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Abstract—Robust and reliable perception of autonomous sys-
tems often relies on fusion of heterogeneous sensors, which
poses great challenges for multisensor calibration. We propose
a method for multisensor calibration based on Gaussian pro-
cesses (GPs) estimated moving target trajectories, resulting with
spatiotemporal calibration. Unlike competing approaches, the
proposed method is characterized by: (i) joint multisensor on-
manifold spatiotemporal optimization framework, (ii) batch state
estimation and interpolation using GPs, and (iii) computational
efficiency with O(n) complexity. It only requires that all sensors
can track the same target. The method is validated in simulation
and real-world experiments on five different multisensor setups:
(i) hardware triggered stereo camera, (ii) camera and motion
capture system, (iii) camera and automotive radar, (iv) camera
and rotating 3D lidar and (v) camera, 3D lidar and motion
capture system. The method estimates time delays with the
accuracy up to a fraction of the fastest sensor sampling time, out-
performing a state-of-the-art ego-motion method. Furthermore,
the paper is complemented by an open source toolbox imple-
menting the calibration method available at bitbucket.org/unizg-
fer-lamor/calirad.

Index Terms—multisensor calibration, temporal calibration,
Gaussian processes

I. INTRODUCTION

MODERN autonomous robotic systems navigate through
the environment using information gathered by various

sensors. To process the gathered information, robots must rely
on accurate sensor models and often fuse information from
multiple sensors to improve performance. For sensor fusion,
appropriate knowledge of both temporal and spatial relations
between the sensors is required, which can be challeng-
ing when working with heterogeneous sensor systems, since
sensors can operate based on various physical phenomena,
while providing measurements asynchronously with different
frame rates. The described challenges are addressed by sensor
calibration, which can be divided into intrinsic, extrinsic also
referred as spatial, and temporal calibration. The intrinsic
calibration is related to individual sensors as it provides param-
eters for sensor models. The task of the extrinsic calibration
is to find homogeneous transforms relating multiple sensors,
while temporal calibration aims to find relation between the
individual sensor clocks.

The sensor calibration approach for a particular problem
depends on multiple factors, e.g., the type of involved sen-
sors, overlapping field of view, required degree of calibration
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accuracy, Nevertheless, to calibrate multiple sensors extrin-
sically and temporally, we need to perform correspondence
registration in the sensor data, which is later used to form an
optimization criterion. The correspondences can originate from
a designed target, yielding the target-based methods [1], [2],
or from the environment itself, as in the case of the so-called
targetless methods [3], [4]. For example, odometry-based
methods are a special class of targetless methods suitable for
online application and are based on leveraging the environment
to estimate ego-motion and calibrate the multisensor system
[5], [6]. The concept of sensor calibration by aligning trajec-
tories of moving targets received most attention in the target-
based calibration of depth sensors [7]–[9], and calibration
of cameras, depth sensors, and lidars by exploiting human
motion [10]–[13]. Specifically, to match trajectories between
the sensors, the authors observe a similarity measure of the
net velocity history profiles; however, in the optimization step,
they rely only on the detected positions of the tracked people.
In [14], authors propose to calibrate multiple 2D lidars by
tracking moving targets using a pose graph, wherein rotation
is decoupled from translation by using a rotation averaging
approach.

Temporal calibration of a sensor system requires motion,
either of the observed target [7], [15] or the system itself
[16]–[22]. Furthermore, some research advocates a unified
approach to spatiotemporal calibration [17], while others claim
that estimating uncorrelated quantities, such as time delay and
homogeneous transforms, might degrade the final result [23].
Additional challenge in temporal calibration is computational
complexity; namely, at each optimization step new corre-
spondences need to be computed due to the new time delay
perturbation. Therefore, the common approach is to reduce
the dimensionality of the problem and preferably remove
correlation with the extrinsic calibration. In [7] authors tracked
a colored sphere to perform spatiotemporal calibration of mul-
tiple Kinect v2 sensors. By performing principal component
analysis on the trajectories, they obtained field of view invari-
ant one-dimensional kernels used in temporal calibration. Even
though this method is applicable to other sensors, it assumes
the same frame rate of the sensors and its resolution is limited
to the sampling time. In [15], temporal calibration based
on target tracking is presented where the authors use linear
interpolation for continuous-time representation and position
norm for the dimensionality reduction. The AX = XB sensor
calibration problem with unknown temporal correspondences
was tackled in [19]. To perform dimensionality reduction,
authors used one-dimensional invariants – displacement and
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angle of rotation – defined by Plücker coordinates of the
screw motion. In [20], authors proposed an algorithm based
on system motion by aligning curves in the 3D orientation
space. The temporal calibration problem was formulated as
a registration task which can be considered as a variant of
the iterative closest point algorithm. Temporal camera–lidar
calibration using a hardware system based on LED display
and photo diode is performed in [24]. The approach in [17],
[25] is similar to ours as it uses B-splines for continuous-
time representation. Camera-IMU spatiotemporal calibration
relies on estimator that (i) represents system’s motion as a
single continuous-time trajectory, (ii) incorporates raw IMU
measurements and (iii) minimizes projection error of detected
checkerboard corners with a camera. In addition, method from
[17] can include lidar in the calibration if environment has
enough planar surfaces.

In this paper, we focus on the target tracking-based spa-
tiotemporal calibration relying on continuous-time represen-
tation using Gaussian processes (GPs). Leveraging GPs en-
ables a theoretically grounded batch state estimation and
interpolation, while it has been a well recognized tool in
machine learning [26] both for regression and classification
problems, and have been proposed for a variety of robotics
challenges as well [27]. For example, in [28], [29] mobile
robot localization was a motivation for an efficient batch state
estimation using GP regression, in [30] GPs have been used for
efficient motion planning, being especially valuable in high-
dimensional configuration spaces, while in [31] they were used
for tracking of extended objects. Common alternative to GP
regression are B-splines, often used for their computational
efficiency. However, recent development of the GP regression
[29] enabled comparable efficiency, while GPs provide several
advantages. They are configured using a standard state esti-
mation framework, i.e. by choosing a physical motion model
and tuning process and measurement noise. On the other
hand, B-splines require tuning the polynomial degree and the
spacing between the knots, which can be a non-trivial task
[32]. Furthermore, unlike B-splines, GPs estimate trajectory
covariance.

The advantages of the proposed calibration method are (i)
joint spatiotemporal calibration based on efficient on-manifold
optimization, (ii) theoretically grounded batch state estimation
and interpolation, based on the theory of GPs, which enables
both the time delay and clock drift estimation, (iii) graph-based
extension enabling multisensor calibration (iv) computational
efficiency, thanks to the exactly sparse GP priors resulting with
O(N) complexity with respect to the number of measure-
ments. Furthermore, the GP interpolation provides an exact
temporal registration between the sensors which is necessary
for the extrinsic calibration. We evaluate the proposed method
in extensive simulation and real-world experiments with five
different multisensor setups and compare the method to state-
of-the-art. Note that the proposed method requires only that
sensors can track position of the same moving target. Thus, we
can use variety of different targets, while specific knowledge
about the target can be used in the preprocessing step, e.g.
target size for monocular camera scale recovery. Furthermore,
the paper is complemented by an open-source ROS toolbox

Calirad implementing the proposed method and a C++ library
ESGPR implementing the GP regression.

The rest of the paper is organized as follows. Section II
formulates the problem, provides theoretical insights on the
used exactly sparse GP regression and elaborates the proposed
multisensor spatiotemporal calibration method. Section III
shows the results of the method on the simulated data where
ground truth calibration is available and compares it to a state-
of-the-art ego-motion based method. Experimental results with
four different multisensor setups, combined with discussion on
implementation details, are given in Section IV. At the end,
Section V concludes the paper.

II. PROPOSED CALIBRATION METHOD

In this section, we formulate the spatiotemporal calibration
problem, present necessary theoretical insights and describe
individual steps of the proposed method. The novel calibra-
tion method can be separated in two consecutive steps: (i)
representing the trajectories of moving targets captured by
each sensor with a separate GP and (ii) joint spatiotemporal
calibration based on GP interpolation and efficient on-manifold
optimization. Furthermore, method can be seamlessly extended
to graph representation enabling multisensor calibration. Given
that, in Sec. II-A, we first formulate our problem and then
present the necessary background on GPs in Sec. II-B The
following Sec. II-C describes the proposed on-manifold pair-
wise calibration, while Sec. II-D introduces adjustments for
seamless multisensor calibration.

A. Problem formulation

The goal of our method is to enable extrinsic and temporal
calibration of heterogeneous exteroceptive sensors, e.g., cam-
eras, lidars, radars, sonars etc. The method relies on tracking
the calibration target whose 3D position can be determined by
all sensors. To formalize the approach, we start with defining
a target reference frame Ft, described by the target’s position
sp(k) and orientation sR(k) at discrete time instants. When
target reference frames between sensors do not align (e.g.
different sensor modalities measure different points on the
target), target orientation from one of the sensors and known
target configuration are used to express the positions in a
unified target reference frame. After this step, we continue to
use only target positions because some sensors cannot estimate
the target orientation, e.g. the radar. In addition, it also allows
us to use a linear motion model yielding faster GP regression;
thus for each sensor, the GP regression takes in sp(k) and
outputs continuous-time target trajectories sx(t). The method
itself is not limited to any target design as it abstracts the
sensor readings with the estimated trajectories using GPs.

One of the advantages of our method is that it does not
require motion of the sensor system. By relying on target
motion, we can perform highly dynamic motions and obtain
informative data for precise temporal calibration regardless
of the system. While hand-held device can rely on motion-
based methods for temporal calibration, sensor systems such
as vehicles can greatly benefit from this approach. However,
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we point out that our method is not limited to static sensor
systems, i.e., we can either move the sensor platform or the
target itself. Lastly, to achieve accurate temporal calibration
it is crucial to avoid any source of clock jitter. Clock jitter
can be avoided by using local sensors’ clocks even though
clock drift might be present. If the clock drift is ignored,
time delay becomes non-stationary and system performance
degrades over time. Thus, our temporal calibration approach
is extended to estimate clock drift together with the time delay.
By relying solely on the sensor measurements, our method is
not affected by the clock jitter.

B. GP Trajectory Representation

The proposed method is based on the GP regression ap-
proach to target trajectory estimation, leveraging the work in
[27]–[29]. It enables an efficient continuous-time trajectory
estimation based on discrete-time position measurements, i.e.,
we are able to query the state at any time of interest. Thus,
continuous-time GP representation enables elegant temporal
correspondence registration between asynchronous sensors
with different frame rates. In this section, we give a brief
overview of the GP regression necessary for our method, while
we refer the reader to [27] for more details.

We consider systems with a continuous-time GP model prior

x(t) ∼ GP(x̌(t), P̌ (t, t′)), (1)

and a discrete-time, linear measurement model:

yk(t) = Ckxk(tk) + nk, (2)

where x(t) is the state, x̌(t) is the mean function, P̌ (t, t′)
is the covariance function, yk are the measurements, nk ∼
N (0,Rk) is Gaussian measurement noise, and Ck is the
measurement model matrix. For now, we assume that the state
is queried at the measurement times, and we will describe
querying at other times in (13) and (14). Following the
approach presented in [27], the Gaussian posterior evaluates
to

p(x|y) = N
(

(P̌
−1

+ CTR−1C)−1(P̌
−1

x̌ + CTR−1y)︸ ︷︷ ︸
x̂, posterior mean

,

(P̌
−1

+ CTR−1C)−1
)

︸ ︷︷ ︸
P̂ , posterior covariance

. (3)

After rearranging the posterior mean expression, a linear
system for stacked vector of posterior states x̂ is obtained

(P̌
−1

+ CTR−1C)x̂ = (P̌
−1

x̌ + CTR−1y), (4)

where P̌ , C, and R are batch matrices defined as
P̌ = [P̌ (ti, tj)]ij , C = diag(C0, . . . ,CN ), and R =
diag(R0, . . . ,RN ), while x̌ and y are stacked vectors of prior
states at measurement times and actual sensor measurements,
x̌ = [x̌0, . . . , x̌N ]T and y = [y0, . . . ,yN ]T , with N being
the number of measurements. In general, time complexity
for solving (4), as currently presented, is O(N3) [29]. To
improve the computational efficiency, a special class of GP

priors is introduced, whose sparsely structured matrices can
be exploited.

The special class of GP priors is based on the following
linear time-varying stochastic differential equation (LTV-SDE)

ẋ(t) = F (t)x(t) + v(t) + L(t)w(t), (5)

where F and L are system matrices, v is a known control
input, and w(t) is generated by a white noise process. The
white noise process is itself a GP with zero mean value

w(t) ∼ GP(0,Qcδ(t− t′)), (6)

where Qc is a power spectral density matrix.
The mean and the covariance of the GP are generated from

the solution of the LTV-SDE given in (5)

x̌(t) = Φ(t, t0)x̌0 +

∫ t

t0

Φ(t, s)v(s) ds, (7)

P̌ (t, t′) = Φ(t, t0)P̌ 0Φ(t′, t0)T+∫ min(t,t′)

t0
Φ(t, s)L(s)QcL(s)TΦ(t′, s)T ds, (8)

where x̌0 and P̌ 0 are the initial mean and covariance of the
first state, and Φ(t, s) is the state transition matrix [28].

Due to the Markov property of the LTV-SDE in (5), the
inverse kernel matrix P̌

−1
of the prior, which is required

for solving the linear system in (4), is exactly sparse block
tridiagonal [28]:

P̌
−1

= F−TQ−1F−1, (9)

where

F−1 =


1 0 ... 0 0

−Φ(t1, t0) 1 ... 0 0

0 −Φ(t2, t1)
. . .

...
...

...
...

. . . 1 0
0 0 ... −Φ(tN , tN−1) 1


(10)

and
Q−1 = diag(P̌

−1

0 ,Q−1
0,1, ...,Q

−1
N−1,N ) (11)

with

Qa,b =

∫ tb

ta

Φ(tb, s)L(s)QcL(s)TΦ(tb, s)
T ds. (12)

This kernel allows for computationally efficient, structure-
exploiting inference with O(N) complexity. This is the main
advantage of the proposed exactly sparse GP priors based on
a LTV-SDE in (5).

As we previously stated, the key benefit of using GPs for the
continuous-time target trajectory estimation is the possibility
to query the state x̂(τ) at any time of interest τ , and not
only at measurement times. For multisensor calibration, this
proves to be extremely useful, since many sensors operate
at different frequencies; thus, the GP approach enables us to
temporally align the measurements. If the prior proposed in
(7) is used, GP interpolation can be performed efficiently due
to the aforementioned Markovian property of the LTV-SDE
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in (5). State x̂(τ) at τ ∈ [ti, ti+1] is a function of only its
neighboring states [29],

x̂(τ) = x̌(τ) + Λ(τ)(x̂i − x̌i) + Ψ(τ)(x̂i+1 − x̌i+1), (13)

Λ(τ) = Φ(τ, ti)−Ψ(τ)Φ(ti+1, ti), (14)

Ψ(τ) = Qi,τΦ(ti+1, τ)TQ−1
i,i+1, (15)

where Qa,b is given in (12). The fact that any state x̌(τ) can
be computed in O(1) complexity can be exploited for efficient
matching of trajectories of a target detected by multiple
sensors.

For the calibration purposes, measurements from individual
sensors are used to create separate GPs, where s ∈ S
represents a particular sensor. As we will see in the Sec. II-C,
temporal calibration requires velocity estimates in the analyt-
ical Jacobians. While the simplest applicable motion model is
the constant velocity (CV) model, we opt for the constant
acceleration (CA) model. From our experience, CV model
cannot capture the necessary maneuvering dynamics of the
target and provides slightly lower precision. However, it can
be applied if further decrease in computation time is needed.
The model for the sensor s trajectory sx(t) ∈ R9×1 consists
of position sp(t) ∈ R3×1, velocity sv(t) ∈ R3×1 and
acceleration sa(t) ∈ R3×1:

sx(t) =

sp(t)
sv(t)
sa(t)

 ∼ GP(sx̌(t), sP̌ (t, t′)). (16)

To employ the CA motion prior, the LTV-SDE matrices in (5)
have the following form

F (t) =

0 1 0
0 0 1
0 0 0

 ,L(t) =

0
0
1

 ,C(t) =

1
0
0

T ,
(17)

while the matrices Φ(t, s) and Qa,b are defined as

Φ(t, s) =

1 (t− s)1 (t−s)2
2 1

0 1 (t− s)1
0 0 1

 , (18)

Qa,b =

∆t5

20 Qc
∆t4

8 Qc
∆t3

6 Qc
∆t4

8 Qc
∆t3

3 Qc
∆t2

2 Qc
∆t3

6 Qc
∆t2

2 Qc ∆tQc

 , (19)

with ∆t = tb−ta. We would also like to emphasize that using
motion prior with proper covariances can help mitigate the
effects of occasional outliers which can occur in the context
of the sensor calibration.

C. Joint On-Manifold Optimization

Let’s consider a sensor setup consisting of two sensors.
Once a GP target trajectory for each of them is estimated,
we proceed to joint spatiotemporal calibration. Our goal is to
find temporal and extrinsic parameters between the sensors
which best align the target trajectories in terms of their
positions. This task can be treated as an iterative closest
point (ICP) problem with known point correspondence, but

t

︸ ︷︷ ︸
t̂d

f tk
it̃k

fp(t)

ip(t)

Fig. 1. Continuous-time trajectory representation using Gaussian processes
provides an elegant temporal registration of asynchronous measurements.
Illustration shows the time delay estimation by aligning two target trajectories,
fp(t) and ip(t). States of the fixed sensor at measurement times (triangles)
and states at interpolated times (circle) are used to generate correspondences
(blue and red pairs).

unknown temporal correspondence. We propose an iterative
least-square solver that leverages previous work on efficient
on-manifold optimization for ICP presented by Grisetti et al.
[33]. By relying on continuous-time trajectory estimates using
the GPs, we are able to extend the solver to estimate temporal
calibration between the sensors as well.

We start by defining one sensor as fixed (label f ) whose
states are evaluated at its respective measurement time in-
stances f tk, k ∈ (1, N). The other sensor we define as the
interpolated one (label i), because we interpolate its states
at each optimization step using (13)-(15) at corresponding
time instances based on the current temporal parameters.
Figure 1 illustrates temporal correspondence registration and
target position trajectories observed by a fixed and an interpo-
lated sensor, labeled fp(t) and ip(t), respectively. It is worth
noting that in the case of different sensor frame rates, the
slower sensor should be chosen as the fixed one to reduce
interpolation errors [34] and computational costs.

To derive our method, we start by defining the optimization
problem as a search for extrinsic and temporal calibration
parameters defined on the manifold that is a direct prod-
uct of the SE(3) and R2 Lie groups, representing extrinsic
and temporal calibration parameters, respectively, i.e., X ∈
SE(3) × R2 = M. Given that, we write our state X as the
following composite matrix (all other elements are zero)

X =

{[
f
iR

f
it

0 1

]
×
[
1 td
0 1

]
×
[
1 kd
0 1

]}
∈ R8×8, (20)

where f
iR, fit, td and kd are the rotation matrix, the trans-

lation vector, the time delay and the clock drift coefficient,
respectively. At each step of the iterative optimization, using
the current estimate of td and kd, we obtain corresponding
timestamps using:

f tk = (1 + kd)
itk + td. (21)

We note that when clock drift estimation is unnecessary, e.g.
sensors use a central clock, we simply drop out the terms
related to kd. To follow the standard maximum likelihood
estimation (MLE) framework [33], we treat the fixed sensor
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position estimates obtained by the GP as measurements cor-
rupted by the Gaussian noise

zk = fp
(
f tk
)

+ νk, νk ∼ N (0,Ω−1
k ), (22)

where Ωk ∈ R3×3 defines the inverse of the position covari-
ance matrix.

On the other hand, positions of the interpolated sensor ip(t)
are non-stationary since they are interpolated at each iteration
of the optimization process. Thus, we treat them as a part of
the observation model hk(X) :M→ R3:

hk(X) = f
iR ·

ip

(
f tk − td
1 + kd

)
+ f
it. (23)

To find the optimal solution X∗ given all the measurements,
the MLE approach suggests to minimize the following expres-
sion:

X∗ = arg min
X

F (X), (24)

F (X) =

N∑
k=1

eTk (X)Ωkek(X), (25)

ek(X) = hk(X)− zk. (26)

To solve this optimization problem we follow the on-manifold
Gauss-Newton (GN) optimization framework [35]. Our solver
builds upon the formulation of the ICP problem [33] with
additional estimation of temporal calibration parameters. Com-
putationally the most demanding part is the state interpolation
that occurs at each iteration. Therefore, our goal is to minimize
the number of cost function evaluations by obtaining the pa-
rameter perturbations on the manifold and by using analytical
Jacobians that will be derived in the sequel.

As previously stated, the manifoldM on which we perform
the optimization is a direct product of the SE(3) and R2

Lie groups, thus the perturbation vector ∆x ∈ R8 is the
corresponding Lie algebra element:

∆x = Log(X) = [∆r ∆t ∆td ∆kd]. (27)

In order to avoid cluttering the section with additional mathe-
matical notation, we do not introduce here explicitly Lie group
operators. We would just like to point out that our perturbation
vector is actually the Euclidean vector of the space isomorphic
to the Lie algebra of SE(3) × R2, while the corresponding
matrix exponential and logarithm that map the vector space
elements to the group, and vice-versa, are denoted as Exp
and Log. We believe that this lack of mathematical accuracy
does not impact the correctness, but brings clarity in presenting
the current paper method. For more details on Lie groups, Lie
algebra, and pertaining operators we refer the reader to [?],
[36].

To perform the on-manifold GN optimization note that our
perturbed observation model is as follows (we use perturbation
on the left in this paper)

hk(Exp(∆x) ·X) = ∆R f
iR ·

ip
(
t̃k
)

+ ∆R f
it + ∆t, (28)

t̃k =
f tk − (td + ∆td)

1 + kd + ∆kd
. (29)

We start with an initial guess of the state X0 ∈ M and use
it as the current estimate X̂ ∈M to evaluate the errors (26).
Next, we find the optimal state perturbation ∆x by linearizing
the error term (26) at Exp(∆x)·X̂ using the first-order Taylor
approximation

ek(Exp(∆x)·X̂) ≈ ek(X̂)+
∂ek(Exp(∆x) · X̂)

∂∆x

∣∣∣∣∣
∆x=0︸ ︷︷ ︸

Jk

∆x.

(30)
After substituting the linearized error (30) into (25) to obtain
a linearized criterion, we get the following quadratic form

F (Exp(∆x) · X̂) ≈ ∆xTH∆x + 2bT∆x

+

N∑
k=1

eTk (X̂)Ωkek(X̂),
(31)

where

H =

N∑
k=1

J>k ΩkJk, b =
N∑
k=1

J>k Ωkek. (32)

The optimal perturbation vector at each iteration is found by
equating the derivative of (31) with zero

∆x = −H−1b. (33)

We then update the current state estimate using X̂ ←
Exp(∆x) · X̂ and the process is repeated until convergence.

As the final ingredient, we derive the analytical (left)
Jacobians as they are essential for reducing the computational
complexity. We start by separating the complete k-th Jacobian
to subparts for convenience

Jk = [J∆r
k J∆t

k J∆td
k J∆kd

k ]. (34)

We approximate the perturbation rotation matrix by ∆R =
I + [∆r]× [36], where the [·]× operator constructs a skew-
symmetric matrix from the vector. Leveraging this approxi-
mation and neglecting the constant terms which disappear via
derivation, we obtain the following Jacobians

J∆t
k =

∂(∆t)

∂(∆t)

∣∣∣∣
∆x=0

= I, (35)

J∆r
k =

∂(∆R · ip′k)

∂(∆r)

∣∣∣∣
∆x=0

=
[
−ip′k

]
× , (36)

ip′k = f
iR ·

ip
(
t̃k
)

+ f
it. (37)

And regarding the temporal calibration parameters, Jacobians
evaluate to the following expressions

J∆td
k =

∂(∆R · fiR · ip
(
t̃k
)
)

∂(∆td)

∣∣∣∣
∆x=0

= f
iR ·

iv
(
t̃k
)
· −1

1 + kd
,

(38)

J∆kd
k =

∂(∆R · fiR · ip
(
t̃k
)
)

∂(∆kd)

∣∣∣∣
∆x=0

= f
iR·

iv
(
t̃k
)
· td −

f tk
(1 + kd)2

,

(39)
where iv

(
t̃k
)

is the interpolated sensor’s velocity estimate
of the target at time instant t̃k. As shown in the Sec. II-B,
it is readily available since the used GPs provide smooth
continuous-time velocity estimates.
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Finally, it is crucial to keep the number of correspondences
constant to ensure convergence; otherwise, the cost function
loses its smoothness, because adding or removing a corre-
spondence inevitably introduces a discontinuity and prevents
convergence. This situation occurs when the method seeks
correspondence between the fixed sensor and the interpolated
state of the second sensor which is outside of the trajectory
lifetime. Even though the GP framework allows for extrapo-
lation into the future or the past, thus enabling the necessary
correspondences, we avoid this approach as it does not convey
any additional information and could possibly degrade the
calibration results. Instead, we set a lower and upper bound
on the time delay. Given that, we align two GP trajectories
and discard fixed measurements at the beginning and the end
in accordance to the bounds, thus ensuring constant number
of correspondences.

D. Multisensor extension

The proposed method can be easily modified and applied
in multisensor scenarios (with more than two sensors) by
relying on extrinsic graph-based calibration [37] and extending
it to perform temporal calibration as well. For the multisensor
case, in addition to previously defined fixed and interpolated
sensors, we also need to declare one sensor as the global
reference sensor, labeled r, since fixed and interpolated sensors
now relate a pairwise relation within the graph. Then, we
search for extrinsic and temporal parameters relating sensors
(2, . . . , S) to the reference sensor. When there are only 2
sensors, the reference and fixed sensor are the same, while
here we choose one fixed sensor for each edge of the graph,
preferably the one with the lower frame rate. To start, we need
to modify the state vector from (20) to

X = {X1 ×X2 × . . .×XS} ∈ R8·S×8·S . (40)

Each node in the graph represents sensor’s extrinsic and
temporal parameters, while edges represent correspondences
between sensors. Due to multiple edges in a general graph,
we need to redefine the observation model for the multisensor
approach as follows

zf,ik = νf,ik , (41)

νf,ik = N (0,Ω−1
f,i,k), (42)

hf,ik (X) = hik(X)− hfk(X), (43)

hfk(X) = r
fR · fp(f tik) + r

f t, (44)

hik(X) = r
iR · ip(it̃fk) + r

i t, (45)

it̃fk =
(1 + kd,f ) · f tik + td,f − td,i

1 + kd,i
. (46)

In the multisensor approach, the target positions from all
sensors depend on the estimated temporal parameters (except
for the reference sensor); thus, target positions from both
sensors within a graph edge are part of the observation model
hf,ik (X). To avoid interpolation of both sensor trajectories,
we have decided to keep time instances f tik fixed, where
they represent measurement times of the fixed sensor that

have correspondence with the interpolated sensor. As such,
hfk(X) depends only on the extrinsic parameters of the fixed
sensor. On the other hand, we combine temporal parameters
of both the fixed and the interpolated sensor into hik(X) by
first transforming f tik into the reference clock and than into
the interpolated sensors clock via (46).

Following these extensions, we need to modify the objective
function (25) to sum over all edges defined with set E

F (X) =
∑

(f,i)∈E

Nf,i∑
k=1

(ef,ik (X))TΩke
f,i
k (X), (47)

ef,ik (X) = hf,ik (X)− zf,ik . (48)

While the remaining expressions are trivially adjusted and
omitted here for brevity, we state the Jacobians with respect to
the temporal parameters, since they are slightly more complex
due to the novel formulation (46)

J
∆td,f
k = r

iR · iv
(
it̃fk

)
· 1

1 + kd,i
, (49)

J
∆td,i
k = r

iR · iv
(
it̃fk

)
· −1

1 + kd,i
, (50)

J
∆kd,f
k = r

iR · iv
(
it̃fk

)
· f tk ·

f tik
1 + kd,i

, (51)

J
∆kd,i
k = r

iR · iv
(
it̃fk

)
· f tk ·

(1 + kd,f ) · f tik + td,f − td,i
−(1 + kd,i)2

.

(52)

III. SIMULATION RESULTS

Sensor calibration is a task for which ground truth is
virtually impossible to obtain in real world experiments. Given
that, we use synthetic datasets with known ground truth to
assess accuracy of our method and compare it to a state-of-
the-art motion-based method [38].

A. Method analysis

To analyze the results of our method in a controlled environ-
ment, we simulated an experiment which would mimic a real
world experiment. We simulated 1000 sinusoidal trajectories
that lasted for 60 s (20 s in each direction) with an amplitude of
1 m and sine period of 4 s. All the sensors operate at 20 Hz and
we add white noise with standard deviation of σp = 0.01 m
to position measurements.

To test the graph based multisensor calibration, we
simulated a graph of four sensors with edges E =(
(1, 2), (1, 3), (2, 3), (3, 4)

)
. The first sensor is chosen as the

reference, while we set various relative transformations and
delays between different sensors up to 400 ms, 40 cm and
70◦ in Euler angles. Table I shows mean absolute errors
between the estimated parameters and the ground truth for
five sensor pairs of interest. Rotational error ∆f

iR is defined
as angle in the angle-axis representation of the rotation ma-
trix f

iR
T f
iRgt, while translational error ∆fti is the standard

Euclidean norm of the difference fti − fti,gt. From Table I
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TABLE I
MEAN ABSOLUTE ERROR OVER GRAPH

f – i ∆f
i R [◦] ∆f ti [mm] |∆td,f,i| [ms]

1 – 2 0.065 1.81 0.30
1 – 3 0.066 1.76 0.30
1 – 4 0.065 1.73 0.29
2 – 3 0.066 1.75 0.30
3 – 4 0.065 1.73 0.29

we can see that error is essentially equal for all the sen-
sor combinations, whether they share a connection or not.
Furthermore, we also obtained very similar results by using
a pairwise approach which, however, does not preserve the
global consistency. To assess the consistency error present
with the pairwise approach, we have "closed the loop" by
combining the following pairwise transformations: 1–2, 2–3,
3–1. The resulting mean/maximum errors after the loop closing
were 0.007◦/0.02◦, 0.07 mm/0.23 mm and 0.06 ms/0.27 ms for
rotation, translation and time delay, respectively. Note that for
the graph based approach these errors are zero.

To gain further insights about the influence of the experi-
mental setup and modeling, we compared CV and CA motion
models for the GP, tested different dynamics of the moving
target, added clock drift estimation when it did not exist, and
varied the measurement noise. We noted that using the simpler
CV motion model resulted with an increase in the mean
absolute time delay error from 0.30 ms to 0.44 ms, showing
that using a more complex CA motion model is justified. When
we doubled the sine frequency, it lowered the mean absolute
time delay error from 0.30 ms to 0.15 ms, indicating that the
precision of our method is mostly limited by the experiment
design. Furthermore, when we included the clock drift in the
optimization, we noticed an increase of the mean absolute time
delay error from 0.30 ms to 0.62 ms. This effect is most likely
due to overfitting and suggest that clock drift should not be
estimated if it does not exist, e.g., if sensors use a central
clock. Finally, we examined the influence of the measurement
error by simulating severe noise σp = 0.05 m. It increased the
mean absolute errors to ∆f

i R = 0.37◦, ∆f ti = 10.2 mm and
|∆td,f,i| = 2.1 ms.

B. Comparison with an ego-motion based method

In this section, we compared our method to a state-of-the-
art ego-motion based method named SRRG by Della Corte
et al. [38]. We generated synthetic data using a Bernoulli-
Lemniscate 3D trajectory simulator provided with the accom-
panying SRRG toolbox. The generated trajectory resembled
a figure eight and excited all rotational axes leading to full
observabilty for the ego-motion based methods. We simulated
1000 1-minute long datasets with two sensors operating at
20Hz (T = 50 ms) and we added white noise with standard
deviation of σp = 0.01 m to positions of the sensors and
σθ = 0.1◦ to each Euler angle representing the sensor
orientations. Ground truth time delay was set to 0 ms, trans-
lation to 1t2 = [0.2 0.2 0.2]T m and rotation expressed as
quaternion to 1

2q = [0.85 0.30 0.30 0.30]. Besides odometry

constraints, the SRRG method allows addition of a generic
ICP constraints using raw sensor data to improve results of
the extrinsic calibration. We tested both approaches and refer
to them as SRRG-ODO and SRRG-ICP. To enable SRRG-
ICP, the dataset was expanded with 300 points (added white
noise with standard deviation of σp = 0.01 m) that were
observed throughout the whole trajectory. The input to our
GP method were only positions of sensor reference frame
origins. To obtain continuous-time trajectories, the SRRG-
ODO approach uses linear interpolation for translation and
spherical linear interpolation for rotation. On the other hand,
there is no continuous time representation for the SRRG-
ICP constraint, but they select two closest measurements
between sensors based on current time delay estimate. Thus,
the SRRG-ICP constraint mostly helps correct the extrin-
sic calibration which can be unobservable for odometry-
based constraints (e.g. planar motion). We briefly note that
all three methods produced unbiased estimates of extrinsic
parameters. They produced mean absolute translational and
rotational errors eGP = (0.2 cm, 0.42◦), eSRRG−ODO =
(2.4 cm, 0.31◦) and eSRRG−ICP = (0.8 cm, 0.24◦). Fur-
thermore, we tested the SRRG-ICP method with disabled
temporal calibration using the ground truth delay. It reduced
the errors to eSRRG−ICP = (0.1 cm, 0.02◦) showing the
influence of incorrect temporal calibration described in the
sequel.

In this scenario, our method produced an accurate un-
biased estimate of the time delay with normal distribution
td = N (0.0004, 0.54) ms. On the other hand, SRRG-ODO
and SRRG-ICP provided estimates of the time delay spread
across the interval (−54, 2.7) ms, with two modes, one at −T
and one at 0 ms. Furthermore, lowering the sensor frequency
to 10 Hz caused the stronger separation of the modes with
most of the estimates being spread ±8 ms around the −T and
0 ms modes. After thorough testing of the SRRG method, we
concluded that the lack of smoothness in the cost function
might cause incorrect convergence. Namely, the method relies
on numerical calculation of the Jacobian with respect to the
time delay, where parameter εtime is used to differentiate the
cost function. While the SRRG toolbox suggests setting it to
εtime = T , we noticed that with εtime < T/2, the method
completely diverges. Thus, it is not trivial to choose a proper
εtime when sensors have significantly different frequencies as
in our multisensor real-world experiment that will be presented
in the sequel.

IV. EXPERIMENTAL RESULTS

To validate the proposed calibration method, we conducted
thorough real-world experiments on five different sensor se-
tups:
• Hardware synchronized stereo camera – testing the

method on a setup with accurate ground truth
• Camera and motion capture system – testing heteroge-

neous sensors operating at significantly different frame
rates with separate clocks exhibiting substantial drift

• 3D lidar and camera – calibration accounting for the
lidar’s sweeping data acquisition process
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Fig. 2. Illustration of the used multisensor system with corresponding sensor
coordinate systems.

• Radar and camera – calibration tackling automotive
radar’s lack of 3D position measurement.

• Camera, 3D lidar and motion capture system – testing
the multisensor graph-based calibration.

In all the experiments we used a single known target for
convenience, even though the method does not rely on a
special target. We covered a planar triangular cardboard with
motion capture markers and an AprilTag [39], a square fiducial
marker of side length a = 16 cm that removed camera’s
scale ambiguity, thus enabling 3D target position estimation.
Additionally, to get reliable radar detections, we have adopted
the target design from [40] and placed a metal corner reflector
behind the cardboard. Figure 2 shows the used multisensor
system that was mounted on the Husky A200 mobile robot
platform. Intrinsic camera calibration was obtained using the
Kalibr toolbox [41], while we used factory calibration for
the remaining sensors. In the end, we analyze the proposed
method’s computational complexity and influence of the hy-
perparameters.

A. Hardware synchronized stereo camera

In this experiment, we used two PointGrey BFLY-U3-
23S6M-C global shutter cameras with Kowa C-Mount 6 mm
f/1.8-16 1" HC fixed lens with 96.8◦ × 79.4◦ field of view.
The cameras were synchronized by an external trigger with the
sampling rate set to 0.05 s. Note that this setup does not require
temporal calibration; however, we leverage this fact to have
an experiment with a ground truth time delay (td = 0 s). We
have recorded 40 one minute long sequences and compared the
performance of the proposed approach to two recent temporal
calibration frameworks based on target tracking [7], [15]. The
first method [7], correctly estimated the zero time delay for
all the 40 recorded sequence, but the approach is limited to
estimating the time delay as a multiple of the sampling rate,
thus requiring all the sensors to operate at equal sampling
rates. Given that, although accurate, due to this limitation the
method is not considered further in the paper.

The second method [15], is capable of temporal calibration
of asynchronous sensors in the continuous-time domain by
relying on linear interpolation of the position norm thus

−110

−50
0

50

110

0

10

20

td [ms]

lin-s

lin-f

gp-f

Fig. 3. Histograms compare the estimated time delays using our method (gp-
f ) applied on the whole dataset, to the linear interpolation method [15], where
lin-f uses the whole dataset, while lin-s uses sequences with target moving
along the optical axes, thus not introducing a bias in the estimation. Ground
truth time delay was td = 0ms.

mitigating the limitation of the previous method. In Fig. 3 we
compare calibration results of our method and that of linear
interpolation. Note that we applied the linear interpolation
method first on the whole 40 minute long sequence (lin-f ), and
second on a subset (lin-s) for reasons that will be explained
in the sequel. Specifically, we can see that linear interpolation
exhibits a bias when applied on the full sequence, and larger
variance for the subset of the sequence, in comparison to
our method (gp-f ). The explanation lies in the fact that this
method relies on the position norm for the dimensionality
reduction, which can cause error with the displacements of
sensors. Concretely, in the first third of the dataset, the target
was moved along the optical axis of both cameras, and the
linear interpolation method provided estimated time delay with
fitted Gaussian distribution t̂d ∼ N (6.03 , 50.99) ms1. In the
remaining parts of the dataset, motion was not aligned with the
optical axis and the position norm measurements differed for
the two cameras due to large enough displacement, and when
applied on the whole dataset the method resulted with the fol-
lowing fitted Gaussian distribution t̂d ∼ N (32.20 , 33.16) ms.
Therefore, we believe that the position norm is not the most
appropriate dimensionality reduction technique as it is not
frame-invariant. As can be seen from Fig. 3 our method was
able to produce an unbiased time delay estimate with the fitted
Gaussian distribution t̂d ∼ N (0.11, 0.39) ms. Furthermore, all
the estimates were within the range (−0.82, 0.78) ms, which
corresponds to a ±1.6% range of the sampling interval. We can
see that the proposed method supports temporal calibration of
asynchronous sensors in the continuous-time domain, and that
it significantly outperforms the linear interpolation method.

To further gain insight in the proposed temporal calibration
method, we examined the cost function defined by (25) (which
is smooth compared to linear interpolation). Figure 4a shows
the value of the cost function with respect to the time delay
using estimated extrinsics at the interval td ∈ (−7, 7) s, while
Fig. 4b provides a closer look around the global optimum,

1In the paper, we represent the Gaussian distribution with the mean and
the standard deviation, i.e. N (µ, σ).
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(a) Wide preview illustrating local minima and global minimum.
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(b) Closer preview around the ground truth.

Fig. 4. Cost function of the proposed calibration method for 5 different stereo camera experiments. Wide preview shows that initialization within ±3s interval
is sufficient for convergence to the global minimum, while the closer preview around the ground truth time delay confirms cost function smoothness.

td ∈ (−7, 7) ms. For clarity, only 5 out of 40 experiments
are shown, while the remaining ones follow the same pattern.
From Fig. 4a, we can see that the cost function has local
minima, while the global minimum always resides near the
ground truth. Since our method uses an iterative solver, proper
initialization is necessary. By initializing the time delay to a
starting point in the interval (−3, 3) s the method would be
able to converge to the global minimum for all the experiments
(see Fig 5a). The local minima are tightly coupled with the
executed target motion and can be further spread from the
global minimum by avoiding repetitive motion or increasing
its period. Figure 4b shows that our cost function is smooth
with a minimum around the ground truth value, thus enabling
stable and accurate results using an iterative optimization.

Furthermore, we use this experiment to evaluate the SRRG
method on real data due to available target orientation es-
timates and time delay ground truth. Pose of the camera
with respect to the target was used for the SRRG–ODO
method, while the target position in the camera reference
frames was added as a single point input for the SRRG–ICP
extension. Both methods suffered the same convergence issue
described in Sec. III-B with estimated time delay distributions
t̂d ∼ N (−14.42, 24.32) ms and t̂d ∼ N (−16.20, 23.20) ms
for SRRG–ODO and SRRG–ICP, respectively. Considering the
extrinsic calibration, the SRRG–ODO method was not able to
estimate translation parameters due to the lack of rotational
target movement. This can be seen by comparing estimated
means of the translation parameters, e.g. the 1t2,x = 56.9 cm,
1t2,x = 53.5 cm and 1t2,x = 0.9 cm for GP, SRRG-ICP and
SRRG–ODO, respectively. Furthermore, we noticed that our
method had significantly greater extrinsic parameter repeata-
bility, as shown with Table II. We attribute this result to wrong
temporal calibration, confirming the conclusion by Zuñiga-
Noël et al. [42] on the SRRG method.

To conclude, with this experiment we confirmed that the
proposed method provides an unbiased estimate of the time
delay which is precise up to a fraction of the sampling interval,
and we also showed convergence to a global solution from a
wide set of initial values.

TABLE II
STANDARD DEVIATION OF THE ESTIMATED EXTRINSIC CALIBRATION

PARAMETERS

GP SRRG–ODO SRRG–ICP
1t2,x [m] 2.79× 10−3 6.30× 10−2 2.12× 10−2

1t2,y [m] 4.79× 10−3 3.89× 10−2 2.22× 10−2

1t2,z [m] 2.11× 10−3 3.66× 10−2 5.50× 10−3

1
2θz [ ◦ ] 1.52× 10−1 4.21× 10−1 4.23× 10−1

1
2θy [ ◦ ] 5.79× 10−2 6.55× 10−1 5.26× 10−1

1
2θx [ ◦ ] 3.88× 10−2 1.02 6.93× 10−1

B. Camera and Motion Capture System

In this experiment, we used a single PointGrey camera and
the OptiTrack motion capture system (MOCAP). MOCAP
provides 6D pose measurements at 120 Hz by processing
measurements on a dedicated computer and assigns local
timestamps using the computer’s clock. Poses are transmitted
over the wireless network to the central computer. The camera
provides images at 20 Hz and has an internal clock according
to which local timestamps are assigned. Images are transmitted
over USB to the central computer. Given that, this setup gives
us two options for handling data timestamps: (i) to use the
time-of-arrival of measurements at the central computer or
(ii) to use local timestamps provided by each sensor. The first
approach eliminates the timestamp drift caused by separate
local clocks, but suffers from the network jitter (since MOCAP
data is transferred over the wireless network). The second
approach is resilient to the jitter, but separate local clocks
introduce a timestamp drift. We analyzed both options in a 34
minute long experiment recording a moving calibration target.

For the time-of-arrival approach, the estimated time de-
lay results, between the MOCAP and camera measurements,
followed the Gaussian distribution t̂d ∼ N (17.14, 1.59) ms.
Note that the obtained mean value can be interpreted as the
average time delay due to network jitter and we noticed that
most of the deviations were in the ±2.9 ms range. However,
the time delay can differ significantly during the experiments,
because of the changing intensity of the network traffic or
other protocol induced stochastic effects. Notably, analysis of
the MOCAP time-of-arrival jitter showed that 2.7% of the
measurements fell in the range of (8.3, 418) ms, indicating
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that on some occasions, delay can be much greater than the
MOCAP sampling time. Given that, the jitter caused by the
network delay can act as a strong limiting factor for the
temporal calibration accuracy.

In the local timestamps approach, we used sensor internal
clocks, which eliminates the stochastic effects associated with
the communication over a wireless network. However, separate
local clocks introduce a drift in the time delay estimation
which has to be addressed. To estimate this drift, we compared
three approaches: (i) joint drift and delay estimation using
the proposed GP method on the full 34 minute sequence (gp-
f ); (ii) drift estimation on the full 34 minute sequence using
convex hull approach [43] (ch-f ), (iii) drift estimation using
only one minute subsets (gp-s/ch-s)2.

In the gp-f approach we performed a joint drift–delay
optimization using the proposed GP method on the full se-
quence. The estimated drift and delay were, k̂d = 49.1µs/s
and t̂d = 23 ms, respectively. In the ch-f approach, the
authors observe the temporal evolution of the clock skew, i.e.
difference between the arrival times and the local timestamps.
They estimate a lower convex hull where the slope of the
lower boundary represents the clock drift. With this approach
we can obtain each sensor clock drift with respect to the
central computer. However, since we are interested in the
relative drift, as was estimated in the gp-f approach, we report
the difference between the two line slopes. Thus the ch-f
approach resulted with an estimated relative drift of 49.3µs/s
(at this point, unlike gp-f, there is no time delay estimate).
To compare the accuracy of estimated drifts, we tested their
impact on the time delay estimation. The estimated drifts were
used to correct local timestamps, which was followed by the
proposed GP time delay estimation on individual one minute
intervals (30 in total). The ch-f approach resulted with time
delay estimates in the range (22.80, 23.56) ms with estimated
distribution t̂d ∼ N (23.22, 0.17) ms, while the gp-f approach
resulted with estimates in the range (22.79, 23.29) ms with
estimated distributionN (23.02, 0.12) ms. The results depicted
in the Fig. 5 show the estimated time delays throughout the
whole experiment for both the ch-f and gp-f approach. We
can notice that the drift estimate error by the ch-f approach
introduced a slope of 0.17µs/s in the time delay estimate,
whereas the gp-f approach correctly estimated the drift and
provided a consistent time delay estimate throughout the whole
34 minute experiment (the more horizontal line, the better:
resulting slope of the time delay estimate was −0.01µs/s).

With the gp-s and ch-s approaches, the goal was to test
if we can obtain accurate clock drift estimation with the
proposed method by relying just on one minute long sequences
(instead of 30 min long sequences). Furthermore, we also
wanted to see what are the requirements on the dataset to
produce a reliable drift estimate. Given that, we rearranged
the whole 34 min experiment by dividing it into 30 s intervals.
Afterwards, the 30 s intervals were paired so that the separation
between them was ∆t ∈ (0.5, 5, 15) min. We compared
the proposed GP framework approach (labeled gp-s) to the

2Waving a calibration target for a 34 minute stretch requires good stamina,
which is why gp-f is not a practical approach and serves as the ground truth.
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Fig. 5. Estimated time delay for each one minute interval over the whole
experiment for the camera and MOCAP temporal calibration. Time delays
were obtained from data with compensated drift using the ch-f and gp-f drift
estimates. Steeper slope of the ch-f method indicates larger error in the drift
estimate used for timestamp compensation.

convex hull approach (labeled ch-s). The results of the drift
estimation are shown in Fig. 6, illustrating drift estimate
uncertainty for different interval separations and methods.
The standard deviations of the drift estimates using the gp-
s approach were (87.74, 2.93, 0.70)µs/s, while ch-s approach
yielded (34.65, 3.61, 1.45)µs/s, for the ∆t ∈ (0.5, 5, 15) min
separation, respectively. It is clear that the case ∆t = 0.5 min
does not provide enough information to estimate the drift,
while extending the time separation between the intervals
yielded significantly better results, with gp-s outperforming
ch-s.

Finally, to validate the proposed method on MOCAP and
camera data sensor fusion, we conducted an experiment in
which we observed the reprojection error of the target position.
Namely, the target position centroid computed by MOCAP
is interpolated to the closest camera frame, using temporal
calibration parameters, and then projected in the image using
the estimated extrinsic calibration parameters, and compared
to the target image centroid. In the experiment3, the target
exhibited static and dynamic periods. From the experiment we
can see that during the dynamic periods, the reprojection error
rises significantly when using just the time-of-arrivals without
any delay compensation, yielding an average reprojection error
of 1.9 cm. When we compensated for the network jitter caused
time delay of 17.1 ms, that was obtained by the GP method, the
average reprojection error was reduced to 1.0 cm. Furthermore,
by using the local timestamps approach and GP, i.e., the gp-f
method, the average reprojection error was further reduced to
0.5 cm.

From all the aforementioned results, we can conclude that
using time-of-arrival strongly limits the accuracy of the tem-
poral calibration method, while it does provide an estimate of
the network delay. On the other hand, the local timestamps
approach provides a time delay estimate that is more accurate
by an order of magnitude, but requires drift estimation.

3The experiments are shown in the accompanying video available here:
https://youtu.be/vqTR6zMIKJs
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Fig. 6. Uncertainty of the drift estimates for pairs of 30 s intervals separated
by 0.5, 5 and 15 minutes. Ground truth (gp-f ) is illustrated by the horizontal
green dashed line. Interval separation of 0.5 min did not produce a reliable drift
estimate for both approaches. Longer separation is necessary and proposed
gp-s outperformed the ch-s (notice the difference in the y axis scale).

C. Radar and camera calibration

In this experiment, we used a single PointGrey camera and
a Delphi short range radar – a sensor combination commonly
applied in automotive applications for tracking of moving
targets, since radars are known to be robust to diverse weather
conditions and offer long range with wide field of view.
However, current radars have a substantial field-of-view in
the elevation, but no elevation angle measurements, which
makes the extrinsic calibration challenging [40]. Given that,
the inability to recover a 3D position of the target violates our
main assumption of the proposed calibration. In the sequel,
we describe how we adapt our method to tackle this scenario.
To the best of the authors knowledge, this is a first attempt of
temporal calibration involving an automotive radar sensor.

To address the lack of 3D position measurements in the
radar data, we propose a two-step approach. The first step, la-
beled gp-3d, neglects the 2D nature of the radar, and assigns a
fictive rpz = 0 position measurement to the radar data, i.e., we
assume that all the measurements have zero height, thus this
step does not require extrinsic calibration a priori. Then, the
second step, labeled gp-2d, builds upon the results of the gp-
3d calibration by projecting the 3D camera measurements onto
the 2D radar plane. The projected 2D camera measurements
are then used to generate a new 2D GP from which refine the
calibration. To verify the accuracy of the proposed method, we
conducted experiments consisting of 30 one minute intervals
with a moving calibration target. During the experiment, we
moved the target in the area where camera and radar field of
view overlap, while trying to avoid motions unobservable to
the radar (an example is given in the accompanying video).
Since quality of radar detection degrades in confined spaces,
these experiments were conducted in a large open hall.

The estimated time delay using the gp-3d step followed
the Gaussian distribution N (21.81, 1.23) ms, while the gp-
2d refinement step produces results with the distribution
N (21.89, 1.07) ms. The results show that the first step, even
though neglecting the 3D nature, was able to produce a good
time delay estimate without the prior knowledge of extrinsic
calibration parameters, while accounting for the 2D nature of

the radar produced results with slightly lower standard devia-
tion. Additionally, we note that in these experiments we used
arrival times, since using the local timestamps did not provide
better results. Probable explanation is that the radar’s accuracy
of position measurements introduces more uncertainty than
does the communication channel jitter. Thus, the estimated
time delay shows that the relative latency between the sensors
was approximately 22 ms.

Since radar can introduce a higher rate of outliers than other
sensors analyzed in the paper, we also studied their effect on
the calibration (Fig. 7). Radar outliers mostly occurred when
the azimuth measurements were around 0◦ and are probably
caused by limited radar resolution and internal data process-
ing. Figure 7 depicts radar measurements, camera and radar
GP posterior means in the y-direction after the calibration.
Figure 7a shows the case with low outlier rate, where the GP
posterior mean was not affected by corrupted measurements
due to relying on the motion prior. On the other hand, Fig. 7b
illustrates the effect of high outlier rate, where we can notice
strong corruption of the radar posterior mean. Given that,
during calibration we analyze the deviations of measurements
from the estimated posterior and discard those above a certain
threshold; thereafter, the GP regression on the radar data is
recomputed.

With this experiment, we showed that our method can be
easily adapted to a sensor calibration scenario which violates
the main assumption: availability of the target’s 3D position
measurements. Furthermore, we examined the influence of the
outliers and showed how we can leverage the GP motion prior
to mitigate their influence.

D. 3D lidar and camera calibration

In this experiment, we used a single PointGrey camera and
a 3D lidar Velodyne 32E. While the camera, with the global
shutter imaging sensor, takes images at discrete time instances,
the lidar head sweeps the environment in a continuous manner.
Conventionally, despite the continuous nature of the lidar
motion, a single sweep of data is most commonly packed
in one point cloud, with the timestamp corresponding to the
beginning or the end of the sweep. However, to obtain accurate
temporal calibration with a moving target, we need to be able
to interpolate timestamps between the beginning and end of
the sweep. Therefore, continuous-time representations such as
GP-s are necessary.

Since our method requires an exact 3D position of a target,
we used an isosceles triangle (side lengths (38, 54, 54) cm)
which enables unambiguous target localization in a sparse
point cloud [44]. Furthermore, we have developed a real-
time triangle detection and tracking algorithm which is also
available as part of the provided toolbox. Briefly, once the
algorithm segments planes in the point cloud, it fits the lines
to the edges of the planes. Intersections of the lines are then
used as vertex hypotheses which are compared to the triangle
model vertices. The solution is accepted if the error does not
surpass a predefined threshold.

To address lidar’s continuous sweep, we compensate target’s
timestamps by the azimuth angle of the target detection. We
form the point cloud by using a fixed cut angle θcut = π, i.e.,
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Fig. 7. The effect of outliers on GP regression showing raw radar measurements, camera and radar GP mean posteriors (with applied extrinsic calibration)
in y direction. Deviation between the radar posterior and measurements is color coded. Low outlier rate is virtually ignored by the posterior due to relying
on the GP motion prior and as such could be used directly for temporal calibration. On the other hand, high outlier rate introduces significant discrepancy
between camera and radar posterior (radar posterior is “pulled down” by the outliers), thus a measurement validation process needs to be introduced where
large deviations from the mean are ignored and the mean is recomputed.

all new data is packed into a point cloud when the driver
receives a new measurement at the azimuth angle θcut, at
which point the latest timestamp is assigned to the point
cloud. We assume a constant rotational velocity of the lidar
with frequency 10 Hz and subtract the point cloud timestamps
proportionally to the angular distance between the cut angle
and the current target azimuth angle. Finally, we used the
local timestamps, which introduced a slight drift; thus, using
the ch-f approach as in Sec. IV-B, we estimated the relative
drift of 1.33µs/s and compensated the timestamps accordingly.
The results of the time delay estimation were in the range
of ±0.85 ms around the mean value with estimated Gaussian
distribution N (78.32, 0.42) ms. The results are comparable
to the calibration of synchronized cameras in the Sec. IV-A,
despite the challenging factors such as sensor asynchronicity,
lidar’s continuous sweep and twice lower sampling rate. Thus,
we can assert that the method is precise up to the fraction of
the fastest sensor.

To evaluate calibration qualitatively, we conducted a data
fusion experiment and tested it on a validation dataset not
used in calibration. We overlaid camera images with the seg-
mented triangle points from the point clouds. To synchronize
the images and the point clouds, we compensated for the
estimated time delay and chose the point cloud closest in
time to the current image. Finally, to align the point cloud
with the image, we translate the point cloud points using the
linear interpolation based on the difference vector of the two
consecutive triangle positions estimated by the tracker that
surround the current image. A preview of the results is shown
in the Fig. 8, while the accompanying video also shows this
experiment. From Fig. 8 and video we can notice excellent per-
formance of the triangle tracker and accuracy of temporal and
extrinsic calibration. Static periods corroborate the accuracy
of the extrinsic calibration, as they show consistent overlap
of the triangle in the image and segmented lidar points, as
illustrated in Fig. 8a. Dynamic periods also exhibit proper
alignment, corroborating temporal calibration accuracy, and in

Figs. 8b and 8c we illustrate typical worst cases that appear
during vertical and sideways motions, respectively. In addition,
Fig. 8d shows that the developed tracker works properly even
when the triangle is only partially visible by the 3D lidar.

This experiment showed that the proposed method is well-
suited for handling sensors with continuous motion affecting
data acquisition and combining them with discrete acquisition
sensors, like cameras. Furthermore, the data fusion experiment
showed a robust performance of the developed target tracker
and further confirmed the calibration results.

E. Extrinsic calibration

In this section, we provide extrinsic calibration results for
the four previously described experiments. Table III shows
estimated standard deviations of the individual extrinsic cali-
bration parameters obtained by analyzing the results of one-
minute intervals4. Uneven uncertainty among different sensor
combinations is primarily caused by the involved sensor
precision, e.g., MOCAP and camera calibration produces an
order of magnitude lower uncertainty due to the high precision
of the MOCAP system. Furthermore, some variations in the
uncertainty of the extrinsic parameters within each sensor
combination is most likely caused by an uneven excitation of
different calibration directions in the datasets. Finally, extrinsic
calibration of the radar and the camera resulted with a 6D
transform whose translation in the z axis, and Euler angles
about the y and x axis, had higher variance than the other
counterparts. This effect is caused by the lack of the radar’s
elevation measurements and the interested reader is directed
to [40] for a detailed analysis.

F. Multisensor experiment

To test the graph based approach presented in Sec. II-D,
we evaluated it on the lidar-camera-MOCAP setup where all
three sensors shared the same field of view, i.e., we had a

4Indices 1 and 2 denote first and second sensor for a specific experiment.
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(a) Static period (b) Vertical motion (c) Sideways motion (d) Partially visible

Fig. 8. Images showing 3D lidar and camera sensor fusion results after proposed spatiotemporal calibration. Static case confirms the validity of extrinsic
calibration results, while the dynamic cases illustrate worst case motion introduced error. Detections are present even when the triangle is partially visible.

TABLE III
STANDARD DEVIATION OF THE ESTIMATED EXTRINSIC CALIBRATION

PARAMETERS

Stereo camera MOCAP–Camera 3D Lidar–Camera Radar–Camera
1t2,x [m] 2.79× 10−3 4.00× 10−4 6.41× 10−4 9.26× 10−3

1t2,y [m] 4.79× 10−3 2.43× 10−4 2.06× 10−3 1.94× 10−2

1t2,z [m] 2.11× 10−3 6.24× 10−4 3.64× 10−3 5.44× 10−2

1
2θz [ ◦ ] 1.52× 10−1 9.75× 10−3 6.26× 10−2 2.40× 10−1

1
2θy [ ◦ ] 5.79× 10−2 3.22× 10−2 1.65× 10−1 7.88× 10−1

1
2θx [ ◦ ] 3.88× 10−2 1.67× 10−2 8.74× 10−2 6.84× 10−1

fully connected three-node graph. Here we focused on the time
delay estimation and thus we preprocessed the timestamps to
remove the drift using the gp-f approach, while we analyzed
results using 30 1-minute intervals. We did not notice any
significant differences between the pairwise and graph-based
results in terms of delay precision. Namely, standard devi-
ations of time delay estimates for the joint/pairwise sensor
combinations were: lidar–camera 0.41/0.42 ms; lidar–MOCAP
0.37/0.38 ms; and camera–MOCAP 0.12/0.12 ms. However,
we did notice a significant impact on the consistency of the
solution when using the pairwise approach, which is inherently
solved using the graph-based approach. Therefore, we used the
same consistency test as in Sec. III-A by closing the loop in
the graph. The experiment yielded: (i) average rotational error
of 0.03◦ with the maximum of 0.45◦; (ii) average translational
error of 0.5 mm with the maximum of 5.9 mm and (iii) average
absolute time delay error of 0.1 ms with the maximum of
1.2 ms. Note again, that for the graph based approach these
errors are zero.

G. Implementation details

Computation performance of the proposed method was
tested on 40 datasets from the Sec. IV-A problem of the
stereo pair spatiotemporal calibration. The calibration starts
with two separate GP regressions for each sensor that are
completely decoupled and performed in separate threads. On
average, one minute intervals consisted of 1138 measurements
requiring tGP = 49 ms for a complete GP regression. After
the GP regression, we performed the GN optimization to
obtain extrinsic and temporal calibration parameters. For the
stereo pair problem, which had hardware ensured zero time

delay, when the optimization was initialized at td = 0.5 s,
f
iR = I3×3 and f

it = [0 0 0]T m, it took around 6 iterations
to converge, which translated to the average optimization time
of topt = 41 ms. Finally, the total time required for the delay
estimation was on average ttotal = tGP + topt = 90 ms.5 In
general, we handle missing measurements and varying sample
times; however, under the assumption of constant sample rates
and absence of missing measurements, further improvements
on GP regression performance are possible through offline
construction of the required batch matrices. It is also important
to point out that the algorithm time complexity is O(n), which
makes the method well scalable, especially for sensors with
high frame rates or longer experiments.

Considering the effect of the process noise Qc on the
performance of the method, we found that it is fairly resilient.
In scenarios with higher outlier rate (e.g. radar experiment),
an optimal Qc can be found which mitigates the influence
of the outliers. However, in scenarios with low or zero outlier
rate (e.g. simulations or the camera and MOCAP experiment),
choosing any reasonable Qc that does not suppress the mea-
surements in favor of the motion model leads to the same
results.

V. CONCLUSION

In this paper we have proposed a spatiotemporal multisensor
calibration method based on Gaussian processes moving target
tracking. The proposed method relies on the target positions
in joint spatiotemporal calibration, while it can also estimate
clock drift and the time delay. Method efficiency is achieved
by relying on exactly sparse GP regression for target trajectory
representation and on-manifold optimization framework. Fur-
thermore, the method is applicable to any multisensor setup
with arbitrary number of sensors, as long as sensors can
estimate the 3D position of a moving target.

We have validated the proposed calibration method in
extensive simulation and real-world experiments on four mul-
tisensor setups. The first setup consisted of two externally

5Machine used for testing had i7-6700HQ CPU at 2.6 GHz × 8 and 16 GB
of 2133 MHz DDR4 RAM
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triggered cameras, demonstrating the validity of our method
on vision sensors with a readily available ground truth. The
second setup consisted of a single camera and a motion capture
system, demonstrating the proposed method on a heteroge-
neous sensor setup with significant difference in frame rates
and communication over a wireless network. The third setup
analyzed a common automotive heterogeneous sensor fusion
setup of a single camera and radar – a challenging calibration
setup due to radar’s lack of elevation measurement. The fourth
setup incorporated a rotating 3D lidar with a single camera,
demonstrating the validity of the method on the fusion of a
continuous sweeping sensor and a discrete-time acquisition
sensor. Where applicable, we compared the proposed method
to the state-of-the-art approaches and the results showed that
the proposed method outperformed other approaches and that
it reliably estimated the time delay up to a fraction of the
sampling rate of the faster sensor. In the end, we discussed
the computational complexity of the proposed method and the
influence of hyperparameters, mainly the process noise used
in the Gaussian process regression.

The subject of future research and the potential of the
proposed method is to serve as the base for online calibra-
tion of autonomous vehicle or robot heterogeneous sensors
by tracking multiple moving targets in the environment –
an information that is potentially already available in most
autonomous systems navigating in dynamic environments.
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Juraj Peršić received his B.Sc. degree in 2014. and
M.Sc. degree in 2016., both in electrical engineering
from Faculty of Electrical Engineering and Comput-
ing (FER), University of Zagreb, Croatia. He has
been employed as a researcher on the SafeTRAM
project since September 2016 at FER. At the same
time he became a Ph.D. student at FER under
mentorship of prof. dr. sc. Ivan Petrović. His main
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Luka Petrović received his B.Sc. and M.Sc. De-
grees in electrical engineering from the University
of Zagreb, Faculty of Electrical Engineering and
Computing in 2015 and 2017, respectively. Dur-
ing his graduate studies, he was awarded with the
Rector’s Award (2016) for a practical application
in the field of robotics and the Bronze Plaque
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