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Abstract: One of the principal challenges in robot arm motion planning is to ensure robot’s agility in case of encountering
unforeseeable changes during task execution. It is thus crucial to preserve the ability to move in every direction in task
space, which is achieved by avoiding singularities, i.e. states of configuration space where a degree of freedom is lost. To
aid in singularity avoidance, existing methods mostly rely on manipulability or dexterity indices to provide a measure of
proximity to singular configurations. Recently, a novel geometry-aware singularity index was proposed that circumvents
some of the failure modes inherent to manipulability and dexterity. In this paper, we propose a cost function based on this
index and integrate it within a stochastic trajectory optimization framework for efficient motion planning with singularity
avoidance. We compare the proposed method with existing singularity-aware motion planning techniques, demonstrating
improvement in common indices such as manipulability and dexterity and showcasing the ability of the proposed method
to handle collision avoidance while retaining agility of the robot arm.
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1. INTRODUCTION

Motion planning is one of the key challenges in
robotics. Motion planning algorithms should ensure that
robot’s motion through an environment is both feasible
and optimal with regards to a given performance crite-
rion. Feasibility implies that the produced robot trajec-
tory satisfies constraints (e.g. adhering to the joint lim-
its), while optimality often indicates either minimal ex-
ecution time, path length or energy consumption. When
performing a desired task, articulated robots oftentimes
have additional constraints induced by the task (e.g. ob-
stacle avoidance) which may restrict their movement in
task space. Such constraints may incur non-optimal map-
ping of some configurations from the configuration space
to the task space, resulting in singular configurations, i.e.
singularities. Singularities hinder task space mobility, re-
quiring particularly large joint motions which can result
in perilous joint movement or task execution failure. It is
crucial to preserve the ability to move in every direction
in task space in order to ensure robot’s agility in case of
encountering unforeseeable changes during task execu-
tion. Therefore, recognizing and avoiding singular con-
figurations during motion planning has been a topic of
robotics research for decades [1], [2], [3], [4].

Singularities can be identified by observing singular
values of the robot’s Jacobian matrix, which is a function
that maps configuration space velocities to task space ve-
locities [5]. There exist several indices that try to capture
the kinematic sensitivity by relying on singular values of
the Jacobian. The manipulability index [1] measures the
volume of the manipulability ellipsoid and is perhaps the

most widely employed way of recognizing singular con-
figurations. Another commonly used measure is dexterity
index [6] that calculates the ratio between the longest and
shortest manipulability ellipsoid axes. These indices have
been successfully integrated with inverse kinematics [3],
[4] and motion planning [7], [8], [9], [10] by looking to
maximize the volume of the manipulability ellipsoid in
order to avoid singular configurations. Nevertheless, both
the manipulability and dexterity index possess shortcom-
ings due to their inability to fully capture the geometry
of the manipulability ellipsoid. Redundancy resolution
approaches such as [11] do not explicitly consider ma-
nipulability or dexterity indices and have long been used
for singularity avoidance. However, they can be prone
to algorithmic singularities caused by conflicting objec-
tives and are therefore employed only for simple task hi-
erarchies. Rozo et al. used Stein divergence to derive a
geometry-aware similarity measure between two manip-
ulability ellipsoids [12] and employed it in the context of
task learning. A recently proposed geometry-aware sin-
gularity index [13] relies on a Riemannian metric on the
manifold of symmetric positive definite matrices to mea-
sure the proximity of a configuration to singularity, by-
passing the failure modes inherent to manipulability and
dexterity.

The aforementioned geometry-aware indices that
avoid the failure modes inherent to manipulability and
dexterity are yet to be exploited in the context of motion
planning. In order to efficiently tackle the robot motion
planning problem while considering different objectives
and task constraints, a considerable research effort has



been dedicated to trajectory optimization methods [14],
[15], [16], [17]. These methods start with a naive initial
trajectory (e.g. straight line in configuration space) and
optimize it by minimizing a given objective criteria that
may include a collision avoidance costs and other task-
related objectives and constraints.

In this paper, we derive a stochastic trajectory op-
timization framework with geometry-aware singularity
avoidance that circumvents the failure modes of the com-
monly used indices. We make the following contribu-
tions:

(i) we propose a cost function that features a geometry-
aware singularity index that uses a Riemannian met-
ric to provide a measure of proximity to singular
configurations,

(ii) we integrate the proposed cost function within a
stochastic trajectory optimization framework for ef-
ficient motion planning, and

(iii) we compare the proposed approach to existing sin-
gularity avoidance and manipulability maximiza-
tion techniques, demonstrating improvement in
keeping trajectory states away from singularities.

2. BACKGROUND

In this paper we consider serial robotic manipulators
consisting of n actuated joints. First we define the robot
configuration at a given time instant ti as a set of joint
positions qi in the configuration space qi ∈ Q ⊂ Rn

which is comprised of all feasible joint positions. Simi-
larly, robot’s end-effector poses x construct the task space
x ∈ X ⊂ Rp. Robot’s forward kinematics function is de-
fined as the following nonlinear mapping

f : Q → X .

Conversely, the robot’s inverse kinematics is defined as

f−1 : X → Q.

The Jacobian matrix is obtained by finding the gradient
of f with respect to joint values qi,

J =
∂f

∂qi
.

The Jacobian matrix defines kinematic relationship be-
tween configuration and task space velocities [5]

ẋi = Jq̇i, (1)

where J is the Jacobian matrix computed at configuration
qi, while q̇i and ẋi are the joint and task space velocities.

2.1 Manipulability ellipsoid
The mapping of a unit sphere in the space of joint ve-

locities ‖q̇i‖2 = 1 to the task velocity space can be de-
fined as

‖q̇i‖2 = ẋT
(
JJT

)−1
ẋ . (2)

The conditioning of the matrix JJT governs the scal-
ing of joint velocities to the task space. Therefore, the
eigenvalues of this matrix provide information about di-
rectional mobility of the robot arm in some configuration
qi. The pertaining matrix JJT in Eq. (2) is symmetric
positive semi-definite (SPD) and is termed the manipula-
bility ellipsoid of the end-effector [1]

M (qi) = JJT. (3)

By computing singular value decomposition (SVD) of
J = UΣVT, we can obtain the principal axes
σ0u0, σ1u1, . . . , σpup. The length and orientation of
these axes determine directions in which higher values
of task space velocities can be achieved.

The eigenvalues of manipulability ellipsoid M are
equal to the squared singular values σ2 of the Jacobian
matrix J. This implies that when one or more eigen-
values of M become zero, the Jacobian matrix is poorly
conditioned and thus non-invertible, i.e. the robot is in a
singular configuration.

2.2 Manipulability index
As a consequence of the manipulability ellipsoid

eigenvalues corresponding to the squared singular values
of the Jacobian, all configurations for which the Jacobian
matrix is non-invertible have a corresponding manipula-
bility ellipsoid with at least one degenarate axis. Move-
ments of the robot end-effector that begin from these sin-
gular configurations are susceptible to high joint veloci-
ties and unwanted dynamic characteristics. To detect sin-
gular configurations, we can observe singular values of
the Jacobian matrix, which is a basis of several devel-
oped indices that attempt to provide a measure of prox-
imity of a configuration to singularity. One of the indices
commonly used for singularity avoidance and improving
kinematic sensitivity is the so-called manipulability in-
dex, defined as

m =
√

det(JJT) . (4)

The value of m is in proportion to the volume of the ma-
nipulability ellipsoid defined in Eq. (3), providing an in-
tuitive geometric interpretation of the manipulability in-
dex. Singularities imply that the corresponding manip-
ulability ellipsoids have at least one degenerate axis, re-
sulting in zero volume manipulability ellipsoids. Con-
sequently, manipulability index of singularities is zero
and can thus be used for singularity detection in inverse
kinematics [4] and trajectory optimization [9]. However,
there exists cases when manipulability index is ineffec-
tive in detecting configurations that are close to being
singular. This stems form the fact that the volume of the
manipulability ellipsoid can remain relatively large near
singularities if other axes of the manipulability ellipsoid
are particularly elongated.

2.3 Dexterity index
Another established index commonly used for singu-

larity detection and avoidance is the dexterity index [6],



defined as
κ =

σmax

σmin
, (5)

where σmax and σmin denote the maximal and minimal
singular values of the Jacobian matrix. It follows that the
dexterity index is essentially a measure of difference in
relative lengths between the longest and shortest axis of
the manipulability ellipsoid, where large values indicate
an elongated shape. When the length of one axis of the
manipulability ellipsoid is near-zero, the dexterity index
may be high and can thus in most cases be used for singu-
larity detection. However, the drawback of the dexterity
index is its incapability to inform about the scale of the
ellipsoid. This problem manifests when a configuration
is far from singularity but has one axis of a particularly
large length – the dexterity index cannot distinguish such
configuration from a singular one.

3. STOCHASTIC TRAJECTORY
OPTIMIZATION WITH SINGULARITY

AVOIDANCE

Consider a joint space trajectory q as a function that
maps time instances 0 ≤ t ≤ T to configurations q(t).
We can then formulate the motion planning problem as
trajectory optimization

minimize
q(t)

F [q(t)] + σG [q(t)] , (6)

where F [q(t)] is the cost functional that encodes tra-
jectory smoothness, G [q(t)] is a state-dependent cost
functional that can pertain to singularity avoidance, col-
lision avoidance and various task-dependent constraints,
and σ is a cost weighting parameter. In the following
subsections we describe the smoothness cost, propose a
novel geometry-aware singularity avoidance cost func-
tional and present the employed trajectory optimization
procedure.

3.1 Smoothness cost
Closely following [17], we consider robot’s trajectory

as a sample from a continuous-time Gaussian Process
(GP) q(t) ∼ GP(µ(t),K(t, t′)), with mean µ(t) and co-
variance K(t, t′). We consider GPs generated by a linear
time-varying stochastic differential equation (LTV-SDE)

q̇(t) = A(t)q(t) + u(t) + F(t)w(t), (7)

where A and F are system matrices, u is a known con-
trol input and w ∼ N (0,Qc) is a white noise process.
While the defined GP is continuous, we can parameter-
ize it with a sparse set of support states at discrete time
instances q = [q0 . . . qN ]

T . An exponential prior distri-
bution resulting from the system in Eq. (7) can be defined,
with the mean µ and kernel K

p(q) ∝ exp{−1

2
‖q − µ‖2K}. (8)

The GP prior defined in Eq. (8) penalizes the deviation
of the trajectory from the mean and thus encourages tra-
jectory smoothness. The negative logarithm of this prior

distribution serves as the smoothness cost functional in
the trajectory optimization objective defined in Eq. (6)

F [q(t)] = ‖q − µ‖2K. (9)

We use a constant-velocity motion model prior, and the
mean µ is then calculated as a temporally equidistant
straight line, while derivation of the covariance matrix K
is given in [17].

3.2 A geometry-aware singularity avoidance cost
The manipulability and dexterity indices are com-

monly employed for singularity detection and avoidance.
However, as described in Section 2., both of them have
drawbacks that make them inapplicable in certain cases.
In this paper, we will therefore utilize a recently devel-
oped geometry-aware singularity index [13] that is de-
fined as

ξ :=
∥∥∥log

(
Σ−

1
2 MΣ−

1
2

)∥∥∥2
F
, (10)

where M is the manipulability ellipsoid of a given con-
figuration, Σ is an arbitrary reference ellipsoid and ‖·‖F
is the Frobenius norm. The index defined in Eq. (10) is
essentially squared Riemannian distance between a ref-
erence ellipsoid Σ and manipulability ellipsoid M . For
a more in-depth treatment of Riemannian geometry in
the context of manipulability ellipsoids and singularity
avoidance the reader is referred to [18], [13]. By care-
fully choosing the reference ellipsoid Σ in Eq. (10), the
singularity index gains the notion of measuring proximity
of a given configuration to a singular one.

We select the reference ellipsoid Σ to be a sphere with
the radius greater than the length of the longest manipu-
lability ellipsoid axis, thus enclosing the manipulability
ellipsoid

Σ = kI, k ≥ σ2
max . (11)

This choice of k results in ξ decreasing with the increase
of the singular values of the Jacobian, since the manipula-
bility ellipsoid is always inside the reference ellipsoid Σ.
Due to the symmetry of the sphere, the geometry-aware
singularity index is invariant to different orientation of
the manipulability ellipsoid [13]. This trait is advanta-
geous in singularity avoidance since the orientation of the
manipulability ellipsoid does result in changes to singu-
lar values of the Jacobian. When a robot arm changes
its configuration, the corresponding manipulability ellip-
soid obtains a different size, shape and orientation. In
contrast to the manipulability and dexterity indices, the
geometry-aware singularity index encodes the ellipsoid’s
axis lengths, shape and orientation. This property al-
lows for circumventing issues that arise when applying
the conventional indices.

To integrate singularity avoidance with trajectory op-
timization, we propose a cost function that takes into ac-
count the value of the geometry-aware singularity index.
Combining Eq. (10) and Eq. (11) and summing over ev-
ery support state qi, we obtain

G [q(t)] =

N∑
i=0

∥∥∥log
(
k−

1
4M(qi)

)∥∥∥2
F
. (12)



The cost function in Eq. (12) should guide the trajectory
optimization away from regions of configuration space
containing singularities without being prone to failure
modes of manipulability and dexterity indices.

3.3 Optimizing the trajectory
Combining the initial trajectory optimization formula-

tion in Eq. (6) with cost functions for smoothness in Eq.
(9) and singularity avoidance in Eq. (12) we arrive to the
following optimization problem

q∗ = argmin
q
‖q − µ‖2K + σ

N∑
i=0

∥∥∥log
(
k−

1
4M(qi)

)∥∥∥2
F
,

(13)
Since our objective function is highly nonlinear, we opt
for stochastic optimization procedure that may be able
to overcome the local minima problem encountered by
gradient-based approaches. Similarly to STOMP [15],
we estimate the gradient of our objective function by
sampling K noisy trajectories qk from the prior distribu-
tion and forming a probability-weighted convex combi-
nation δq̂ that updates the trajectory in a cost-minimizing
manner

δq̂ =

K∑
k=1

P (qk)(qk − µ), (14)

where P (qk) is a probability metric

P (qk) = exp{− 1

λ
G
[
qk
]
} (15)

with λ being sensitivity parameter that we choose as a
constant λ = 0.1. The update rule is applied iteratively
until convergence and is given as

q ← q + Kδq̂. (16)

Multiplication with covariance matrix K ensures that the
update is smooth due to the underlying constant-velocity
motion prior. For a more in-depth treatment, the reader
is referred to [15]. Note that many different costs can be
summed with the singularity avoidance cost function to
form G

[
qk
]

and the update rule would work in the same
manner.

4. EXPERIMENTAL RESULTS

We evaluated the proposed method in simulations on
two different motion planning scenarios. First scenario
featured a reaching task in an empty environment, where
the aim was to reach a desired goal state while suc-
cessfully avoiding singularities. In Section 4.1 we pro-
vide a quantitative performance analysis of the proposed
method on the reaching task scenario and comparison
with two state-of-the-art approaches to singularity avoid-
ance, namely [9] and [11]. Second scenario featured
a collision avoidance task, where the aim was to reach
the desired goal state without colliding with the obstacle
while avoiding singularities. In Section 4.2 we provide

a qualitative example of the second scenario that demon-
strated the ability of the proposed method to find a colli-
sion free trajectory while staying far from singularities at
every trajectory state. Experimental evaluation was per-
formed on a laptop with a 2.8-GHz Intel Core i7-7700HQ
CPU and 16 GB of RAM.

4.1 Reaching task
The reaching task benchmark was performed using

three common robot arms: the six DOF Universal Robots
UR10, the seven DOF Kinova Jaco 2 with spherical joints
and the seven DOF Kuka LBR IIWA 14. For each
arm, the evaluation consisted of 100 different tasks with
start and goal configurations randomly sampled from the
robot’s configuration space. We solved each task with
the method proposed in this paper, the trajectory opti-
mization method with manipulability optimization pro-
posed in [9] and the singularity-robust kinematic control
method proposed in [11].

We compared performance of these methods on three
common singularity-related indices which served as per-
formance metrics: the minimum eigenvalue σmin of the
manipulability ellipsoid M(q) defined in Eq. (3), the ma-
nipulability index m defined in Eq. (4) and the dexterity
index κ defined in Eq. (5). For every trajectory, we evalu-
ated the performance metric at every discrete time instant
and calculated the average value during the whole trajec-
tory. Additionally, we provide performance analysis for
a simple straight-line trajectory in configuration space as
the baseline. We also compare execution times of eval-
uated methods, except for the baseline, as the straight-
line trajectory can be straightforwardly calculated by lin-
ear interpolation in sub-milisecond time. Examples of
trajectories obtained by all the methods for each of the
employed robot arms are depicted in Fig. 1. For these
example trajectories, Fig. 1 also shows the correspond-
ing minimum eigenvalue σmin of the manipulability el-
lipsoid M(q) during trajectory execution. Results of the
performance evaluation are shown in Table 1. Note that
for minimum eigenvalue σmin and manipulability index
m higher values imply better singularity avoidance, while
for dexterity index κ lower values are better.

As expected, each of the evaluated methods com-
pared favorably to the baseline in every performance met-
ric. The trajectory optimization method with manipu-
lability optimization proposed in [9] attained the low-
est average execution time for each of the utilized robot
arms. This was expected due to its underlying gradient-
based optimization. However, it is clear that thr pro-
posed method consistently achieved the best overall per-
formance on the conducted reaching tasks. The coupling
of the Riemannian-based geometry-aware singularity in-
dex and a stochastic trajectory optimization method suit-
able for optimizing nonlinear cost functions proved to
work notably well for singularity avoidance.

4.2 Collision avoidance
The collision avoidance task was performed using the

seven DOF Kuka LBR IIWA 14 robot arm in an envi-



Fig. 1.: Example trajectories obtained by each method on the reaching task. The top figures show the end effector
trajectories in robot’s task space, while bottom figures show the corresponding minimum eigenvalue of the manipulability
ellipsoid during trajectory execution.
Table 1.: Comparison of the proposed approach and several other methods on the reaching task benchmark for three
different robot arms. We compare the methods with three different measures, namely the average minimal singular value,
the average manipulability and the average dexterity.

UR-10 Kinova Jaco 2 Kuka IIWA 7
σmin m κ Time σmin m κ Time σmin m κ Time

Proposed approach 0.044 0.130 2.339 114 0.027 0.111 2.364 163 0.025 0.076 2.404 126
Maric et al. (2019), [9] 0.034 0.111 2.518 66 0.025 0.099 2.380 72 0.017 0.057 2.621 69
Chiaverini (1997), [11] 0.030 0.072 2.801 129 0.023 0.073 2.440 182 0.026 0.061 2.421 138

Straight line 0.031 0.096 2.716 / 0.021 0.090 2.583 / 0.013 0.049 2.851 /

ronment featuring a table. We picked a start state under
the table and the goal state above the table in order to
require collision avoidance to successfully solve the task.
We ran trajectory optimization twice: first, including both
collision avoidance and our geometry-aware singularity
avoidance in the cost function, and second, only consid-
ering collision avoidance. For collision avoidance cost,
we utilized precomputed signed distance field and hinge
loss, similarly to [17]. Examples of trajectories obtained
by these two runs are depicted in Fig. 2, as well as the
corresponding minimum eigenvalue σmin of the manipu-
lability ellipsoid M(q), manipulability index m and dex-
terity index κ during trajectory execution.

It can be seen that the inclusion of the singularity
avoidance cost led to the robot arm staying far away from
singularities at every trajectory state, while retaining the
ability of the motion planning method to find a collision-
free trajectory. Better values of manipulability and dex-
terity indices also suggest that robot’s agility would be
ensured in case of unpredictable changes.

5. CONCLUSION AND FUTURE WORK

In this paper we have presented a trajectory optimiza-
tion method for robot arm motion planning that success-
fully avoids singularities. First we derived a cost function

Fig. 2.: Trajectories obtained on the collision avoidance
task. The top left figure shows the end effector trajecto-
ries in the robot’s task space, while other figures corre-
spond to the minimum eigenvalue of the manipulability
ellipsoid, manipulability index and dexterity index dur-
ing trajectory execution for trajectories obtained by the
proposed stochastic trajectory optimization method with
and without singularity avoidance optimization.



that penalizes proximity to singular configurations by re-
lying on a recently proposed geometry-aware singularity
index based on a Riemannian metric. Then we coupled
the proposed cost function with a stochastic trajectory op-
timization method to efficiently obtain robot trajectories
that maximize the distance from singular regions while
reaching the desired task. We compared the proposed
method to existing singularity avoidance and manipula-
bility maximization techniques, demonstrating improve-
ment in common singularity indices such as manipulabil-
ity and dexterity. We also demonstrated the ability of the
proposed method to produce collision-free motion plans
that stay far from singularities.

In future work, it would be interesting to test the pro-
posed approach in real environments and to exploit the
robot’s mobility gained by staying far from singularities
in order to adapt and replan the robot motion in case of
unexpected changes during the task execution.
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