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Abstract—Riemannian manifolds are attracting much interest
in various technical disciplines, since generated data can often
be naturally represented as points on a Riemannian manifold.
Due to the non-Euclidean geometry of such manifolds, usual
Euclidean methods yield inferior results, thus motivating de-
velopment of tools adapted or specially tailored to the true
underlying geometry. In this letter we propose a method for
tracking multiple targets residing on smooth manifolds via
probabilistic data association. By using tools of differential
geometry, such as exponential and logarithmic mapping along
with the parallel transport, we extend the Euclidean multi-target
tracking techniques based on probabilistic data association to
systems constrained to a Riemannian manifold. The performance
of the proposed method was extensively tested in experiments
simulating multi-target tracking on unit hyperspheres, where we
compared our approach to the von Mises-Fisher and the Kalman
filters in the embedding space that projects the estimated state
back to the manifold. Obtained results show that the proposed
method outperforms the competitive trackers in the optimal
sub-pattern assignment metric for all the tested hypersphere
dimensions. Although our use case geometry is that of a unit
hypersphere, our approach is by no means limited to it and can be
applied to any Riemannian manifold with closed-form expressions
for exponential/logarithmic maps and parallel transport along the
geodesic curve. The paper code is publicly availableﬂ

Index Terms—Riemannian geometry, multi-target tracking,
probabilistic data association

I. INTRODUCTION

ANY challenging problems arise in multi-target track-

ing (MTT) compared to classical estimation such as
missing detections, false alarm, uncertainty in measurement
origin and many others [1]. Most of the state-of-the-art MTT
algorithms can be divided in three groups with respect to how
they treat the unknown measurement origin (data association):
(i) probabilistic data association (PDA), (ii) multiple hypothe-
sis tracking (MHT) and (iii) random finite sets (RFS) tracking.
PDA and its variants [2[|-[4] calculate posterior association
probabilities between tracks and received detections and then
update each target with the weighted sum of detections. MHT
methods [5], [6]] handle the detection origin uncertainty by
creating a tree of possible association hypotheses. The tree is
created recursively while the unlikely hypotheses are discarded
to reduce the computational load. RFS tracking methods [7]-
[10] are paradigm that does not solve the data assignment
problem directly but rather formulate the tracking as filtering
on random finite sets [[11]. Regardless of the MTT approach,
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the underlying geometry of the tracked targets state does
not have to necessarily reside on the Euclidean space. For
example, some sensor examples report angle- or direction-
only measurements [12], [13], moving objects might evolve
on constrained spaces [14], [15], and in visual tracking the
appearance of an object is captured by deep features that can
be described with Riemannian geometry [16], [17].

Non-Euclidean spaces have recently been addressed in many
robotic and computer vision applications [18], [19]. Rigid
body pose is naturally an element of the Lie group, hence state-
of-the-art simultaneous localisation and mapping (SLAM) and
pose estimation algorithms use this fact to form the underlying
state space for estimation [20]-[24]. Other examples of using
non-Euclidean geometry can be found in state estimation and
tracking on directional only data, which can be accomplished
by utilizing directional distributions, such as the von Mises-
Fisher (vMF) or the Bingham distribution [25]-[29]]. In visual
tracking, object appearance is very useful in the detection-to-
target association procedure which can be represented using
hand-crafted features [30]-[32] or deep neural network fea-
tures [17], [33]-[36]. Both directional only data and covari-
ance features lie on smooth metric spaces called Riemannian
manifolds (RMs) [19]]. Visual tracking applications can use
the geometry of those spaces to find the optimal assignment
between detected and tracked objects [37], but they often
ignore the dynamics of objects and the uncertainty of deep
features. Nonetheless, filtering methods involving RM valued
systems have been introduced in [15], [16]], [38]-[43]].

In this letter, we propose a method for tracking multiple
targets on smooth manifolds via probabilistic data associa-
tion. Our main contribution lies in extending the principle
of probabilistic data association to multitarget tracking on
Riemannian manifolds. To achieve this we leverage the RM
unscented Kalman filter [40]] and alter the update step to enable
a probabilistically weighted update with a varying number
of measurements. To ensure semi-positive definiteness of the
posterior covariance, we apply the Joseph form of the Kalman
filter update [44]. Using the novel equations, we implement
the RM joint integrated probabilistic data association (JIPDA)
tracker. We conducted extensive experiments simulating MTT
on unit hyperspheres ranging from the circle to 15-dimensional
unit sphere. We compared our approach to the vMF JIPDA
[29] and the Kalman filter in the embedding space that projects
the estimated state back to the manifold. As performance met-
ric we use the optimal sub-pattern assignment metric (OSPA).
Although our use case is that of a unit hypersphere, our
approach is by no means limited to it and can be applied to any
RM with closed-form expressions for exponential/logarithmic
maps and parallel transport along the geodesic curve.
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Fig. 1: Exp and Log maps of a Riemannian manifold M (left) and parallel transport of tangent vectors along -~y (right).

II. RIEMANNIAN GEOMETRY

A Riemannian manifold M is a differentiable d-dimensional
topological space that is equipped with the positive definite
metric tensor g — the Riemann metric tensor that depends
smoothly on the point p € M. At each point p, an RM can
be locally approximated by the tangent space 1,M equipped
with the scalar product (u,v), = uTg(p) v, that allows us to
measure curves and angles between curves on a manifold [45]].
The distance between two points x,y € M denoted by d(z, y)
induced by the metric tensor is the length of the shortest curve
between x and y. A smooth curve (¢) that minimizes this
length is called a geodesic and it satisfies Vi (;)§(t) = 0, where
Vv represents the covariant derivative [45]]. Exponential map
Exp, : T, M — M brings the tangent vector v € T, M to
the point y € M such that the x and y are connected by
the geodesic in direction u of the length ||u||,. The inverse
mapping, if it exists, is called logarithmic mapping and is
denoted as Log, : M — T, M. To compare tangent vectors
at different points of M, they must be parallelly transported
to the same tangent space. However, this operation depends
on the path through which the vector is transported. Parallel
transport of a tangent vector u along the curve 7(t) is given by
the expression V)u(t) = 0. Parallel transport of a vector u
along a shortest geodesic between points x,y € M is denoted
by P,_,, (u). These notions are illustrated in Fig.

A. Statistics on Riemannian Manifolds

The mean of N points, {z1, ..., z,} € M, can be calculated
as the Kércher mean by minimizing the quadratic error [[19]

N
1 2
p = argmin — E d=(z, x;). (1)

i=1

When points are close enough, a unique global solution called
the Fréchet mean can be computed using the Gauss-Newton
optimisation. The covariance matrix of points {z1,..., 2, } in
the tangent space 7, M is ¥ = + Zf\; Log,, (z;)Log,, (x:)T.

To generalise a Gaussian distribution to RMs, it is defined
in the tangent space at its mean value [|19]
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where dps(p,x) =
alised Mahalanobis distance.

B. Sphere as a manifold

The proposed approach can be applied to any RM but in
this letter, as a case study, we take the n-dimensional sphere.
An n-dimensional sphere of radius p, S} = {z € R+ -
272 = p?}, is an RM with the metric tensor induced by the
ambient Euclidean space R™"*! [46]. Thus, the scalar product
of tangent vectors u and v at point x € S is (u,v), =
uTv, i.e. the metric tensor, is the identity matrix. The distance
between z,y € S can be computed as [46]

T
d(x,y) = parccos % 3)
defining great circles as the geodesic lines. The exponential
map of the tangent vector w at point z is defined as [19]]

Exp,(u) = z cos Il + Lp sin M, 4)
p o u p

while the logarithmic map amount to the following expression
pry—a'yx

y — 2Ty x|
Parallel transport of a tangent vector u from point x to point
y along a geodesic is finally given by [19]
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 Log,(y)"u
d?(z,y)
In the implementation, we have used two local coordinate

charts (stereographic projections) to cover the whole sphere
— details are relegated to the supplementary materials.

Py (u) = [Log, (y) + Log,(z)] . (6)

III. PDA ON RIEMANNIAN MANIFOLDS

To solve the problem of unknown measurement to track
correspondence in MTT, it is often advantageous to use prob-
abilistic data association rather than making hard decisions on
measurements’ origin — an example is the JIPDA filter [4]. To
avoid considering all possible joint association events between
targets and detections a measurement gating procedure is often
used to reduce computational complexity.

Let X* = {214, ..., Zn, k}> Where ny is the number of
targets at time k, denote the set of all targets at time k
and similarly let Z% = {z1k,..., 2m, x} be the set of all
detections at time k where my, is the number of detections.
In the letter we denote the predicted and updated state and
covariance with the ~ and * superscript, respectively. Since
we are dealing with the tracking on RMss, which are, in
general, nonlinear spaces, vector space Kalman filter cannot be
applied. An example of 5 targets evolving on S? can be seen
in Fig. [2] Nonetheless, generalisations of the Kalman filter to



Fig. 2: MTT on the sphere. Ground truth trajectories (left) and the Riemannian manifold JIPDA tracking result (right).

RM have been introduced [40]], [41]. In this letter, we utilize
the unscented Kalman filter (UKF) variant [40]]; however, the
following holds as well for the extended version. To derive
the JIPDA on RMs (RM-JIPDA), several new building block
are needed, which we present in the sequel.

A. RM-JIPDA prediction
Given the state i;:kfl and covariance P "o—1 of j-th target
at time k£ — 1, sigma vectors on the tangent space T+ M
Fo
are obtained by the following formulae K

vy = VAT L, i=1,..d
U;:;Cil — —\/d-'—/\'Li,j, 7, = 1,...,d

where L; ; is the i-th column of the Cholesky factor of P;Lk_l.
Sigma points are then obtained by projecting sigma vectors to
M using the exponential map [40]]

0 — At
Tjk=1 = Tjk-1°

71(1};&71)’ 72d

Sigma points are then mapped by the nonlinear system tranis-
tion model f: M — M, aik = f(”;,k—l) and the predicted
state is obtained by calculating (I)) of weighted sigma points.
Predicted covariance of the j-th target is then computed as

J‘;’,k‘fl = EXp£+ Z == 1,
.k

2d .
P‘]Tk = Z w; Uji',k U;’,k + Q’ (7)
i=0
where () is the covariance matrix of the process noise and w;
are weights of sigma points where v} ; = Log, -, (0% 1)

B. RM-JIPDA correction
Let h: M — N be the observation model, where N is the
observation space. First we calculate the new set 5§,k given
), and Py which are then mapped to the N as 6i k=
h(o ) and the predicted measurement £ is the Karcher
mean of sigma points 77 ,.The 1nnovat10n covariance matrix
and the cross-covariance are [40]
2d

Sik = wish,si, +R (8)
=0
d T
Cik =D wi vy 85 s ©)
=0

where R is the covariance matrix of the measurement noise,
s, = Logs, (0} ,) and v}, = Lng;k(&;',k)'

To reduce the complexity of the data association step,
measurements are gated using the generalized y? test in the
tangent space of the prediction 7,- N

gk
(10)

Lng;k (Zi,k)T S]_,]i Lng;k (zik) < X?z(pg)’

where X2 is the quantile function of n-dimensional x? distri-
bution, and the p, is the gating probability. Given that the
detection z;j is validated, the likelihood of z;j given the
predicted detection Z; 5 is gi; = p, 'Nam(zik | 25k Sjk)s
where p, is gating probability.

Update equations of a Riemannian UKF [40] take only one
measurement, however, in JIPDA there can be any number
of measurements assigned to a single target. To extend those
equations for the soft assignment we first define the innovation
of i-th measurement to j-th target as v; j , = Loggm (2ik)-
Total weighted innovation of all measurements for j-th target,
given posterior association probabilities 3; ;. [17], [47], is

mi
Vjk = E Bijk Vi,jik-

(11)
i=1
Target j is then updated by following equation [40]]
iy = Bxpy- (Kjkvin). (12)

where K, = Cj i S;,i is the Kalman gain for the j-th target.

Next, we extend the covariance update equation of the
Riemannian UKF [40] P = P* K S;, kK . First,
we apply the Joseph form of UKF update [44] to ensure that
the posterior covariance is positive semi-definite matrix

P;sz P WAL+ KR RK]y, (13)

where A;; stands for I — K C}:kijk_l, and R is the
covariance matrix of the measurement noise defined at 73, , V.
Equation (13)) is exact when there is exactly one measurement,
however, when there are multiple measurements, then the pos-
terior covariance depends also on the number of measurements
and their spread around the Z; [2]]. This dependency can be
expressed using the matrix T = Y37 B; ;v ;v —vjv].
Hence, final update equation is obtained by addlng the term
K;x T; K]} to

Pl=Ajx P Al + Kjx RK] ) + K Ty Ky (14)



TABLE I: Average OSPA error for 100 Monte Carlo runs for different dimensions of the unit hypersphere state space.

81 52 83 S4 55 810 315
RM-JIPDA 0.3494 0.1182 0.0547 0.0371 0.0343 0.0277 0.0312
vMF-JIPDA  0.3730 0.1544 0.0629 0.0429 0.0411 0.0395 0.0454
Proj-KF-JIPDA  0.4994 0.4683 0.3884 0.2982 0.2454 0.0929 0.9997
081 T To measure the performance we used the OSPA metric [48]
-=-=- RM JIPDA

ProjKF JIPDA

>

OSPA error [m]
=
'S

0.2 1)

t[s]
Fig. 3: Average OSPA error through time for the S? case

Finally, all of the previous calculations are conducted in the
tangent space of Z,, and therefore, Pf ,, must be parallelly
transported to the updated state i:;fk [40].

IV. RESULTS

We evaluated our method in simulations and compared it
to the JIPDA trackers that use the von Mises-Fisher (vMF)
filter [29] and the Kalman filter whose state was projected
back to the manifold after each update step (ProjKF). We
conducted 100 Monte Carlo runs of a scenario where 5 objects
evolved on a unit hypersphere of dimensions ranging from
S! to 8. An example of such a scenario for S? is shown
in Fig. 2| The simulation settings were as follows. Sampling
time was AT = 0.05s with single simulation duration of 250
steps. Ground truth trajectories were generated using discrete
constant velocity model generalized to the RMs

T = Eprl?k—l(AT. kal),

Vg = P$k71—>$k (Uk—l + Aka) >

5)
(16)

with Gaussian noise acceleration w ~ A (- | 0,0.9% I). Start-
ing positions and velocities of objects were chosen randomly.
Detections were generated by adding measurement noise in
the tangent space v ~ N (-]0,0.002 1) with the detection
probability pg = 0.98 and clutter rate of 0.5 false detections
per step. Our JIPDA parameters were as follows: target sur-
vival probability ps = 0.99, p; = 0.98, gating probability
pg = 0.95, and false alarm rate A = 0.5. New targets were
given initial existence probability of w. = 0.65, confirmed
when w, > 0.85, and terminated when w, < 0.003.

Parameters of the vMF filter were: diffusion concentration
kg = 20, observation concentration x, = 8000 and initial
state concentration kg = 100. Process noise covariance of
the ProjKF was Q = 0.22 I3 with the measurement noise
covariance R = 0.0022 I3. Target motion and observation
models were ' = H = I3 and the initial covariance was
Py = 0.0042 I3. Identity models f(z) = z and h(z) = =
were also used in the UKF for RMs, where the process noise
was random Gaussian variable in the tangent space of the state
with Q = 0.22 I, and R = 0.0022 I. Initial covariance of the
targets’ states was set to Py = 0.0042 I,.

which penalizes both location and cardinality errors. We set
cut-off distance of OSPA metric to ¢ = 1 and the order p = 2.
In Fig. [2] we can see an instance of the RM-JIPDA results
for S? together with the ground truth trajectories. There were
no identity switches, but we can notice some spikes caused
by spurious measurements and the drift of yellow and purple
targets when they pass by each other. In Fig. 3| we show
the average OSPA error through time for this experiment.
As we can see, our method outperformed the vMF-JIPDA by
23.45 % while the ProjKF approach was barely applicable. The
poor results of the the ProjKF approach are due to the error
introduced by correcting the state in ambient Euclidean space
and then projecting it back to the manifold — this error also
inflates the covariance resulting in a higher number of identity
switches and lost tracks. The results for other dimensions are
shown in Table [I] from which we can see that the proposed
method again outperformed both the vVMF-JIPDA and ProjKF-
JIPDA trackers. Furthermore, we have also conducted an
experiment where measurements are generated on Euclidean
space R3 as an example where hidden state and measurement
do not lie on the same space. In that case the RM-JIPDA
and vMF-JIPDA scored 0.1447 and 0.1464, respectively, and
both outperformed Proj-KF by a large margin. One of the
advantages of proposed method compared to vMF JIPDA is
that it can better capture the uncertainty of targets, that is, the
state of vVMF can only be distributed isotropically around the
mean. Also, there are many numerical challenges concerning
vMF JIPDA, especially in higher dimensional systems [29].

V. CONCLUSION

In this letter we have proposed an MTT algorithm for targets
that are constrained to curved subspaces of the Euclidean space
called Riemannian manifolds. We extended the RM-UKF [40]
in order to implement the probabilistic data association in a
soft association approach to MTT required by the JIPDA filter.
To validate the performance of our method, we conducted
extensive experiments simulating MTT on a range of unit
hyperspheres and compared our approach to the vMF- and
ProjKF-JIPDA. We calculated the OSPA metric from 100
Monte Carlo simulation, and the results showed that the
proposed method outperformed the competitive filters across
all the hypersphere dimensions.
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