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Abstract— With the substantial growth of logistics businesses
the need for larger and more automated warehouses increases,
thus giving rise to fully robotized shop-floors with mobile robots
in charge of transporting and distributing goods. However, even
in fully automatized warehouse systems the need for human
intervention frequently arises, whether because of maintenance
or because of fulfilling specific orders, thus bringing mobile
robots and humans ever closer in an integrated warehouse
environment. In order to ensure smooth and efficient operation
of such a warehouse, paths of both robots and humans need to
be carefully planned; however, due to the possibility of humans
deviating from the assigned path, this becomes an even more
challenging task. Given that, the supervising system should be
able to recognize human intentions and its alternative paths in
real-time. In this paper, we propose a framework for human
deviation detection and intention recognition which outputs the
most probable paths of the humans workers and the planner
that acts accordingly by replanning for robots to move out of
the human’s path. Experimental results demonstrate that the
proposed framework increases total number of deliveries, espe-
cially human deliveries, and reduces human-robot encounters.

I. INTRODUCTION

With the considerable global expansion of e-commerce
in the past years a strong demand for efficient automation
in the warehouse industry is following suit. Given that,
rapid processing of incoming orders and nonstop warehouse
operation have become a paramount topic for companies
having automated warehouses at the core of their businesses,
e.g. Amazon and Swisslog, as well as for third-party logistics
companies. Even though complete warehouse automation
with a considerable number of mobile robotic platforms is at
the heart of such systems, the need for human intervention
and collaboration with the robots still exists; indeed, it can
even be beneficial for productivity and competitiveness [1]. A
simulated example of a typical automated flexible warehouse
can be seen in Fig. 1. It consists of large storage racks,
packed with goods that are carried by a fleet of mobile robots
to designated picking stations, where humans pick goods,
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Fig. 1: The developed flexible warehouse simulator. Mobile
robots (pink) do a predefined set of tasks such as carrying
storage racks (green) while moving on the ground nodes
(red). Three human workers move freely between the storage
racks picking goods at specified warehouse locations or
doing maintenance work.

pack them, and forward further for shipment. Furthermore,
humans can enter the warehouse shopfloor and move freely
among the robots. However, human workers do not always
behave in a deterministic and prescribed fashion which can
affect the carefully orchestrated coordination devised by the
robot fleet management system (FMS); hence, to adapt to
such perturbations, a human intention recognition (HIR)
system is needed.

The task of the FMS, which carries out all the robot
planning tasks, is to find trajectories between a pair of
nodes in the warehouse while taking into account the plans
of other robots. The problem of trajectory planning and
motion coordination is a well studied problem [2], and
since then many approaches have been introduced often
based on the classical single-robot planning approaches [3]–
[6] that provide completeness or even optimality; however,
they are not practical for warehouse environments due to
their large computational complexity. To counter this issue,
another category of sub-optimal planning algorithms has
been introduced [7]–[11], among which the context aware
route planning (CARP) algorithm, in particular, provides
good quality solutions in a warehouse environment with



low path computation time and is easily extendable with
warehouse specific constraints. The main drawback of the
original algorithm was its reliance on the ordering of the
agents to be planned. Several heuristic approaches have been
introduced in [12] to improve the properties of the algorithm.
However, in the warehouse environment the tasks are not
known all at the same time but are given sequentially.

As stated earlier, to ensure warehouse operation efficiency,
FMS needs to be complemented with HIR, thus effectively
enabling a human aware planner (HAP). Given that, when a
deviation has happened, HAP should be notified and assisted
with the estimation of paths the human might follow – this
becomes possible if worker intentions are accurately recog-
nized. In the current paper, our approach to HIR relies on
the Bayesian theory of mind [13], where authors introduced
a model for estimating student desires to eat at a particular
food-truck by observing their motion. Examples of models
using Markov decision processes can be found in [14], where
authors proposed a framework for estimating pedestrian in-
tention to cross the road, and in [15], where authors proposed
a gesture recognition framework for robot assisted coffee
serving. Learning based methods for trajectory estimation or
HIR using motion pattern learning have also been studied
in [16]; however, in [17] this approach was criticized where
authors emphasize that such techniques operate offline and
imply that at least one example of every possible motion
pattern is contained in the learning data set, which often does
not hold in practice. They propose using growing hidden
Markov models for predicting human motion, a problem
which we consider dual to the human intention estimation
in the warehouse domain. In [18] a thorough review is of
human intention recognition is given emphasizing also its
potential applications in decision making theory, and in [19]
authors give overview of human motion prediction methods.

In this paper we propose a robot fleet management system
endowed with human worker intention recognition. The HIR
module is based on the Bayesian theory of mind giving a
prediction of the human trajectory, should it deviate from the
assigned path, and the proposed system is capable of taking
into account the human deviations without the necessity to
cease the operations of all the robots during human presence
inside the warehouse. The HAP reacts by moving the robots
out of the human’s way or simply stopping the robots. Even
though we assume that robots are equipped with a safety sys-
tem, human aware planning can reduce the chance of robots
driving close to humans thus lowering the number of times
the safety system is triggered. In conjunction, this leads to
more efficient operation of the warehouse and hypothetically
less stress on the human workers (note that load carrying
robots can weigh up to 1000 kg). We have benchmarked the
proposed HIR framework with other methods and recorded
increase in number of human deliveries by 207%, increase
in total deliveries by 28% and reduction of human-robot
encounters by 91%.
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Fig. 2: Architecture of the proposed system. HIR and HAP
are implemented as separate threads of the FMS. While the
FMS is responsible for entire warehouse management, we
have highlighted only the data flow which is described in
the scope of this paper.

II. PROPOSED HUMAN AWARE ROBOT FLEET
MANAGEMENT SYSTEM

One of the main problems warehouse management cur-
rently faces is that most issues inside the warehouse
shopfloor, e.g., a robot malfunction or goods falling on the
floor storage racks, require human attention. Furthermore,
sometimes it is more efficient for a human worker to carry
out the picking of goods if their distribution in the warehouse
is too disparate. Given that, there are many times a human
intervention in the robotized warehouse is needed, and if
this is not carried out in a planner manner it can lead to
interruption of the whole warehouse operation, ultimately
exacerbating the issue we were trying to solve in the first
place.

The proposed system architecture is shown in Fig. 2.
FMS is in charge of planning paths for all the robots and
humans as well (agents in short). The HIR module serves
as part of the FMS with the task of assisting the HAP.
HIR has at its disposal information about the position of
all the agents in the warehouse, as well as planned paths of
human workers. While the robots are controlled by FMS and
always follow the paths given to them, human workers can
deviate from their paths for a number of reasons. Because
of that, supervising system can not assume that worker will
always follow path that the FMS gives to them. The job
of the HIR module is to detect human deviations from the
planned path and estimated the predicted trajectories, based
on which the HAP will produce an updated plan for all the
agents. To efficiently assist the HAP, HIR should ascertain
(i) if a worker deviated from the original path and (ii) where
that particular worker is going to. Given that, output of
the HIR module is a logical flag indicating if there is a
worker deviation, followed by a set of probable paths. The
HAP then reacts with the method described in Section II-
C. In the sequel, we describe each of the proposed system’s
components in details.

A. The warehouse simulator

The simulated warehouse shown in Fig. 1 is organized
into connected nodes and resembles faithfully the software



architecture used by an FMS of a true robotized warehouse
systems. Each node can either be occupied by a robot, storage
rack or a human. Unloaded robots can move across all
free nodes, while loaded robots cannot enter a node already
containing a storage rack. As incoming orders arrive, the
robot fleet management system coordinates all the robots so
that storage racks containing ordered goods are delivered to
picking stations, then returned to a free storage node (not
necessarily the same as the starting one), and the robots that
are idle are sent to the charging nodes. All this needs to
be carried out in an efficient manner ensuring continuous
operation of the whole warehouse. This planning task is quite
challenging since the number of robots can range from 50
to 800, and it gets an additionally layer of complexity by
having to account for human workers in the area. Note that
we assume that robots are equipped with a safety system
ensuring that the robots will stop if they come to a range that
is too close to the human worker. The multi-robot warehouse
simulator was originally presented in [20], while for the
current paper we have extended the simulator with the ability
to include human worker plan deviation.

B. Human intention recognition

1) Human Deviation Detection: Each worker that enters
the warehouse has a predefined path that consists of a
sequence of ground nodes shown in Fig. 1. We designate
the first node of the worker path as the current node, and
the second node of the path as the next node. Every time
the distance between the worker and the next node in the
path is less than r = 0.25m, that node becomes worker’s
current node and its successor in the path sequence becomes
worker’s next node, until the end of the path is reached.
Human beings usually do not walk in a perfect straight line
[21], but swing laterally while moving forward. Given that,
we allow deviation from the path defined by the allowed
deviation area that is described by an ellipse having focal
points in the current node and next node, while the major axis
is defined as the Euclidean norm between the focal points
increased by 2r. The allowed deviation area is shown in
Fig. 3 and the worker is considered to be deviating from
the path if it has been outside of the area for at least 4
consecutive cycles.

2) Human Path Prediction: If a worker is detected to be
deviating from its predefined path, it is necessary to estimate
its future path. In this section we propose a human path
prediction method relying on our recent result [22], where
we proposed a human intention estimation method based
on hidden Markov model (HMM) motion validation. We
describe it here briefly and direct the reader to the original
paper for details.

We assume that there is a finite number of possible goal
locations, which are usually in front of the storage racks of
interest. For current experiments, we selected four auxiliary
goals, each one in a different corner of the warehouse and
their locations are labeled with turquoise rectangles shown
in Fig. 1. It is important to emphasize that the worker is
not required to go to the predefined goals, but they do serve

Fig. 3: The allowed deviation area is depicted by a grey
ellipse defined by the current node and next node as focal
point (green). Once the worker enters the green circle sur-
rounding the next node, it becomes worker’s current node
and its successor in the path sequence becomes worker’s
next node. The example of human path which follows the
plan is given with blue color while the path deviating from
the plan is red.

as starting points for the proposed algorithm. Also, the last
node of the human’s path provided by the planner is also
considered a goal location.

Before the simulation starts, we calculate the distance be-
tween all the ground nodes using the D∗ algorithm [23] and
save it in a distance matrix F. In case of a robot blocking the
edge between two nodes during the experiment, we discard
that edge from the graph and recalculate the distance matrix
F. Because we use road nodes, the search space is reduced
significantly and the recalculation can be made in 3.456 ms1

for 228 nodes and 348 edges of the warehouse road graph.
For comparison, if we used a grid map representation with
the precision of 10 cm, the recalculation would be done on
approximately 2 × 107 nodes and 1.5 × 108 edges which
would make the recalculation time larger than one minute,
thus rendering it too long for real-time application.

Each time a worker makes a significant displacement, we
update its predefined goals intention estimate using a scaled
down version of the algorithm proposed in [22]. We associate
the position of the worker with the observable nodes by
forming a so-called association vector c. The closer the
human is to the node, the larger the value of the vector c.
By multiplying c and F, and by isolating the goal nodes,
we obtain a modulated distance vector d of dimension g,
where g is the number of goals. We also calculate the
alternative association vector c’ of the positions the worker
might have gone to, if it moved the same distance from
the last observation; we also calculate the corresponding
modulated distance vector d’. By comparing values of the
vector d with values of each d’ that we collect in matrix
D, we calculate the observation vector o via element-wise
division:

o =

max
1≤i≤n

Dij − d

max
1≤i≤n

Dij − min
1≤i≤n

Dij
. (1)

If the worker is moving towards a goal, the corresponding
value of o will be close to unity, and if it is moving away

1Configuration used for testing: Intel®Core™i7-7700HQ CPU @
2.80GHz×8 with 15,5 GiB memory



from that goal, the corresponding value will gravitate to zero.
We record the observation history and process it with an
HMM with g + 1 states, one for each goal and one for
the last node of human’s predefined path. We define the
HMM’s transition matrix T with α = 0.823 on the diagonal
and 1−α

g otherwise. We have obtained this parameter by
learning on the recorded data with worker moving in the
simulated warehouse without robots and minimizing the
average displacement error [24]. Using this formulation of
T we allow the worker to change its mind of going towards
any of the goals during the experiment. Finally, we set initial
probabilities of worker’s intentions to g−1 for each goal
indicating that all of the goals are equally probable. During
the experiment we use the Viterbi algorithm [25] to output
probabilities of the worker going to each goal, which we
consider as intention estimations.

After recording the probabilities of each goal we query if
the probability of the worker going to the last node of the
human’s path is high enough by comparing it to the largest of
the probabilities. If their difference is less than the threshold
of 0.25g, we assume that the worker still might be going to
the original goal and we report it to the HAP. Otherwise, we
find all goals with the probability higher than the threshold
of 0.8g−1 and using the D∗ algorithm on warehouse nodes
shown in Fig. 1, we find the shortest path towards these goals
on the road nodes. These paths are then reported to the HAP.
For more detailed results on the path prediction we direct the
reader to previous work [26].

C. Fleet Management System

1) Multi-robot route planning: In this section we leverage
the planning method we proposed in [20] that is based on
the CARP algorithm [7]. The original algorithm structures
its map as a resource graph, where each resource has a
corresponding timeline. This timeline consists of free and
occupied time windows, that indicate whether the resource
is available in a given time interval or already taken by
a different agent. For each agent that needs planning, the
algorithm then finds free time window on the corresponding
resource to the start node of the agent and uses a modified
A* algorithm to find the shortest path to free time window
on the corresponding goal resource through expansion to the
neighboring overlapping time windows. The advantage of the
used approach is that it takes into account only handful of the
most influencing agents. The algorithm aims to generate a
trajectory for an agent ak while assuming that trajectories for
k-1 agents are already planned. This can lead to modification
of those planned trajectories to accommodate the new agent.
The main idea is that the algorithm iteratively builds a set
of agents whose trajectories affect the optimal trajectory of
agent ak the most and replan this set of agents as well as
agent ak in ordering that yields solution with the best global
cost.

Another type of constraint is the inclusion of the safety
regions around the robot that differ in their radius and
the interaction with robots. There are three different safety
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Fig. 4: (a) An example of conflicting states. As long as the
robot is standing on the Red node, no other robot can stand
on any of the Green nodes. (b) An example of planning with
conflicting states. Blue robot wants to go to node B, and Red
robot on node E. The node C is in conflict with nodes B, D
and E. This means that when Blue robot attempts to plan to
node B, the planning fails because even though the physical
timeline of node C is free, the conflicting timeline of node
C shows that it is occupied by the Red robot.

regions defined, but only two of them are considered for
planning:

• Safety region 1: Robot stops its operation if it enters
this radius

• Safety region 2: Planner avoids planning robot in this
region

• Safety region 3: Robot must decrease its speed.
As the reader can notice, the safety regions 1 and 2 are
identical for the planning algorithm, because the planner
needs to avoid planning robots into them, and therefore the
algorithm considers only regions 2 and 3.

To accommodate the constraints, the planning algorithm
adds an additional timeline to each resource on the resource
graph. This timeline is referred to as conflicting, with the
main timeline is referred to as physical. The physical timeline
indicates when the resource is being physically occupied by
an agent, while the conflicting timeline indicates whether
any resource that the current resource conflicts with is being
physically occupied. An example of conflicting states can
be found in Fig. 4a, while an example of planning with
conflicting states is shown in Fig. 4b. If these timelines were
merged into one, the result would be the timeline where the
free time windows are windows that the agent can move into
without violating any constraints.

The safety regions for humans are handled similarly, i.e.,
by keeping timelines Safety region 2 and Safety region 3
for each resource and human present in the warehouse,
corresponding to time windows that the human plan oc-
cupies. Furthermore, the Safety region 2 timeline is added
for each robot as well. The Safety region 2 is used by
merging the physical and conflicting timelines to obtain the
final occupancy timeline of a resource during robot planning.
Safety region 3 occupancy timeline is used to check if the
resource intersects the Safety region 3 during the computation
of the time it takes the robot to cross a given resource.



2) Robot path planning: The proposed planner differenti-
ates five different states where a robot can be i) going to pick
up its rack assigned by the job, ii) taking the rack to the start
of the queue before the goal picking station, iii) in the picking
station queue, iv) heading back to return it to its position or
v) heading back to its charging station. In addition to these
planning states, the robot also has five internal states: Idle:
The robot is at the charging station, Busy: The robot has a job
assigned, currently working on its completion, Free: No job
assigned, returning to the charging station, Interrupted: The
state invoked by human action; the robot has been interrupted
and needs to be replanned and Failed: The robot failed to
find a plan; switched to Interrupted every few seconds.

D. Human Aware Planner

1) Planning for humans: We assume that the worker
is equipped with a system, such as a hand-held screen
or augmented reality glasses, that can navigate the human
through the warehouse. The planning is done in a similar
manner as the robot planning; however, the human always
takes precedence to robots in the planning process. When
the human planning starts, all the robots are interrupted.
Once all the robots have stopped, the planner attempts to
find a path to the human goal destination, while considering
stopped robots as obstacles and taking into consideration
the Safety region 2 region where robots should not enter.
If such a path is found, it is returned by the system for the
human to follow, and the system automatically replans the
interrupted robots, while taking the human plan into account.
However, if such a path does not exist the system attempts to
move the robots out of the way by first planning the human
to the goal node, while not taking any of the robots into
consideration. The robots then attempt to plan their paths to
the closest possible node to their current goal, that is not in
conflict with the human path. If the paths for all robots are
found, it means that the evasive maneuver is possible and
all the paths for human and robots are returned. If none of
these approaches succeed, then the system indicates that the
planning was unsuccessful. Moreover, to take into account
the variance of human velocity, the system also plans the
path for the human while taking into account the minimum
and maximum velocity. Each resource along the human path
is taken for a time interval wri that starts at an entry time
tfastentry, the time that would take the human to get to the goal
if walking at maximum speed, and ends at the time tslowexit , the
time it would take the human to leave if walking at minimum
speed. Each time window i for all resources r in the path
sequence is then wri = 〈t

fast
entry, t

slow
exit 〉.

2) Planner reaction to the HIR input: As described in
Section II-B.2, once the human deviates from the planned
path, the HIR determines paths to all the predefined goals
whose probabilities exceed a given threshold. Once the
planner registers paths from the HIR module, it interrupts
all the robots and finds the longest common path segment
of the obtained paths. This longest common path segment
is then processed by the planner. Notice that if the planner
took into account all the paths, it would possibly block a

Fig. 5: Reaction of the HIR module to distractions.

large portion of the warehouse. Once the segment that the
planner will use for the human replanning is known, the
system takes the first and last node as start s and goal t
locations respectively . The planner then attempts to find a
plan from the start location s to the goal location t using
the nodes that were present in the planning segment T . If
this planning succeeds, the system tells the human that he
deviated from his original path and informs him of the new
plan. However, if the planning is not successful, the system
tells the human to stop immediately.

III. EXPERIMENTAL RESULTS

To demonstrate the system functionality, we have designed
an experimental setup with several delivering scenarios. All
workers had a set of assignments, e.g. picking or mainte-
nance, that needed to be completed during the experiment.
We measured the average number of deliveries and human-
robot encounters for cases when i) humans deviate and
planner reacts without HIR module (NHIR) and replanning
is done only when human enters Safety region 1, ii) humans
deviate and planner reacts using simple HIR module (SHIR)
and iii) humans deviate and planner reacts using proposed
HIR module (PHIR). The SHIR module outputs human
path prediction on warehouse nodes with minimal change
in heading assuming constant velocity.

We have given humans assignments and simulated devi-
ation multiple times during each experiment with random
locations which were not known to the HIR module. The
HIR module reacts promptly with alarm and path prediction
which is then handled by the HAP, which can be seen in
Fig. 5. Once the path is accepted by the HAP and human
starts following it, the HIR alarm is turned off. We have
conducted two experimental scenarios, the first with a single
human worker and the second with three human workers.

NHIR SHIR PHIR
One Human

Robot Deliveries 57.9 53.2 58.1
Human Deliveries 9.4 8.8 12.0
Total Deliveries 67.3 62.0 70.1
Human-Robot Encounters / min 5.40 0.39 0.49

Three Humans
Robot Deliveries 48.5 31.7 57.4
Human Deliveries 3.0 4.4 9.2
Total Deliveries 51.5 36.1 66.6
Human-Robot Encounters / min 0.13 0.13 0.13

TABLE I: Average experimental results for ten experiments
lasting 750 seconds.



The results of ten experiments for each scenario lasting 750 s
with unique job sets for all agents can be seen in Table I.

Specifically, for the single human scenario we have
achieved an increase of 28% in human deliveries and 4% in
total deliveries, while for the three humans scenario, we have
achieved increase of 18% in robot deliveries, 207% in human
deliveries and 29% in total deliveries. Results suggest that
correct prediction of human intention can improve warehouse
throughput when integrated with a HAP, especially in cases
when there are multiple humans operating in the warehouse
at the same time. Furthermore, an interesting side-effect of
the proposed method is reduction of the number of human-
robot encounters. By reducing human-robot encounters, the
system can hypothetically reduce discomfort and stress of
human workers, since each close encounter with the robot
triggers a robot safety stop (loaded warehouse robots can
weigh close to 1000 kg). For the single human scenario the
number of encounters was reduced by 91%, while for the
three humans scenario this number remained unchanged. It
would be interesting for future work to investigate the be-
havior of the HIR enhanced HAP with respect to the number
of human-robot encounters and the increasing number of
workers in the warehouse.

IV. CONCLUSION

In this paper we have proposed a human intention recog-
nition framework for human aware planning in integrated
warehouse systems. The framework detects humans deviat-
ing from assigned paths and based on an HMM approach
identifies and outputs the most probable paths that human
worker is about to take. This information is fed to the human
aware planner that is able to account for such deviations
and replan the paths of warehouse robots so that warehouse
efficiency is kept. We have conducted experimental runs
on an in-house developed simulator and demonstrated that
with human intention recognition we increase the number of
total deliveries, especially human deliveries, which for the
scenario with three humans increased by 207%. Furthermore,
the proposed method has the potential to also reduce the
number of human-robot encounters, which decreased by 91%
in the single human scenario.
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