r6 + 2p1xy + p2(r2 + 2x2), (8)

y′ = y
1 + k1r2 + k2r4 + k3r6

1 + k4r2 + k5r4 + k6r6 + p1(r2 + 2y2) + 2p2xy, (9)

where distortion coefficients are

D = [k1, k2, p1, p2, k3, k4, k5, k6]. (10)

Another popular model is the model proposed in [5], where
it was stated that the pinhole model is inadequate for fish-eye
lenses, because the 180 degree field of view cannot be projected
to a finite plane. Fish-eye lenses are designed to obey a differ-
ent projection – most commonly the equidistance projection,
i.e., the projection on a sphere. However, to accurately model
different types of lenses, authors proposed the following gen-
eral model [5]:

φ = arctan
y
x
, (11)

θ = arctan r, (12)

θ′ = θ(1 + k1θ
2 + k2θ

4 + k3θ
6 + k4θ

8), (13)
x′ = θ′ cos(φ), (14)
y′ = θ′ sin(φ), (15)

with distortion coefficients

D = [k1, k2, k3, k4], (16)

where we used the reduced version and slightly altered the
equations to account for relying on the pinhole projection
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Table 2: Mean reprojection errors for different distortion and board deformation models for the case of the EuRoC dataset. Static deformation accounts for board
imperfections due to production, while dynamic deformation accounts that this deformation can change from one image to another.

distortion model mean error [px] board model mean error [px]
rad-tan 4 + static 0.274963 rad-tan8 0.12805
rad-tan 5 + static 0.0806202 rad-tan8 + static 0.0319202

r-K-B + static 0.0378269 rad-tan8 + dynamic 0.10187
rad-tan 8 + static 0.0319202 rad-tan8 + static + dynamic 0.0289321

Table 3: Reprojection error comparison for the KITTI dataset for different lens
distortion models and the dynamic board deformation model.

KITTI rad-tan5 rad-tan8 rad-tan5 d rad-tan8 d
date err. [px] err. [px] err. [px] err. [px]

09-26 0.095147 0.088288 0.050726 0.049022
09-28 0.099808 0.098393 0.053093 0.052172
09-29 0.106468 0.100128 0.054725 0.053285
09-30 0.104819 0.100385 0.049915 0.049915
10-03 0.104743 0.103905 0.052474 0.051650

model. We refer to this model as the Kannala-Brandt distor-
tion. The reduced version contains only the radially symmetric
distortion, while the full model also includes the asymmetric
part. Nevertheless, in [5] it was found that using the reduced
model is reasonable, since the asymmetric part is very flexible
and can be subject to overfitting. Therefore, the most common
implementations of the Kannala-Brandt distortion are the re-
duced versions: OpenCV (named fisheye camera model) and
Kalibr (named equidistant distortion model).

The EuRoC dataset provides calibration parameters for a
simplified radial-tangential model with first four distortion pa-
rameters where parameters from k3 to k6 are set to zero (rad-
tan4) and these parameters were obtained with the “Kalibr”
package [29]. Note that in this section we include the static
and dynamic board deformation models to account for board
imperfections and leave only the lens model effects for consid-
eration. However, details on the static and dynamic board de-
formation modeling are presented in Sections 2.3 and 2.4. We
repeat the calibration procedure with the rad-tan4 model and
analyze the reprojection error, where Fig. 4a shows the corre-
sponding heat map. We can notice large reprojection errors at
the image edges, which suggests presence of higher radial dis-
tortion than the selected model is able to capture. The next
commonly used model in the community, rad-tan5, uses five
distortion parameters, where parameters from k4 to k6 are set to
zero. Fig. 4b shows the corresponding reprojection error heat
map, from which we can notice that the error is significantly
reduced; however, the remaining pattern with concentric circles
suggests that this model is also not able to accurately represent
the lens distortion. We also tested a reduced Kanalla-Brandt (r-
K-B) model, with a corresponding reprojection error heat map
showed on Fig. 4c. Error distribution reveals that this model
represent the lens distortion very accurately, with only slight
inconsistency at image edges.

Finally, we tested a full radial-tangential model with all 8
parameters (rad-tan8), whereas the error heat map is shown in

Fig. 4d. As we can notice, there is no recognizable pattern in
the heat map and the remaining error mostly resembles uniform
noise. Comparing heat maps of all tested models, this model
seems to represent the lens the most accurately. Furthermore,
Table 2 (two left columns) shows mean reprojection errors in
pixels for all tested models. The lowest reprojection error was
achieved by the rad-tan8 model; therefore, we decided to use
this model in the odometry evaluation experiments.

Unlike the EuRoC dataset, the KITTI dataset comes with al-
ready pre-rectified images. However, the authors also provide
raw images together with default calibration parameters, which
reveal that the rad-tan5 distortion model was used for default
calibration. Unfortunately, due to the single-shot approach, cor-
ner distribution across the image is very sparse, and we cannot
analyze the error distribution with a heat map. For the same
reason, model parameters on the majority of the image area are
extrapolated, which is less precise compared to interpolated pa-
rameters. Given that, we analyze only the final reprojection
error, where besides the default rad-tan5 model, we also test
the full rad-tan8 model. In Table 3 we compare the reprojection
errors of these models and we can see that the gain of the full
rad-tan8 model is minor, and that simpler rad-tan5 model fits
the lens almost as good as the full model.

2.3. Static board deformation

Board deformation is very common in all calibration sys-
tems, but it is usually not taken into account. In this section
we model the static deformation of the board that considers the
fact that the calibration board is not necessarily an ideal plane,
but rather an uneven surface, thus retaining its true shape as
the board is moved from one pose to another. Each corner 3D
position X is represented with a deviation from its ideal coordi-
nate in all three directions. In order to prevent ambiguity with
the board pose and retain absolute scale, 7 parameters need to
remain fixed. We follow the approach from [17] and fix two
corners, δX1 = (0, 0, 0), δX2 = (0, 0, 0), together with the last
coordinate of a third corner δX3 = (δx, δy, 0).

For the EuRoC dataset, the AprilTag board contains 36 April-
Tags with 4 corners each, thus the state we estimate is aug-
mented with 36 · 4 · 3 − 7 = 425 additional unknowns. Fig. 5
depicts the estimated AprilTag board deformation estimated
jointly with the calibration parameters. The largest perturbance
is at the board center, with a deviation of 1.3 mm relative to
the corners. Table 2 (two right columns) compares reprojec-
tion errors without any board deformation model (rad-tan 8)
and with the static board deformation model included (rad-tan
8 + static). Note a significant decrease in the reprojection error
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(a) Rad-tan 4 + static

(b) Rad-tan 5 + static

(c) r-K-B + static

(d) Rad-tan 8 + static

(e) Heatmap scale in pixels

Figure 4: Reprojection error heat map for different distortion models and the
EuRoC dataset.

when static board deformation is added. Namely, failing to ob-
serve the possibility that the calibration board is deformed may
lead to a wasted search for more accurate distortion parameters,
without any real chance for further reprojection error reduction.

Since the KITTI dataset uses the one-shot approach with
many different boards, each of them are captured only once,

(a) Deformation in X-direction

(b) Deformation in Y-direction

(c) Deformation in Z-direction

Figure 5: Static board deformation detected on the EuRoC AprilTag calibration
board

thus we do not have enough board poses to constrain and ac-
curately estimate high-parameter static board deformation for
each board. Given that, in the case of KITTI, we do not apply
the static deformation model.

2.4. Dynamic board deformation

The static board deformation model assumes that the shape
of the board surface does not change from one pose to an-
other. However, each calibration board has a specific flexi-
bility coefficient and forms different shapes, depending on the
pose relative to gravity direction, and distribution of support
points. The larger the board, the greater the inflection. The
dynamic board deformation model predicts that the board can
have a different shape for each pose, but modeling a varying
shape for each pose with completely free corner deviation, as
in the case of the static deformation model, it would intro-
duce too many unknowns and the problem would not be well-
conditioned. Hence, a much simpler model should be used with
low dimensional parametrization. In this paper, we adopt a sim-
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(a) Rad-tan 8

(b) Rad-tan 8 + dynamic

(c) Heatmap scale in pixels

Figure 6: Heat map for different board models.

Figure 7: Dynamic board deformation detected on KITTI board no.11 (scale in
meters).

ple paraboloid model proposed in [18]

dZi = a jX2
i + b jY2

i + c jXiYi, (17)

where Xi and Yi are coordinates of the corner i relative to the
board center, dZi is the resulting deviation of the corner i in the
Z direction, and [a j, b j, c j] parameters of the board j paraboloid
that we need to estimate. Note that this model introduces cor-

rections in the Z direction only, which violates the preservation
of inter-corner distances. Although simple, this model is still
capable of capturing deformation to some extent and reduce
calibration errors. Unlike the static model, whose state size de-
pends on the number of corners, the dynamic model augments
the total state size with the number of board poses times three.

In Table 2 (two right columns), for the EuRoC dataset, we
can notice reduction of the reprojection error by introducing
the dynamic board deformation model. Moreover, by combin-
ing the static and dynamic deformation models, we obtained
the best result. Furthermore, by comparing Fig. 6b and Fig. 6a
we can see that the dynamic distortion model reduces the re-
projection error uniformly across the image. On the other hand,
from Fig. 4d we can see that the dynamic model was not able
to capture the board deformation as accurately as the static
model. Furthermore, an interesting observation is that model
in Fig 6a, which has no specific error pattern indicating a good
lens model, compared to Fig. 4b, which does exhibit cocentric
circles, has actually a larger total reprojection error – this fur-
ther motivates a deeper analysis that goes beyond just looking
at reprojection error values (cf. Section 3).

For the case of the KITTI dataset, in Table 3 we can see
notable improvement with introduction of the dynamic board
model. In the case of KITTI, word dynamic could be mislead-
ing. It is not a dynamic deformation of one board over the time,
but rather a static deformation of each board in the single-shot
image, represented by 3 parameters for our case. Fig. 7 shows
deformation of the board no. 11 captured with a paraboloid
[a = −0.0190222, b = −0.000921217, c = 0.0227076]. This
shape is also visible from magnified reprojection errors shown
in Fig. 2, bottom image, the second board from the right. Note
in the upper image of the same figure, the nearly ideal plane for
the same board in the case when the dynamic deformation is
included.

3. Ex-post calibration analysis

While optimizing for the calibration parameters by minimiz-
ing (3), the main criterium is the reprojection error. However,
low reprojection error does not guarantee necessarily the best
possible set of parameters for a given application. To further
explore possible improvements and gain valuable insights into
the results, in this section we analyze: (i) calibration parame-
ter uncertainty with respect to the corner location noise and (ii)
reprojection error sensitivity concerning perturbed calibration
parameters in the neighborhood of the optimum.

3.1. Uncertainty of estimated calibration parameters
In this subsection our goal is to estimate uncertainty of the

calibration parameters. In the vein of [41] we start from es-
timating the noise of our measurement vector, where we treat
corner coordinates x and y as two independent variables that
are zero-mean and normally distributed. Presuming that we
have a correct camera model, board deformation model, and ab-
sence of outliers, the measurement noise is then the only source
of error, which seems a reasonable assumption by inspecting
Fig. 4d.
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The measurement noise is estimated as the sample variance
of the residuals at the optimal calibration parameters value

σ2 = var[e(p∗, z)]. (18)

Note thatσ2 is a variance factor with respect to assumed a priori
covariance that we set as identity [42, 43].

The gradient of the objective function at the optimal param-
eters value is zero

∇pF(p, z) = 2JT e(p, z) = 0, (19)

where J is the Jacobian of the residuals J =
∂e(p∗,z)
∂p . As in [41],

to find the uncertainty of the calibration parameters, we perform
a first-order Taylor expansion of the objective function

F(p+δp, z + δz) ≈

(F(p, z) + ∇pF(p, z)δp + ∇zF(p, z)δz)T (. . . ).
(20)

By taking the gradient of (20)

∇δpF(p + δp, z + δz) = 2JT Jδp + 2JTδz = 0, (21)

we obtain the following non-linear least squares solution

δp = −(JT J)−1JTδz = Mδz, (22)

where all the Jacobians are evaluated at the optimal parameters
value p∗. We find the covariance matrix of the parameters as
the following transformation of the measurement variance

Σ = Mvar[z]MT = σ2(JT J)−1. (23)

In this analysis, we are especially interested in the variance
of camera matrix parameters: focal length, principal point, and
the baseline, since they largely affect the odometry trajectory.
On the other hand, errors in distortion parameters are prop-
agated to image reprojection errors in radial direction and a
common technique for alleviating such errors is to carefully
select uniformly distributed corners across the image. This
way the mean of reprojection errors will tend to zero. Ta-
ble 4 shows the standard deviations of camera matrix param-
eters for EuRoC and KITTI, with distortion models rad-tan5
and rad-tan8. We can see that the uncertainty depends on the
selected model, i.e., models with fewer parameters are more
confident. Since simpler models usually do not represent the
lens perfectly, they tend to erroneously produce overconfident
uncertainty estimates [41]. Furthermore, we can also notice
difference in the values between the EuRoC and KITTI uncer-
tainties. The reason behind this lies in the fact that for KITTI
the calibration image includes only 12 distant targets, while the
EuRoC dataset includes images of the target at both close and
distant ranges. Using only distant range images produced in-
trinsic parameters uncertainty of about 0.3 pixels, while close
range images yielded intrinsic parameters uncertainty of about
0.07 pixels. Nevertheless, uncertainty values in Table 4 can
serve only as a good relative indicator, since most likely they are
overconfident. Given that, in the next section we shall investi-
gate how the reprojection error behaves with respect to varying
parameter values.

3.2. Calibration parameters sensitivity analysis

Usually, the main criterium for computing calibration param-
eters is minimization of the total reprojection error. However,
for the case of the KITTI dataset, parameters that we obtained
using previously described models, as compared to parameteres
obtained with libcbdetect, yielded sligthly more accurate odom-
etry, but still below our expectations. This motivated us to con-
duct a sensitivity analysis of the reprojection error criterium by
perturbing a certain calibration parameter in the neighborhood
of the optimal value. For example, we take the value of fx from
the optimal solution, perturb its value with some small δ, and
estimate all the other calibration parameters while holding the
perturbed value of fx fixed. We perturb fx with a different δ
value and repeat the process. In Fig. 8a we show the depen-
dence of the reprojection error with respect to the varying fx

for the EuRoC and KITTI calibration setups. From the figure
we can see that the EuRoC graph exhibits a strong minium,
while the KITTI graph is almost flat in the range of 20 pixels.
Values 10 pixels away from the minimum point have an error
increase of only 0.001 pixels (which is another indicator of
overly optimistic deviation estimates in Table 4). Similar result
can be seen for the principal point cu in Fig. 8b. Although fx

and cu, significantly influence odometry accuracy, the change
in the reprojection error was insignificant. We concluded that
the provided board configurations do not constrain enough the
calibration for accurate estimation of all the parameters.

We also analyzed the scale which mostly depends on the esti-
mated stereo baseline. Fig. 9 shows the reprojection error anal-
ysis with respect to varying baseline value and camera pitch
angle. Again, we can notice that in this case the reprojection er-
ror for the EuRoC exhibits a strong minimum, while the KITTI
curve is flat. However, there is a strong correlation between
the baseline and the relative angle between the cameras. Forc-
ing the baseline to a different value results in the change of the
camera pitch angle around the y axis, while retaining almost
the same reprojection error (note that local camera coordinate
system is right-handed with the z axis pointing in the direction
of the optical axis). Thus the system cannot disambiguate be-
tween the baseline and the pitch angle near the exact solution,
since different triangulation setups lead to similar reprojection
error.

4. Experimental results

Throughout this paper, our main motivation for improving
the calibration parameters was to obtain more accurate odom-
etry trajectories. From this perspective, a lower reprojection
error in the calibration procedure does not necessarily translate
to more accurate odometry. Therefore, we conducted an ex-
tensive analysis of the the obtained parameters by examining
the odometry accuracy; specifially, the accuracy of four differ-
ent visual odometries: SOFT-VO [1] and SOFT22 [2], ORB-
SLAM2 [34], VINS-FUSION [35, 36] and VISO2 [37]. We

2SOFT2 is a 2D-2D odometry specifically designed for road vehicles and
not appropriate for unconstrained motion datasets.
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Table 4: Propagated uncertainty of computed parameters for different lens models and with static (s) or dynamic (d) deformation included.

EuRoC rad-tan5-d EuRoC rad-tan8-d EuRoC rad-tan8-sd KITTI rad-tan5-d KITTI rad-tan8-d
value σ value σ value σ value σ value σ

meas 0 0.085744 0 0.074173 0 0.021625 0 0.038284 0 0.037738
fx 461.946 0.036387 462.492 0.039226 461.954 0.011544 975.444 1.01775 977.280 1.13623
fy 460.653 0.036415 461.206 0.039276 461.899 0.012477 975.018 0.94241 976.323 1.00698
cu 366.502 0.043077 366.341 0.037623 364.425 0.025426 685.753 2.55138 689.816 2.65130
cv 249.262 0.043464 249.423 0.037792 248.111 0.031439 242.190 0.82127 241.946 0.86183

base 0.11001 0.000011 0.11002 0.000009 0.11014 0.000003 0.53285 0.00050 0.53346 0.00055
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Figure 8: Sensitivity analysis of the reprojection error criterium with respect to
varying calibration parameters. We can see a strong minimum for the EuRoC
dataset and a rather flat curve for the KITTI dataset.

demonstrate the effectiveness of the obtained calibration param-
eters on the EuRoC and KITTI datasets. The EuRoC dataset
is a visual-inertial dataset collected with a Micro Aerial Vehi-
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Figure 9: Stereo baseline sensitivity test showing the reprojection error with
respect to varying baseline value and camera pitch angle.

cle (MAV). The dataset contains stereo images, synchronized
IMU measurements, and accurate motion and structure ground-
truth. In this paper we focus on stereo images, which are cap-
tured with an Aptina MT9V034 global shutter sensor, WVGA
monochrome sensors, with a framerate of 20 Hz. The KITTI
dataset was recorded in urban, rural, and highway scenarios
by two stereo pairs (color and grayscale) set at a baseline of
0.54 m. Image rate was 10 Hz, with a resolution somewhat
smaller than the original 1392×512 pixels due to rectification.
High accuracy OXTS3003 GPS/IMU unit was used for record-
ing the ground truth trajectory. Even though we have focused
on the EuRoC and KITTI datasets, the proposed process can be
applied on any camera setup. The calibration files containing
all the parameters for both datasets are publicly available 3.

4.1. EuRoC dataset

For the EuRoC dataset, somewhat surprisingly, the model
with the lowest reprojection error of 0.0289321 pixels, the rad-
tan8 model with static and dynamic deformation, achieved the
second best result. The most accurate result was achieved with
the rad-tan8 model and dynamic board deformation, although

3https://bitbucket.org/unizg-fer-lamor/kittical/
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Table 5: Visual odometry results with default and custom calibration for the EuRoC dataset (absolute trajectory error in meters, rt – rad-tan model, sd – static and
dynamic deformation models, d – dynamic deformation model). Note that [*] was not added to the sum for a fair comparison.

SOFT-VO VINS-FUSION ORB-SLAM2 VISO2
def. rt8-sd rt8-d def. rt8-sd rt8-d def. rt8-sd rt8-d def. rt8-sd rt8-d

MH 01 0.032 0.053 0.022 0.126 0.124 0.104 0.037 0.041 0.039 0.180 0.180 0.126
MH 02 0.052 0.048 0.037 0.172 0.062 0.054 0.048 0.054 0.053 0.221 0.190 0.195
MH 03 0.150 0.103 0.120 0.202 0.129 0.147 0.039 0.045 0.043 0.209 0.184 0.159
MH 04 0.196 0.163 0.133 0.289 0.289 0.217 0.117 0.077 0.053 0.628 0.538 0.519
MH 05 0.107 0.113 0.126 0.266 0.234 0.201 0.112 0.060 0.066 0.327 0.293 0.237
V1 01 0.039 0.053 0.042 0.563 0.536 0.534 0.087 0.088 0.087 0.070 0.088 0.082
V1 02 0.070 0.062 0.063 0.234 0.156 0.173 0.081 0.151 0.119 0.176 0.098 0.076
V1 03 0.119 0.108 0.078 x x x 0.339 0.379 0.357 0.526 0.441 0.391
V2 01 0.107 0.091 0.126 0.225 0.136 0.145 0.067 0.071 0.067 x 0.192* 0.189*
V2 02 0.118 0.137 0.148 0.206 0.146 0.148 0.108 0.101 0.110 x 0.478* 0.302*
SUM 0.990 0.931 0.895 2.283 1.812 1.723 1.035 1.067 0.994 2.337 2.012 1.785

its reprojection error of 0.10187 is significantly higher. We hy-
pothesize that many parameters of the static board deformation
model lead to a slight overfit. We also corrected the extrinsic
rotation of the right camera for 0.24 deg around the x-axis for
V2 tracks in order to align stereo epipolar lines. This misalign-
ment exists only in V2 tracks and was probably caused by a
slight bump to the VI-sensor prior to recording.

In Table 5 we show the results for SOFT-VO, VISO2, VINS-
FUSION and ORB-SLAM2. However, making large progress
on EuRoC is not easy since default parameters are pretty ac-
curate. Odometry algorithms usually do not exploit 0.03 pixel
corner detection uncertainty, and reprojection error of 0.2 pixel
obtained with the Kalibr package is good enough if the camera
matrix parameters are accurately estimated. Still, we managed
to improve the odometry on most tracks (note that V1 03 track is
classified as difficult, with aggressive movements, motion blur,
and sudden brightness change, which present the biggest obsta-
cle towards good accuracy for this track).

The results for the SOFT-VO and VISO2 are probably the
most indicative, since these are pure frame-to-frame odome-
tries, and therefore very sensitive to calibration parameters. An-
other advantage of SOFT-VO and VISO2 in this experiment is
their deterministic nature – each run produces exactly the same
result. That raises probability that the difference in odometry
error is only caused by calibration parameters change and we
had to run experiments for SOFT-VO and VISO2 only once.

A complete opposite is ORB-SLAM2, where calibration er-
rors can get averaged out, due to dense inter-frame connections
among features. This is especially the case with the EuRoC
dataset, where the whole trajectory is in a single room, produc-
ing numerous keyframe links for the local bundle adjustement,
which prevents odometry drift, and it is difficult to make fur-
ther improvement just with new calibration. We did not test
the newer ORB-SLAM3 [44] because fusion with IMU would
additionally cloud the effect of different calibration parameters.
Results of ORB-SLAM2 vary significantly between different
runs, so we adopted a metric from the original paper [34] –
each track is ran five times and the mean value is taken as the
final result. Given that, we managed to only slightly improve

ORB-SLAM2 results on the EuRoC dataset.
Results for VINS-FUSION vary slightly between different

runs, despite the single-threaded mode being selected in the
configuration, but are often very similar with few occasional
outliers. Given that, the final results in Table 5 for VINS-
FUSION are the median of three runs. At this point, we also
need to discuss the difference between default VINS-FUSION
results in Table 5 and the ones presented in [45], Table I, stereo.
Therein, authors used custom calibration parameters, where the
principal point for both the left and right camera was different
than the default EuRoC calibration. However, bodyToCam0
and bodyToCam1 transforms were used from the original Eu-
RoC calibration files, although different principal point posi-
tions in the custom calibration file also define a new camera
coordinate systems, and consequently new relative transform
from one to the other. This new transform also has to be up-
dated in the stereo calibration file. Given that, in our experi-
ments we used the original EuRoC calibration files in Table 5,
which produced notably better results than the ones presented in
[45]. Also, note that our custom results for Machine Hall tracks
are even better than the original camera and IMU combinations.

4.2. KITTI dataset

Since we concluded that the KITTI board configurations do
not constrain calibration enough for targeted estimation of all
the parameters, we decided to change the objective function and
search for parameters with the focal length fx, principal point
(cu, cv), and baseline that minimize the KITTI translational er-
ror (there is a strong correlation between fx and fy and refine-
ment in one is instantly reflected in the other). We employed
grid search around the initial minimum such that the four val-
ues were fixed during the calibration process, while the other
parameters varied to minimize the reprojection error. Then,
the odometry with final calibration parameters was evaluated
for the translational error on the training sequences. The best
parameters were usually found within the neighborhood of 10
pixels. While the reprojection error increased for 1%, odome-
try error was reduced by 30% in translation and 40% in rotation.
Note that in the calibration process, the focal length and prin-
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Algorithm 1 KITTI calibration parameters search

Require: Initial calibration parameters for grid serch
( f 0

x , c
0
u, c

0
v , b

0) and initial odometry error init_odom_err.
Ensure: Final calibration parameters f inal_cal_params.

1: Define search grid for parameters:
search_grid ← (∆ fx,∆cu,∆cv,∆b)

2: curr_odom_err ← init_odom_err
3: converged = false
4: while (¬converged) do
5: Calibrate for other parameters:

cal_params_∆ fx = full_cal( f 0
x ± ∆ fx(i), c0

u, c
0
v , b

0)
6: Run odometry and compute error:

err_∆ fx ← run_odom(calib_params_∆ fx)
7: Repeat steps 4 and 5 for ∆cu(i),∆cv(i),∆b(i)
8: . . .
9: cal_params = {cal_params_∆ fx, cal_params_∆cu,

cal_params_∆cv, cal_params_∆b}
10: odom_error ← {err_∆ fx, err_∆cu, err_∆cv, err_∆b}
11: min_odom_err ← min(odom_error)
12: if min_odom_err < curr_odom_err then
13: Select calibration parameters from the min error run:
14: opt_cal_params← cal_params(@min_odom_err)
15: Extract subset for grid search:

( f 0
x , c

0
u, c

0
v , b

0)← get_fx_cuv_b(opt_cal_params)
16: curr_odom_err = min_odom_err
17: else
18: converged = true
19: end if
20: end while
21: f inal_cal_params← opt_cal_params

cipal point were fixed for the left camera only, while the corre-
sponding parameters in the right camera are highly correlated
via boards and they automatically change with the probed left
camera values. Also, the system cannot disambiguate between
the baseline and the pitch angle near the exact solution, since
different triangulation setups lead to similar reprojection error.
Consequently, exact baseline is hard to assess with odometry,
since the trajectory scale may also depend on the pitch angle.
In the end, a total number of 4 parameters is refined via grid
search: fx and (cu, cv) of the left camera, and the baseline. In
Algortihm 1 we provide pseudocode of tjis algorithm. Note that
search is performed twice independently, once with single cal-
ibration image 10-03, which corresponds to sequences 00-02
(recorded on October 3), and once with single calibration im-
age 09-30, which corresponds to sequences 04-10 (recorded in
September 30).

Table 6 compares results for SOFT2, VINS-FUSION, ORB-
SLAM2, and VISO2 obtained with default and custom calibra-
tion parameters. For custom calibration, we seeded the rad-
tan8-d model at [ fx = 976, cu = 690, cv = 249, b = 0.535]. In
order to emphasize the effect of calibration parameters on the
odometry trajectory, loop closing features of VINS-FUSION
and ORB-SLAM2 were not used. As we can see from the table
both translational and rotational error is considerably reduced

for all the tested algorithms. Although we used a more com-
plex lens model and board deformation, for KITTI we obtained
similar results to those presented in [38]. There are two possible
reasons, one is that due to the board positions calibration is not
able to exploit better the more complex models, and the other
is applying grid search for a specific odometry algorithm. Each
odometry algorithm has its own specific “biases”, and push-
ing calibration parameters towards more accurate trajectory of
one algorithm can cause decrease in accuracy of the other algo-
rithms (herein we optimized for ORB-SLAM2).

5. Conclusion

In this paper we have presented an enhanced approach to
camera setup calibration and parameter analysis. We focused
on the EuRoC and KITTI datasets, inspired by their signifi-
cance in the visual odometry community and motivated by our
experience of achieving the higest localization score during the
EuRoC competition [1] and of currently holding the highest
odometry rank on the KITTI score board [2]. The proposed ap-
proach consists of an improved corner detection procedure, fo-
cusing on line intersections for sub-pixel localization accuracy.
We analyzed Conrady-Brown and Kannala-Brandt lens mod-
els and included static and dynamic board deformation in the
calibration pipeline. The whole procedure yielded smaller re-
projection errors on both datasets. Additionally, we performed
an ex-post calibration analysis by investigating uncertainty of
calibration parameters and the sensitivity of the reprojection er-
ror criterion. For the KITTI dataset specifically, since the board
configurations do not constrain enough all the camera parame-
ters, we use a grid search procedure based on the accuracy of
the translational error in the KITTI score metric. Finally, we as-
sess the accuracy of different visual odometry algorithms using
the newly obtained calibration parameters: SOFT [1, 2], ORB-
SLAM2 [34], VINS-FUSION [35, 36] and VISO2 [37]. All the
algorithms exhibited improved odometry accuracy on most of
the EuRoC and KITTI tracks.
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