Visual Place Recognition using Directed Acyclic Graph Association Measures and
Mutual Information-based Feature Selection

Jurica Maltar®, Ivan Markovi¢?, Ivan Petrovié?

@ J. J. Strossmayer University of Ostjek,
Department of Mathematics, Trg Ljudevita Gaja 6, HR-31000, Osijek, Croatia
b University of Zagreb Faculty of Electrical Engineering and Computing,
Laboratory for Autonomous Systems and Mobile Robotics, Unska 3, HR-10000, Zagreb, Croatia,

Abstract

Visual localization is a challenging problem, especially over the long run, since places can exhibit significant variation
due to dynamic environmental and seasonal changes. To tackle this problem, we propose a visual place recognition
method based on directed acyclic graph matching and feature maps extracted from deep convolutional neural networks
(DCNN). Furthermore, in order to find the best subset of DCNN feature maps with minimal redundancy, we propose
to form probability distributions on image representation features and leverage the Jensen-Shannon divergence to rank
features. We evaluate the proposed approach on two challenging public datasets, namely the Bonn and the Freiburg
datasets, and compare it to the state-of-the-art methods. For image representations, we evaluated the following DCNN
architectures: AlexNet, OverFeat, ResNet18 and ResNet50. Due to the proposed graph structure, we are able to account
for any kind of correlations in image sequences, and therefore dub our approach NOSeqSLAM. Algorithms with and
without feature selection were evaluated based on precision-recall curves, area under the curve score, best recall at
100% precision score and running time, with NOSeqSLAM outperforming the counterpart approaches. Furthermore, by
formulating the mutual information-based feature selection specifically for visual place recognition and by selecting the
feature percentile with the best score, all the algorithms, and not just NOSeqSLAM, exhibited enhanced performance
with the reduced feature set.

Keywords: Visual place recognition, localization, deep convolutional neural networks, mutual information-based
feature selection, SeqSLAM

1. Introduction

One of the fundamental building blocks of an au-
tonomous mobile robot or a vehicle is the ability to reason
about its location in a given environment. This challenge
can be tackled by various approaches and in the current
paper we focus on visual place recognition. As defined in
[1], visual place recognition is “[...] the problem of a mo-
bile robot identifying its current location from a database
of previously visited locations, using vision as the primary
or only sensor”. In other words, the mobile robot or a

Figure 1: (a) I € D captured during the first traversal. (b) I, € Q
captured during the second traversal. Both images represent the

vehicle drives through a previously traversed and labeled
route and tries to find the corresponding match for a pre-
viously visited place. During both traversals, the robot
captures places in the form of images and thereafter, each
place is represented by an image. Images of the previ-
ous route traversal are stored in the reference database,
D, while images of the current traversal are stored in the
query database, Q. Given the notation, we can now formu-
late a more precise definition of visual place recognition:
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same place, but, as can be seen, intensive variation of conditions
is present. Visual place recognition deals with how to match these
images.

given a query image I, € Q the task is to find the corre-
sponding database image I; € D. Illustration of the visual
place recognition problem is given in Fig. [I]

Visual place recognition is related to the wisual in-
stance retrieval [41] problem; however, subtle differences
exist. First, in visual instance retrieval both the reference
database D and the query database Q are not periodically
ordered, i.e., they are not sequential, while in visual place
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recognition, conversely, this is the case and we exploit the
sequentiality in order to gain even more information about
a specific place. SeqSLAM [32] and the proposed approach
rely heavily on this fact. Second, view-point variance, i.e.,
variation of the camera reference frame between D and O,
is more emphasized in visual instance retrieval than visual
place recognition. Besides view-point variance, condition
variance is another challenge to be addressed. This en-
compasses all the environmental factors that contribute
to the difference in the visual representation of an image
— weather, season (emphasized in Fig. , moment of the
day, moving objects etc. It is thus the ultimate objec-
tive of the visual place recognition system to be condition
invariant and view-point invariant, and to achieve this,
design aspects that can be investigated are image repre-
sentation, image matching and feature selection. Given
that, visual place recognition can be seen as a specific in-
stance of visual instance retrieval with its characteristic
challenges and constraints that can be leveraged to yield
better tailored solutions.

Regarding image representation, although some works
use human-understandable representation of an image
[T, B2], a more common approach is to propagate the im-
age through the computer vision techniques in order to
obtain its features (salient regions) and the correspond-
ing descriptors that discriminatively describe this region.
Handcrafted features have been used in robotics since the
advent of computer vision in general [33]. In the context
of visual place recognition SURF [4] is used in FAB-MAP
[12], while ORB features [6, 42] are used in ORB-SLAM
[34]. These local descriptors are sometimes used in combi-
nation with methods that yield global descriptors such as
bag-of-words (BoW) [I7] or vector of locally aggregated de-
scriptors (VLAD) [24], e.g., [I5] uses SIFT [29] in combina-
tion with VLAD. Histogram of oriented gradients (HOG)
is another notable global descriptor used in [35},[36] [37, 50].
However, as it has been shown in previous works, and as
it will be shown in this paper, handcrafted features can
be replaced by features extracted from deep convolutional
neural networks (DCNNs) in the favor of achieving better
performance.

Feature maps extracted from deep convolutional neural
networks (DCNNs) have been extensively used as global
image descriptors. Siinderhauf et al. [45] wondered if
these feature maps are appropriate for the problem of vi-
sual place recognition by using the AlexNet architecture
[26]. Therein, authors concluded that DCNN-extracted
features perform better than the handcrafted ones and,
specifically, feature maps extracted from the middle and
higher convolutional layers perform better than those ex-
tracted from the earlier layers. Furthermore, feature maps
extracted from middle layers are more suitable when con-
dition variance occurs, as these layers encode elementary
visual entities, while feature maps extracted from higher
layers perform better when view-point variance is empha-
sized, as they encode semantic information. The authors
also claim that architecture trained on a scene-centric

dataset performs even better than the one trained on an
object-centric dataset. Naseer et al. [36] used AlexNet
and GoogLeNet [47] architectures, while Vysotska et al.
[50, BI] used features extracted from OverFeat [43]. Be-
sides using the whole image and passing it through a neural
network, some authors first find more “salient” regions in
the image and then process them further. For example,
Stiinderhauf et al. [46] use an object proposal method that
finds significant objects in the image, and later on those re-
gions are propagated through the neural network yielding
an even more view-point invariant representation. Arand-
jelovié et al. proposed NetVLAD [2] by modifying the
original VLAD, where the indicator function is replaced
with softmax and therefore obtain representation that can
be trained in an end-to-end manner specifically for visual
place recognition. Similar to NetVLAD, Garg et al. [I§]
propose local semantic tensor (LoST) which aggregates
residuals of semantic categories. Maximum activations
from feature maps are used for image representation too.
Chen et al. [7] represent each slice in feature map with 30-
dimensional vector obtained by multi-scale pooling where
slice is divided into k € {1,2, 3,4} squares and maximum
activations from each k-subdivision were concatenated. In
a similar manner, Hausler et al. [20] process a slice with
mazimum spatial pooling obtaining 5-dimensional feature
vector from each slice. In their follow-up work [2I], the
authors propose to remove bad slices in the earlier layers
of DCNN architecture used for feature extraction. These
weights and biases in the specific earlier layer are annu-
lated and then feature maps are further propagated. Re-
moving the bad slices can be considered as a feature selec-
tion technique in the context of visual place recognition.
In addition to ordinary image representations (i.e. RGB
or grayscale images), other sensor modalities can be used.
Cupec et. al [I3] represent a place using planar surface
segments and line segments obtained from depth images
since such a representation is more condition-invariant.
Regarding image matching for visual place recognition,
SeqSLAM [32] is often used where matches between Q and
D are obtained by observing the local neighborhood of the
corresponding images. In Section [3| we will examine this
work more closely as it has influenced our work presented
in this paper. Siam et al. [44] improved SeqSLAM using
approximate nearest neighbor (ANN) in order to obtain N
nearest images from D that correspond to a specific time
instance image It € Q. Thereafter, only K of N nearest
neighbors were considered for the possible matching candi-
dates and each pair between Ir and the particular candi-
date is processed as in the ordinary method. Alongside re-
duction in the space of reference candidates, the obtained
velocity for I7 image match is used in order to append
one more candidate for image Ir41 which is implicated by
the fact that a vehicle tends to move at the constant ve-
locity between two sampled query images. Yin et al. [52]
proposed to reduce SeqSLAM computational complexity
by using particle filtering. Particles are re-sampled across
reference database and SeqSLAM procedure is evaluated



for those pairs that contain a particle. Simultaneously,
the number of particles is halved while the frame rate of
Q and D is doubled. As the authors claim, this provides
moderate computational effort regardless of the number
of particles and frame rate. Pepperell et al. [39] integrate
the odometry from wheel encoders with SeqSLAM. By us-
ing odometry, both @ and D are captured, not with the
same sampling frequency, but with the same longitudinal
distance, meaning that the vehicle has traveled z meters
between two captured images. This way, SeqSLAM con-
siders only those velocities that yield linear sequences in
correlation between query and reference indices, that form
an angle of ¢ € {40°,45° 50°} horizontally when observ-
ing the difference matriz. Another interesting approach,
when it comes to matching by observing the local neigh-
borhood, is by Garg et al. [19]. Based on their previous
work [I§], for each query image N candidates from the ref-
erence database are selected. Thereafter, the depth from
an image is approximated and for each query image, the
reference image with the most appropriate neighborhood is
selected. Le et al. [27] use a binary tree in order to achieve
sub-linear O(log|D|) memory complexity. For each query
image I,, € Q they obtain the corresponding index for
an image in D by using classifiers trained on the different
levels of a tree. In the literature, Bayesian inference for
matching is used too [40], 12} 15 35]. By using network
flows, Naseer et al. [35] addressed the problem of visual
place recognition. Min-cost flow problem used for match-
ing is later reduced to find the single source shortest path
of the directed acyclic graph (DAG) which is efficiently
solved with topological sorting. Work of Vysotska et al.
[51] is a follow-up to [35] where the system operates in
an online fashion. The shortest path in these works rep-
resents a general route hypothesis, while our work uses
shortest path in order to measure the association between
each I,, € Q and Idj € D. Thus, we build a directed
acyclic graph for each (I,,,I;) € Q@ x D and thereafter we
find its shortest path in order to measure the association,
while [35] [51] build one global DAG for a route hypothesis.

In this paper we propose a visual place recognition sys-
tem based on directed acyclic graph matching with mutual
information feature selection and deep convolutional neu-
ral networks. The proposed method is the extension of
our preliminary work published in a conference paper [31].
The contributions of this paper are threefold. First, we
propose an image matching algorithm called NOSeqSLAM
which uses directed acyclic graphs between image similar-
ities in order to measure their association. In addition to
NOSeqSLAM, we developed a so called on-the-fly relaz-
ation algorithm which replaces usual single-source short-
est path algorithms and significantly improves the run-
ning time of NOSeqSLAM. Second, we formulate a mutual
information-based feature selection in the context of visual
place recognition, conduct the training, and apply feature
selection on an existing image representation yielding an
even more robust representation. Third, we evaluate the
proposed algorithm using various image representations ei-

ther without or with the proposed feature selection on two
publicly available and challenging datasets, and outper-
form current visual place recognition state-of-the-art both
in terms of the accuracy and the running time. The source
code of our approach is also available online E

The paper is organized as follows. In Section
2] we present the theoretical background for mutual
information-based feature selection in order to apply it in
the proposed method. Then, in Section [3| we present the
proposed image matching algorithm and explain how the
feature selection is formulated specifically for visual place
recognition. In Section [4] we present the experimental re-
sults, while Section [5] concludes the paper.

2. Mutual Information-based Feature Selection

Since visual place recognition relies on feature-based im-
age representation, it would be beneficial to analyze which
of the features bear the most information and then se-
lect the most informative subset, especially for the case of
DCNNs which can yield large feature maps. Theoretical
background on how to construct a probability distribution
on image features and compute mutual information is de-
scribed in this section, while Section [3] describes details of
the proposed application to visual place recognition.

As mutual information measures the dependence be-
tween two random variables, it is used extensively for fea-
ture selection. In general, these methods select features
iteratively, where in m-th step feature x,, is selected with

Ty = arg;nax{](y; x) — Ry(x, Sm-1)}, (1)

where I(y;x) is the relevance of the feature x for class y,
R, (x, Sy—1) represents the redundancy between feature x
and S,,_1 with respect to the class y, while S,,_1 repre-
sents the optimal subset of m — 1 features for which the
mutual information of the class y and this subset is max-
imal [9]. As can be seen from (I), the idea is to pick
the feature x,, that maximizes the relevance, while simul-
taneously minimizing the redundancy. In the literature,
is derived and numerous methods have been proposed
[16, 23] 28], B8]. For example, in [10, [I1], an optimization
technique is used in order to obtain features, as it is usual
in sparse feature selection methods formulated with

: T T~ (12

min - p*X

Jnin, ly 12 @
s.t. |1Bllo = &,

where (X, y) is the training data while 37 holds the regres-
sion coefficients. This is an NP-hard problem and therefore
various approximations for (2|) exist [IT} 10, 53], 149, 5L [30].

In our paper, we build on the feature selection method
from [9]. From this work we have taken a measure for fea-
ture quality; however, we extend the formulation especially

Thttps://bitbucket.org/unizg-fer-lamor/noseqslam/
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to obtain the target features for visual place recognition as
will be shown in Section [3] In general, this approach uses
tools from information theory in order to measure which
subset of features is optimal, i.e., which are the most in-
formative features. That is why probability distributions
for each feature have to be built while the informative-
ness between features can be measured with the Jensen-
Shannon divergence — a general information theoretic mea-
sure of the difference between probability distributions. In
order to obtain probability distributions, in [9] authors
proposed to build graphs for each feature as follows. Let
f) € RM*1 denote a feature from the following set of fea-
tures S = {fM), ..., f®) .. fM} For f*) we can build
the corresponding undirected graph Gf(k) = (Vf(k),Ef(k)),
with V and F being sets of nodes and edges, respectively,
such that each node vl(k) € Vi represents a component
FU)1] of the feature vector. We can further define a weight
function w : F k) > R[{ as the Euclidean distance

wo®, o) = O - fBm)z. (3)

In order to assign a probability distribution to a graph
Gf(k) the steady state random walk[3] is used. For each

node vl(k) of a graph, probability is defined as
(k)
k deg(v;"")
p(v”) = L, (4)
> deg(vm’)
viy’f)Gme
where " "
deg(vf) = 37w/, o) (5)
v,gf)GVf(k)

is the degree of a node. It is visible that truly meets the
requirements for the definition of probability, i.e. p(vl(k)) >
(k) (k)y _
O,VUZ € Vf(k) and Zvl(k)evf(k) p(vl ) =1.
It therefore remains to determine how does one feature
f®) correspond to another feature f(). As we have a for-

mulation to obtain probability distributions for features,
we can now evaluate the Jensen-Shannon divergence

ISD(p(f ™), p(f D)) =Hs (W)

~Hs(p(f ™) + Hs(p(f1)))
5 :

where

Hs(p(f®) =- > pf)logpe®). ()

vf,]f )EVf(k)
is the Shannon entropy.
Equation @ measures the difference between probabil-

ity distributions and therefore, in [9] a feature similarity
measure between the feature distributions was defined

FS(p(f*),p(fD)) = exp(=JSD(p(f*),p(f))). (8)
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Figure 2: A general visual place recognition scheme. First, image
representation is obtained by pre-processing, feature extraction and
description, feature selection and dimensionality reduction. Then
image matching process starts.

As a negative value of @ measures the similarity be-
tween features, and exponential function is monotonically
increasing, thus the order is preserved and measures
the similarity too.

3. Proposed Visual Place Recognition and Feature
Selection

As stated in the introduction, design aspects of a visual
place recognition system concern image representation and
image matching, while its general scheme, shown in Fig. 2]
is as follows:

1. Image representation is obtained by pre-processing,
extraction of features and descriptors and, optionally,
feature selection and dimensionality reduction

2. An association matrix is built and the corresponding
sequence measures how much a reference image fits
the query.

The design of the proposed system also follows the
scheme depicted in Fig. 2] In Subsection [3:I] we review
SeqSLAM algorithm for completeness and since it has in-
fluenced our approach. Thereafter, in Subsection [3:2] we
present the proposed approach and how it differs from Se-
qSLAM. Subsection [3.3| presents the proposed formulation
of the mutual information-based feature selection in the
context of visual place recognition.

3.1. Sequential SLAM (SeqgSLAM)

A naive approach to image matching would exclusively
measure either the distance or the similarity between a
fixed query image I,, € Qand Iy, € D,Vd; € {1,...,|D|}.
For example, when measuring the similarity, the most ap-
propriate match for I,, would be

I = argjmax{slqi,fdj I3 (9)
dj
where .
171,
— qi~ % 10
S VA 1A 1o




is the cosine similarity. However, Naseer et al. [36] noticed
that “matching images just according to the best similarity
score produces considerable false positives [...]".

In contrast to the naive approach, SeqSLAM consid-
ers the local neighborhood around the fixed image pair
(Ig;,1a;) € @ x D and this way we gain more information
about the location. A neighborhood is obtained as a linear
sequence centered in (Iy,, Iq;). Let D denotes the differ-

ence matriz where D[j, 4] is the sum of absolute differences
between I, and I;; and let ds denotes the number of im-
age matches in the neighborhood (also called the sequence
length). Then the correspondence between I, and 14, can
be measured as

where k = j + v(t — ¢) and v is the velocity by which we
minimize . The lower S;; the better the correspon-
dence between I, and Ig;.

As mentioned, D represents the matrix of differences
between image representations. In the case of SeqSLAM,
downsampled, human-readable image representation has
been used, although it is agnostic in terms of represen-
tation (e.g. in this paper we evaluate SeqSLAM using fea-
ture maps extracted from a DCNN). Moreover, it is also
agnostic in terms of the measure between image represen-
tations (e.g. sum of absolute differences can be replaced
by cosine similarity). Besides the original algorithm that
measures the association as a linear sequence of a min-
imal weight, other variants have been introduced called
the cone-based method and the hybrid method [48]. In the
cone-based method for SeqSLAM, the association between
images is as good as the number of minimal differences for
each query image that fall in a cone, while hybrid method
is, as the name suggests, a blend between the original and
the cone-based method.

Indices k& and t from form a linear sequence cen-
tered at the indices pair (4,j). One can recognize that the
expression k = j + V(¢ — %) is truly the basic equation for
the position of an object moving at constant velocity V. If
the vehicle drives both query and reference traversals with
linear correlation in the acceleration (e.g. if the vehicle
does not accelerate at all during both traversals), then lin-
ear sequences will be visually manifested in the difference
matrix and this is the scenario that SeqSLAM perfectly
fits. However, vehicles in general tend to move with differ-
ent accelerations and therefore we need an algorithm that
can capture also this kind of scenario.

3.2. Not Only Sequential SLAM (NOSeqSLAM)

The proposed algorithm, in turn, considers any kind of
correlation between indices — not only the linear ones. In
similar manner as SeqSLAM, we measure the association
between each query and reference image, but instead of us-
ing equation that yields linear sequences in the difference

i-srj‘ ﬂ m

(a) SeqSLAM

(b) NOSeqSLAM

Figure 3: (a) SeqSLAM searches for the optimal linear sequence
passing through (¢, j) while (b) NOSeqSLAM searches for the opti-
mal single-source shortest path from the root (¢,7) to the left sub-
graph and to the right subgraph. Hence, SeqSLAM considers those
sequences of matches whose indices are one after the other linearly
correlated, while NOSeqSLAM considers any kind of correlation be-
tween indices.

matrix, we employ graph theory. For illustration of sim-
ilarities and differences between the two methods, please
confer Fig.

Instead of the difference matrix D we build an associa-
tion matriz A € |0, 1}|D|X‘Q‘ such that

A[]7 Z] = SIqi’Idj ,V(Iqi,fdj) € 9 xD. (12)

For a fixed indices pair (7, j) we construct a directed acyclic
graph (DAG) G(; jy = (Vii,j), E,j)) rooted at node (i, )
and iteratively expand this graph until the depth of L%j
is reached in a way that it is expanded in the direction of
the previous query and reference indices (left wing) and in
the direction of the following query and reference indices
(right wing). Each non-root and non-leaf node has 7es,
children, e.g., DAG shown in Fig. b) is constructed with
the parameters ds = 7 and 7ezp = 2. The corresponding
weight function w : E(; j) — [0,1] is defined as

w((k,1),(m,n)) =1— A[n,m]. (13)

As A[j,i] measures how much does I, fit I, and vice
versa, we can also obtain the measure of the difference be-



Algorithm 1 On-the-fly relaxation

Algorithm 2 NOSeqSLAM

for i =1to %] do
for jors =0 to iofy - (Nexp — 1) do
i =1—tloff
J=Jj- joff
if 4, € {0,...,]Q] — 1} and j; € {0,...,|D| — 1} then
for each (ip,,;,, ) € predecessors(ii, ji) do
relax((im \Jp; )’ (il,jl))
end for
end if
Ir =1+ loff
Jr =13+ Joss
if i, € {0,...,|Q|—1} and jr € {0,...,|D| -1} then
for each (ip, ;,, ) € predecessors(ir,jr) do
relaa((ip, ;. ). (irs 1))
end for
end if
end for
end for

tween them by subtracting 1 with A[j,i]. Naseer et al.
[35] use 1/s;, i o, for dissimilarity measure, but we con-
sider more numerical friendly and this equation in the
context of an optimal sequence tells us that a node (3, j)
is suitable for a sequence proportionally to its similarity
measure.

Once DAG G(; ;) is constructed we measure the corre-
sponding association between I, and Iy, as

SOALK+ Y ALK, (14)

(k,l)el;i’j) (kJ)Er(*i‘j)

Sji = Al il +

where ZZ‘M and rz‘m. are the shortest paths in the left and
right subgraph from the root to some leaf, respectively.
In general, the single source shortest path problem can be
solved either by using the Bellman-Ford algorithm [5] with
the running time of O(|V'||E|), or by using the Dijkstra al-
gorithm [I4] with the running time of O(|V|1g|V| + |E])
when weights are positive [8]. However, when a graph is
specifically a DAG, we can use the topological sort [25]
which runs in ©(|V|+ |E|). Moreover, as we have to build
each graph iteratively, we can do the relaxation on-the-fly
as nodes are expanded and accumulate weights simultane-
ously. Although the topological sort has the lowest asymp-
totic running time, we developed a novel on-the-fly relax-
ation algorithm listed in Algorithm [1| which considerably
lowered the running time of the NOSeqSLAM algorithm
that is listed in Algorithm [2] Later, in Section [ we will
compare their running times which turn affect the running
time of NOSeqSLAM.

Considering image representation, DCNNs can be used
as feature maps extractors, since their convolutional lay-
ers are intended exactly for this purpose. As befits to the
state-of-the-art, we also choose to use image representa-
tions extracted from deep convolutional neural networks.
In general, regardless of the used image representation,

for each (I,,,1;,) € Q x D do
G(i’j) = DAG(IQL ’ Idj ’ dsa newp)
lz(i,j) = Hlnlln SP(G(%J)’ (IQia [dj)v (IqF dTh 7Idm))

i) = Min SP(G ), (Ig, 1a,), (I % Ta.))
Spg=Ald+ 3, ALK+ 3 ALK
(kDEL, (kDENT: 5
end for

DAG - directed acyclic graph
SP - shortest path

we can apply the feature selection procedure presented in
the following subsection which in turn can even further
improve the results.

8.8. Feature Selection for Visual Place Recognition

We formulate feature selection method for visual place
recognition according to the work presented in [9] where
feature selection is performed for the sake of a classification
problem. Therefore, we modify this formulation, and to
the best of our knowledge, this is the first application to
the visual place recognition problem.

Lets build a matrix Qs € RICIXK of image representa-
tions from the database Q as

Ifll I(I11 Lhz IlhK
Op — IC:,2 _ Iq:21 Iq:22 IQ?K )
[(I\Q\ IQ\Q\I I(I|Q|2 I‘I\Q\K

For each query image [, we assume that there exists
at least one “ground-truth” image from the reference.
Ground-truth images are images that represent the same
visual place as the one in the query image, either being
hand-labeled or obtained from GPS data. We can choose
the most similar ground-truth image Ig4,. for each query
image I, according to

Ig,. = argmax sj_ g, , (16)
I4,€GT(I;) 7
and build a matrix Dy, € RIIXE defined as
Iy, Iy,  la., Ig
Ia,. lay., Tay., Ta,.
Du = : = : : - : - (A7)
layg- Lajgpey  Lajgpes Lok

What corresponds to the term feature in [9] are columns
of matrices and and accordingly we define fea-
tures in our case as

where fgc) specifically called the target feature.



A good feature is similar in both query and reference im-
ages and therefore we measure the quality of the particular
k-th feature as

a(k) = FS(p(f5), p(f3))). (19)

When is evaluated Vk € {1,..., K} and feature qual-
ities {q(1),...,q(K)} are obtained, we pick all those &k’
indices such that ¢(k’) > ¢ where ¢ is a p-th quantile of
{q(1),...,q(K)}. Therefore, in a vector that represents
an image, we pick these components that have such index
K.

4. Experimental Results

In this section we present the experimental evaluation
of our approach. First, we present the evaluation datasets,
followed by image representation analysis, and finally,
comparison of the proposed algorithm with state-of-the-
art — both with and without feature selection.

4.1. Evaluation datasets

For evaluation purposes we used the Bonn and Freiburg
datasets that are part of the publicly available implemen-
tation of [5I] containing routes driven in an urban area.
The main challenge stems from condition variance, while
view-point variance is moderate, because sequences were
captured by a vehicle driving on the road.

When driven for the first time (and therefore saved as
D), a route in Bonn is captured in the evening, while for
the second time (saved as Q) it is captured on a gloomy day

(Fig. @(a Fig. l(b Due to different illumination sources

(daylight vs. streetlight), images in Q and D differ signif-
icantly. Although there is no record about the distance
traveled throughout this route, by observing sequences
alongside the route and from the cardinality (|D| = 488,
|Q| = 544) we can assert that the route is 1-2km long.

A query route driven in Freiburg was captured on a
sunny day, while the reference database contains images
from a sunny winter afternoon ((Fig. [4(c), Fig. [4(d)))
Although both traversals were captured in daylight, illu-
mination differs, and the snow appears in the reference
traversal. In [35] it is stated that this route is about 3km
long. View-point variance is not accentuated in either of
the datasets, because the vehicle stays in the same lane for
the both the query and the reference traversal.

Both datasets come with the ground-truth files where
for each query image there exists at least one match with
an image from the reference database. The same way as
described in [50], we use the localization radius of +3 in-
dices, i.e., a match is considered a true positive if it devi-
ates up to 3 indices from the ground-truth. On the other
hand, score thresholding [48] is used in order to reject poor
match proposals.

Figure 4: Significant condition variance in Bonn dataset (a),(b) and
Freiburg dataset (c),(d). View-point variance is not accentuated be-
cause the vehicle stays in the same lane.

4.2. Image representation with DCNN feature maps

Given the evaluation datasets, we analyzed different im-
age representations. As a qualitative measure, we can ob-
serve the association matrix for various representations in
Fig. 5] where, as expected, the more accentuated contrast
indicates a good representation.

Representation with HOG yields poor contrast, proba-
bly due to the design of the technique which exclusively ex-
amines orientations of the image gradients. Besides HOG,
in our experiments we also evaluated feature maps ex-
tracted from neural networks, beginning with the AlexNet
architecture. First, we extracted features from the vanilla
ImageNet-trained AlexNet architecture concluding conv3
and conv4 layers as [45] reported their suitability. More-
over, the same authors claim that feature maps extracted
from a network trained on a scene-centric dataset perform
better then the ones extracted from a network trained on
an object-centric dataset. Therefore, we also extracted
feature maps from AlexNet trained on Places365 [54].

Thereafter, we extracted feature maps from the 10th
convolutional layer of the OverFeat architecture. Besides
classification, it is also used for localization and detection
tasks. Moreover, we decided to perform our experiments
on two other state-of-the-art architectures - ResNet18 and
ResNet50 [22] - where each architecture is trained on both
ImageNet and Places365. We extracted features from their
last convolutional layers. In total, we used 10 various im-
age representations.

Next, we incorporated the aforementioned technique for
feature selection into our experiments. First, training was
performed on the Freiburg dataset, and when the appropri-
ate feature qualities were obtained, we further used these
qualities in order to select features for evaluation on the
Bonn dataset. Vice versa, the training was performed on
the Bonn dataset in order to evaluate on the Freiburg



(a) HOG

(b) OverFeat

Figure 5: Plotting the association matrix A with different image rep-
resentations reflects the quality of image representation. The more
accentuated is the contrast, the better.

dataset with selected features. We find this approach to
be the most transparent in contrast to both training and
evaluating selected features on the same dataset. Even
though the full feature maps are of high dimensions, we
did not apply any dimensionality reduction techniques in
order to concentrate solely on the visual place recognition
performance of the proposed and other algorithms, as well
as on the feature selection performance.

Alongside the quantitative performance observation in
the upcoming subsection, it is important to examine how
does feature selection truly select features, i.e., which fea-
tures survive after the selection is performed? This ques-
tion can be answered by plotting feature maps as in Fig. [6]
Without feature selection (Fig. [6[b)), feature maps ac-
tivate uniformly throughout the spatial locations taking
into account both relevant and irrelevant objects. After

(a) Original image

(b) Feature maps without feature selection

(c) Feature maps with feature selection (p = 0.95)

Figure 6: The effect of feature selection. In (b) activations are uni-
formly distributed, while in (c) activations are more sparsely dis-
tributed and focused on discriminative objects (e.g. weak activations
for moving objects such as the cyclist, and simultaneously strong ac-
tivations on and around the road). Feature maps from conv3 AlexNet
architecture are shown in this figure.

feature selection (Fig. @(C)), activations are more sparsely
distributed throughout spatial locations. It is visible that
feature maps are not focused anymore on moving objects



such as the cyclist. On the other hand, feature maps are
more concentrated on the road. The footage of an entire
traversal can be found onlind?

4.8. NOSeqSLAM comparison to other algorithms

In this section we conducted experiments that measure
both the qualitative and quantitative performance of the
sequence-based methods: NOSeqSLAM, SeqSLAM and
cone-based SeqSLAM. Additionally, we will quantitatively
compare the method of Vysotska et al. [51] with the afore-
mentioned methods. Unlike the sequence-based methods,
this method is not a sequence-based, i.e., it does not de-
pend on ds. Qualitative performance consists of observing
the impact of algorithm has on the association matrix A
— the higher contrast in the matrix A the better place dis-
tinction is achieved. Quantitative peformance is further
examined by plotting the precision-recall curves, comput-
ing the area under a curve (AUC) and recall at 100% pre-
cision (R@100%P) scores.

By analyzing Figs. (a) and c)7 we can see that both
SeqSLAM and NOSeqSLAM perform similarly in situa-
tions when d; is small, because in this scenario the short-
est paths tend to mimic linear sequences. The cone-based
SeqSLAM (Fig. b)) produces the best contrast, clearly
indicating appropriate matches, although the route at sev-
eral places is more disconnected. For d; = 51 in Fig. a) it
is visible that SeqSLAM leaves linear “traces” throughout
the association matrix, the same as its cone-based coun-
terpart (Fig. b)) Moreover, cone-based SeqSLAM al-
gorithm enhances the contrast even more, so we could hy-
pothesize that it performs better. NOSeqSLAM does not
leave linear traces in the difference matrix, but in turn,
due to its not only linear design, “smudges” the matrix a
bit. As ds increases, each algorithm achieves better dis-
tinctiveness, as can be seen from Figs. [7] and [§]

Quantitatively, we obtained the best result for each
sequence-based method among image representations in
terms of AUC and R@100% scores with and without fea-
ture selection, and then we grouped the results by the se-
quence length d,. In Fig. @(a), where the results are sorted
by AUC, NOSeqSLAM achieves the best performance on
the Bonn dataset for the major part of the curve, while Se-
qSLAM outperforms the cone-based SeqSLAM. Moreover,
we observe that feature selection improves the performance
for each of the sequence-based methods.

On the other hand, the methocﬂ by Vysotska et al.
[61] achieves good performance interweaving with SeqS-
LAM. However, the sequence-based methods are unable
to achieve 100% recall due to their design where the first
|%] and last [% | query images cannot be paired. This
negative effect is diminished when the query database is
large enough because then the number of unpaired queries

*https://youtu.be/MtaNU1ZWtRg
3No feature selection was applied. Feature maps extracted from
the OverFeat conv10 layer.

(a) SeqSLAM

(b) SeqSLAM (cone)

(c) NOSeqSLAM

Figure 7: Qualitative performance of (a) SeqSLAM, (b) cone-based
SeqSLAM and (c) NOSeqSLAM on the Bonn dataset for ds = 5.
(a) and (c) perform similarly because shortest path mimics linear
sequence, while (b) more clearly indicates the route hypothesis.


https://youtu.be/MtaNUlZWtRg

(a) SeqSLAM

(b) SeqSLAM (cone)

(c) NOSeqSLAM

Figure 8: Qualitative performance of (a) SeqSLAM, (b) cone-based
SeqSLAM and (¢) NOSeqSLAM on the Bonn dataset for ds = 51. As
the sequence length ds increases, distinctiveness between algorithms
is more pronounced.
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Figure 9: Precision-recall curves for (a) Bonn and (b) Freiburg. For
each sequence-based method we pick the best results among image
representations both with and without feature selection. For com-
pleteness, we plot a curve for the method by Vysotska et al. [51]
too.

is negligible in comparison with |Q|. A more detailed ex-
amination about this topic is provided in [39]. In Fig. [9|b)
which represents the performance on the Freiburg dataset,
we see that feature selection improves the performance
moderately at the end of the curves for NOSeqSLAM and
SeqSLAM while for cone-based SeqSLAM the improve-
ment is more accentuated.

In Tables[1]and [2| the best AUC and RQ100% scores are
listed for the Bonn dataset. We omit the method by Vysot-
ska at al. [51] (although we will reports its performance in
this paragraph), as it does not depend on ds and therefore
we can not group it in tables. By measuring AUC, ResNet



Table 1: AUC scores of SeqSLAM, cone-based SeqSLAM and NOSe-
gSLAM for the Bonn dataset with feature selection (F'S column with
percentile value) and without ().

Table 3: AUC scores of SeqSLAM, cone-based SeqSLAM and NOSe-
gSLAM for the Freiburg dataset with feature selection (FS column
with percentile value) and without (-).

ds Alg. Repr. Dim. Neap FS Score ds Alg. Repr. Dim. Nexp FS Score
SC O (convi0) 153600  — — 0.83521 SC A (conva, P) 360448  —  —  0.63907
SC O (conv10) 46080 — 0.7 0.83683 SC A (conv4, P) 216268 — 0.4  0.85604
31 S R18 (conv17) 200192 — — 0.89153 31 S A (conv4, P) 360448 — — 0.87314
S R18 (conv1?) 140134 - 0.3 0.90005 S A (conv4, P) 216268 — 0.4 0.88080
N R50 (conv49) 800768 2 — 0.91501 N A (conv4, P) 360448 3 — 0.92429
N R50 (conv49) 680653 2 0.15 0.91890 N A (conv4, P) 216268 3 0.4 0.93119
SC R18 (convi7, P) 200192 — — 0.81094 SC A (conv4, P) 360448 — — 0.66569
SC R18 (convi7, P) 190182 — 0.05  0.81692 S A (conv4, P) 360448 — — 0.86373
43 S R50 (conv49) 800768 — — 0.87506 43 S A (conv4, P) 216268 — 0.4  0.86775
S R50 (conv49) 40038 — 0.95  0.88787 SC A (conv4, P) 216268 — 0.4 0.87361
N R50 (conv49) 800768 2 —0.89647 N A (convd, P) 360448 3 — 091016
N R50 (conv49) 120116 2 0.85 0.89798 N A (conv4, P) 216268 3 0.4 0.92177
SC R18 (convi7, P) 200192 — — 0.78836 SC A (conv4, P) 360448 — — 0.67670
SC RIS (convi7, P) 180172 — 0.1 0.79570 S A (convd, P) 360448  —  —  0.84598
51 S R50 (conv49) 800768 — — 0.82185 51 S A (conv4, P) 216268 — 0.4  0.85850
S R50 (conv49) 600576 — 0.25  0.83078 SC A (conv4, P) 216268 — 0.4 0.87534
N R50 (conv49) 800768 2 — 0.88189 N A (conv4, P) 360448 3 — 0.89907
N R50 (conv49) 440424 2 0.45 0.88592 N A (conv4, P) 216268 3 0.4 0.91346

N - NOSeqSLAM, S - SeqSLAM, SC - cone-based SeqSLAM
A - AlexNet, O - OverFeat, R18 - ResNet18, R50 - ResNet50
P - trained on Places365

Table 2: RQ100%P scores of SeqSLAM, cone-based SeqSLAM and
NOSeqSLAM for the Bonn dataset with feature selection (F'S column
with percentile value) and without (-).

N - NOSeqSLAM, S - SeqSLAM, SC - cone-based SeqSLAM
A - AlexNet, O - OverFeat, R18 - ResNet18, R50 - ResNet50
P - trained on Places365

Table 4: R@100%P scores of SeqSLAM, cone-based SeqSLAM and
NOSeqSLAM for the Freiburg dataset with feature selection (FS col-
umn with percentile value) and without (-).

ds Alg. Repr. Dim. Nexp FS Score ds Alg. Repr. Dim. Nexp FS Score
N A (conv4) 360448 2 — 0.01103 S R50 (conv49) 800768 - - 0.10207
S R18 (conv17) 200192 - - 0.10846 SC A (conv4, P) 360448 — — 0.23669
4 _S RIS (convi7) 140134  — 0.3  0.13419 5 S R50 (convd®) 520499  —  0.35  0.41864
SC R50 (conv49, P) 800768 — — 0.13603 SC A (conv4, P) 216268 — 0.4 0.57101
SC R50 (conv49, P) 360347 - 0.55 0.14522 N R50 (conv49, P) 800768 3 — 0.62574
N A (conva) 36045 2 09 0.14706 N R50 (convd9, P) 480459 3 0.4  0.63166
S A (conva) 360448 — — 001103 S A (conva, P) 360448  — — 0.05017
N A (conv4) 360448 2 - 0.04044 SC A (conv4, P) 360448 — — 0.26036
43 SC R18 (convi?) 200192 — — 0.11029 43 S A (conv4, P) 18023 — 0.95 0.28107
S A (conv4) 54068 - 0.85 0.12684 N A (conv4, P) 360448 3 — 0.30325
SC R18 (conv1?) 120116 — 0.4 0.12868 SC A (conv4, P) 216268 - 0.4 0.58432
N A (conv4) 126157 2 0.65 0.17647 N A (conv4, P) 180224 3 0.5 0.69822
N A (conv4) 360448 3 - 0.00000 S A (conv4, P) 360448 — — 0.11243
S A (conv4) 360448 — — 0.01654 SC A (conv4, P) 360448 — — 0.24852
51 SC R18 (conv17) 200192 - - 0.11397 51 N A (conv4, P) 360448 3 — 0.28698
SC R18 (conv1?) 150144 — 0.25  0.13603 S A (conv4, P) 36045 — 0.9 0.32101
S A (conv4) 54068 — 0.85 0.15257 SC A (conv4, P) 216268 — 0.4 0.61982
N A (conv4) 36045 3 0.9 0.17647 N A (conv4, P) 162202 3 0.55 0.74112

N - NOSeqSLAM, S - SeqSLAM, SC - cone-based SeqSLAM
A - AlexNet, O - OverFeat, R18 - ResNet18, R50 - ResNet50
P - trained on Places365

architectures prevail as the best representations. With re-
spect to the sequence length dy, NOSeqSLAM outperforms
in both scenarios with and without feature selection. The
method by Vysotska et al. [51] achieves greater AUC score
(0.94309) due to the problem of the maximum possible
recall for the sequence-based methods [39]. By measur-
ing R@100%P, NOSeqSLAM has the highest score, while
the improvements with feature selection are more empha-
sized regardless of the used algorithm and representation
while the method by Vysotska et al. [5I] achieves poor
R@100%P (0.06250). The same can be said for Tables
and [4] which list the results for the Freiburg dataset, al-
though the prevailing architecture is AlexNet trained on
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N - NOSeqSLAM, S - SeqSLAM, SC - cone-based SeqSLAM
A - AlexNet, O - OverFeat, R18 - ResNet18, R50 - ResNet50
P - trained on Places365

Places365. Once again the method by Vysotska et al. [51]
achieves greater AUC score (0.97471). When R@Q100%P
is measured, NOSeqSLAM outperforms other sequence-
based algorithms as well as the method by Vysotska et
al. [5I] (0.07396), while feature selection highlights the
difference even more.

From a theoretical point of view, given a constructed
association matrix A, SeqSLAM and cone-based SeqS-
LAM take © (]Q||D|dsVsteps) asymptotic running times.
NOSeqSLAM takes © (|Q||D|d2n2,,) asymptotic running
time because on-the-fly relaxation (Algorithm takes
S} (d%gzp) asymptotic running time and must be executed

S

for each image pair. In case of NOSeqSLAM, the topolog-
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Figure 10: Running time as a function of the sequence length
ds € {5,7,...,51} and the number of features dim(I). Although
SeqSLAM and cone-based SeqSLAM have better asymptotic times,
NOSeqSLAM achieves lower running times for practical sequence
lengths.

ical sort takes © (dznemp + n‘cf;p) asymptotic running time;
however, replacement of the topological sort with on-the-
fly relaxation lowers the NOSeqSLAM running time ap-
proximately 200 times.

Empirically, running times were measured with a stan-
dard i7@2.8GHz laptop processor on the Bonn dataset for
various sequence lengths d, € {5,7,...,49,51} and the
various number of featuresﬁ dim(I). Each running time
includes: feature selection, the construction of the associ-
ation matrix and then the evaluation of an algorithm. The
results are shown in Fig. [I0] from which we can see that
NOSeqSLAM operates faster than SeqSLAM and cone-
based SeqSLAM. On the other hand, SeqSLAM methods
have better asymptotic times and therefore once when dj is
large enough, they will overtake NOSeqSLAM. However,
we find that ds € {5,...,51} are more than reasonable
sequence lengths that consistently describe the neighbor-
hood of a place and that longer sequences are most likely
unnecessary.

5. Conclusion

In this paper we have proposed a method for visual place
recognition based on directed acyclic graph matching and
DCNNSs, coupled with mutual information based feature
selection. Due to the ability to account for not only lin-
ear correlations in the association matrix, we dubbed our
approach NOSeqSLAM. In order to find the best subset
of DCNN feature maps with minimal redundancy for vi-
sual place recognition, we proposed to form probability
distributions on those features using steady-state random

4Measurements taken on feature maps from the AlexNet conv3
ranging from 27034 up to 540672 features.
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walk and leverage Jensen-Shannon divergence to rank fea-
tures. We evaluated the proposed approach on two pub-
lic datasets, namely the Bonn and Freiburg dataset, and
compared it to SeqSLAM, cone-based SeqSLAM and the
method by Vysotska et al. [51] For image representations
HOG as well as feature maps from AlexNet, OverFeat,
ResNet18 and ResNet50 were used.

Results suggest that image representation obtained from
DCNNSs offers better performance than the hand-crafted
HOG. Furthermore, we did not notice significant difference
when a neural network was trained on object-centric or
scene-centric dataset — feature maps trained on an object-
centric dataset performed exceptionally good for the task
of visual place recognition on the tested datasets. AlexNet
(conv4) has proved to be the best on the Freiburg dataset
for both AUC and R@100%P. Moreover, it was the best on
the Bonn dataset for R@100%P, while ResNet50 (conv49)
prevailed in terms of AUC. When comparing NOSeqSLAM
with regular and cone-based SeqSLAM, we have shown
that our approach outperforms them on both datasets in
terms of the AUC score, R@Q100%P score, and running
time for practical sequence lengths. Moreover, it out-
performs the method by Vysotska et al. [5I] in terms
of R@Q100%P. Since all the algorithms are representation
agnostic, we have the freedom to choose the appropriate
representation, thus by formulating mutual information-
based feature selection specifically for visual place recog-
nition and by selecting the feature percentile with the best
score, we have shown that all the algorithms, and not just
NOSeqSLAM, exhibit enhanced performance with the re-
duced feature set.

6. References

Supervised and Unsupervised Linear Learning Techniques for
Visual Place Recognition in Changing Environments. IEEE
Transactions on Robotics, 32(3):600-613, 2016.

Relja Arandjelovié, Petr Gronat, Akihiko Torii, Tomas Pajdla,
and Josef Sivic. NetVLAD: CNN architecture for weakly super-
vised place recognition. 70(5):641-648, nov 2015.

Lu Bai, Luca Rossi, Horst Bunke, and Edwin R. Hancock. At-
tributed graph kernels using the Jensen-Tsallis g-differences.
In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2014. ISBN 9783662448472. doi: 10.1007/
978-3-662-44848-9_ 7.

Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. SURF:
Speeded up robust features. Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 3951 LNCS(4):404-417,
2006.

Richard Bellman. On a routing problem. Quarterly of Ap-
plied Mathematics, 1958. ISSN 0033-569X. doi: 10.1090/qam/
102435.

Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pas-
cal Fua. BRIEF: Binary Robust Independent Elementary Fea-
tures. In Proceedings of the 11th European Conference on Com-
puter Vision: Part IV, ECCV’10, pages 778-792, Berlin, Hei-
delberg, 2010. Springer-Verlag.

Zetao Chen, Adam Jacobson, Niko Siinderhauf, Ben Upcroft,
Linggiao Liu, Chunhua Shen, Ian Reid, and Michael Milford.
Deep learning features at scale for visual place recognition. Pro-

(1]



(8]

(12]

[13]

[14]

(15]

[16]

(17]

ceedings - IEEE International Conference on Robotics and Au-
tomation, 1:3223-3230, 2017. ISSN 10504729.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
and Clifford Stein. Introduction to Algorithms, Third Edi-
tion. The MIT Press, 3rd edition, 2009. ISBN 0262033844,
9780262033848.

Lixin Cui, Lu Bai, Yue Wang, Xiao Bai, Zhihong Zhang, and
Edwin R Hancock. P2P Lending Analysis Using the Most Rel-
evant Graph-Based Features. pages 3—-14. 2016.

Lixin Cui, Lu Bai, and Edwin R Hancock. Fused Lasso for
Feature Selection using Structural Information. (NeurIPS):1-
10, 2019.

Lixin Cui, Lu Bai, Zhihong Zhang, Yue Wang, and Edwin R.
Hancock. Identifying the most informative features using a
structurally interacting elastic net. Neurocomputing, 336:13—
26, 2019. ISSN 18728286.

Mark Cummins and Paul Newman. FAB-MAP: Probabilistic
localization and mapping in the space of appearance. Interna-
tional Journal of Robotics Research, 27(6):647-665, 2008.
Robert Cupec, Emmanuel Karlo Nyarko, Damir Filko, Andrej
Kitanov, and Ivan Petrovi. Place recognition based on matching
of planar surfaces and line segments. International Journal of
Robotics Research, 34(4-5):674-704, 2015. ISSN 17413176. doi:
10.1177/0278364914548708.

E. W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1959. ISSN 0029599X. doi:
10.1007/BF01386390.

Anh-Dzung Doan, Yasir Latif, Tat-Jun Chin, Yu Liu, Thanh-
Toan Do, and Ian Reid. Scalable Place Recognition Under Ap-
pearance Change for Autonomous Driving. 2019.

Francois Fleuret. Fast binary feature selection with conditional
mutual information. Journal of Machine Learning Research,
2004. ISSN 15337928.

D. Galvez-Lépez and J. D. Tardos. Bags of Binary Words for
Fast Place Recognition in Image Sequences. IEEE Transactions
on Robotics, 28(5):1188-1197, oct 2012. ISSN 1552-3098.
Sourav Garg, Niko Suenderhauf, and Michael Milford. Lost?
appearance-invariant place recognition for opposite viewpoints
using visual semantics. 2018. ISSN 1871756X.

Sourav Garg, Madhu Babu, Thanuja Dharmasiri, Stephen
Hausler, Niko Suenderhauf, Swagat Kumar, Tom Drummond,
and Michael Milford. Look no deeper: Recognizing places
from opposing viewpoints under varying scene appearance using
single-view depth estimation. 2019.

Stephen Hausler, Adam Jacobson, and Michael Milford. Fea-
ture Map Filtering: Improving Visual Place Recognition with
Convolutional Calibration. 2018.

Stephen Hausler, Adam Jacobson, and Michael Milford. Fil-
ter Early, Match Late: Improving Network-Based Visual Place
Recognition. pages 2-9, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep Residual Learning for Image Recognition. 19(2):107-117,
dec 2015.

Gunawan Herman, Bang Zhang, Yang Wang, Getian Ye, and
Fang Chen. Mutual information-based method for selecting in-
formative feature sets. Pattern Recognition, 46(12):3315-3327,
2013. ISSN 00313203.

H. Jegou, F. Perronnin, M. Douze, J. Sanchez, P. Perez, and
C. Schmid. Aggregating Local Image Descriptors into Compact
Codes. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 34(9):1704-1716, sep 2012. ISSN 0162-8828.

A. B. Kahn. Topological sorting of large networks. Communica-
tions of the ACM, 1962. ISSN 15577317. doi: 10.1145/368996.
369025.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Ima-
genet classification with deep convolutional neural networks. In
NIPS, 2012.

Huu Le, Tuan Hoang, and Michael Milford. BTEL: A Binary
Tree Encoding Approach for Visual Localization. 2019.

Dahua Lin and Xiaoou Tang. Conditional infomax learning: An
integrated framework for feature extraction and fusion. In Lec-
ture Notes in Computer Science (including subseries Lecture

13

[40]

[41]

[42]

[44]

[45]

[46]

Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), 2006. ISBN 3540338322.

D.G. Lowe. Object recognition from local scale-invariant fea-
tures. In Proceedings of the Seventh IEEE International Con-
ference on Computer Vision, pages 1150-1157 vol.2. IEEE, sep
1999. ISBN 0-7695-0164-8.

Shuangge Ma, Xiao Song, and Jian Huang. Supervised group
Lasso with applications to microarray data analysis. BMC
Bioinformatics, 2007. ISSN 14712105.

Jurica Maltar, Ivan Markovié¢, and Ivan Petrovié. NOSeqSLAM:
Not only Sequential SLAM. In Manuel F Silva, José Luis Lima,
Luis Paulo Reis, Alberto Sanfeliu, and Danilo Tardioli, editors,
Robot 2019: Fourth Iberian Robotics Conference, pages 179—
190, Cham, 2020. Springer International Publishing. ISBN 978-
3-030-35990-4.

Michael J. Milford and Gordon F. Wyeth. SeqSLAM: Visual
route-based navigation for sunny summer days and stormy win-
ter nights. In Proceedings - IEEE International Conference on
Robotics and Automation, pages 1643-1649. IEEE, may 2012.
Hans Moravec. Obstacle avoidance and navigation in the real
world by a seeing robot rover. Technical Report CMU-RI-TR-
80-03, Carnegie Mellon University, Pittsburgh, PA, September
1980.

Raul Mur-Artal, J. M.M. Montiel, and Juan D. Tardos. ORB-
SLAM: A Versatile and Accurate Monocular SLAM System.
IEEFE Transactions on Robotics, 31(5):1147-1163, 2015.
Tayyab Naseer, Luciano Spinello, Wolfram Burgard, and Cyrill
Stachniss. Robust visual robot localization across seasons using
network flows. Proceedings of the AAAI Conference on Artifi-
cial Intelligence, pages 2564—2570, 2014.

Tayyab Naseer, Michael Ruhnke, Cyrill Stachniss, Luciano
Spinello, and Wolfram Burgard. Robust visual SLAM across
seasons. [EEE International Conference on Intelligent Robots
and Systems, 2015-Decem:2529-2535, 2015. ISSN 21530866.
Tayyab Naseer, Wolfram Burgard, and Cyrill Stachniss. Ro-
bust Visual Localization Across Seasons. [EEE Transactions
on Robotics, 34(2):289-302, apr 2018.

Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selec-
tion based on mutual information: Criteria of Max-Dependency,
Max-Relevance, and Min-Redundancy. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2005. ISSN
01628828.

E. Pepperell, P. I. Corke, and M. J. Milford. All-environment
visual place recognition with smart. In 2014 IEEE International
Conference on Robotics and Automation (ICRA), pages 1612—
1618, May 2014.

Fabio Ramos, Ben Upcroft, Suresh Kumar, and Hugh Durrant-
Whyte. A Bayesian approach for place recognition. Robotics and
Autonomous Systems, 60(4):487-497, apr 2012. ISSN 09218890.
Ali Sharif Razavian, Josephine Sullivan, Stefan Carlsson, and
Atsuto Maki. Visual Instance Retrieval with Deep Convolu-
tional Networks. (June 2017), 2014. ISSN 2186-7364.

Edward Rosten, Reid Porter, and Tom Drummond. Faster and
Better: A Machine Learning Approach to Corner Detection.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 32:105-119, 2010.

Pierre Sermanet, David Eigen, Xiang Zhang, Michaél Math-
ieu, Robert Fergus, and Yann Lecun. Overfeat: Integrated
recognition, localization and detection using convolutional net-
works. In International Conference on Learning Representa-
tions (ICLR2014), CBLS, April 2014, 2014.

S. M. Siam and H. Zhang. Fast-seqslam: A fast appearance
based place recognition algorithm. In 2017 IEEE International
Conference on Robotics and Automation (ICRA), pages 5702—
5708, May 2017.

Niko Siinderhauf, Sareh Shirazi, Feras Dayoub, Ben Upcroft,
and Michael Milford. On the performance of ConvNet features
for place recognition. IEEE International Conference on Intel-
ligent Robots and Systems, 2015-Decem:4297-4304, 2015. ISSN
21530866.

Niko Stinderhauf, Sareh Shirazi, Adam Jacobson, Feras Dayoub,



[49]

[50]

Edward Pepperell, Ben Upcroft, and Michael Milford. Place
Recognition with ConvNet Landmarks: Viewpoint-Robust,
Condition-Robust, Training-Free. In Robotics: Science and Sys-
tems XI. Robotics: Science and Systems Foundation, jul 2015.
ISBN 9780992374716.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Van-
houcke, and Andrew Rabinovich. Going Deeper with Convolu-
tions. sep 2014.

Ben Talbot, Sourav Garg, and Michael Milford. OpenSeqS-
LAM2.0: An Open Source Toolbox for Visual Place Recognition
Under Changing Conditions. IEFEFE Robotics and Automation
Letters, 1(1):213-220, apr 2018.

Robert Tibshirani. Regression Shrinkage and Selection Via
the Lasso. Journal of the Royal Statistical Society: Series B
(Methodological), 1996. ISSN 0035-9246.

O. Vysotska, T. Naseer, L. Spinello, W. Burgard, and C. Stach-
niss. Efficient and effective matching of image sequences under
substantial appearance changes exploiting gps priors. In 2015
IEEE International Conference on Robotics and Automation

14

[51]

[52]

(ICRA), pages 2774-2779, May 2015.

Olga Vysotska and Cyrill Stachniss. Lazy Data Association
For Image Sequences Matching Under Substantial Appearance
Changes. IEEE Robotics and Automation Letters, 1(1):213-220,
2016. ISSN 23773766.

Peng Yin, Rangaprasad Arun Srivatsan, Yin Chen, Xueqian Li,
Hongda Zhang, Lingyun Xu, Lu Li, Zhenzhong Jia, Jianmin Ji,
and Yuqing He. MRS-VPR: a multi-resolution sampling based
global visual place recognition method. 2019.

Zhihong Zhang, Yiyang Tian, Lu Bai, Jianbing Xiahou, and Ed-
win Hancock. High-order covariate interacted Lasso for feature
selection. Pattern Recognition Letters, 2017. ISSN 01678655.
Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and
Antonio Torralba. Places: A 10 million image database for
scene recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2017.

Hui Zou and Trevor Hastie. Regularization and variable selec-
tion via the elastic net. Journal of the Royal Statistical Society.
Series B: Statistical Methodology, 2005. ISSN 13697412.



	Introduction
	Mutual Information-based Feature Selection
	Proposed Visual Place Recognition and Feature Selection
	Sequential SLAM (SeqSLAM)
	Not Only Sequential SLAM (NOSeqSLAM)
	Feature Selection for Visual Place Recognition

	Experimental Results
	Evaluation datasets
	Image representation with DCNN feature maps
	NOSeqSLAM comparison to other algorithms

	Conclusion
	References

