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Zagreb, 2017.



Doctoral thesis was written at the University of Zagreb, Faculty of Electrical Engineering

and Computing, Departement of Control and Computer Engineering.

Supervisor: Professor Ivan Petrović, PhD

�esis contains 147 pages

�esis no.:



about the supervisor

ivan petrović received B.Sc., M.Sc. and Ph.D. degrees in electrical engineering from

the University of Zagreb, Faculty of Electrical Engineering and Computing (FER), Zagreb,

Croatia, in 1983, 1989 and 1998, respectively.

For the �rst ten years a�er graduation he was with the Institute of Electrical Engineering

of Končar Corporation in Zagreb, where he had beenworking as a research and development

engineer for control and automation systems of electrical drives and industrial plants. From

1994 he has been working at the Department of Control and Computer Engineering at

FER, where he is currently a Full Professor with tenure. He has actively participated as

a collaborator or principal investigator on more than 30 national and 20 international

scienti�c projects, where from them six are funded form FP7 and Horizon 2020 framework

programmes. He is also co-director of the Centre of Research Excellence for Data Science

and Cooperative Systems. He published more than 50 papers in scienti�c journals and

more than 180 papers in proceedings of international conferences in the area of control

engineering and automation applied to control mobile robots and vehicles, power systems,

electromechanical systems and other technical systems.

Professor Petrović is a member of IEEE, Croatian Academy of Engineering (HATZ),

chair of the Technical committee on Robotics of the International Federation of Automatic

Control (IFAC), a permanent board member of the European Conference on Mobile Robots,

an executive committeemember of the Federation of International Robot-soccerAssociation

(FIRA), and a foundingmember of the iSpace LaboratoryNetwork.He is also amember of the

Croatian Society for Communications, Computing, Electronics, Measurements and Control

(KoREMA) and Editor-in-Chief of the Automatika journal. He received the award "Professor

Vratislav Bedjanič" in Ljubljana for outstanding M.Sc. thesis in 1990 and silver medal "Josip

Lončar” from FER for outstanding Ph.D. thesis in 1998. For scienti�c achievements he

received the award "Rikard Podhorsky” from the Croatian Academy of Engineering (2008),

“National Science Award of the Republic of Croatia” (2011), the gold plaque "Josip Lončar”

(2013) and “Science Award” from FER (2015).

v



o mentoru

ivan petrović diplomirao je, magistrirao i doktorirao u polju elektrotehnike na Sveučil-

ištu u Zagrebu Fakultetu elektrotehnike i računarstva (FER), 1983., 1989. odnosno 1998.

godine.

Prvih deset godina po završetku studija radio je na poslovima istraživanja i razvoja

sustava upravljanja i automatizacije elektromotornih pogona i industrijskih postrojenja

u Končar - Institutu za elektrotehniku. Od svibnja 1994. radi u Zavodu za automatiku i

računalno inženjerstvo FER-a, gdje je sada redoviti profesor u trajnome zvanju. Sudjelo-

vao je ili sudjeluje kao suradnik ili voditelj na više od 30 domaćih i 20 međunarodnih

znanstvenih projekata, od čega šest projekata iz programa FP7 i Obzor 2020. Nadalje, su-

voditelj je Znanstvenog centra izvrsnosti za znanost o podatcima i kooperativne sustave.

Objavio je više od 50 znanstvenih radova u časopisima i više od 180 znanstvenih radova

u zbornicima skupova u području automatskog upravljanja i estimacije s primjenom u

upravljanju mobilnim robotima i vozilima te energetskim, elektromehaničkim i drugim

tehničkim sustavima.

Prof. Petrović član je stručne udruge IEEE, Akademije tehničkih znanosti Hrvatske

(HATZ), predsjednik tehničkog odbora za robotiku međunarodne udruge IFAC, stalni član

upravnog tijela European Conference ofMobile Robots, član izvršnog odborameđunarodne

udruge FIRA, suutemeljitelj međunarodne udruge „�e iSpace Laboratory Network”. Član je

i upravnog odbora Hrvatskog društva za komunikacije, računarstvo, elektroniku, mjerenja

i automatiku (KoREMA) te glavni i odgovorni urednik časopisa Automatika. Godine 1990.

primio je u Ljubljani nagradu „Prof. dr. Vratislav Bedjanič“ za posebno istaknuti magistarski

rad, 1998. srebrnu plaketu "Josip Lončar" FER-a za posebno istaknutu doktorsku disertaciju,

a za znanstvena je postignuća dobio 2008. godine nagradu „Rikard Podhorsky“ Akademije

tehničkih znanosti Hrvatske, 2011. godine „Državnu nagradu za znanost“, 2013. godine

zlatnu plaketu "Josip Lončar" FER-a te 2015. godine nagradu za znanost FER-a.

vi



abstract

�e two key prerequisites for autonomous navigation of anymobile robot are its capability to

infer (1) what the environment around it looks like and (2) where it is in the environment. To

inferwhere it is a robot localization algorithm is needed, while to infer what the environment
looks like a mapping algorithm is needed. �e di�culties with estimating the environment

map and the robot location arise from the fact that they are strongly interrelated. For this

reason the present thesis focuses on development of the Simultaneous Localization and

Mapping (SLAM) algorithms which allow mobile robots to build the map of completely

unknown environments, and at the same time estimate their location within. �e main

problems of today’s state of the art SLAM algorithms are: (i) to �nd appropriate map

representation, (ii), computation speed, (iii) to achieve long-term autonomy, and (iv) to

distribute the SLAM tasks over several robots. In this thesis all four problems are addressed.

For the map representation, the algorithm is presented which allows modeling of 3D

complex environments using as small as possible number of planar surface segments. More-

over, the algorithm also allows for fast update of the entiremapwhen the SLAMoptimization

is completed. Computation speed is addressed through the derivation of the Exactly Sparse

Delayed State Filter (ESDSF) on Lie groups (LG-ESDSF). LG-ESDSF represents the states

on Lie groups, and performs �ltering equations in the pertaining Lie algebra, which allows

it to respect the geometry of the state space. Because of this LG-ESDSF achieves accuracy

comparable to the state-of-the-art SLAM algorithms while maintaining high computation

speeds. A solution for long-term SLAM is also presented in the context of LG-ESDSF. It

detects which states have negligible information gain and removes them from the state

space, but at the same time preserves the sparsity of the information matrix, thus allow-

ing long-term real-time performance possible. Finally, the distribution of the SLAM tasks

over several agents is solved by the introduction of the cooperative SLAM algorithm. �e

proposed algorithm allows each agent to compute only simple computing tasks (trajectory

optimization in our case), and therefore they can have low computational power and still

work in real-time, while the central server performs complex computing tasks (global map

building in our case). Moreover, server collects information from all the robots and sends

the update information based on data from one agent to the other agents. Agents then use

this information to further increase their trajectory accuracy.

keywords: simultaneous localization and mapping, �ltering SLAM, graph-based SLAM,

exactly sparse delayed state �lter, 3D planar map, Lie groups, cooperative SLAM, long-term
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1
Introduction

Do or do not, there is no try.

Master Yoda

In this chapter, brief introduction and motivation behind the work done in this thesis is

presented. We start with explanation why mobile robotics is important in general with

the emphasis on the importance of the autonomy of mobile robots. �en, we explain

what exactly the simultaneous mobile robot localization and three-dimensional modeling of
unknown complex environments in real time means in the context of mobile robots and
why it is essential for achieving full autonomy in completing any task. Main challenges in

achieving solution to this problem are presented a�erwards, followed with the discussion of

various approaches. A�er this, original scienti�c contributions of the thesis are presented

with more detailed elaborations. Finally outline and structure of this thesis is sketched, with

short description and main aspects covered in each of the chapters.

1.1 motivation and problem statement

Mobile robots, in the next decades, will transform our everyday lives, as well as industrial

processes, similar to the impact that the Internet, cell phones and computers had in the past

two decades. Starting fromour homes, where they could help us in everyday chores, to search

and rescue operations where they could replace us in dangerous tasks, and �nishing with

factories where, even nowadays, they increase safety, production speed, and performance.

Accordingly, many globally relevant agencies and institutes, such as McKinsey Global

Institute [2], World Economic Forum [3] and European Commission [4], have highlighted

the signi�cance of the �eld of autonomous, next-generation robotics, and its potential to

transform life, business and the global economy. �erefore, the main challenges in mobile

robotics in the coming decades will be how to allow these mobile robots to cooperate with

humans in arbitrary settings and how to develop their autonomy to allow them to perform

these complex tasks.

However, regardless of the given task and its complexity, every autonomous mobile

robot must have at its disposal (i) a map of the environment, and (ii) its location within that

map. Although the environment map can mean di�erent things, in the context of this thesis

map will refer to representing complex 3D environments in a way recognizable to themobile

robot. Complex environment does not necessarily mean environment made of complex

1



2 1. introduction

shaped objects, but also environments with moving objects and surfaces that are hard to

detect using sensors, like re�ective or texture-less surfaces. Since fully autonomous mobile

robots should not rely on a pre-built environmentmap, they should be able to simultaneously

build the map of the environment and localize within that map. �is problem is known

in mobile robotics as Simultaneous Localization and Mapping (SLAM) problem and its

solution is one of the fundamental enabling technology for operation abilities of advanced,

autonomous and cooperative robotic systems in a wide range of future applications and

in diverse operating environments (on the ground, in the air, underwater). �e special

importance of the SLAM has also been highlighted by the European Commission in [4],

as part of the Perception and Navigation sections, where SLAM was identi�ed through

the following challenges: (i) dynamic map building, (ii) cloud based localization and (iii)

localization in dynamic environment.

Due to its importance, today many di�erent solutions to the SLAM problem exist,

however they all need to cope with the fundamental SLAM paradox: in order to build a

map, robot location has to be known, while in order to estimate the robot location, the

map needs to be known. Because of this, although conceptually identi�ed, SLAM had been

considered insolvable for many years. However, with the advancements in mathematics,

probabilistic theory and scienti�c discoveries in robotics in general, the following crucial

fact was discovered: As the robot moves through the environment and records features from
the environment, connections made between those measurements can be accurately established
no matter the error in the absolute robot or feature poses. Moreover, this connections can then
be used to increase global accuracy of all poses which leads to the convergence of the SLAM
solution. Once this was realised the �rst SLAM solution was soon presented and it marked
one of the most important events in the history of mobile robotics.

However, early SLAM solutions su�ered from various problems like inability to work in

real time, poor map representations, slow convergence and high sensitivity to disturbances.

Even today, many SLAM solutions su�er from one or more of these problems. �e main

reason is that SLAM combines the knowledge from large number of di�erent �elds in

robotics, probably the largest of any other problem in mobile robotics, which requires large

number of di�erent algorithms to produce accurate results in the same time. If any one fails,

the entire system is compromised. Nevertheless, modern SLAM solutions are capable of

accurately localizing a mobile robot andmap the environment in real time over long periods

without losing accuracy more than the required threshold for the safe autonomous robot

operation. �ey can be grouped based on many di�erent characteristics, of which the main

are, how they perform optimization of map and robot poses, what state parametrization

they use, what sort of the map representation they have and how long they can operate

in real time. In this thesis, all of this aspects are discussed and the scienti�c contributions

are presented that achieve step forward in each of these categories. �e resulting SLAM

solution is capable of working fast in large-scale environments requiring low computational

and memory resources, and can be run on multiple di�erent robots at the same time.



1.1. Motivation and problem statement 3

1.1.1 Original scienti�c contributions

�e original scienti�c contributions of this thesis deal with enabling the SLAM algorithm to

build e�cient map of the environment which is easy to share and process and to optimize

the map and the robot poses in order to maximize their accuracy. Also, they allow SLAM

to remain fast in the long-term and to be able to work simultaneously on heterogeneous

agents. �e contributions with short elaborations are given in the sequel.

• Method for building a global three-dimensional map of large environments in real

time by connecting planar features segmented from the local maps.

�edevelopedmethod represents the environmentwith as small as possible number of

planar surface segments. Planar segments were chosen since they are predominant in

indoor and urban environments and they aremuchmore compact features than points.

�is is especially important when dealing with large point clouds, like those generate

by 3D LIDAR, that can have tens of thousands of points. Using planar segments allows

much faster registration of point clouds and map update operations which is essential

for SLAM. �e pertaining algorithm uses probabilistic approach to merge planar

segments from di�erent local maps, which consist of planar segments extracted from

one point cloud. �is drastically reduces the number of features required to build

the global environment map. Moreover, algorithm allows fast update of each global

surface when the need arises due to the SLAM optimization of robot’s trajectory.

• Algorithm for simultaneous localization and three-dimensional modeling of un-

known complex environments based on exactly sparse delayed state �lter imple-

mented on Lie groups.

�is contribution presents a novel derivation of the Exactly Sparse Delayed State

Filter (ESDSF) which is used for prediction and optimization of robot’s trajectory

and consequently the map associated with that trajectory. Although 10 years ago,

state-of-the-art SLAM solutions relied on �lter for optimization, today’s approaches

mainly use graph optimization approach which, in essence, means solving SLAM

as non linear least squares problem. �is was mainly due to the fact that �ltering

approaches relied on state orientation representation within Euclidean frameworks

which does not represent the natural way of characterizing uncertainties and relations

between the state vector elements. In contrast to �ltering based approaches, graph

optimization SLAM approaches relied more on using the insights of Lie groups and

Lie algebras within the framework. By representing the states on Lie groups, and

performing �ltering equations in the pertaining Lie algebra, they were able to respect

the geometry of the state space, thus achieving better estimation accuracy of both

the mean and the covariance. In this contribution, ESDSF was also derived on the

Lie groups (LG-ESDSF) and by doing so it was able to achieve state-of-the-art perfor-

mance while requiring much less time for optimization than the graph optimization

SLAM solutions.

• Method for allowing simultaneous localization and three-dimensional modeling of

unknown complex environments based on exactly sparse delayed state �lter to work
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in real-time for long-term.

Once themapping is complete, and robot continues to move in the same environment,

new states are continuously added into the SLAM state-space. A�er some time this

generally leads to slow computation speeds and renders SLAM unable to continue

operating in real-time. �e proposed method allows the SLAM algorithm based on

ESDSF to continue working in large scale environments, even long a�er the mapping

is completed.�emain advantage is that the SLAM does not need to be stooped when

the map is built and reinitialized when the need for optimization arises. Instead, it

can continue to map new environments, if they become reachable, and optimize map

and robot poses continuously. �is is achieved by detecting which states added into

ESDSF contain much of the already present information and removing those states

without destroying the sparsity of the ESDSF information matrix. �e preservation

of sparsity is crucial since it is the main reason why ESDSF based SLAM can perform

its calculations signi�cantly faster than standard EIF or EKF based SLAM solutions.

• Algorithm for simultaneous localization of heterogeneous multi-agent system and

three-dimensional modeling of unknown complex environments.

�is contribution uses all three previous contributions to create highly e�cient SLAM

solution and extends it by adding the ability to simultaneously work on heterogeneous

agents that have low computational power.�is is achieved by emigrating the complex

computing operations from the agents and performing them on a standalone server

which communicates with the agents using wireless connection. Agents still have the

ability to build local maps and perform trajectory update, while the global map is

built by the server. �anks to the planar representation of local maps, they can be

easily transferred wirelessly to the server due to their small size. �e server receives

local maps and agents trajectories and builds the global map the same way as the

SLAM for a single agent does. Moreover, the server uses this information to send

update information to one agent, based on the information from another agent.

Cooperative SLAM system built this way is event triggered which makes it immune to

synchronization issues and is also robust to agents, communication or server failures.

In the case of an agent failure the entire system can continue functioning normally,

except no new information will be sent by the failed agent. In the case of a complete

server failure or communication failure each agent still has its trajectory and local map

which it can use to navigate safely. If communication with the server is re-established

the data will be synced and in time the system will continue to function as if no

communication loss had occurred.

1.2 outline of the thesis

�e thesis consists of seven chapters; this introduction chapter being �rst of them. �e sec-

ond chapter serve as an introduction to the concepts of mapping and localization in mobile

robotics.�e third chapter gives an overview of the Simultaneous Localization andMapping

(SLAM) solution. �e development of the SLAM problem solutions is presented, from the



1.2. Outline of the thesis 5

derivation of the �rst successful solution to the current state-of-the-art algorithms. A�er

that, the main components of a general SLAM system are presented and related work for

each of these components is given. �e chapters 4-6 deal with scienti�c contributions. Each

chapter begins with the introduction to the problem with brief description of how it was

solved. �en, detailed derivation of the contribution is presented and �nally experimental

results, proving successful implementation, are presented. Experiments are conducted on

relevant publicly available datasets which contain real world data. Each chapter is concluded

with the summary. In the last, seventh, chapter the conclusion and the ideas for possible

future work are given. Herea�er, short content description of each chapter is given.

⋆ CHAPTER 2. �is chapter deals with the basics of localization and mapping, introducing
key concepts for both. It presents di�erent aspects of pose and map representation and

di�erent localization methods that perceived SLAM solutions. �ese methods are based on

a-priori knowledge about the environment in which the robot will move.�ey require either

arti�cially placed beacons or previously built maps of the environment. �is makes them

accurate, but suitable only for speci�c scenarios and robot’s that do not require autonomy.

⋆CHAPTER 3. In this chapter, SLAM problem is discussed in detail. Twomain components
of each SLAM are presented, i.e. its back-end and its front-end. A�erwards, main parts

of every SLAM front-end are explained. �ey include: (i) odometry used for the robot

motion prediction, (ii) loop closing detection, used for generating pose constraints, and

�nally (iii) method for generating pose constraints used for optimization. For each part

two main groups are described. One contains the algorithms based on visual sensors and

the other contains algorithms based on laser sensors. For each group and for each part,

basic functionality and usage in SLAM is explained and related work is given. �e rest of

the chapter deals with SLAM back-end. Two main groups are presented, one consists of

SLAM back-end based on �ltering and the other consists of SLAM back-ends based on

graph optimization. For each group the relevant research and approaches are presented.

However, since the contributions of these thesis are based on �ltering approach it is covered

in more detail.

⋆ CHAPTER 4. �is chapter introduces complete SLAM solution based on the Exactly
Sparse Delayed State Filter (ESDSF) and planar representation of the environment. First,

introduction and detailed explanation of every ESDSF step is given, together with its com-

putational complexity analysis. �en, the algorithm for segmenting 3D point clouds into

local maps that consist of planar surface segments is presented. A�erwards, global map

construction algorithm is explained in four sections. �e �rst section discusses in details

the representation of the global map, while the second section deals with the algorithm

for merging the planar segments from di�erent local maps into global planar surfaces. �e

third section explains the method for calculating parameters of the global planar surfaces

and the forth section gives the procedure for e�ciently updating the global map, a�er the

SLAM trajectory optimization occurred. Finally, the extension of the SLAM solution with

the active SLAM component, which allows the SLAM to in�uence the robot’s movement, is

presented. �e chapter concludes with extensive experimental testing of all components

using four di�erent datasets.
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⋆ CHAPTER 5. �is chapter begins with the introduction of Lie groups and their main
aspects required for the derivation of the ESDSF on Lie groups (LG-ESDSF). �en, for each

step of the ESDSF: (i) augmentation, (ii) marginalization and (iii) update, its derivation

using the Lie group theory is given in details. It is also carefully explained what the main

di�erences of each step in comparison to the classic ESDSF are. �e derivation concludes

with the analysis of computational complexity of the LG-ESDSF. A�erwards a solution is

presented which allows LG-ESDSF to work over long periods of time in the same environ-

ment a�er the mapping is complete. Main problems with this situation are explained and

procedure of removing states that hold little new information without the loss of sparsity of

the information matrix is covered in detail. �e chapter concludes with the experimental re-

sults. For this purpose the LG-ESDSF is coupled with two state-of-the-art SLAM front-ends,

one for 3D LIDARs and one for stereo cameras. It is then compared to two state-of-the-art

SLAM algorithms and one state-of-the-art SLAMback-end, all based on graph optimization.

Finally the long-term solution is tested. All experiments are conducted using two acclaimed

and very di�erent publicly available datasets: one recorded with unmanned aerial vehicle

and the other with the ground vehicle.

⋆CHAPTER 6. In this chapter, a cooperative SLAM algorithm is proposed. SLAM back-end
is based o LG-ESDSF described in Chapter 5 and its front-end on the same planar based

solution described in Chapter 3.�e chapter begins with the introduction to the cooperative

SLAM, and main components of the proposed solution are explained a�erwards. �en, the

separation of the global map building from the trajectory estimation is explained, which is

crucial to the fast execution of cooperative SLAM, is explained. Next, the algorithm which

allows the server computer to use information of one agent to improve the accuracy of

another is presented. Finally, robustness of the proposed solution is analysed and the entire

algorithm is tested. Datasets used for testing are the same as for the other experiments done

in the thesis, however, they are modi�ed to accommodate for the multi agent environment.

⋆ CHAPTER 7. �is chapter concludes the thesis, gives the summary of scienti�c contribu-
tions and the outlook to the future breakthroughs in the SLAM solutions.



2
Localization and mapping in mobile robotics

In the �eld of mobile robotics changes are occurring every day and few things are constant.

However, there are some facts that will remain the same regardless of the advancements

and technological breakthroughs. One of them is that every autonomous mobile robot,

regardless of its purpose, must be able to answer two key questions at any time:

1. Where is it in the environment?

2. What the environment around it looks like?

�e answer to the �rst question is given by the localization algorithm and the answer to

the second question is given by the mapping algorithm. In mobile robotics, localization

refers to estimation of robot’s pose in 2D (3 DoF) or 3D (6 DoF) with respect to some

reference coordinate frame, while mapping stands for estimation and representation of

environment using information from the robot’s sensors.�emain problem with answering

these questions is the fact that it is impossible to answer them separately. Mobile robot

cannot determine its location without themap and it cannot build themap without knowing

its location.

Researchers and engineers have tried to solve this problem over the past several decades

continuously improving the accuracy and robustness of mobile robots localization and

mapping algorithms. Due to the complexity of the problem itself, even today we cannot

say that it has been completely solved. However today’s state-of-the-art methods allow

mobile robots to continuously and autonomously complete tasks in large and complex

environments over long periods.

2.1 map representation

Regardless of the technique used to build the map and its intended purpose, every map

consists of features and landmarks. Feature is any part of the map whose pattern is di�erent

than that of its neighbours. Features that are used for localization are referred to as landmarks.

Depending on the way features are represented in a map we can separate maps into three

main groups: metric maps, topological maps and semantic maps, Fig. (2.1).

In metric maps, with a given distance metric, distance can be calculated between any

two features in a map. Depending on the way features are represented, metric maps can be

divided into continuous metric maps and discrete metric maps. Continuous metric maps

7
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MAP REPRESENTATION

Metric maps

Topological maps Semantic mapsContinuous maps Discrete maps

Figure 2.1: Di�erent map representations in robotics.

consist of geometric features like lines, points and planes. Discrete metric maps decompose

the environment into cells. Each cell has a prede�ned size which is determined by the map’s

maximum resolution. �e most commonly used cells are squared and are referred to as

grids in a 2D map and voxels in a 3D map.

Topological maps consist of nodes and edges that connect them. Each node represents

a distinct part of the environment and can be as small as a single feature. However, in

most cases, nodes represent metric maps, and edges between nodes mean that metric maps

represented by those nodes are directly accessible from one another. �e good example of a

topological map would be a building with several �oors. Each �oor would represent one

node in a topological map and nodes representing neighbouring �oors would be connected

with edges.

Semanticmaps in robotics aremost commonly combinedwithmetric and/or topological

map representation. Semantic maps add higher abstraction level of the environment which

allow mobile robots to perceive environment not just as a set of features, but as a set of

objects, like doors, walls, cars, trees, etc. Such environment representation allowsmuch easier

human-robot interaction and more accurate localization. However, semantic representation

is computationally very demanding and there is still lack of algorithms that could accurately

classify more complex objects. A survey on semantic mapping can be found in [5]

More details on di�erent map representations can be found in [6], while solutions that

use di�erent combinations of mapping approaches are surveyed in [7].

2.2 pose representation

Pose of a mobile robot consists of rotation and position expressed in relation to some �xed

reference frame. Pose can be de�ned in 2D and 3D. In the case of a 2D pose a rotation is

de�ned by a single angle and a position is de�ned by two coordinates. In the remainder of this

thesis we will concentrate only on 3D pose representation. Although position representation

is straightforward, four major 3D orientation representations exist: Euler angles, Euler axis,

quaternions and rotation matrices. Here, only main properties of each representation are

given, while some more details are presented later in the thesis.

�e Euler angles are the three angles of rotation introduced by Leonhard Euler which
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are used to describe the rotation of the robot’s coordinate frames with respect to some �xed

coordinate frame. Euler angles are most commonly denoted as ϕ, θ and ψ for rotations
around x, y and z axes, respectively. �e rotations can be de�ned in extrinsic and intrinsic
way. Intrinsic rotations represent rotation of a mobile robot around its own coordinate

frame, while extrinsic rotations represent rotation of o mobile robot around the coordinate

axes of a �xed frame. Euler angles are most straightforward way to express rotation and

they are easiest to visualize, but they su�er from a well known problem called gimbal-lock.

�e Euler axis representation of rotation is based on Euler’s rotation theorem, which

says that any rotation or sequence of rotations of a rigid body in 3D space is equivalent to a

pure rotation about a single �xed axis. Euler axis θ is de�ned as:

θ = αe (2.1)

where e represents unit vector that de�nes the �xed axis around which the rotation is being
made, while scalar α de�nes the amount of rotation in radians. Since e is a unit vector, it is
de�ned only by two coordinates. If we want to rotate vector v = [vx vy vz] around the axis
of rotation de�ned by the unit vector e for an angle α, the resulting vector v′ would be

v′ = cos(α)v + sin αv(e × v) + (1 − cos α)(e ⋅ v)e (2.2)

Quaternions have �rst been described by IrishmathematicianWilliam RowanHamilton.

�ey were developed as a number system that extends the complex numbers. In general

quaternions are represented as

q = a + v (2.3)

where a is a scalar part and v = [bi + c j+ dk] is a vector part. However, when we normalize
quaternion and get unit quaternion, these unit quaternions can be used to represent orien-

tation. In this case they are referred to as orientation quaternions. Orientation quaternions

also have the basis in Euler’s theorem, but they encode orientation di�erently. Orientation

quaternion describing orientation around axis de�ned by unit vector e by angle ϕ is de�ned
as:

q = cos ( θ
2
) + e sin ( θ

2
) (2.4)

In order to rotate vector p = [px , py pz] using quaternion q we need to evaluate conjugation
of p by q

p′ = qpq−1 (2.5)

Compared to Euler angles, quaternions are easier to compose and they avoid the gimbal-lock

problem and compared to rotation matrices they are more compact and numerically stable.

Rotation matrices are 3 × 3 matrices whose columns or rows (depending on the con-
vention) are three unit vectors (u, v and w) that form base of a coordinate frame with new
orientation

R =
⎡⎢⎢⎢⎢⎢⎣

uxvxwx
uyvywy
uzvzwz

⎤⎥⎥⎥⎥⎥⎦
(2.6)

Although rotation matrix has 9 elements it has only 3 degrees of freedom, as dictated by the

Euler’s rotation theorem. Because of this, rotation matrix has the following properties:
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1. R is real, orthogonal matrix

2. Eigenvalues of R are {1, cos θ + i sin θ , cos θ − i sin θ}

3. Determinant of R is ∣R∣ = 1

4. Trace of R is Tr(R) = 1 + 2 cos(θ)

5. Inverse of R is equal to its transpose R−1 = RT

Since the set of all n × n orthogonal matrices with determinant 1 forms a group known as
special orthogonal group SO(n), rotation matrices form special orthogonal group known
as SO(3).

2.3 localization methods

�emain di�erence between various localizationmethods is in the amount of required prior

knowledge about the environment.�emore knowledge is required the simpler the method.

However, amount of required prior knowledge negatively e�ects the level of autonomy that

the mobile robot can achieve.

Based on the level of autonomy we can divide all localization methods in three main

groups:

1. �e simplest and least autonomous methods rely on arti�cial beacons placed in the

environment.

2. Higher degree of autonomy is achieved when the localization method requires only

the environment map without any arti�cially placed beacons.

3. �e highest level of autonomy is achieved when neither map nor beacons are required.

In the next two sections, the introduction and brief explanation for the �rst two groups will

be given, while the remainder of the thesis will focus on the third group.

�e main property that the �rst and the second group have in common is that they

do not estimate environment map, but instead use given map and/or arti�cially placed

information in the environment to estimate location of the mobile robot.

2.3.1 Localization based on arti�cially placed beacons

Localization techniques based on arti�cial beacons can be divided into two main groups

depending on where actual localization algorithm is being performed. First group consists

of localization methods that rely o active beacons to send information used for localization

in the environment. �e data is then intercepted by the receiver on a mobile robot and used

to calculate its location. Most well known system of this type is Global Positioning System

(GPS) [8]. GPS consists of satellites in Earth’s orbit which constantly send localization data.

Data are received by the GPS receiver placed on a robot which calculates robot’s location on

the Earth’s surface. Although, when developed, GPS was the �rst system of this type, today

we have similar systems developed by the European Union (EU) called GALILEO and by
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the Russian Federation called Global Navigation Satellite System (GLONASS). CRICKET

system [9] developed at MIT works by the same principle as GPS, i.e. uses a network

of emitters and receivers to determine the robot location. However, in contrast to GPS,

CRICKET works on a much smaller scale and is cheap and easy to setup in many di�erent

environments. CRICKET system is also scalable and can work with di�erent number of

emitters, with more emitters increasing its precision. One more similar approach is used in

[10] where emitters send out RF signal, and the receiver on the mobile robot triangulates

its position using Time of Flight (ToF) principle. Receiver can accurately calculate ToF

thanks to its implementation using high performance multi core DSP processors. Approach

similar to CRICKET system is also presented in [11] in which a sensor network of Zigbee

[12] devices is used as emitters, and the receiver on the robot measures its location using the

Received Signal Strength Indicator (RSSI) method. RSSI works by comparing how much of

the original signal strength was lost while the signal was travelling from emitter to receiver.

Another major group of localization methods that use arti�cial beacons consists of

methods that require mobile robot to be equipped only with the recognizable marker.

Marker is then identi�ed by several beacons placed in the environment, this information is

shared between beacons and location is estimated. Usually, location information is then

wirelessly transmitted to the mobile robot. Today two mostly used systems of such type are

VICON and Optitrack motion capture systems. �ey both use IR emitters and specially

designed markers which re�ect IR light back to the receiver placed in each emitter. Using

ToF principle, distance of the marker from each emitter is calculated and �nal robot location

is triangulated on a server connected with each beacon. Besides speci�cally designedmotion

capture systems there are a lot solutions that use standard sensors like cameras [13] to create

a sensors network used to localize a robot. In these cases markers are designed speci�cally

to accommodate characteristics of a chosen sensor network in order to allow maximum

visibility and ease of detection.

All localization methods based on arti�cial beacons, although easy to implement and

highly accurate, have serious limitations which prevents them from replacing localization

methods based on di�erent principles. �e most important limitation is the requirement

to cover the entire area where the robot is going to move, with enough beacons to allow

accurate localization. �e best example of such problem is GPS, where o�en its signal in

urban environments and under some weather conditions becomes too weak for accurate

pose estimate. �e similar problems occur when using systems like VIKON and Optitrack.

�e easiest solution to the localization problem with such systems would be to place more

beacons to cover larger areas. However, the main disadvantage of such solution is its price.

Although not nearly expensive as launching new satellites, VIKON, Optitrack and beacons

used in other methods become very expensive when required in larger areas. Moreover,

it is o�en not possible to place beacons in the required areas, for example when robot is

moving through urban or forest environments. One more problem with those methods is

the requirement for precise pose estimation between placed beacons, which is solved using

speci�cally designed calibration protocols. Although, in theory system will require only

initial calibration, any change in the environment or addition of new emitters will require

the repeat of the process in order to maintain the accuracy.

For these reasons localizationmethods based on arti�cially placed beacons, although irre-
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placeable in some applications, can never become universal localization methods. However,

in some cases their limitations are abbreviated by combining them with other localization

methods. �e main idea behind this approach is that other localization methods will work

accurately enough while the beacon signal strength is too low for localization. Once the

beacon signal becomes available again, it will correct the accumulated error.

2.3.2 Localization based on known map

Localization techniques that use existing map all work on the same principle. �ey compare

current measurements taken from the robot sensors to the existing map in the memory.

Environment map stored in the memory is referred to as the global map, while the map

constructed from the robot measurements is known as local map. Once the best �t between

the local map and the global map is calculated, a pose is estimated between the local

reference frame of the local map and the global reference frame of the global map. �e

main di�erence between these methods refers to features used to �nd the �t between the

maps and the sensors used to build both maps. �e main problem with these methods is

the requirement to build the global map prior to localization.

Global maps can be built by the same sensors setup that is going to be used for robot

localization by entirely di�erent combination of sensors. When the robot is building the

global map, usually, only measurements are recorded from the environment and then the

global map is built o�ine. In the process of constructing a global map, pose that the robot

had while taking measurements must be known. �is can be solved by using some slow

accurate matching algorithm that will match consecutive measurements to determine their

relative location. It is a viable solution in this scenario because while constructing the

global map, accuracy is much more important than the time required. Another solution to

estimating robot location for o�ine map construction is to use beacon based localization.

Since the map is built o�ine, one can move beacons from one section to the other, thus

drastically reducing the cost. A�er the measurement locations are estimated beacons can

be completely removed, so there is no need for multiple calibrations. A�er the global map

is built, features used for the localization are extracted and stored in a way so they can be

matched fast with features from the local maps. Global map can also be built using di�erent

sensors than the ones robot will use. For example we can use high accuracy o�ine 3D laser

to build global map and then equip robots with stereo cameras or even 2D lasers depending

on the requirements.

Work presented in [14] builds a globalmap from rangemeasurements. It than reduces the

global map by determining which areas are reachable by the used robot. A�er that features

are extracted from rangemeasurements by grouping individual points and classifying groups

by their median range value. �e features extracted from the global map are then compared

to the features from the local map and current location is determined. In [15] authors present

a solution that allows robot localization even in hand drawn 2D maps built by non-expert

user. �e approach is based on Monte Carlo localization (MC) [16], with two extensions.

First, they augment state-space of the robot with an additional variable that represents local

deformation of the hand drawn map. Second, they localize the robot in the pixel coordinate

frame of the map, instead of the world coordinate frame. �e authors of work presented in
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[17] describe a method which uses textured occupancy grid map. �ey have demonstrated

how a textured occupancy grid map can be combined with an extremely simple monocular

localization algorithm to produce a viable localization solution comparable to localization

results achieved when using a laser. Added bene�t is that textured occupancy grid map

can be used for localization by humans, cameras and lasers. Solution presented in [18] is a

more general probabilistic solution which can work with di�erent features extracted from

camera image, laser range image or even sonars. It performs an e�cient global search of

the pose space that guarantees that the best position is found according to the probabilistic

map agreement measure.

Although localization based on knownmapo�ersmuchmore �exibility than localization

based on beacons, it is still very limiting regarding the autonomy perspective. �ere are

very few solutions that can cope with changing maps and there is still a requirement to

enter and measure the environment prior to letting the robot operate in it. �e only truly

autonomous approach is to let the mobile robot to build the map itself �rst time it enters

the environment.

2.3.3 Localization and map building in unknown environments

As stated before, when building the map at the same time while performing the localization,

the main problem is that you do not know what do do �rst. You need a map to localize a

robot within and you need pose to build a map. �is is why such solutions were presumed

unviable for the long time in mobile robotics. However some 20 years ago �rst solutions to

the problem were presented. Since then numerous solutions have been presented and all

are known under the same name: Simultaneous Localization AndMapping (SLAM). SLAM

solutions will be in the focus of the remainder of the thesis with the next chapter providing

introduction to SLAM basics.
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Simultaneous Localization And Mapping

In this chapter Simultaneous Localization And Mapping (SLAM) algorithms will be de-

scribed. First, the problem de�nition will be given, following with the overview of the SLAM

development over the last two decades. A�erwards, the main components of every SLAM

solution will be explained.

3.1 problem definition

As opposed to the problem described in the previous chapter, where only the robot location

was estimated, in SLAM we need to estimate both the robot location and the location of all

map landmarks. �e SLAM problem can be represented as a proposal distribution

P(Xk ,m∣Ω1...i , z1... j) (3.1)

where Xk represents robot pose at step k, m represents all map landmarks, z1... j represents
measurements recorded up to step k and Ω1...i represents odometry inputs up to step k.
More information about odometry can be found in Sec. 3.3.2. Notice that index j is di�erent
than index k since number of measurements does not need to be the same as the number
of odometry inputs.

In the general form, the SLAM problem is unobservable since there is no known starting

point, so the problem statement (3.1) is always written as

P(Xk ,m∣Ω1...i , z1... j, X1) (3.2)

where X1 represents initial starting point of the robot. It is not important what the exact
value of X1 is, only that it is �xed.�e observability of SLAMwill not be further discussed in
the present thesis, however, more detailed analysis of SLAM observability and convergence

can be found in [19].

Regardless of the SLAM solution, in order to estimate P at time step k, we always need
to de�ne a measurement model and a motion model. Motion model is used only to estimate

new robot pose based on previous robot poses and odometry inputs. Motion model is

de�ned as:

P(Xk ∣X1...k−1, Ωk) . (3.3)

If we assume that the robot motion between pose Xi to pose Xi+1 acts as a �rst order Markov
chain, we can write (3.3) as

P(Xk ∣Xk−1, uk) . (3.4)

14
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Measurement model is de�ned as

P(zk ∣Xk ,m) . (3.5)

Measurement model is used to estimate predicted value of real world measurement based

on the current robot pose Xk, and poses of map landmarks m. �e di�erence between the
measured and the predicted value is used to optimize both, landmark and robot poses.

As can be seen from themeasurementmodel (3.5),measurement probability is correlated

to both robot pose and map landmarks. However, map landmarks and robot pose are also

correlated, therefore we have the following inequality

P(Xk ,m∣zk) ≠ P(Xk ∣zk)P(m∣zk) . (3.6)

�e absolute poses of the map landmarks have two sources of uncertainty, one comes from

the sensor itself and landmark extraction algorithm, and the other is from the uncertainty

of the robot pose at the time when the measurement was taken. �e inequality (3.6) exists

because of the latter. �is means that we cannot estimate the poses of map landmarks

separately from the robot pose. Moreover, since the uncertainty of the robot pose increases

with every new pose estimated, so does the uncertainty of themap landmarks extracted from

those poses. At �rst, it would seem that due to this error accumulation in both landmarks

and robot poses, the solution to the (3.2) diverges in time. However the SLAM problem is

solvable due to the following observation: the accuracy of relative poses between landmarks
is una�ected by the accuracies of landmark global poses and the accuracy of the robot global
pose. Figure 3.1 shows an example of four robot poses and map landmarks extracted from
measurements taken at those poses. Landmark mi was extracted from measurements zk−2
and zk−1, while landmark m j was extracted from zk−1 and zk. Although absolute poses of
landmarks mi and m j can have large errors, their relative pose can be calculated accurately,

since they are both extracted from the same measurement zk−1. In probabilistic term this
means that although probability density of P(mi) and P(m j) is dispersed, probability
density of P(mi ,m j) is highly concentrated. Moreover, when m j is again extracted from zk ,
it is matched with m j extracted from zk−1 and this information can be used for correcting
both accuracy of landmark posemi and robot pose Xk . Consequently, as all map landmarks

extracted from the same measurement are correlated, their poses are also updated. As the

robot continues tomove and new landmarks are extracted, they are matched with previously

extracted landmarks, and both poses of all map landmarks and the robot pose are corrected.

�e SLAM problem can best be visualised using a set of springs. All map landmarks and

robot poses are connected with each other using springs with variable elasticity coe�cient.

When the robot takes new measurement and new relative poses between landmarks are

estimated, springs connecting those landmarks become sti�er, as do all other springs in

the system. However, springs that connect landmarks that are farther away are less e�ected.

As the robot continues to take new measurements, springs become more and more sti�,

and ideally eventually lose all elasticity. In reality this will never happen, but we can say

that the more sti� the springs are, the more certain we are in the pose of every landmark.

All SLAM solutions try to do just that, minimize the uncertainty of map and robot poses.

However they do this in many di�erent ways. In the next chapter, development of di�erent
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Figure 3.1: SLAM problem.

apporaches to solving the SLAM problem will be presented, and more details about more

relevant ones will be given. For more information on the fundamentals of the SLAM the

reader is referred to [20, 21].

3.2 development of slam solutions

�e �rst formulation of the SLAM problem was in 1986. at the robotic conference in San

Francisco. �ere, problems regarding simultaneous localization and mapping were recog-

nized and many researchers started to work on �nding the theoretical solution. A�er a few

years many came to the conclusion that solution to the problem would require computation

power unavailable at the time. Moreover, many also concluded that errors which occur in

landmarks and robot poses will not converge with time, but would instead diverge, so they

rendered the entire solution infeasible. Because of this conclusions, work on the problem

solution was abandoned. However, a�er some time, it was realised that if estimating the

robot pose and poses of map landmarks can be realised as a single estimation problem it

does converge to a single solution. Most importantly, it was discovered that the number

of correlations between map landmarks should not be minimised, but maximized instead

in order to achieve better accuracy. Finally, at the International symposium on robotics

held in 1995. SLAM acronym was formulated and �rst converging solution was presented.

It marked a new age in robotics and opened doors to more advanced autonomous robotic

systems.

From the �rst solution to the SLAM problem until today, a large number of di�erent

SLAM algorithms have been presented [22]. In general, any SLAM algorithm can be divided

in twomain parts: (i) the SLAM front-end and (ii) the SLAM back-end.�e SLAM front-end
is responsible for dealing with sensor data abstractions, e.g., extracting features and pose

constraints, while the SLAM back-end is responsible for estimation and optimization of

both robot and map landmarks poses based on the SLAM front-end pose constraints.

Main di�erences between SLAM front-ends comes from the sensor con�guration

(mono/stereo, color/greyscale cameras, 2D/3D LIDARs, radars etc.) and from the environ-

ment (air, water, forest, urban etc.) they were developed for. More details about di�erent

sensor con�gurations and applicable SLAM front-ends can be found in Sec. 3.3. Besides

this, SLAM front-ends can further be divided based on two aspects. First important aspect



3.2. Development of SLAM solutions 17

is whether or not they can successfully function in dynamic environments. Most SLAM

front-ends completely disregard the possibility of moving objects in the scene and assume

a completely static scenery. However, several works have addressed moving objects and

taken them into account during map and location estimation [23, 24, 25], thus allowing for

more robust performance when working in dynamic environments. Second di�erentiating

aspect between SLAM front-ends comes from their ability to in�uence the robot motion.

Although in general, SLAM algorithms are passive and do not in�uence robot navigation,

some SLAM algorithms address this fact in order to maximize location and map accuracy,

and are referred to as active SLAM algorithms [26, 27, 28, 29].

SLAM back-ends can be divided in two main groups depending on the approach to the

state optimization: (i) �ltering based (e.g. [30]) and (ii) graph-optimization based SLAM

back-ends (e.g. [31]). Furthermore, �ltering based SLAM back-ends can be divided into

two additional groups based on the states used for the map and location estimation. �e

�rst group are the feature-based SLAM back-ends that estimate the current robot pose

and poses of extracted map landmarks. Given that, map landmarks and the robot location

are correlated and must be updated in the same step. �e second group of �ltering based

approaches is called pose graph SLAM back-ends. �ese approaches estimate a discrete

robot trajectory, while map landmarks are correlated only to one of the discrete trajectory

states. �e result is that map landmarks are no longer correlated to each other, but only

to a single trajectory state which then allows trajectory estimation independent of the

environment map estimation.

Even though the graph optimization approach to SLAM was known and well de�ned

in the early stages of SLAM development, �rst SLAM solutions were nevertheless based

on the �ltering approach. �e main reason behind this, at the time, was the inability to

compute graph optimization in the time required for successful SLAM operation. �e �rst

�ltering based SLAM solutions utilized the extended Kalman �lter (EKF); however, issues

were detected stemming from the linearization of both process and measurement model

and from the increasing number of states when new landmarks are extracted and added as

new �lter states. �rough time, many e�cient implementations of the EKF-SLAM were

presented, such as [32, 33, 34, 35, 36, 37, 38, 39], but the core problems remained. �e �rst

fundamentally di�erent approach to EKF-SLAM was presented in the form of a particle

�lter (PF) SLAM, dubbed Fast-SLAM in [40]. �e main advantage of the PF is that there is

no need to linearize the system model, while the main drawback is high dimensionality of

the state space. �is was solved in Fast-SLAM by applying Rao-Blackwell marginalization.

�e improved version of the Fast-SLAM, dubbed Fast-SLAM 2.0, was later presented in

[41].

In order to solve the issue of high dimensionality of the EKF-SLAM state-space, re-

searches turned to the information form of the EKF called the extended information �lter

(EIF). �e main advantage of using EIF in SLAM is that with a large numbers of landmarks

in the state-space, most of the o�-diagonal elements of the information matrix are close

to zero. One of the �rst successful solutions for the EIF-SLAM was presented in [1] and

more were presented therea�er in [42, 43]. However, disregarding elements that are close

to zero leads to inevitable introduction of estimation errors, which in most cases for a

well designed system are small, but still do exist. In [44] authors presented a solution to
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the information-form SLAM that has an exactly sparse information matrix and thus no

approximation error occurs. �erein, they named the developed information �lter the

exactly sparse delayed state �lter (ESDSF).

�e sparsity of the SLAMmatrix was also a key insight that allowed developing of new

direct linear solvers for the SLAM problem using graph optimization techniques, such

as in [45]. New solvers allowed the re�nement process to complete tens of times faster

than before, which opened a whole new research area for SLAM algorithms. One of the

�rst successful alternatives to �ltering approaches, dubbed
√
SLAM, was presented in [46].√

SLAM used a smoothing approach to solve SLAM and achieved better performance in

both computation time and accuracy than the contemporary existing EKF-SLAM solutions.

In [47] authors presented a method for optimizing large pose graphs called the sparse

pose adjustment (SPA). SPA is similar to
√
SLAM, but with the main di�erences in (i)

the e�cient construction of the linear subproblem, by employing ordered data structures,

and (ii) in using the Levenberg–Marquardt (LM) algorithm instead of the nonlinear least

squares. A graph optimization solution was presented in [48] which used an e�cient

version of the sparse bundle adjustment (SBA). �erein, relations among cameras are also

sparse and, by combining the proposed method with direct sparse Cholesky solvers, authors

outperformed the standard SBA implementations. A stereo SLAM solution, named S-PTAM,

was presented in [49] and used a parallel estimation process of the map and robot poses,

thus enabling fast computation of robot location, while building map and re�ning the

graph in the background. S-PTAM uses the LM optimization for re�nement, while binary

features are used for describing visual point landmarks. A graph based SLAM solution was

also presented in [50], where to speed up computation and allow execution in large scale

environments, authors divided the global graph into subgraphs optimized independently

using the LM algorithm. Subgraphs are then matched and combined into global graph using

loopy belief propagation algorithm called large scale relative similarity averaging.

In parallel to various complete SLAM solutions that used graph optimization and

comprised of both the front-end and the back-end, researchers started to develop universal

graph optimization solutions.�ese solutions can be used as SLAM back-ends for trajectory

and map optimization, as well as for any optimization problem that can be formulated

using a graph structure. Currently, there exists several such solutions including GTSAM

of [51], Ceres of [52] and SLAM++ of [53], but the two solutions most commonly used in

combination with di�erent SLAM front-ends are iSAM of [54] and g2o of [55]. iSAM uses

a fast and incremental QR matrix factorization. By updating only the QR factorization of

the sparse smoothing information matrix, it recalculates only those matrix elements that

change drastically, thus increasing the computation speed. Another positive aspect of such

matrix factorization is an easy and fast access to estimation uncertainties. Upgrade of the

iSAM, called iSAM2, was presented in [56] which introduced a new data structure called

the Bayes tree.

Of all the aforementioned solutions, g2o is the most general optimization framework

for nonlinear least squares problems that can be represented as a graph. It was developed

to utilize sparse connectivity in the graph, and also to take the advantage of the special

structures that occur in the graph when being built by speci�c algorithms like the graph

SLAM or bundle adjustment (BA) SLAM. As a graph optimization solution, g2o is highly
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e�cient and computationally fast thanks to using advanced methods for solving sparse

systems and advanced features of modern processors as well as maximally optimizing

processor memory and cache usage. Similarly to the other solutions, g2o is also publicly

available, but currently enjoys better community support and o�ers a large database of

tutorials and examples. �erefore, it is not surprising that the two current state-of-the-art

visual SLAM solutions, namely ORB-SLAM and LSD-SLAM, both use g2o as their SLAM

back-end.

LSD-SLAM was �rst presented for mono-cameras in [57] and a�erwards a stereo-

solution in [58] was introduced. It employs a direct and featureless method whichminimizes

photometric errors between images in order to estimate the pose. Main novelties included

were direct trackingmethod which operated on Sim(3) and probabilistic solution to include
the e�ect of noisy depth values into tracking. ORB-SLAM was also �rst introduced for

mono cameras in [59], and later for stereo and RGB-D cameras in [60]. It uses ORB features

for mapping, loop closing and tracking, and employs covisibility graph and survival of

the �ttest strategy to allow for real-time execution over long periods of time in large-scale

environments.

�e next section describes in more details key aspects of SLAM front-ends, while the

�nal section of this chapter gives details of di�erent SLAM back-ends.

3.3 slam front-end

As stated in the previous section, SLAM front-end is responsible for processing sensor

data and generating pose constraints used in the SLAM back-end to estimate robot and

landmark poses. In this section, �rst most commonly used sensor setups in SLAM systems

today will be described. �en odometry algorithms based on those sensor setups and used

to evaluate SLAMmotion model will be discussed. A�er this, algorithms for loop closing,

key component of every SLAM front-end, will be presented and in the �nal section special

type of SLAM front-ends that can in�uence robot motion in order to increase accuracy will

be described.

3.3.1 Commonly used sensor setups

Although today there are a lot of SLAM front-ends for many di�erent kinds of sensor setups,

most commonly used aremono grayscale camera in combination with inertial measurement

unit (IMU), two grayscale cameras in stereo con�guration, 3D light detection and ranging

(LIDAR) sensors and depth cameras in combination with RGB camera usually called RGBD

sensor. �ese four sensor setups are shown in Fig. 3.2.

�e main problem when using mono cameras for SLAM is that it is not possible to

estimate metric scale of the poses. To solve this, mono camera is coupled with the IMU

sensor whose accelerometers allow scale estimation, while data from the mono camera

ensures that the error introduced by the accelerometers remains low. One of the best mono

SLAM solutions that use IMU is presented in [61] which uses ORB-SLAM as a basis. It

allows constant time local Bundle Adjustment (BA), and by not marginalizing past states, it

is able to reuse them. Its back-end uses a lightweight pose-graph optimization, followed by
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Figure 3.2: Commonly used sensor setups in SLAM.

full BA in a separate thread, not to interfere with real-time operation. Other mono SLAM

solutions include mono LSD SLAM [57] and mono ORB SLAM [58]. Main advantages of

using mono cameras are in their cheap price and small size, while the drawbacks are the

requirement for both very precise hardware synchronization and estimation of calibration

parameters between the IMU and the camera.

Accuracy of SLAM solutions based on stereo cameras greatly depends on the correct

calibration of extrinsic and intrinsic camera parameters. However, once the stereo cameras

are calibrated there is no need for additional sensors. Stereo SLAM solutions are currently

the most used among all other SLAM algorithms. �e main reason for this is in their small

size, mass and price which allows them to be placed on many di�erent robot con�gurations,

including autonomous �ying vehicles (UAVs). Besides alreadymentioned stereo LSD SLAM

[58] and stereo ORB SLAM [60], stereo SLAM solutions are discussed in [62, 63, 64].

�e release of Microso� Kinect introduced a new type of sensor, which o�ered high

frequency and accurate 3D depth data without using stereo cameras and IMU. Most impor-

tantly, unlike most stereo and mono camera algorithms, its depth data was dense. Since it

also contained an RGB camera, this type of sensor was named RGBD sensor. Main limita-

tions of Kinect and all other RGBD sensors that followed, was their limited range (up to

4m) and their susceptibility to sunlight which rendered them far less accurate in outdoor

environments. However, due to their low price and accuracy in indoor environments, many

3D RGBD SLAM solutions were developed [62, 65, 66, 67, 68].

LIDAR sensors, in comparison to cameras, have several advantages, main being longer

range, greater accuracy and larger Field Of View (FOV). On the other hand their main

drawback is that they aremuchmore expensive, especially those that have higher resolutions.

�e price also greatly varies depending on whether we want 3D or 2D LIDAR. 2D SLAM

solutions that use 2D LIDAR sensors [69, 70] o�er great accuracy, but have limitations on

the scenarios they can work in. �ere are also SLAM solutions [37, 36, 71, 72] that work in

3D and use 2D LIDAR mounted on a pan-tilt unit, which rotates the LIDAR and provides

3D information. Although able to work in 3D, the speed of these SLAM solutions is limited

by the speed of the pan-tilt unit. �e SLAM solutions that use 3D LIDAR sensors o�er the

best speed among all LIDAR based SLAM algorithms, however, due to the highly expensive

sensor and requirement to process vast amount of data in real time, these SLAM solutions
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have only recently become viable and are still largely in development.

3.3.2 Odometry

In general, term odometry refers to estimating robot pose in reference to a starting point.

�e main di�erence between SLAM and odometry is that odometry does not optimize past

states, but only uses current robot pose and information from the sensor to estimate robot’s

pose in the next step. Due to this, pose errors are cumulative and using only odometry to

estimate robot’s pose is not accurate enough in large-scale environments. However, accurate

odometry is crucial in every SLAM system since it is used to calculate robot motion for the

SLAMmotion model (3.4). Although SLAM is capable to reduce accumulated odometry

error, the less amount of pose error is introduced by the odometry, the more accurate will

the �nal SLAM estimate be.

�e most basic and most common odometry algorithm is so called wheel odometry,

which uses encoders to measure wheel or joint rotation in wheel and legged ground robots.

By knowing exact physical dimensions of wheel or joint, algorithm can estimate the pose

change between two encoder measurements. However, due to the slippage and many other

interferences from the environment, measuring robot pose this way results in the accumula-

tion of large pose errors over time. Also, this type of odometry cannot be used in the UAVs.

Because of this many advanced odometry algorithms have been developed that rely on

di�erent types of sensors. In SLAM, two mostly used odometries are so called vision odom-

etry which relies on camera measurements, and laser odometry which relies on LIDAR

data to estimate the robot’s pose. As explained in the Sec. 3.1, in order to maintain accuracy,

SLAM has to make connections between map landmarks from di�erent measurements.

Since both visual and laser odometries have to do the same, but only between consecutive

measurements, it is o�en the case that features used by the SLAM are the same as the ones

used in odometry algorithms. Using same type of features means that only one feature

extraction algorithm is required which speeds up and simpli�es the process.

Because of this tight connection between SLAM and odometry, odometry solutions

are o�en presented together with SLAM solutions. In most cases odometry algorithm is

introduced �rst and then the global optimization and loop closing detection is added to

complete the full SLAM solution. �is is why most already mentioned works on SLAM

algorithms also introduce a novel odometry algorithm.

Visual odometry. Visual odometry algorithms can be divided into two main groups

regarding the sensors used, and in two additional groups regarding their approach to feature

selection. Based on the sensors there are visual odometry algorithms that use stereo cameras

and algorithms that use mono camera with or without IMU. With regards to the feature

selection there are visual odometry algorithms that use extracted features from images

like Harris corners [73], Scale Invariant Feature Transforms (SIFT) [74] and Speeded Up

Robust Features (SURF) [75], and those that use only pixel densities of the entire camera

image. �e latter are referred to as direct visual odometry algorithms. As stated in the

[59] the main advantage of direct approach is that, since they do not use features, they are

more robust to e�ects such as blur and low texture in camera images. However, they are
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more sensitive to illumination changes and moving objects due to the limit in the baseline

matches introduced by high non-convexity of the photometric error.

One of the �rst highly accurate feature-based visual odometry solution that relies

only on mono camera was presented in [38] which also included full SLAM solution

called MonoSLAM. Main contribution of this paper was in the way features were selected.

Special strategy was developed which focused only on the most relevant image parts for

feature extraction. �is allowed both reduction in the number of features required and

increased accuracy in comparison to other methods which treated all image segments the

same. One also very important work, which set the basis for future mono visual odometry

solutions called PTAM, was presented in [76]. Although original, PTAM was usable only

in small spaces and was primarily used for virtual reality (VR) applications. �erea�er

many variations followed which allowed usage in much larger areas. Today we have several

state-of-the art methods for feature-based visual odometry using mono cameras of which

some are presented in [59, 49]. Among the direct visual odometry methods that use only

mono cameras, the most relevant works are presented in [57], which also includes full

SLAM solution mono LSD SLAM and fast semi-direct monocular visual odometry (SVO)

presented in [77].

Stereo visual odometry approaches in most cases evolve from the mono visual odometry

algorithms.�e good examples are odometries presented together with a full SLAM solution

ORB SLAM and LSD SLAM. Shortly a�er mono solution was published, stereo solution

was also presented in [58] for ORB SLAM and in [60] for LSD SLAM. SVO visual odometry

was also released for stereo cameras in [78].

Due to the low cost of IMU sensors, many mono and stereo visual odometry approaches

use them in combination with the cameras. In this case odometry algorithms are referred

to as visual-inertial (VI) odometries. One of the today’s state-of-the-art VI odometry

algorithms is modi�ed version of SVO presented in [79] which preintegrates inertial mea-

surements between selected keyframes into single relative motion constraints to further

increase its accuracy. Another, highly accurate example of VI odometry solution developed

for both mono and stereo cameras can be found in [80]. In [81] VI solution only for mono

cameras was presented while solution presented in [82] is dedicated only to stereo cameras

in combination with IMU.

Among all the mentioned visual and visual-inertial odometry solutions, solution de-

veloped within our group called Ttereo Ddometry based on careful Feature Selection and

tracking (SOFT) presented in [83] is currently ranked 1st on publicly available KITTI dataset

[84]. For this reason and also for its fast computation speed and low processor usage, SOFT

has been used in experiments requiring stereo visual odometry conducted within this thesis.

SOFT has the ability to work as either pure stereo visual odometry or as VI stereo

odometry if IMU data is available. Once the images from both cameras have been received

and synchronized, features are extracted from each image. Feature extraction is based on

corner features and blob masks on the gradient image. Features are then weighted based on

their stability and their displacement from the predicted pose change. If IMU is available its

measurements are used for prediction, and if its not, prediction is generated using 5-point

RANSAC on features extracted from a le� camera image.�e output a�er this stage is sparse

feature set used for pose change hypothesis generation using 1-point RANSAC algorithm
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which results in a set of inliers. �e computed inliers are then used in a Gauss-Newton

optimization in order to determine �nal pose change estimate.

Laser odometry. As stated in the previous section (Sec. 3.3.1), LIDAR sensors o�er

several advantages over the cameras, main being their accuracy, FOV and the fact that

they are una�ected by lighting conditions in the environment. However LIDAR sensors

are much more complex to produce and their usage in robotics started later than the usage

of cameras. Consequently, laser odometry solutions arrived later than visual odometry

solutions, especially those capable of working in 3D. Although, many 2D laser odometry

solutions exist [85, 86, 87, 88], their usage is highly limited to speci�c environment and

can not be considered as a full replacement for visual odometry solutions. Today there are

two main groups of 3D laser odometry solutions. One group consists of laser odometry

solutions which convert point clouds into images, while the other group combines all the

approaches that use point cloud representation directly obtained from the LIDAR.

Regardless of the approach, main problem with using LIDAR data in comparison to

using camera images is in the way data are collected. Cameras, especially those with global

shutter technology, record pixel data of the entire image almost instantly. LIDAR sensors

on the other hand, either 2D or 3D, use rotating mirror to de�ect the laser beam at various

angles to acquire depth data, which means in a single scan there is a time shi� between the

�rst and the last data recorded. Although in 2D LIDARs this e�ect is small and in many

solutions can be neglected, if one uses pan-tilt unit to rotate the 2D LIDAR, time delay is

considerable.�is means that if the robot is moving while taking the scan, LIDAR data must

be motion compensated before using in the odometry algorithm.�e simplest solution is to

stop the robot while taking the scan like in [89, 90], however this severely limits the robot’s

usefulness. A better solution to the problem can be found in using LIDAR data continuously,

as they arrive, or motion compensate the entire scan once it is recorded.

Due to the later arrival of 3D laser odometry approaches, logical step was to try and use

already well developed algorithms for visual odometry with LIDAR data. �is is done by

converting LIDAR intesity information into the pixel values of a grayscale image. Several

works have proven the e�ectiveness of this approach [89, 91, 92, 93, 94]. In [92] motion

compensation was solved by using continuous data acquisition approach. A frame-to-frame

laser odometry is proposed which uses a novel pose interpolation scheme that explicitly

accounts for the exact acquisition time of each feature measurement. In [93] LIDAR data is

also processed continuously by facilitating Gaussian Process Gauss-Newton (GPGN), an

algorithm for non-parametric, continuous-time, nonlinear, batch state estimation. Continu-

ous approach to LIDAR data processing for robot localization is also implemented in [94]

where complete SLAM solution is presented. �e authors derive the relative formulation of

the continuous-time robot trajectory and formulate an estimator for the SLAM problem

using temporal basis functions.

When using entire point cloud to compute odometry, motion compensation is o�en

done using data from the IMU like in [95] and [96], sometimes even combined with highly

accurate GPS solution. However, with the recent development of dedicated 3D LIDAR

sensors, motion compensation is becoming less of a problem, due to their ability to produce

3D point clouds with high frequency. Moreover, modern 3D LIDAR sensors manufactured
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by companies like Velodyne have internal IMU sensor which they use to produce already

compensated point clouds as an output. However, if not converting them to images, the

main question is how to process 3D point clouds.

Many attempts [90, 97, 98] had the philosophy that the environment is its best represen-

tation and operate directly on raw 3D point clouds. In almost all of these works, matching

3D point clouds of the environment is performed with algorithms derived from the iterative

closest point (ICP) algorithm [99]. �e ICP algorithm tries to �nd point correspondences

and then minimize their distance using either point to point metric [99], point to line

metric [85] or point to plane metric as in [100]. Although ICP has an advantage of im-

plicitly solving data association problem, it su�ers from premature convergence to local

minima, especially when the overlap between scene samples decreases [72]. Furthermore

the main drawback of every ICP algorithm is their relatively slow speed due to the need of

�nding correspondences in every iteration and requirement for fairly accurate initial guess

of the relative pose. However, because of their simplicity and accuracy they gained a lot

of popularity in the research community and became a sort of a standard solution for 3D

point cloud registration. Today more than 400 di�erent ICP variants exist. Good overview

and detailed comparison and benchmarking between di�erent variants can be found in

[101]. Although, state-of-the-art ICP variants are signi�cantly faster and more robust than

the initial solutions, their speed is still a limiting factor when considering real-time laser

odometry.

Since raw 3D point cloud processing is computationally intensive, a question arises

what is the best environment representation that would allow real time processing while

preserving precision up to a certain level. Answer to this question is especially important for

SLAM systems since theymust simultaneously build themap and perform localization using

sensors information about the environment. Ability to work in real-time increases SLAM

localization performance and enables it to build a meaningful map. One solution to the

problem is in segmenting the 3D point cloud into higher level features. During segmentation

of raw data into higher level features some precision is always lost but the SLAM system

can be designed so that this does not signi�cantly impact its overall performance. �e

maps consisting of higher level features such as polygons can be almost as good for the

navigation tasks as more precise maps consisting of raw data, but also enable execution

in real-time which is more important in those tasks. One way to extract features from

point clouds is to use special descriptors developed for 3D point clouds like in [102] and

[103]. However, although accurate in some environments a descriptor which would work

accurately in largely di�erent environments is still missing. Instead of using speci�cally

designed descriptors many methods that use geometric objects, like planes, as features have

been developed. �ese methods will be discussed in detail in the next chapter.

Of all the mentioned laser odometry methods, the most accurate and fastest algorithm

for laser odometry, according to KITTI online evaluation protocol, is called Lidar Odometry

andMapping (LOAM) [104]. It can work using continuous data acquisition from the pan-tilt

mounted 2D LIDAR as well as with full 3D LIDARs. It is also capable of incorporating IMU

data when available and even a version which couples camera and LIDAR data in order

to produce even more accurate results exists, presented in [105]. Key idea of LOAM is the

division of the complex problem of localization and mapping into two algorithms. One
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algorithm, which runs at high frequency, produces low �delity to estimate velocity of the

LIDAR, while second algorithm runs at a frequency of an order of magnitude lower for �ne

matching and registration of point clouds.

Because LOAM is not an open source algorithm it was not used in this thesis for laser

odometry. Instead, two di�erent algorithms were used which both perform point cloud

registration based on higher level feature extraction and matching. One is Robot Vision

Library (RVL) which will be extensively explained in the next chapter. �e second uses

�ree-Dimensional Normal Distributions Transform (3D-NDT) to represent and match

point clouds and is called D2D-3D-NDT [106]. NDT is compact spatial representation of a

point cloud which allows fast relative pose calculation. In addition to the usage of 3D-NDT

representation, a fast, global-descriptor based on the 3D-NDT is de�ned in [106] which

is used to achieve reliable initial poses for the iterative algorithm. Both D2D-3DNDT and

RVL are accurate and fast and their main advantage over LOAM is the ability to calculate

covariances of the relative pose estimate which is essential for SLAM.

3.3.3 Loop closing

As stated in the Chapter 3.1, SLAMmaintains pose and map accuracy by using constraints

between matched map landmarks. While the robot is moving and newmeasurements taken,

it is fairly easy to match map landmarks between consecutive measurements.�is is because

much of the landmarks extracted from measurement in step k will also be extracted from
measurement in step k + 1. However, the constraints between map landmarks e�ects the
accuracy of other landmarks less and less the more away they are. If we imagine a mobile

robot moving forward, the constraints made with landmarks from current measurement yk
will e�ect the accuracy of map landmarks taken from measurement yi less, the larger the
di�erence k − i is. �e question is how to create constraints between map landmarks taken
from measurement yk and the ones extracted from the measurement taken much earlier.

�e connection between landmarks from two measurements, yi and y j, can be made if
they describe the same feature from the environment. �is means that connections can be

made when two measurements are taken from roughly the same pose in the environment.

�eproblem is thatwe cannot knowwhen the robot is in the sameplace simply by comparing

current and previous poses because of the pose errors accumulated with time. �is is why

we need an algorithm that will be capable of detecting when the robot returns to the already

visited place in the environment by comparing current and previous measurements. Group

of algorithms that solve this problem are known as loop closing detection algorithms. As

all other algorithms related to SLAM, they depend on the sensors used. Two main groups

exist, one for the image based and one for the LIDAR based approaches.

Detecting loop closing using camera images. �e image based methods for

loop closing detection can be divided into three main categories:

• map to map - builds sub-maps consisting of features from several camera images and

then compares those sub-maps by the number of features in common.

• image to map - compares current image to the whole set of previously extracted

features in the map.
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• image to image - compares features from current image to features from previously

extracted images separately.

One of the most well known methods, which sets the benchmark for all other image

based loop closing methods, is FAB-MAP presented in [107]. FAB-MAP uses dictionary

to compare images, which has to be built prior to running it online. Features extracted

from images in the learning dataset are stored in the dictionary in a form of Bag of Words

(BoW). Similar features are clustered into the same category, thus reducing the number

of di�erent words. When run online, features extracted from current image are compared

to the words in the dictionary and number of features belonging to each group in the

dictionary is calculated. �e match between images is found based on this numbers which

drastically increases the matching speed. Besides matching only numbers of similar words,

FAB-MAP also takes into account the probability that if one of the detected features from

the dictionary is present, some other features are also located in the same image. In order

to calculate this probability fast FAB-MAP uses Chow Liu Tree (CLT) [108] which is also

built during the learning phase.

Today, several alternatives to FAB-MAP exist. In [109] authors present a method for im-

age based loop closing called HAsh-based LOop Closure (HALOC). It extracts SIFT features

from an image and then calculates small hash vector from all the extracted SIFT descriptors.

�ese vectors can then be compared extremely fast which allows it to run online even with

thousands of images. �e added bene�t is that the method is open source and available

under the BSD license. Solution presented in [110] uses BoW approach and SUFR features.

It achieves real time performance by novel memory handling approach in which frequently

visited locations are kept within the working memory (WM), while less frequently visited

ones are stored in long term memory (LTM). However, if a frequency changes, locations

can e�ciently be transferred from LTM to WM and vice-versa. Loop closing solution pre-

sented in [111] uses a Local Di�erence Binary (LDB) [112] descriptor for image matching.

Additionally authors add disparity information to it and call it D-LDB, which allows more

accurate and robust detection. However, it requires stereo cameras to calculate disparity

information. Solution presented in [113] uses BoW and ORB features to produce accurate

loop closing detection with very low computation cost. Besides loop closing detection it also

o�ers fast relocalization solution. More detailed analysis and comparison between visual

loop detection solutions can be found in [114].

Detecting loop closing using 3D point clouds. Similarly to laser odometry

solutions, loop closing solutions that use 3D LIDAR data have appeared later than the ones

based on camera images. �is was mainly due to the lack of universal descriptors for 3D

point clouds and large amount of data required to be processed in real time. Today, similarly

to visual based loop closing detection, we can identify three main groups of loop closing

algorithms that use 3D point clouds:

• local descriptors based algorithms - identify local features in each point clouds and

use them for matching.

• global descriptor based algorithms - describe entire point cloud with a single descrip-

tor and use it for matching.
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• object based algorithms - detect whole objects in point clouds and use them for

matching.

�e work presented in [115] belongs to the �rst group. It uses key point descriptors

called 3D Gestalt descriptor and nearest neighbour search to identify matches. In order

to speed this process, matches returned by the nearest neighbour search are accumulated

into vote scores for their associated places. �is approach results in sub-linear computation

time with respect to the number of places. Also a methodology for statistical modelling of

vote distribution is developed in order to allow more accurate matching. In [116] authors

present a solution which uses three di�erent types of descriptors, the 3D Gestalt descriptor,

the neighbour-binary landmark density (NBLD) descriptor [117] and the Boxli descriptor.

�e main advantage of using these three types of descriptors is the ability to match sparse

and dense point clouds, which allows it to work with 3D point clouds generated by both 3D

LIDARs and stereo cameras. �e solution presented in [118] uses BoW approach to build a

dictionary.�en, when working online, BoW is used to get initial matches between received

point clouds. For each of those pair matches, transformation between pair is calculated

using point features. �e transformations are then ranked and the transformation with the

highest rank is reported as a match.

Some of the solutions that belong to the second group are [119, 120, 121]. Solution

presented in [119] uses NDT to describe point clouds. NDT is used to represent point clouds

as feature histograms which can then be used for easy and fast matching. Work described in

[121] uses rotation invariant features that describe both geometric and statistical properties

of a point cloud. �ese features are then used for input into the AdaBoost algorithm that

calculates non-linear classi�er used for matching point clouds. In [120] authors present a

solution which describes entire point clouds as histograms. In order to do that they �rst

represent each point with single value equal to its distance from the robot’s local coordinate

frame. �is values are then normalized and discretized into �xed number of intervals.

Intervals are then used for histogram generation. Histograms are then compared using

Wasserstein metric.

Finally, the algorithms that would belong to the third group and would be suited for

largely varying environments are still missing. However, they are intensively researched and

the one with promising results which almost belongs to this group was presented in [122]

and is called SegMatch. As the authors state, full 3D object segmentation from point cloud

is di�cult due to the many reasons, one of them is the requirement to see the entire objects

in both point clouds that are matched. �is is why the authors use more descriptive shapes

than keypoint-based features, but do not require this shapes to represent entire objects.

SegMatch �rst �lters point clouds into voxels, than ground plane is removed, and �nally

adjacent voxels are grouped into shapes based on vertical means and variances. �e shapes

are then converted into features using two descriptors. One descriptor is eigenvalue based

and the other is histogram based. Extracted features are used in the matching procedure

that relies on a geometric veri�cation step.

Regardless of the used loop closing detection solution once the loop is detected pose

constraints between the features have to be estimated and sent to the SLAM back-end. Some

loop closing detection algorithms perform relative pose estimation as part of their matching

process. If this is the case, pose constraint can simply be obtained from the loop detection
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algorithm once the match is reported. If the loop detection algorithm does not calculate

relative pose, some of the mentioned laser or visual odometry solutions can be used since

now we know which two measurements need to be used for pose constraint generation. In

any case, for loop closing detection algorithm to work, robot has to revisit already visited

places. SLAM solutions can either passively wait for this to happen, or in�uence the robot to

do it. SLAM solutions with front-ends that have this ability are called active SLAM solutions.

3.3.4 Active SLAM

SLAM ismostly treated as a passive systemwhichmeans that it does not send any commands

to the robot - it only acquires sensor data and uses that data to build amap of the surrounding

environment and to localize the robot in that map, i.e. it does not decide where the robot

must go. However, controlling the robot can prove to be bene�cial since it can ensure that

the robot returns to the previously visited places and closes the loop. A good example of

scenario in which SLAM needs to in�uence robot’s trajectory is when SLAM is coupled

with the exploration algorithm. Exploration algorithm needs a map and a location from the

SLAM to determine next best place for the robot to go and take measurements. However,

returning to the same place is in contrast to the main goal of the exploration algorithm

which is to explore the environment in shortest time possible. �is is why active SLAM

algorithm needs to modify goal planned by the exploration algorithm in order to allow loop

closing and ensure that uncertainty of SLAM localization and mapping remains within the

desired boundaries.

In [123] "localization metric" is introduced which provides the uniform basis for mea-
suring localization quality. �e localization quality over a trajectory is combined with the

navigation cost of the trajectory and information gained from the environment by following

the trajectory in one single criterion. �at criterion is used for determining on which trajec-

tory should the robot travel on. Numerical method that uses a non-linear Model Predictive

Control (MPC) for estimating the pose and the map error, that will occur by following

one trajectory, is introduced in [124]. In [27] relative entropy is used as a measure for the

information gain. Environment is discretized into grids and optimal trajectories (according

to information gain criterion) are planned on the global scale thus minimizing unnecessary

loop closures and noise while ensuring more precise maps. In [28] information gain is also

used as a criterion for choosing the trajectory. �e di�erence is that Rao-Blackwellized

particle �lter is used for SLAM and entropy calculation. In [29] global planning is avoided

by using attractors in combination with a local planning strategies. �e attractor is placed

in the environment according to the current robot goal (explore, improve map or improve

localization). �e attractor then in�uences information gain computed by a local planner

which uses MPC. In [26], the FastSLAM is used. When localization uncertainty reaches

the prede�ned level the exploration task is stopped and possible previously visited states

are considered for loop closing. �e state with the highest information gain and the easiest

reachability is chosen. When the robot reaches that state it follows its previously traversed

path until the uncertainty drops below a desired level and then the exploration is contin-

ued. One di�erent approach to minimize localization and mapping errors is used in [125],

where reinforcement learning is used to generate a robot’s motion in such a way that it
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minimizes error generation in the mapping process. �is approach enables the usage of a

simple exploration strategy while maintaining the location and map accuracy.

With the successful implementation of odometry solution, loop closing detection al-

gorithm, pose constraint estimation and possible integration of the ability too in�uence

the robot movement, SLAM front-end is complete. �e other crucial component of every

SLAM system is its back-end.

3.4 slam back-end

As stated in the Sec. 3.2 SLAM back-end is responsible for optimizing landmark and robot

poses by taking into account odometry measurements and constraints from the loop closing.

Today two main groups based on fundamentally di�erent optimization approaches exist.

First group contains approaches that rely on �ltering solutions to optimize poses, while

the second group contains approaches that use graph-optimization techniques. In the Sec.

3.2 all important solutions from both categories were mentioned. In the present section

each group will be covered more extensively together with brief descriptions of current

state-of-the art solutions. However, since the main contributions of this thesis which rely on

the �ltering based approaches, they will be covered in more details than graph-optimization

approaches.

3.4.1 Filtering based SLAM back-end

First �ltering based solutions used EKF, then followed solutions that use EIF and lastly

PF based solutions were presented. �rough time all �ltering solutions evolved and many

advanced methods were presented which tried to overcome main disadvantages of the �lter

they were based on.

In general, all �ltering based solutions have two main steps: correction and prediction.

Prediction step is used to evaluate current robot pose using motion model (3.4) and odom-

etry inputs, while the correction step is used to optimize pose accuracy based on incoming

measurements. Using the motion model (3.4) and the Bayes theorem, we can write general

expressions for each of this steps. For prediction step the equation is

P(Xk ,m∣z1⋯k−1, Ω1...k , X1) = ∫ P(Xk ∣Xk−1, uk)P(Xk−1,m∣z1...k−1, Ω1...k−1, X1)dXk−1 . (3.7)

�e �rst term under the integral represents the distribution of pose Xk calculated using

the motion model based on the state Xk−1 and odometry input Ωk, while the second term

represents the distribution of state Xk−1 andmap landmarksm depending onmeasurements
and odometry inputs received up to step k − 1. For correction step the general equation is

P(Xk ,m∣z1...k , Ω1...k , X1) = P(Xk ,m∣z1...k−1, u1...k , X1)
P(zk ∣Xk ,m)

P(zk ∣z0...k−1, Ω1...k)
. (3.8)

Here, the �rst term is equal to the output of the prediction step, while the fraction term

takes into account information received by the new measurement zk. Depending on the
selected �lter, solutions to equations (3.7) and (3.8) are found using di�erent apporaches.
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EKF SLAM back-end. �e basis of every EKF SLAM algorithm is to describe the

motion and measurement models using Gauss distribution. �is means that in EKF SLAM

both robot and map landmark poses act as Gauss random variables. �e expectancy of Xk

and m is
E [Xk

m
] = [µXk

µm
] = µk , (3.9)

where µk holds the expectancy values of every observed map landmark

µk = [µ1k µk
2 . . . µk

N]
T
, (3.10)

where N is the number of observed landmarks. �e covariance matrix is equal to

E [(Xk − µXk

m − µm
)(Xk − µXk

m − µm
)
T

] = [ ΣXk ΣXk ,m
Σm,Xk Σm

] = Σk , (3.11)

where Σm represents covariance matrix of every observed landmark

Σm =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ
1,1
m Σ

1,2
m ⋯ Σ

1,N
m

Σ
2,1
m Σ

2,2
m ⋯ Σ

2,N
m

⋮
Σ
N ,1
m Σ

N ,2
m ⋯ Σ
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m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.12)

where Σ
i ,i
k represents the covariance ofmap landmarkmi and Σ

i , j
k represents cross-covariance

between map landmarks mi and m j.

Using Gauss distribution assumption, the motion model (3.4) in EKF SLAM becomes

P(Xk ∣Xk−1, Ωk) ⇐⇒ Xk = f (Xk−1, Ωk) +wk (3.13)

where f is a function that calculates expectancy of robot pose Xk based on odometry

measurements Ωk and previous pose Xk−1 and wk represent white Gaussian noise with

covariance Qk. Similarly the measurement model becomes

P(zk ∣Xk ,m) ⇐⇒ zk = h(µXk , µm) + νk (3.14)

where h represents sensor measurement model, and νk represents Gauss white noise with

covariance Rk. Using these equations, standard EKF equations can be applied to get the

expectancy and covariance of Xk and m a�er the prediction and correction steps. For the
prediction step the EKF SLAM equations are

µ̄k = f (µk−1, Ωk) , (3.15)

Σ̄k = FkΣ−1FT
k + Qk (3.16)

where Fk = ∇ f (µk−1) represents Jacobian of f calculated at µk−1. �e correction equations
are

[µXk

µmk

] = [ µ̄Xk−1

µ̄mk−1

] + Kk [zk − h(µ̄Xk , µ̄mk−1)] (3.17)

Σk = Σk−1 − KkHkΣk−1 (3.18)
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Algorithm 1: EKF-SLAM pseudocode
1: Set initial value of X1 and extract initial landmarks
2: loop:
3: Complete prediction step by calculating µ̄k and Σ̄k

4: Retrieve new measurement zk
5: Extract new features and estimate their pose mi

k
6: for Every extracted feature do
7: if Observed for the �rst time then
8: Extend µk by adding mi

k
9: Set covariance of new feature Σ

i ,i
k to high value

10: Extend Σk and add Σ
i ,i
k , set all Σ

i , j
k , j ≠ i to zero

11: end if
12: Calculate di�erence between the stored expected value of landmark pose µ i

k and the

newly measured one z ik
13: Calculate new Σk and µk

14: end for

where

Kk = Σk−1HT
k S−1k

Sk = HkΣk−1HT
k + Rk

and H = ∇h is Jacobian of h calculated at (µ̄Xk−1 , µ̄mk−1). �e full algorithm of EKF-SLAM
is depicted in Algorithm 1.

Two things are worth pointing out. First, since sensors are mounted on the robot only

landmark poses relative to the robot local frame can be measured. In order to get di�erence

in step 11, which is referred to as innovation, landmark absolute pose µ i
k has to be transferred

into the same local frame.�is is done using predicted robot pose µX̄k
and is the reason why

measurement model h is dependant on µ̄Xk . Second, when calculating new Σk and µk in step

12, if landmark was observed for the �rst time, the innovation in step 11 will be 0.�is means

that second term in update equation (3.17) will also be zero and hence µk = µ̄k. However,

the covariance of Σ
i ,i
k will change according to the equation (3.18). Cross-covariance ΣXk ,m i

k
will also change because of the Jacobian H.
One iteration of algorithm 1 is shown in Fig. 3.3. First step 1 is completed by setting

initial pose X1 and extracting landmarks mi
1 from measurement z1. �en new pose X2 is

predicted and new landmarksmi
2 are extracted.�is completes steps 3-5. Now landmarkm21

is matched with landmark m12 and landmark m31 is matched with landmark m22. Landmarks
m32 andm42 are added as new landmarks, in steps 8-10, since they were not matched with any
landmarks from z1. Finally update is performed and new robot pose and landmark poses
are estimated in steps 12-13.

Every EKF SLAM algorithm has the same problems as any other algorithm which relies

on the EKF. �e main three are:

• Convergence: a�er some time, covariances describing the uncertainty of map land-

marks will converge to the same value and a�er that they will not change according
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Figure 3.3: One iteration of the EKF-SLAM algorithm depicted in Algorithm 1. Red landmarks

represent landmarks that were observed from two measurements, while grey objects

represent robot and landmark poses before the update occurred.

to the measurement and motion uncertainties. Due to this, a correction will have

less impact to the overall accuracy than it should if the covariances were updated

accordingly.

• Mathematical complexity: Whenever new landmark is introduced, the dimension of

covariance matrix Σk is increased by 1. Since calculations of Kk requires the inversion

of Sk which has the same dimensions as Σk the inversion complexity rises quadratically

with the number of added map landmarks.

• Linearity: Both measurement and motion model have to be linearized in order to

calculate Jacobians F and H. Depending on the amount of non-linearities in the
models the errors introduced this way can severely e�ect the SLAM accuracy.

One of the �rst truly successful implementations of the EKF-SLAM algorithm was

presented in [32]. It proved that indeed it is possible for an autonomous robot to start in an

unknown environment and, using relative observations only, incrementally build a perfect

map of the world and to compute simultaneously a bounded estimate of the vehicle location.

�is was proved using real world experiments with a robot equipped only with a millimetre-

wave radar. In [35] a similar result was achieved for the indoor environment and the paper

focused on the SLAM front-end which is based on sonar. Main contributions are concerned

with smart handling noisy and sparse sonar data in order to convert them to reliable map

features. �e work presented in [36] minimizes the number of map features by using highly

reduced surface models segmented from point clouds obtained by rotating 2D LIDAR. Also

features are organized into an elastic graph structure with bounded number of sub-maps

which results in a faster correction step and can be calculated online. �e EKF-SLAM

solution based on planar features extracted from measurements obtained by 2D rotating

LIDAR is also presented in [37]. It uses heuristic represented residuals to model systematic

errors which could not be compensated during calibration and in-tern improves overall

accuracy due to the more accurate error description. One truly revolutionary approach to

the EKF-SLAM based on mono camera was presented in [38] called MonoSLAM. Although
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MonoSLAM was already discussed in the section related to the visual odometry, it also

holds important novelties regarding EKF-SLAM. In order to reduce the number of features

authors developed a method which builds a probabilistic framework of carefully selected

features which create sparse, but persistent map. �ey also introduced, for the �rst time,

an active approach to mapping and also use general motion model to describe camera

movements in a smooth way which increases prediction accuracy. In [39] authors combined

EKF with RANSAC to increase the accuracy and speed by using EKF estimate to reduce

the number of samples used as input for RANSAC.

Although many new EKF-SLAM approaches do minimize some of the mentioned EKF

problems, none of them completely solves them. Depending on the implementation some

methods are more robust than the others, but still, due to the EKF core, in some situations

and/or a�er a certain time the method has been working online, these problems will start

to e�ect the accuracy.

PF SLAM back-end. Particle �lter based SLAM approaches are fundamentally di�erent

from the EKF-SLAM solutions.�e two key di�erences are: (i) that the PF does not linearize

the motion model and (ii) that it does note require that the state distributions act as Gauss

distribution. �e main problem with PF is that it is computationally far too complex to be

used for estimating the pose of every map feature extracted from the environment. Because

of this it is impossible to implement PF directly on the SLAM problem de�ned in (3.2).

However, it is possible to reduce the state space by reformulating the SLAM problem using

Rao-Blackwellization (R-B). It is based on partitioning the joint state according to the

product rule:

P(X1, X2) = P(X2∣X1)P(X1) . (3.19)

�is means that now, if P(X2∣X1) can be analytically computed, instead of using PF to
estimate joint distribution P(X1, X2) we can use PF only to estimate P(X1) which is much
less computationally complex. In order to do this with the SLAM problem (3.2), it is �rst

extended so that it includes not only current robot pose Xk, but also a set of past robot

poses X1∶k−1. Now it can be partitioned as:

P(X1...k ,m∣z1...k , Ω1...k , X1) = P(m∣X1...k , z1...k)P(X1...k ∣z1...k , Ω1...k , X1) . (3.20)

Partitioning the distribution this way, means that now the distribution is on the entire

discrete robot trajectory, rather than on the single pose Xk. Although this may seem as

making the problem even more complex, this is not the case due to one key fact. Map

landmarks are now conditioned only on the trajectory states and not on each other. �is

means that, since measurements are also mutually independent, one map landmark is

independent on the others. As a result, introducing new map landmarks now increase the

complexity linearly as opposed to the quadratic complexity increase in EKF SLAM. SLAM

back-ends that estimate discrete robot trajectory, instead of the current robot pose and the

poses of map landmarks, are also referred to as pose graph �ltering SLAM back-ends.

Using distribution partitioning (3.20) in PF-SLAM means that each state (particle)

consists of trajectory which is represented as weighted samples and map which is computed

analytically. �e joint distribution at time step k thus consists of i = 1 . . .N particles, where
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each particle is de�ned as:

pik = {w i
k , X i

1...k , P(m∣X i
1...k , z1...k)} i = 1 . . .N (3.21)

where wk represents particle weight. �e map m of each particle consists of independent
Gaussian distributions each representing one map landmark:

P(m∣X i
1...k , z1...k) =

M
∏
j
P(m j∣X i

1...k , z1...k) . (3.22)

�ismeans that each of the landmarksm j is represented by its expectancy µm j and covariance

Σ
j, j
m . However, instead of having one large Σ containing all covariances of map landmarks

which increases every time new landmark is added, each landmark’s covariance Σ
j, j
m is

constant in size.Moreover, this size is small and determined by the exact pose representation.

For example covariance of map landmark whose orientation is represented by quaternion

would have size of 7 × 7. �is is possible because map landmarks are now independent of
each other which means that cross-covariances Σ

i , j
m , i ≠ j are equal to zero.

When new discrete state Xk is added into the trajectory, new map landmarks are ex-

tracted from the measurement zk. �ose observed for the �rst time are added into the
map and those that already exist and are observed again are processed individually using

EKF, which renders map estimation trivial. However, PF implementation for estimating

trajectory X1...k distribution is more complex.
Basically, PF-SLAM algorithm consists of four main steps:

1. For every particle pi calculate the distribution of new discrete pose Xk based on

trajectory history distribution X i
1...k−1, measurements z1∶k and odometry input Ωk

X i
k ∼ π(Xk ∣X i

1...k−1, z1...k , uk) , (3.23)

where π stands for selected distribution which can vary depending on the algorithm.
�en add X i

k to the particle trajectory X i
1...k = {X i

k , X i
1...k−1}.

2. Calculate new particle weight w i
k using the importance function:

w i
k = w i

k−1
P(zk ∣X i

1...k , z1...k−1)P(X i
k ∣X i

k−1, Ωk)
π(Xk ∣X i

0∶k−1, Z0∶k , Ωk)
. (3.24)

�e �rst term in the numerator represents the measurement model and the second

term stands for the motion model. �e measurement model is di�erent than (3.5)

and is obtained by marginalizing map components:

P(zk ∣X1...k , z1...k−1) = ∫ P(zk ∣Xk ,m)P(m∣X1...k−1, z1...k−1)dm (3.25)

3. Do resampling if necessary. Resampling selects number of particles and discards

the rest. �e selected particles are given new uniform weight coe�cients. �e exact

method of selecting which particles to keep and when to do it di�ers among the PF

algorithms.
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4. Lastly, extract landmarks from new measurement zk. Landmarks observed for the
�rst time are added into the �lter and landmarks that were not observed are le�

unchanged. �e landmarks that have already existed, and were observed again, are

updated using EKF and information from the new pose distribution.

Two main implementations of R-B PF-SLAM exist, FastSLAM 1.0 [40] and FastSLAM

2.0 [41]. �ey di�er in the selection of the distribution π used in steps 1 and 2. FastSLAM
1.0 uses motion model (3.4) for π:

X i
k ∼ P(Xk ∣X i

k−1, Ωk) , (3.26)

which means that weights in step 2 are calculated based only on the marginalized measure-

ment model:

w i
k = w i−1

k P(zk ∣X i
k) . (3.27)

FastSLAM 2.0 includes the observation in the distribution π:

X i
k ∼ P(Xk ∣X i

1...k , z1...k , Ωk) (3.28)

and π can then be expressed as:

P(Xk ∣X i
1...k , z1...k , Ωk) =

1

C
P(zk ∣X i

1...k , z1...k−1)P(Xk ∣X i
k−1, Ωk) (3.29)

where C is normalizing constant. �is results in the particle weight being calculated as:

w i
k = w i

k−1C (3.30)

Main advantage of FastSLAM 2.0 over FastSLAM 1.0 is that its distribution π gives
the smallest possible variance in importance weight calculation, i.e. it is locally optimal.

�e main problem of both FastSLAM 1.0 and 2.0 is that they su�er degeneration since

they cannot forget the past. �e main reason for this is that marginalizing the map in
order to calculate the weight in step 2 means that the result is dependant on the pose and

measurement history. When using resampling, some of this history is lost, and so is the

statistical accuracy of the algorithm.

EIF SLAM back-end. EIF is essentially EKF and as such retains all the advantages

and disadvantages together with the requirement that both process and measurement

model act as Gauss distributions. �e main di�erence between EKF and EIF is that instead

of estimating expectancy µ and covariance Σ, EIF estimates information vector η and
information matrix Λ. �e relations between (µ, Σ) and (η, Λ) are:

Σ = Λ−1 µ = Ση (3.31)

�e main advantage of EIF SLAM over EKF SLAMwas presented in the �rst viable solution

to the EIF SLAM [126]. In [126] authors used the EIF ability to be distributed and decen-

tralised and applied it to the SLAM solution for multiple robots. Authors showed that there

are several key advantages of using information form in distributed multiple agents SLAM,

however its usefulness in SLAM for a single agent over the EKF solution was proven later in
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[1].�ere, authors observed that information matrix of EIF SLAM exhibits one key property

which would enable much faster computation of EIF SLAM equations. �is property is

shown in Fig. 3.4. �e le� image shows the estimated map and robot pose, the centre image

shows the normalized covariance matrix estimated using EKF approach and the right image

shows the information matrix. Pixels in image are darker the closer the value of matrix is to

1 and are lighter the closer the matrix value is to 0. As can be seen, in information matrix,

much of the elements are close to zero values (large white areas).

Figure 3.4: Nearly sparse structure of the information matrix in EIF-SLAM. Le� image represents

poses of landmarks and robot poses, center image represents covariance matrix in EKF-

SLAM and right image represents information matrix in EIF-SLAM. Pixels in images

representing covariance and information matrices are darker the closer the value of

matrix is to 1 and are lighter the closer the matrix value is to 0. �e image was taken from

[1].

Many near zero values in the information matrix represent weak constraints between

the poses. �is means that many of the constraints within the information matrix have

almost no e�ect on the state distribution.�is result motivated the authors to try and utilize

this sparse structure in order to make EIF SLAM much faster than its EKF counterpart.

Authors called this new version of EIF, which uses sparsity of the information matrix, Sparse

Extended Information Filter (SEIF). �e main di�erence between EIF and SEIF is in the

sparsi�cation step, performed a�er every measurement update. Sparsi�cation step detects

which constraints in the information matrix hold little information and removes them.

�is ensures that information matrix always remains sparse with all the week constraints

replaced by zero blocks. Consequently, equations of all other steps are modi�ed in order to

e�ectively use the sparsity of the information matrix. �e usefulness of sparsity in SLAM as

well as EIF back-end will be discussed in more detail in the next chapter, while for the exact

SEIF implementation the reader is referred to [1].

Main advantage of SEIF over EIF and EKF is the fact that the computation and memory

complexity rises almost linearly with the addition of newmap landmarks instead of quadrat-

ically thanks to the sparse information matrix. However, sparsi�cation of the information

matrix introduces errors and makes SEIF SLAM less accurate than EKF and EIF SLAM

solutions.

�e three �lters, EKF, PF and EIF serve as a backbone of all existing �ltering SLAM

back-ends. Many SLAM solutions based on these back-ends have applied modi�cations

to the �ltering equations in order to make them more robust, faster and more accurate.
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However, the core has always remained the same. As stated in the Sec. 3.2 fundamentally

di�erent approaches to the �ltering based back-ends are, SLAM back-ends based on graph

optimization. Although their development began almost at the same time as that of �ltering

based ones, due to the lack of theoretical solutions and fast computers they could not

compete with the �ltering approaches. However, in the last decade this has begun to change

and today graph optimization approaches have taken the leading role in modern SLAM

solutions.

3.4.2 Graph optimization SLAM back-end

All SLAM back-ends that use graph optimization to estimate robot pose and map formulate

SLAM as nonlinear least squares problem instead of relying on prediction and correction

steps. In general, non linear least squares problem is given in a form:

min
x∈Rn

F(x) =min
x∈Rn

m
∑
i=1

ri(x)2 (3.32)

where n is the number of variables and r is residual representing the error between the
measured value y and predicted value f (x).�e goal is to �nd x whichminimizes F. For this,
di�erent methods can be used; however, today most commonly used is the Gauss-Newton

(GN) method or its modi�ed version Levenberg–Marquardt (LM) method. �e basis of

both methods is that they start from some initial guess x0 and then iteratively change x by
some value ∆x:

xk+1 = xk + ∆x (3.33)

until the minimization criterion has been satis�ed. At each iteration the model is linearized

by approximation to a �rst-order Taylor polynomial expansion about xk and the �nal result
of each iteration is linear least squares problem:

(JT J)∆x = JT∆r′ (3.34)

where J is the Jacobian of f and ∆r′ is the residual between y and f (xk).�is linear problem
can be solved using some of the well established methods, like Q-R decomposition. Once

∆x is calculated, it is used to get xk+1 which serves as an initial estimate for the next iteration.
�e modi�ed version of least squares problem is the weighted non linear least squares,

which is used when observations are not equally reliable:

S =
m
∑
i=1

Wir2i (3.35)

�e �nal linear problem obtained for weighted least squares is similar to the normal least

squares:

(JTWJ)∆x = JTW∆r′ (3.36)

�e weighted least squares is more suitable to SLAM since in SLAMmeasurement reliability

is de�ned by the covariance and information matrices.

Today many di�erent solutions to SLAM de�ned as non linear least squares problem

exist. However, the two most accurate, fastest and robust solutions are iSAM [54] with its

improved version iSAM2 [56] and g2o [55].
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�emost general solution of all f them is g2o which is not limited to the SLAM solution,

but can work for any problem that can be formulated as a graph structure. It uses LM

algorithm to minimize non linear least squares problem de�ned as:

min
x

F(x) =min
x
∑
i , j∈C

e(xi , x j, zTi , j)Λi , je(xi , x j, zi , j) , (3.37)

where x = (xT
1 , . . . , xT

n ) is a vector of parameters, zi , j represents the mean of the constraint
between xi and x j, Λi , j represents its information matrix and e represents error function
which measures how well the real values of xi and x j satisfy the constraint zi j. In context
of graph structure each vector xi can be viewed as a node and each constraint as an edge
between these nodes. �e information matrix serves as a weight distribution information,

where constraints that hold more information have higher weights.

When g2o is used for SLAM each node represents pose of a robot or landmark and

edges are added based on the measurement and odometry information. �e main bene�t of

de�ning the SLAM problem this way is that the Jacobian of the error function used to solve

linearized problem at each iteration of LM algorithm is sparse since the error function of

each constraint depends only on the values of two nodes. �is is utilized in g2o by using

sparse matrix solvers to drastically increase the speed of solving the linear least squares

problem. One more advantage of g2o is the fact that it, due to its multi-purpose design,

allows formany di�erent parametrizations of x. However, although its multi-purpose design
is one of its main advantages it is also one of its main weaknesses in the context of SLAM

since it does not accommodate all the speci�cs of the SLAM designed solutions such as

iSAM. Nevertheless, g2o is currently the most widespread algorithm used in modern graph

optimization SLAM back-ends.

�e �rst version of iSAM was presented in [54]. It explicitly de�ned the least square

problem to accommodate for SLAMmotion and measurement models:

min
X ,L

F(X , L) =min
X ,L

(∑M
i=1 ∣∣ fi(Xi−1, Ωi) − Xi)∣∣2 +∑K

k=1 ∣∣hk(Xik , l jk) − zk ∣∣2) , (3.38)

where X = {X1 . . . XM} represents robot poses, Ωi is odometry information, L = {l1 . . . lN}
are map landmarks, z = {z1 . . . zK} represents landmark measurements, and f and h are
motion and measurement model, respectively. iSAM uses Q-R factorization to solve the

linear least squares problem. Its main contribution is that it does not perform full Q-R

factorization each time new measurement or odometry information is received. Instead it

exploits the fact that many measurements a�ect only local landmark and robot poses, and

leavemost of the other poses intact.When newmeasurement arrives it only partially updates

the information matrix using Givens rotations [127]. However, this approach requires

optimal variable ordering to a�ect the smallest possible area of the information matrix.

As new data is added, ordering of the information matrix diverges more and more from

the optimal, and thus reordering is required in order to avoid unnecessary changes in the

information matrix. iSAM performs this reordering periodically, however during this step

linearization is required and accuracy is lost.

In order to solve this problem authors presented an improved version iSAM2 [56] in

which they used novel data structure called Bayes tree, which they have �rst presented in

[128]. �e main advantage of Bayes tree is removing the need to repeatedly solve linear



3.5. Summary 39

least square problem to update linearization point of the next iteration in non linear least

squares solvers. Using Bayes tree in non linear least squares allows the replacement of this

step by �uid relinearization of a reduced set of variables which results in higher e�ciency,

while completely retaining accuracy and sparsity of the information matrix. Bayes tree

implementation in iSAM2 allows even more e�ective detection and changing only those

parameters of the informationmatrix that are a�ected by the newmeasurement or odometry

information. �is makes it faster and more accurate than the original iSAM.

3.5 summary

In this chapter introduction to the SLAM problem has been given. Main aspects of SLAM

have been discussed and its two main parts, front-end and back-end have been explained in

more details. SLAM front-end deals interpreting sensor data and forming pose constraints

used in the SLAM back-end. It consists of odometry algorithm, loop closing detection

algorithm, pose constraint calculation algorithm and sometimes the active component

which in�uences the robot’s movement in order to allow more loop closings. SLAM back-

end uses constraints from the SLAM front-end to optimize poses of map landmarks and

robot trajectory. Two main groups of SLAM back-ends exist, one uses the �lter approach

based on prediction and measurement update steps, while the other uses least squares

formulation of the SLAM problem.

Today graph optimization SLAM back-ends prevail in the state-of-the-art SLAM so-

lutions. However, in the following three chapters three scienti�c contributions will be

presented which prove that by using new theoretical advancements in the �lter theory,

�ltering based SLAM back-ends can again reclaim their role as best option for modern

SLAM solutions. �e next chapter will introduce a �lter that served as a core for SLAM

solution developed within this thesis. It is called the Exactly Sparse Delayed State Filter

(ESDSF) and it uses best characteristics of both PF and SEIF SLAM back-ends. It will be

coupled with a SLAM front-end which represents environment using planar features, thus

ensuring low memory complexity and fast map rebuilding in case of a trajectory update.
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delayed state �lter

In this chapter a complete active SLAM solution is presented.�e SLAMback-end algorithm

responsible for trajectory estimation is based upon Exactly Sparse Delayed State Filter

(ESDSF) derived in [44]. It is a pose graph SLAM back-end which, as explained in Sec. 3.4.1,

allows trajectory estimation independent of the environment map. �is drastically reduces

the state space of the �lter and allows for faster computation of the update step. �e derived

SLAM front-end represents the �rst scienti�c contribution of this thesis and is published in

[129]. It is based on segmenting planar surfaces from the point clouds obtained with 3D

LIDAR. �e extension to the SLAM front-end which allows it to work as an active SLAM

algorithm is published in [130].

As explained in the Sec. 3.3.2, when attempting to calculate pose constraints between

point clouds obtained from the 3D LIDAR, there is a problem of large amount of data

required to be processed. Some solutions deal with this problem by segmenting point clouds

into higher level features. �e SLAM front-end presented in this chapter is developed on

this idea. It is based on segmenting the 3D point clouds into planar surface segments. Planar

surface segments have been chosen to represent the environment because they are prevalent

in indoor and outdoor urban spaces. All planar surface segments extracted from one point

cloud form a planar local map. �ese local maps are then used to build global planar map

of the environment and by the Local Map Registration (LMR) algorithm to calculate the

pose constraints. �e global map of the environment is built by merging coplanar surface

segments from the local maps into the global planar surfaces. Parameters of the global

planar surfaces are estimated based on the probabilistic parameters of each planar surface

segment they consist of. �e derived active SLAM component works as an extension to the

SLAM front-end without interfering with any of its components and allows the presented

SLAM solution to work in combination with the exploration algorithm. It continuously

checks the current uncertainty in the robot pose and when that uncertainty becomes too

high it cancels the exploration and sends the robot to close the loop. Once the loop is closed

it sends the robot back to the previously set exploration goal.

�e most similar planar front-end SLAM solution to the one presented in [129] is

presented in [72] where surface segments are extracted from point clouds acquired from

a 2D rotating LIDAR. However, there are three main di�erences. First, in [72] planar

surface segments are extracted from raw point clouds, while method presented in [129]

40
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uses projection of the point clouds into lower dimensional space before extracting planar

surface segments. �is makes it by the order of the magnitude faster. Second, the method

used for generating the pose constraint presented in [72] uses a global approach and does

not bene�t from initial pose estimate which makes it by the order of magnitude slower.

Also it assumes that the orientation error obtained by plane registration is neglectable and

minimizes only the translational errors to produce constant time updates. �e solution

presented in [129] minimizes both translation and orientation error which makes it more

accurate.�ird, planar surface segments in [72] are not merged in any way and are all added

to the global map, while method presented in [129] performs merging of extracted planar

surface segments that lie on the same plane which signi�cantly reduces complexity of the

global map making it suitable to represent large-scale environments.

�e active SLAM solution presented in [130] is most similar to the one presented in [26]

which uses particle �lter SLAM back-end and also checks current robot’s pose uncertainty

to initiate the loop closing. However, there are two main di�erences between active SLAM

solution presented in [130] and the one presented in [26]. First, SLAM solution presented in

[130] is based on ESDSF which makes state choosing for loop closing much easier because

of a more suitable state representation. Second, method presented in [130] does not use

uncertainty as a �xed measure for cancelling the exploration since it can lead to a longer

and repetitive loop closures.

�e rest of the chapter is organized as follows. First, the main building blocks of the

complete SLAM solution are described. �en ESDSF SLAM back-end and its implementa-

tion is explained in detail. A�er that SLAM front-end is presented and planar model and

merging algorithm is explained. A�erwards, an active SLAM solution that works as an

extension to the presented planar front-end is presented. Finally the experimental results

using real world datasets are given.

4.1 the overall concept of the proposed slam system

�e layout of the proposed active planar SLAM system with its key components is shown

in Fig. 4.1. Herea�er, we brie�y describe the functions of each component, while detailed

descriptions are given in sections marked in the Fig. 4.1. SLAM back-end is responsible

Relative pose

Global map buidling
Sec. 4.3.3

PSS update
Sec. 4.1

Local map buidling
Sec. 4.3.2

Loop detection
Sec. 4.3.4

3D LIDAR

SLAM back-end
Sec. 4.2

Odometry

LMR
Sec. 4.3.4

Trajectory

Indexes

Planar Surface Segments (PSS)

Updated PSS

Active SLAM
Sec. 4.4

Planner
Sec. 4.4

Exploration
Sec. 4.4

Add new state

Passive SLAM Active SLAM

Figure 4.1: �e overall concept of the proposed SLAM system.

for vehicle localization and trajectory building. Trajectory consists of discrete states Xi ,
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i = 0, . . . , n−1, where each state is represented by the robot pose (3Dposition and orientation
quaternion) expressed in the coordinate frame assigned to the �rst state. A new state Xk is

added to the trajectorywhen the pose di�erence between the last added state in the trajectory

and the current pose exceeds prede�ned thresholds. Once the new state is added two things

occur: i) point cloud acquired in this state is sent to the Local map building module and
ii) Loop detection algorithm begins to search for possible loop closings between the state
Xk and other states in the trajectory. Local map building module then segments received
point cloud into planar surface segments (PSS) and builds the local map. If the loop closing

is detected between states Xk and Xi indexes (k, i) are sent to the Local Map Registration
(LMR)module alongside with the current trajectory for predicting relative pose between
the states Xk and Xi . �e LMR uses SLAM trajectory and the segmented planar surface

segments for the initial guess and precise estimation of the relative pose between the states

Xk and Xi . Once the relative pose is calculated, it is reported back to the SLAM back-end
which then incorporates it as a pose constraint into the pose graph and performs trajectory

update. Updated trajectory and indexes (k, i) are sent to the Planar surface segments update
module which uses new trajectory to update the existing planar surface segments in the

local maps. A�er the local maps are updated, that trajectory is also sent to the Global map
building module which then incorporates the updated planar surface segments together
with the newly segmented planar surface segments into the global map. If no loop closing

was detected the trajectory is sent to the Global map building module immediately a�er the
trajectory augmentation which then adds the newly segmented planar surface segments

to the global map. In the background, SLAM back-end continuously predicts the current
robot pose using odometry information and sends it to the Active SLAM alongside with the
current trajectory. If current pose uncertainty becomes high enough Active SLAM module
starts to search for possible nearby states that are suitable for loop closing. Once such state

is identi�ed, pose of that state is sent to the Planner which stops the exploration end sends
the robot to that state. A�er the loop closing is completed and trajectory updated the Active
SLAM module signals the Planner to resume the goal previously set by the Exploration
module.

4.2 esdsf slam back-end

ESDSF based SLAM back-end combines best characteristics of the PF-SLAM and SEIF-

SLAM back-ends. In general, ESDSF is a special form of EIF with the main advantage of

having an exactly sparse information matrix. �is means that it does not require sparsi�ca-

tion step like the SEIF back-end.�e exact sparsity results from the used motion model and

from the fact that the ESDSF SLAM back-end estimates discrete robot trajectory, similarly

to the PF-SLAM back-end. As explained in the Sec. 3.4.1, this allows map landmarks to be

independent on each other, which in turn allows trajectory estimation independent of the

environment map. However, ESDSF back-end in contrast to the PF-SLAM back-end and

similarly to the EIF back-end estimates only one trajectory, making it much faster.
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4.2.1 State space construction

Trajectory Tn in an ESDSF SLAM back-end consists of n discrete states Xi , i = 1 . . . n, and
is represented by a single Gaussian random variable

Tn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1
X2
⋮
Xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
Xi ∼ N(µX i , ΣX i , i) = N(ηX i , ΛX i , i)
Tn ∼ N(µn , Σn) = N(ηn , Λn)

, (4.1)

where µX i and ΣX i , i are mean and covariance of the state Xi , while µn and Σn are mean and

covariance of the trajectory Tn, respectively. As in EIF, the equivalent representation of the

Gaussian distribution in the information form is given by the relation η = Σ−1µ and Λ = Σ−1,
thus, for example, the information vector and information matrix of the state Xi are given

by ηX i = Σ−1X i , i
µX i and ΛX i , i = Σ−1X i , i

, respectively. As shown in [44] the information matrix

Λn of the ESDSF trajectory Tn has a sparse tridiagonal structure

Λn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ΛXn ,n ΛXn ,n−1

ΛXn−1,n ΛXn−1,n−1 ΛXn−1,n−2

ΛXn−2,n−1 ΛXn−2,n−2

⋮ ⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.2)

which is the result of using the motion model and trajectory augmentation equations

described in the sequel. Sparsity of the information matrix is the key advantage of ESDSF,

since it enables fast computation of thematrix inverse using specially designed sparse-matrix

solvers. �e main di�erence between ESDSF information matrix and SEIF information

matrix is that in ESDSF most of the values are exactly zero and hence no sparsi�cation step

is necessary.

Each state Xi consists of a position and orientation that the robot had at the time when

the state was added to the trajectory. Whenever a new state Xi is added to the trajectory,

measurement zi is taken from the sensor used to map the environment. Although several
di�erent rotation representations exist, as detailed in Sec. 2.2, for the SLAM solution pre-

sented in this chapter orientation of the robot is represented using quaternions. �is means

that µX i is a 7 × 1 vector
µX i = [x y z qw qx qy qz]

T
, (4.3)

where (x , y, z) represents robot’s position and quaternion q = (qw , qx , qy , qz) its orientation
in coordinate frame assigned to X1.

4.2.2 Motion model

While the robot moves, its current pose is estimated using the same motion model as in

EKF SLAM back-end. �e motion model is described as the �rst order non-linear Markov

process

Xn+1 = f (Xn , Ωn ,wn) , (4.4)

where Xn represents the last state in the trajectory Tn, Xn+1 represents the current robot
pose, wn represents zero-mean white Gaussian noise with covariance Qn, while Ωn stands
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for robot displacement between Xn and Xn+1 obtained from odometry. Although, odometry
is part of the SLAM front-end, it its implementation is explained here since in the present

SLAM solution no visual or laser odometry solutionwas used. Instead, fusion of information

from encoders placed on robot’s wheels and IMU were used to estimate robot’s translational

velocities

v = (vx vy vz) (4.5)

and rotational velocities

ω = (ωx ωy ωz) (4.6)

relative to the robot’s body coordinate system. Both v andω are representedwith quaternions
where the vector part of a quaternion corresponds to a direction ofmotion or axis of rotation,

respectively, and its length to a speed amplitude. Kinematics of such system can be described

by

⎛
⎜⎜⎜⎜
⎝

0

ẋ
ẏ
ż

⎞
⎟⎟⎟⎟
⎠
= q

⎛
⎜⎜⎜⎜
⎝

0

vx
vy
vz

⎞
⎟⎟⎟⎟
⎠
q−1 (4.7)

q̇ = 1
2
q ∗ ω (4.8)

q̇ = M ⋅ q (4.9)

⎛
⎜⎜⎜⎜
⎝

q̇0
q̇1
q̇2
q̇3

⎞
⎟⎟⎟⎟
⎠
=
⎛
⎜⎜⎜⎜
⎝

0 −ω0
2

−ω1
2

−ω2
2

ω0
2

0 ω2
2

−ω1
2

ω1
2

−ω2
2

0
ω0
2

ω2
2

ω1
2

−ω0
2

0

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

q0
q1
q2
q3

⎞
⎟⎟⎟⎟
⎠
, (4.10)

where [x y z] is the vehicle’s position and [q0 q1 q2 q3] its orientation quaternion in a global
frame. In (4.8) ”∗” denotes quaternion multiplication while “⋅” in (4.9) denotes matrix mul-
tiplication which is then expanded in (4.10). Now we can discretize the vehicle’s kinematics

model (4.7)-(4.8) using Euler method and describe its uncertainty with additive Gaussian

white process noise wn with mean value 0 and covariance Qn. In this way, the non-linear

�rst order Markov process is obtained and used as ESDSF motion model (4.4).

4.2.3 Prediction step

Whenever new odometry data becomes available and the current robot pose is estimated

using (4.4), the prediction step of ESDSF is triggered. ESDSF prediction consists of two sub

steps: (i) augmentation of the trajectory Tn with Xn+1, and, conditionally, (ii) marginalization
of Xn that is subject to the pose di�erence between Xn and Xn−1.

Augmentation. �e augmentation step always happens immediately a�er the current

robot pose Xn+1 is estimated using the motionmodel (4.4). During augmentation, trajectory
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Tn is augmented with Xn+1 and thus becomes Tn+1. Before the augmentation of Tn, we can

write the distribution of all the states in the information form as

p(Xn ,m∣z1...n , u1...k) = N −1 [( ηXn

ηm
) , ( ΛXnXn ΛXnm

ΛmXn Λm
)] , (4.11)

where z1...n denotes the history of all measurements, u1...k stands for history of all odometry
data, and m represents all trajectory states except the last one, i.e., m = {X1 . . . Xn−1}. Note
that usually there are more odometry data than the states in the trajectory, hence we use

a di�erent index. A�er the augmentation with the state Xn+1, using Markov �rst order
assumption and the fact that poses and measurements are not correlated, we have

p(Xn+1, Xn ,m∣z1...n , u1...k+1) =
= p(Xn+1∣Xn ,m, z1...n , u1...k+1) p(Xn ,m∣z1...n , u1...k+1)
= p(Xn+1∣Xn , u1...k+1) p(Xn ,m∣z1...n , u1...k)
= N −1(ηn+1, Λn+1) . (4.12)

Final expressions for ηn+1 and Λn+1 are

ηn+1 =
⎡⎢⎢⎢⎢⎢⎣

Q−1

n (µXn+1 − FnµXn)
ηXn − FT

n Q
−1(µXn+1 − µXn)
ηm

⎤⎥⎥⎥⎥⎥⎦
(4.13)

Λn+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Q−1
n −Q−1

n Fn 0

−FT
n Q−1

n ΛXn ,n + FT
n Q−1

n F ΛXnm

0 ΛmXn Λmm

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (4.14)

where Fn stands for the Jacobian of the motion model (4.4). From (4.14) we can see that
augmenting the trajectory Tn with the new state Xn+1 requires only the addition of three new
blocks, marked with rectangles, to the information matrix. All the other elements remain

unchanged and sparsity is preserved.

When augmentation of the trajectory is complete, we check the pose di�erence between

Xn and Xn−1. If the di�erence is larger than the prede�ned threshold, we conclude that
the measurement associated with Xn provides new information and we keep both Xn

and Xn+1 within the state space and the prediction step ends. When new odometry data
becomes available, the new robot pose is estimated based on Xn+1 and the pose di�erence is
then checked between Xn+1 and Xn. Otherwise, we proceed with the marginalization step

described in the sequel.

Marginalization. If the di�erence between Xn and Xn−1 is smaller than the prede�ned
threshold, state Xn is marginalized from the trajectory and replaced by Xn+1, i.e., Xn ← Xn+1.
Marginalization of the state from the trajectory equals marginalizing a multivariate Gauss

distribution. In general, we can write the multivariate Gauss distribution as

p
⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
; µ , Σ

⎞
⎟
⎠
,

x ∼ N(µx , Σxx)
y ∼ N(µy , Σyy)
z ∼ N(µz , Σzz)

, (4.15)
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where

Σ =
⎡⎢⎢⎢⎢⎢⎣

Σxx Σxy Σxz
Σyx Σyy Σyz
Σzx Σzy Σzz

⎤⎥⎥⎥⎥⎥⎦
= Λ−1 =

⎡⎢⎢⎢⎢⎢⎣

Λxx Λxy Λxz
Λyx Λyy Λyz
Λzx Λzy Λzz

⎤⎥⎥⎥⎥⎥⎦

−1

. (4.16)

For example, if we want to marginalize y, we need to solve the following integral

p(x , z) = ∫ p
⎛
⎜
⎝

⎡⎢⎢⎢⎢⎢⎣

x
y
z

⎤⎥⎥⎥⎥⎥⎦
; µ , Σ

⎞
⎟
⎠
dy = N −1(η , Λ), (4.17)

where η and Λ are equal to
η = ηα − ΛαβΛ

−1
β ηβ (4.18)

Λ = Λα − ΛαβΛ
−1
β Λβα (4.19)

with

ηα = [ηx
ηz

] , Λα = [Λxx Λxz
Λzx Λzz

]

Λαβ = [Λxy
Λzy

] , Λβ = Λyy .

(4.20)

Concretely, for the case of ESDSF we have to marginalize Xn from Tn+1

p(Xn+1,m∣z1...n+1, u1...k+1)

= ∫ p(Xn+1, Xn ,m∣z1...n+1, u1...k+1)dXn

= N −1(ηn , Λn). (4.21)

To �nd ηn and Λn, we use (4.18) and (4.19), which yield for elements of (4.20) the following

formulae

ηα = [ηXn+1

ηm
] , Λα = [ΛXn+1,n+1 ΛXn+1m

ΛmXn+1 Λm,m
] , Λαβ = [ΛXn+1,n

ΛmXn

] , Λβ = ΛXn ,n . (4.22)

�ese equations can be further simpli�ed, because a�er the trajectory augmentation with

Xn+1, states Xn and Xn+1 are only connected via neighboring states, which means that
matrices ΛXn+1m and ΛmXn+1 are zero matrices and only a single block in ΛmXn is di�erent

from zero. Taking this into account and using �nal expressions for ηn+1 and Λn+1 given by
equations (4.13) and (4.14) expressions for ηn and Λn can be obtained

ηn = [Q
−1
n (µXn+1 − FnµXn)

ηm
] − [−Q

−1
n Fn

ΛmXn

] α−1n (ηXn − FT
n Q−1

n (µXn+1 − FnµXn))

= [ Q−1
n Fnα−1n ηXn + βn(µXn+1 − FnµXn)

ηm − ΛmXn(ηXn − FT
n Q−1

n (µXn+1 − FnµXn))
] (4.23)

Λn = [Q
−1
n 0

0 Λmm
] − [−Q

−1
n Fn

ΛmXn

] α−1n [−FT
n Q−1

n ΛXnm]

= [ βn Q−1
n Fnα−1n ΛXnm

ΛmXn α−1n FT
n Q−1

n Λmm − ΛmXn α−1n ΛXnm
] , (4.24)
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where

αn =ΛXn ,n + FT
n Q−1

n Fn
βn =Q−1

n − Q−1
n Fn(ΛXn ,n + FT

n Q−1
n Fn)−1FT

n Q−1
n

=(Qn + FnΛ−1Xn ,nF
T
n )−1 .

Taking into account that ΛmXn has only a single non-zero block, we can see from (4.24)

that, similarly to augmentation, only four blocks of the information matrix Λn need to be

changed during the marginalization. Once marginalization is complete, Λn and ηn become

the new Λn and ηn, respectively, and Xn ← Xn+1, which then concludes the prediction step.

4.2.4 Measurement model and update

Update in the ESDSF SLAM is triggered every time the loop closing is detected between

two trajectory states Xi and X j. �e measurement model in the ESDSF SLAM system is

given in the form of a relative pose between states Xi and X j

Z = h(Xi , X j) + v , v ∼ N(0, Ri j) , (4.25)

where v represents measurement noise and is assumed to be a white zero-mean Gaussian
with covariance matrix Ri j. �e relative pose describes rotation qLi j and translation tLi j of the
sensor, which records measurements between poses that sensor had when it recorded data

in states Xi and X j.

qi j = q−1i q j (4.26)

ti j = q−1i (t j − ti)qi (4.27)

h { qLi j = q−1RLqi jqRL
tLi j = q−1RL(qi jtRLq−1i j + ti j − tRL)qRL

} , (4.28)

where qRL and tRL describe the relative pose between coordinate frames of the LIDAR
sensor and the vehicle. �e measurement is obtained from a Local Map Registration (LMR)

algorithm based on the saved measurements zi and z j.
�e update equations of ESDSF are the same as EIF update equations

η′n = ηn +HTR−1(zi , j − h(Xi , X j)) (4.29)

Λ′n = Λn +HTR−1H (4.30)

where H is the measurement Jacobian and zi , j is measurement sent by the LMR. However,
since h depends only on Xi and X j, the measurement Jacobian H has a sparse structure

Hn+1 = [⋯ 0 ⋯ ∂h
∂X i

⋯ 0 ⋯ ∂h
∂X j

⋯ 0] .

�is means that the update always a�ects only four blocks in the information matrix that

share information associated to Xi and X j, thus making it constant time. �e problem is

that a�er the update, vector µn has to be calculated as µn = Λ−1n ηn, which is not constant

time. However, this is drastically speeded up due to the sparsity of the information matrix.
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4.2.5 Covariance estimation and computational complexity analysis

In order to perform both the prediction and the update, the ESDSF uses relative pose

estimated between di�erent time instances. �e prediction step relies on the relative pose

between two consecutive states determined by the odometry module, while the update step

uses the relative pose evaluated by the LMRmodule between the two states forwhich the loop

closing is detected. To incorporate these measurements, ESDSF needs information about

their uncertainties, where Qn represents the odometry uncertainty used in the prediction,

while Rn represents uncertainty of the LMR algorithm used in the update.

Since majority of sensors and relative pose estimation algorithms rely on Euler angle

representation in order to associate the uncertainties in quaternion representation, the

unscented transform (UT) presented in [131] is used. �e UT algorithm �rst takes measure-

ment and the associated covariance matrix in Euler angles as input, and then applies the

nonlinear transformation function resulting with the quaternion representation and the

new covariance matrix.

Considering the performance of ESDSF as a SLAM back-end, computation complexity

of each step has to be taken into account. �e prediction step of ESDSF is constant-time

similar to ESDSF, since it always changes the same number of blocks in the information

matrix. In the case when the augmentation is not followed by marginalization, three new

blocks are added, while in the case when marginalization is performed, only three existing

blocks are changed. However, µXn is necessary to complete the calculation of the new

information vector ηn+1. �e straightforward way to get state µXn would be to extract it

from the trajectory Tn, which requires computing µn = Λ−1n ηn. �is is a computationally

demanding operation, due to the inversion of the informationmatrix, and should be avoided.

Since a�er the update, states permanently added to the trajectory do not change until the

next update, an auxiliary vector µauxn can be constructed which stores states permanently

added between the updates. A�er the update is performed, vector µ′n is calculated and
copied into µauxn µauxn = µ′n and new states are continuously added in the µauxn until the next

update. �is way the history of the expectancy of all the states is kept, which can then be

exploited in the prediction step with no need for inversion. Although in the prediction

only µXn is needed, the update step requires the knowledge of the entire µn. A�er the loop

closing between states Xi and X j is detected, their respective poses are required in order

to calculate measurement prediction used in the update step and in the LMR algorithm

as the initial guess. �is means that before every update µn = Λ−1n ηn would again need to

be calculated. To avoid the calculation of µn, µX i and µX j are simply obtained from the

auxiliary vector µauxn . Since it cannot be known upfront which states will be included in the

update, history of all the states needs to be kept.

By using the auxiliary vector µauxn prediction and update steps are kept constant time

regardless of the number of states in the trajectory. However, a�er the update is done,

updated state estimate µ′n has to be calculated using new η′n and Λ′n, in this step calculation
of Σ′n = Λ′−1n cannot be avoided. Nevertheless it can be speeded up drastically by the use of

algorithms that exploits characteristics of the sparse matrices.

�e last computational problem arises from the usage of unit quaternions. When using

quaternions for orientation instead of Euler angles, each quaternion in Tn must remain
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normalized √
q2w + q2x + q2y + q2z = 1 (4.31)

A�er the prediction step quaternions will remain normalized. However, using the equa-

tions (4.29) and (4.30) during the update step, will result in information vector η′n and
information matrix Λ′n. When µ′n is calculated using the equation µ′n = Λ′−1n η′n quaternions
representing orientations in µ′n will no longer remain unit quaternions.�is requires normal-
izing each one. A�er the normalization the information vector η′n must also be recalculated
using equation η′n = Λ′nµnormn . Besides time required to do this, the main problem is the

information matrix which remains the same, although the information vector has changed.

Nevertheless, due to their numerical stability, ability to avoid the gimbal lock problem

and easier composition (i.e. there is no requirement to ensure values remain between −π
and π) quaternions were chosen for the orientation representation. �is analysis concludes
the description of the implemented ESDSF SLAM back-end. In the next section SLAM

front-end and its key components will be discussed in detail.

4.3 slam front-end based on planar surfaces

Algorithms that segment point clouds into planar surface segments can be divided into

organized and unorganized, based on the type of used point clouds, and structured and un-

structured, based on the environments they can work on. In [132] two di�erent algorithms

are presented i) a subwindow based region growing (SBRG) algorithm for structured envi-

ronments and ii) a hybrid region growing (HRG) algorithm for unstructured environments.

Both SBRG and HRG work only on organized point clouds which are �rst divided into

subwindows and then classi�ed as planar or non planar based on their shape. Only planar

subwindows are used in SBRG while both planar and non planar subwindows are used in

HRG. In [133] Cached Octree Region Growing (CORG) algorithm is presented which com-

putes planar segments from unorganized point clouds in both structured and unstructured

environments. �e main idea of CORG is to accelerate the neighbour searching algorithm

in the octree by requiring a single nearest neighbour search trial for each point in the octree.

As a result, a compromise is made between memory and speed by caching the indices of

the nearest neighbours searched for each point.

In context of SLAM, some of the earliest 3D SLAM solutions based on planar segments

used a mobile robot equipped with a rotating 2D LIDAR producing three dimensional point

clouds. �e paper [37] presents a feature-based SLAM approach based on the Extended

Kalman Filter (EKF), where the scans are directly converted into a planar representation

composed of polygons and plane parameters with associated uncertainty in the framework

of Symmetries and Perturbation model (SPmodel).�e resulting maps are very detailed and

compact but the approach is computationally very demanding and therefore not suitable

for real-time applications. Work described in [36] is interested only in the local aspect of

mapping, doing sequential surface capture of the workspace, while global pose corrections

are propagated on-line in an elastic graph with a bounded number of elastic sub-maps. A

feature based graph SLAM that uses rectangles in order to build a global map of indoor

environments is presented in [71]. Algorithm allows extraction of rectangles from LIDAR

measurements even in conditions of only partial visibility.



50 4. fast active planar 3d slam based on exactly sparse delayed state filter

Besides LIDAR based SLAM solutions that use planar features, there are several SLAM

solutions based on dense point clouds obtained from RGB-D sensors [62, 65, 66, 67, 68] and

by dense multi-view stereo reconstruction [62, 63]. However, these methods are di�erent

from LIDAR based approaches due to signi�cantly smaller operating range and �eld of

view.

�e planar SLAM front-end presented in [129] uses the modi�ed version of point cloud

segmentation algorithm presented in [134] and modi�ed version of point cloud registration

algorithm presented in [135]. �e main reason for choosing these two algorithms is because

they work on unorganized point clouds as input and achieves comparable accuracy to the

techniques based on organized point clouds which makes them by the order of magnitude

faster. �e point cloud segmentation algorithm from [134], was originally developed for

RGB-D sensors and was now adapted to operate on full �eld of view 3D LIDAR point

clouds.�is was done by dividing and projecting full FOV 3D point clouds onto three image

planes which allows fast 2.5D point cloud segmentation based on recursive 2D Delaunay

triangulation and region merging. Point cloud registration algorithm presented in [135] has

been changed to include initial guess of the relative pose from the SLAM trajectory. Also,

its planar segment model and registration algorithm has been adapted to take into account

both the uncertainty model and 360○ FOV of 3D LIDAR. By doing this, the number of
outliers in pose constraint calculation has been signi�cantly reduced and its process speed

has been increased at the same time.

4.3.1 Notation used in this chapter

Before proceeding with the detailed explanation of the developed planar SLAM front-end,

we give and overview of the commonly used notation for easier reference.

• Pl - Point cloud associated with l-th trajectory state

• M j - Local map that consists of planar surface segments segmented from j-th point
cloud

• S j - Coordinate frame of j-th local map (the same as coordinate frame of j-th point
cloud)

• (Ri , j, ti , j) - Rotation matrix and translation vector which transform S j into Si

• gFi , j - j-th planar surface segment in i-th local map which belongs to g-th global
planar surface

• SFi , j - Local coordinate frame of j-th planar surface segment in i-th local map

• (FRi , j,
F ti , j) - Rotation matrix and translation vector which transform SFi , j into Si

• Fni , j - Unit normal of Fi , j expressed in SFi , j (expected value is [0 0 1])

• Fρi , j - Distance of Fi , j from SFi , j (expected value is 0)

• Σq i , j - Covariance matrix of perturbation vector q representing uncertainty of Fni , j

and Fρi , j in SFi , j
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• nGl - l-th global surface with assigned n-th local map

• SG l - Local coordinate frame of l-th global surface

• (GRl ,
G tl) - Rotation matrix and translation vector which transform SG l into coordi-

nate frame of local mapMn assigned to
nGl

• (GR0l , G t0l ) - Rotation matrix and translation vector which transform SG l into coordi-

nate frame S0

• Gnl - Unit normal of Gl expressed in SG l (expected value is [0 0 1])

• Gρl - Distance of Gl from SG l (expected value is 0)

• ΣG l - Covariance matrix of perturbation vector representing uncertainty of
Gnl and

Gρl in SG l

4.3.2 Local map building

Local maps consist of planar surface segments extracted from one point cloud. In this

section, we �rst describe a method for detection of planar surface segments from 3D LIDAR

point clouds and then give their mathematical description and uncertainty model. Local

maps are used for creation of the global environment map and for calculating relative poses

used as the pose constraints in the SLAM.

Detection of planar surface segments.
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Figure 4.2: Point cloud division and projection onto three image planes: a) three image planes with

their coordinate frame, b) determination of the horizontal pixel coordinate ui of the

point’s p projection onto the image plane, c) determination of the vertical pixel coordinate
vi of the point’s p projection onto the image plane.

�e approach used for extracting planar surface segments is based on 2D Delaunay

triangulation, which requires an appropriate 2D projection of the input point cloud. One

possibility is to project the point cloud onto a cylindrical surface. However, projections of

straight lines in 3D space onto a cylindrical surface are not straight lines.�erefore, triangles

obtained by Dealunay triangulation applied to such projection don’t represent triangular

surfaces in reality. �is is the reason why method presented here projects point clouds onto

three image planes I1, I2 and I3, each covering a �eld of view of 120○ in horizontal direction,
as shown in Fig. 4.2a. Point cloud projection is performed using the pinhole model. First,
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two sets are de�ned: sn = {0, sin(2π/3),− sin(2π/3)} and cn = {1, cos(2π/3), cos(2π/3)}.
�en for each point p(X ,Y , Z) in the point cloud Pl the following equations are evaluated
for i = 1, 2, 3:

xi = −sn(i)Z + cn(i)X (4.32)

yi = Y (4.33)

zi = cn(i)Z + sn(i)X (4.34)

ui = fu
xi
zi
+ uc (4.35)

vi = fv
yi
zi
+ vc . (4.36)

Equations (4.32) - (4.34) represent the transformation of the point p(X ,Y , Z) from the
LIDAR coordinate frame into the coordinate frame of the image plane Ii , while the equations
(4.35) and (4.36) represent the projection of the transformed point into the pixel (ui , vi) of
the Ii . Values of umax and vmax de�ne the image resolution which a�ects the precision of the

projection. Higher image resolution corresponds to greater projection precision. However,

the processing speed drops with increase of resolution. Pixel (uc ,vc) represents the center of
the projection while ( fu , fv) represent vertical and horizontal focal lengths of the pinhole
model, respectively. �eir values are determined based on the LIDAR FOV (Fig. 4.2b and

4.2c) in order to capture the whole scan. Value of uc is always set at the horizontal middle of

the image plane (umax/2) with horizontal focal length set to fu = uc/
√
3. Values of vc and

fv are set according to the vertical FOV of the used LIDAR.
Let the point’s p projection to the image plane Ii at the image pixel (ui , vi) be such

that conditions ui >= 0, ui <= umax , vi >= 0 and vi <= vmax are satis�ed. �en the point

p belongs to Ii and the distance r =
√
X2 + Y 2 + Z2 of the point p from the projection

center L is assigned to its image pixel. For points belonging to the same image plane whose
projections fall at the same image pixel, r is set to the range of the closest point from L.
In this way triplet (ui , vi , r) is formed for every pixel in the image plane Ii corresponding
to a point in the point cloud, thus obtaining 2.5D input for segmentation method. �e

projected point clouds are then segmented into connected approximately planar subsets

using a split-and-merge algorithm based on the approach proposed by [136], which consists

of an iterative Delaunay triangulation method followed by region merging. An example

of the point cloud segmentation to planar 3D surface segments is shown in Fig. 4.3. �e

obtained planar surface segments represent features which are used in the presented SLAM

system for global map representation and trajectory estimation.

�e parameters of the plane supporting a planar surface segment are determined by

least-square �tting of the plane to supporting points of the segment. Each surface segment

is assigned a reference frame SF with an origin in the centroid of the supporting point
set and z-axis parallel to the supporting plane normal. �e orientation of the x-axis and
y-axis in the supporting plane are de�ned by the eigenvectors of the covariance matrix Σp

representing the distribution of the supporting points within this plane. �e purpose of

assigning reference frames to surface segments is to provide a framework for global map

building explained in Sec. 4.3.3 and pose constraint estimation explained in Sec. 4.3.5.
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Figure 4.3: Local planar 3D map. Red dots represent points from the point cloud acquired by the

LIDAR.

Representation of planar surface segments. Planar surface segments are

represented by sets of 2D polygons in the same way as described in [135]. Each 2D polygon

is de�ned with its outer and inner contours and with supporting 3D plane which is de�ned

by the equation

(Fn)T ⋅ F p = Fρ, (4.37)

where Fn is the unit normal of the plane represented in the planar surface segment reference
frame SF , Fρ is the distance of the plane from the origin of SF and F p ∈R3 is an arbitrary
point of the plain represented in SF . �e uncertainty of the supporting plane parameters is
described by three random variables that form the disturbance vector q = [sx , sy , r]T. �ese
three variables describe the deviation of the true plane parameters from the measured plane

parameters. In the ideal case, where the measured plane is identical to the true plane, the

true plane normal is identical to the z-axis of SF , which means that Fn = [0, 0, 1]T, while
Fρ = 0. In a general case, however, the true plane normal deviates from the z-axis of SF and
this deviation is described by the random variables sx and sy, representing the deviation
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in directions of the x-axis and y-axis of SF respectively, as illustrated in Fig. 4.4 for the x
direction.
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Figure 4.4: Deviation of the true plane from the measured plane.

�e unit normal vector of the true plane can then be written as

Fn = 1√
s2x + s2y + 1

[ sx sy 1 ]T. (4.38)

�e random variable r represents the distance of the true plane from the origin of SF , i.e.

Fρi , j = r. (4.39)

Gaussian uncertainty model is used, where the disturbance vector q is assumed to be
normally distributed with 0 mean and covariance matrix Σq. Covariance matrix Σq is a

diagonal matrix with variances σ 2sx , σ2sy and σ 2r on its diagonal. Computation of covariance
matrices Σq is explained in [137]. Finally, a planar surface segment denoted by the symbol

F segmented from the point cloud Pl is associated with the quadruplet

F = (FR, F t, Σq , Σp) , (4.40)

where FR and F t are respectively the rotation matrix and translation vector de�ning the
pose of SF relative to the coordinate system Sl of the point cloud Pl .
From this point on, it is important to distinguish between di�erent planar surface seg-

ments, so notations shall be brie�y explained for easier understanding. Whenever the point

cloud Pl is segmented, a local mapMl is created. �e local map has the coordinate frame Sl
equal to the coordinate frame of Pl and consists of planar surface segments segmented from
Pl . Every planar surface segment Fi , j in Ml is identi�ed by two indexes (i and j), where
the value of index i represents the ID number of the planar surface segment inMl and the

value of index j identi�es the local map which the planar surface segment belongs to (i.e.
all planar surface segments contained withinMl have value of index j = l). According to
this notation, planar surface segment Fi , j is represented by quadruplet

Fi , j = (FRi , j,
F ti , j, Σq i , j , Σp i , j) (4.41)

4.3.3 Global map building

In this section approach to building the environment global map which consists of global

planar surfaces is presented.�e reference coordinate frame of the global map is the same as
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the coordinate frame of the local mapM1 associated with the �rst state X1 in the trajectory.
Each global planar surface joins all planar surface segments from the local maps that

approximately lie on the same plane in the environment. �at is why the global map has

much less planar surface segments than the total number of segments in all local maps,

which makes it faster to process and requires less memory to store. For example, entire �oor,

roof or wall is represented by only one global planar surface in the global map.

�e global map is represented with a hierarchical graph. Nodes in that graph are: i)

global planar surfaces jGg , at the highest level, where values of indexes g and j represent
respectively the ID number of the global planar surface and the local map assigned to the

g-th global planar surface, ii) local maps M j, at the middle level, where value of index j
represents the ID number of the local map, and iii) planar surface segments, at the lowest

level gFi , j, where the value of index i represents the ID number of the planar surface segment
in the localmapM j.�e triplet (i , j, g) uniquely identi�es the planar surface segment and its
belonging to a certain local map and a certain global planar surface. For example 1F3,4means
that ID of the planar surface segment is 3, and that it is part of the global planar surface 1

and the local map 4. If a planar surface segment does not belong to any global planar surface

index g is omitted from the notation. Connections between planar surface segments and
local maps are formed during the segmentation process and are kept unchanged a�erwards.

Every global planar surface nGl , l ∈ {1, . . . ,NG}, is de�ned by

nGl = (GRl ,
G tl , GΣl ,

GR0l , G t0l ) (4.42)

where NG is the total number of global planar surfaces in the global map,
GRl and

G tl are
respectively the rotation matrix and translation vector de�ning the transformation between

local coordinate frame SG l of the global surface
nGl and the coordinate frame Sn of the local

map Mn which is assigned to
nGl ,

GΣl is the covariance matrix de�ning uncertainties of

the perturbation vector of the unit-normal Gnl and the plane distance
Gρl from the origin

of SG l , and
GR0l and G t0l are rotation and translation vector de�ning the transformation

between SG l and S0.
Updating of the global map occurs every time a new state is permanently added to the

trajectory. �e update process di�ers depending on whether or not loop closing has been

detected with the newly added state. First, it shall be explained how the global map updating

is performed if a new state is added to the trajectory and loop closing is not detected, and

than additional steps that are performed if the loop closing is detected shall be described.

Global map update after trajectory augmentation without loop

closing. Let’s assume that there are k−1 states in the trajectory and that at time step k the
state Xk was added. A�er point cloud Pk has been segmented, the local mapMk is created.

At this point none of the planar surface segments from Mk is present in the global map.

�e next step is to determine pairs between the planar surface segments already included

in the global map and the newly extracted segments fromMk. �e exact way would be to

try to match every planar surface segment fromMk with all previously extracted segments.

However, this approach would be far too slow for real time application. Solution is to try

to match the planar surface segments from Mk only with the planar surface segments

from Mk−1 and to update the global map accordingly. With this approach the accuracy
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deterioration is neglectable if no loop closing is detected because it is reasonable to assume

that the newly extracted planar surface segments in Mk mostly originate from the same

planes as the surface segments extracted from Mk−1. So the �rst step in the global map
update is to perform planar surface segments matching betweenMk andMk−1. Two planar
surface segments are matched if they lie on approximately the same plane. �is matching

process is di�erent than the segments matching when estimating pose constraints between

local maps described in 4.3.5. While for generating pose constraint it is important to �nd

pairs of planar surface segments between two local maps that are coplanar and overlap,

in the case of building the global map, it is not necessary for planar surface segments to

overlap. For example, if a vehicle is moving through a corridor, every new state will have

one additional wall segment that needs to be connected with the previous segments. �ese

segments do not overlap in the environment, but they do lie on the same plane and should

represent one global planar surface. �is is why only coplanarity condition is checked. �e

entire algorithm for checking if surfaces are coplanar is described in [135] and only �nal

expressions and brief description are given here. In order to check if (Fi ,k−1,F j,k) are coplanar,

the Mahalanobis distance d(e) is used

d(e) = eT(EΣq j ,kET + CPk−1,kCT + Σqk−1, i)−1e , (4.43)

where E represents the Jacobian matrix propagating the uncertainty of planar surface
segment parameters and C represents the Jacobian matrix propagating the uncertainty of
the transformation between two local maps (the �nal expressions for E and C are given in
Appendix A.1), Pk−1,k is the uncertainty of the transformation between localmaps (calculated
from the SLAM trajectory using unscented transform the same way as IP is calculated in
Sec. 4.3.5) and e is the random variable given by

F ñ j,k = [F ñx
j,k

F ñy
j,k

F ñz
j,k]

T
= FRTi ,k−1Rk−1,kFR j,k

Fn j,k (4.44)

F ρ̃ j,k = (F t j,k − (F ti ,k−1 − tk−1,k)Rk−1,k)FR j,k
Fn j,k) (4.45)

e = [F ñx
j,k

F ñy
j,k

F ρ̃ j,k]
T

(4.46)

where F ñ j,k and
F ρ̃ j,k represent the expected values of

Fn j,k and
Fρ j,k transformed into SFi ,k−1

and [F ñx
j,k ,

F ñy
j,k ,

F ñz
j,k] represent x , y, z-coordinates of F ñ j,k in SFi ,k−1 . �e pair (Fi ,k−1,F j,k)

is considered coplanar if the following condition is satis�ed

d(e) < ε (4.47)

where ε is a measure of coplanarity calculated using χ2-distribution with three degrees of
freedom.

�e problem with using only coplanar condition based on the Mahalanobis distance is

that covariances (especially covariance P which describes uncertainty of transformation
between two local maps) can become large due to the uncertainty in the current pose, i.e.,

when a vehicle travels on a di�cult terrain and no loop closings are detected. �at is why, in

order to ensure global map accuracy, all surface pairs that pass condition (4.47) also have

to pass an additional condition based on the absolute values of their parameters di�erences

(e). �is condition acts as a cut-o� threshold in the matching process and ensures that the
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Figure 4.5: Second condition for matching planar surface segments.

angle between normals∠(F ñ j,k ,
Fni ,k−1) and distance Fρ̃ j,k are smaller than the prede�ned

thresholds αM , ∆M , respectively (Fig. 4.5). Mathematically, the condition can be expressed

as

∣cos−1(F ñ j,k
Fni ,k−1)∣ < αM ∣Fρ̃ j,k ∣ < ∆M . (4.48)

A�er forming pairs of planar surface segments betweenMk−1 andMk , all pairs are sorted

into groups. Pairs belong to the same group if one or both of the following conditions are

satis�ed: i) pairs have one planar surface segment in common, and ii) both pairs have at

least one planar surface segment in the same global planar surface. �e result is a list LF of

NL groups: LF = {l1 . . . lNL}. Each group in LF contains planar surface segments fromMk−1
andMk.

Now for each group from LF it is determined whether it represents a new global planar

surface. Group lc , c ∈ {1 . . .NL} represents a new global surface if none of the planar surface
segments from lc are already containedwithin another global planar surface. For every group
that represents a new global planar surface nGl , parameters of

nGl are estimated and
nGl is

added to the globalmap.�e parameters of nGl are estimated directly from the parameters of

all planar surface segments contained within lc . �erefore, before estimating the parameters
of nGl , all parameters of all segments from the group lc have to be transformed into the same
coordinate frame SFm ,n of one of the planar surface segments from lc. �e transformation
of the expected values of planar surface segment parameters is given by (4.44)-(4.46) and

their covariance is

Σ̃q i , j = EΣq i , jET + CPn,iCT. (4.49)

Based on equations (4.46) and (4.49) the parameters of nGl are estimated using maximum

likelihood estimator. �e problem which arises in the uncertainty model of plane pertur-

bations is that uncertainty of z-coordinate of the normal is lost by imposing unit-normal
constraint. To solve this issue, this unit-constraint

F ñz =
√
1 − (F ñx)2 − (F ñy)2

is added to the statemodel (4.46) and expanded statemodel is obtained ez = [F ñx F ñy F ñz F ρ̃].
Unscented transform is used to determine its covariance Σqz . Now maximum likelihood

estimator is used to estimate G ñl and
G ρ̃l together with their covariances:

ΣG = (∑N lc
k=1(Σ̃−1qzk))

−1
(4.50)



58 4. fast active planar 3d slam based on exactly sparse delayed state filter

[G ñx
l

G ñy
l

G ñz
l

G ρ̃l]
T = ΣG (∑N lc

k=1(Σ̃−1qzk e
z
k)) , (4.51)

where G ñl is the normal of
nGl in SFm ,n , Gρl is the distance of

nGl from Fm,n in SFm ,n and Nlc
is the number of planar surface segments in lc . At the end, we normalize estimated normal
G ñl .

�e last four parameters that need to be estimated for nGl are rotation matrices
GRl and

GR0l and translation vectors G tl and G t0l which transform the coordinate frame SG l into the

coordinate frame Sn and S0, respectively. In order to estimate GRl , the rotation matrix Rmin

that transforms unit normal G ñl into unit-normal Fnm ,n , has to be calculated. To preserve
orientation of all planar surface segments, the rotation matrix Rmin, which corresponds to

minimum Euler angles, is determined using the following equation

Rmin = I + [v]× + [v]2×
1 − c
s2

(4.52)

[v]× =
⎡⎢⎢⎢⎢⎢⎣

0 −v3 v2
v3 0 −v1
−v2 v1 0

⎤⎥⎥⎥⎥⎥⎦
, (4.53)

where v = G ñx
l −G ñy

l , c = G ñz
l and s =

√
(G ñx

l )2 + (G ñy
l )2. Once the matrix Rmin is calculated,

the �nal rotation matrix GRl can be determined as

GRl = FRm,nRmin . (4.54)

A vector l tG can be calculated using the following equation

G tl = FRm,n

⎡⎢⎢⎢⎢⎢⎣

0

0
G ρ̃l

⎤⎥⎥⎥⎥⎥⎦
+ tFm ,n . (4.55)

Finally, GR0l and G t0l can be easily calculated as

GR0l = R0,nGRl (4.56)

G t0l = R0,nG tl + t0,n , (4.57)

Next step is to perform plane merging in order to reduce the number of planar surface

segments in the global map. First, all contours of planar surface segments within lc are
transformed to SG l , and then the union of the transformed contours which are 2D polygons

is performed. �e contours are transformed to SG l by transforming their vertexes using the

following transformation

F p̃i , j = GRl
−1(Rn, j(FRi , j

F pi , j + F ti , j) + tn, j − G tl), (4.58)

where F pi , j is the vertex of the contour of planar surface segment Fi , j contained within lc
and F p̃i , j represents its coordinates in the coordinate frame SG l . A�er all local planar surface

segment from lc have been transformed using equation (4.58), their normals will be aligned
with Gnl and their contours will be expressed in SG l . �e union of contours is done using

2D polygons which are generated from the transformed contours by simply taking their
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x , y-coordinates. Finally, when all 2D polygons have been generated, union of polygons
is performed using Boost C++ libraries [138]. Boost is used for creating the union because
it o�ers fast performance and supports the union of multi-polygons and polygons with

multiple holes. Once the union is complete, the resulting 2D polygon is assigned to the

global planar surface nGl as its contour.

For groups from LF that have at least one planar surface segment
sFi , j which belongs to

the global planar surface nGs, the only di�erence in the described process is that instead of

transforming contour of the planar surface segment, the contour of the nGs is transformed

and used in the merging step. Here it becomes apparent why it is very important to assign a

local map to the global planar surface since now all the equations used for transforming

planar surface segments can be applied to the global planar surfaces by simply using GRs,
G ts and GΣl instead of

FRi , j,
F ti , j and GΣq i , j respectively. A�er the union has been created

all the global planar surfaces used in the union are deleted because newly created global

planar surface replaces them in the global map.

An example of the global map update a�er trajectory augmentation is shown in Fig.

4.6. Initially, there are two local mapsM1 andM2. �e groups generated a�er the matching

phase are shown in Table 4.1. �ree global planar surfaces are generated (1G1, 2G2 and 2G3,
Fig. 4.6a). When the state X3 is added to the trajectory, the local mapM3 is segmented and

a�er that the global map is updated by matching planar surface segments from M2 and

M3. Only one segment fromM3 is matched, and the result of grouping is shown in Table

4.2. Since planar surface segment 3F2,2 is already part of 2G3 and 2F3,2 is already part of 2G2
the resulting global planar surface 1G4 was estimated from 2G2, 2G3 and F1,3. A�er the new
global surface 1G4 was generated, global surfaces 2G2 and 2G3 are deleted and the planar
surface segments connected to them are connected to the 1G4 (Fig. 4.6b).
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Figure 4.6: Examples of the global map update: a) a�er the update betweenM1 andM2, and b) a�er
the update betweenM2 andM3.

Global map update after loop closing. If the loop closing is detected between

a newly added state Xk to the the trajectory and an already existing trajectory state Xi , three

additional steps are executed during the global map update:
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Group M1 IDs M2 IDs

1 1 1

2 2 3,4

3 3,4 2

Table 4.1: Groups from matches betweenM1
andM2.

Group M1 IDs M2 IDs M3 IDs

1 2, 3 1

Table 4.2: Groups from matches betweenM2
andM3.

1. Updating planar surface segments parameters inMk andMi

2. Reformatting the global planar surfaces if necessary

3. Updating the global map by matching planar surface segments betweenMk andMi

�e �rst step is initiated immediately a�er the trajectory is updated. �e planar surface

segments fromMk andMi are matched using the same algorithm as if no loop closing is

detected. Every matched pair is reported to the planar surface segments update algorithm

which uses new SLAM trajectory to update their parameters. A�er the segments have

been updated, the second step, i.e. reformatting the global planar surfaces, is performed.

�e global planar surface nGl needs to be reformatted for two reasons: i) a planar surface

segment within nGl has been updated or, ii) one or more local maps containing planar

surface segment that is part of nGl are associated with trajectory states which poses were

signi�cantly changed. Reformatting the global planar surface nGl ensures that all planar

surface segments contained within nGl satisfy the coplanarity conditions a�er the trajectory

has been updated. �e reformatting step is similar to the estimation of a new global planar

surface. �e di�erence is that, instead of matching planar surface segments from the local

maps, planar surface segments contained within nGl are matched with one-another instead.

�e result of the matching are groups of planar surface segments from nGl that satisfy

coplanarity conditions with one another. Although absolute poses of the trajectory states

could signi�cantly change due to the update, their relative positions could remain the same.

In that case the result of the matching will be one group which represents the same global

surface nGl . However, if relative positions change then several groups could exist, each

representing a new global planar surface. If only one group exists there is no need to merge

planar surface segments again and only values of parameters GR0l , G t0l are re-estimated.
If several groups exist, parameters of the new global planar surface for each group are

estimated and new global planar surfaces are added to the global map while the original

global planar surface nGl is deleted.

A�er reformatting is completed, the third and �nal additional step is performed. Since

the states, between which loop closing is detected, are presumed to have similar local maps,

matching them will result in numerous pairs that will connect newly segmented planar

surface segments fromMk with global planar surfaces containing planar surface segments

from M j, thus creating ground for connecting planar surface segments from the future

local maps with the same global planar surfaces. Updating of the global map by matching

segments fromMk andMi is the same process as the global map update betweenMk and

Mk−1. A�er this step, update of the global map occurs by matching local mapsMk andMk−1
just like in the case of no loop closing detection.
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Final global map generation. In order to complete the update of the global map

the only thing le� to do is to transform all the newly built global planar surfaces into the

coordinate frame S0. �is is done by transforming every point Gp in contours of all newly
created global planar surfaces using equation

G p̃ = GR0l (Gp) + G t0l (4.59)
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Figure 4.7: Le�: Side and top view of curved wall consisting of planar surface segments from three

consecutive local maps (blue are segments from Mk−1, orange are segments from Mk
and green are segments fromMk+1); Right: Side and top view of curved wall represented
in the global map by global planar surfaces.

A�er this step, the update of the global map is complete. However, there is a possibility

that some of the global planar surfaces can still be merged with one another. �e reason

for this is explained by the following example. Let’s say that a vehicle travels through a

corridor and during that path it adds three new local maps (Mk ,Mk+1,Mk+2). According to
the algorithm, each wall of the corridor should be one surface. If during the recording of

the LIDAR measurements for modelMk+1 e.g. a group of people moves between corridor
wall and the vehicle, the corridor surface will not be present in the modelMk+1. Since loop
closing algorithm does not match local maps Mk and Mk+2 there will be no connection
established with the corridor planar surface segments from Mk and Mk+2 and they will
be displayed as two separate global planar surfaces in the global map. In order to solve

this problem the global map has to be re�ned. Re�nement process is done in the same

way as updating the global map between two local maps, except that this time the input to

the matching algorithm are global planar surfaces contained within the global map. �e

algorithm than matches only new global planar surfaces and global planar surfaces that

were updated a�er the last state was added, with all unchanged global planar surfaces, and

generates new groups of matched global planar surfaces. �e rest of the process is the same

as for the group of planar surface segments, described in the previous section. Once all

the global planar surfaces from the group have been merged, the global planar surfaces

within the group are deleted from the global map and replaced with the merged global

planar surface. Figure 4.7 shows the example of a curved wall in the global map a�er three

consecutive states are added to the trajectory and global map update process is completed.
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Updating planar surface segments. Updating local maps is one of the steps

during the global map update in case the loop closing is detected between states Xi and X j.

Since in ESDSF back-end map landmarks are independent on each other, newly updated

trajectory Tn can be used to update parameters of observed plane segments in local maps

Mi andM j independently.

As explained in the previous section, during the global map update a�er the loop closing

between states Xi and X j planar segments betweenMi andM j arematched immediately a�er

the trajectory update is completed. For each pair (Fa,i , Fb, j) of coplanar surface segments
detected during the matching step, parameters of one planar surface segment are considered

as observations to its paired planar surface segment. To estimate updated parameters of

the Fa,i , a priori state estimate x̂, and its covariance matrix estimate Qx , are set equal to the

expected normal and o�set of that planar surface and its uncertainty

x̂ = [0 0 1 0]T (4.60)

Qx = Σqza , i (4.61)

Measurement z and covariance Rz are set by transforming parameters of Fb, j into the SFa , i
using relative pose between Xi and X j obtained from the updated SLAM trajectory

z = [F ñx
b, j

F ñy
b, j

F ñz
b, j

F ρ̃b, j]
T

(4.62)

Rz = Σ̃qzb , j . (4.63)

Finally, EKF a posteriori update is applied, which results in updated parameters x′ of the
planar feature Fa,i . Parameters R′Fa , i and t′Fa , i are estimated by aligning x with x′ using
minimal rotation matrix in the same way as in the global plane estimation. Once parameters

of F ′a,i are estimated, the same process is repeated for Fb, j, taking transformed parameters
of Fa,i as measurements and parameters of Fb, j as a priori state estimate.

�is concludes the description of all major steps included in the global map building and

the global map optimization. In the remainder of this chapter algorithms for loop closing

detection and calculating pose constraints from those loop closings will be presented.

4.3.4 Loop closing detection

Whenever a new state is added to the trajectory, the loop closing algorithm begins to search

for possible loop closings between the newly added state Xk and all other states in the

trajectory Tn. �e loop closing detection is done by the already described algorithm FAB-

MAP [107]. In addition to the 3D LIDAR robot was equipped with camera and images

were recorded whenever new state was added into the trajectory. �is image was sent to

FAB-MAP in order to �ndmatches between all previously sent images. However, not all loop

closings reported by the FAB-MAP are used for the trajectory update, instead a condition

is implemented which measures if the resulting update would have high enough impact

on the trajectory accuracy. Although every loop closing would increase accuracy of the

trajectory, trajectory update and the additional steps required during the global map update

a�er the loop closing is detected are performance costly operations. �is is why they should

not be executed if the update impact on the trajectory accuracy is too small. In general,
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Figure 4.8: Example of a robot trajectory suitable for rejecting loop closings based on information

gain. First loop closing occurred between states Xl and Xu, and second loop closing

occurred between states Xp and Xo. �e �rst state in the pair designates the location

where loop closing occurred. States Xo and Xu were added to the trajectory when the

robot traversed the area for the �rst time, while states Xp and Xl were added when it

arrived at the same place for the second time.

impact of the update, started by the loop closing between states Xk and Xa, on the trajectory

accuracy is proportional to the sum of cost functions fc(i , j) between all neighboring states
in the trajectory moving from the state Xk to the state Xa. �e cost function fc(i , j) takes
into account both angle and distance di�erences between two states and is calculated as:

fc(i , j) = etrans + αerot , (4.64)

where α is the scaling factor, and

∆T = X−1
i X j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆x
R ∆y

∆z
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
etrans =

√
∆x2 + ∆y2 + ∆z2

erot = arccos ( trace(∆T)2
− 1) . (4.65)

However, the problem with always using sum of all cost functions between neighboring

states to calculate accuracy impact of the loop closing arises if there were previous loop

closing detections. For example let’s consider situation illustrated in Fig. 4.8, where we want

to measure accuracy impact of loop closing between states Xp and Xo. Although the sum of

cost functions between all states from Xo to Xp is high, since the update occurred between

states Xl and Xu, the overall impact on trajectory accuracy from closing the loop between

states Xp and Xo is small. �is is because a lot of information that would be gained from

loop closing between states Xo and Xp was already gained by closing the loop between states

Xl and Xu. In order to solve this problem, approach similar to [26] is used as a measure

of accuracy impact of a loop closing. �e idea is to build a graph Tg from the pose graph
incidence matrix TI. �e pose graph incidence matrix TI is n × n matrix, where n is the
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number of states in the trajectory, whose elements are given by

TIi j =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if state Xi is connected with state X j

0, otherwise

(4.66)

�e states are connected if they are neighboring states (i.e. the state Xi is connected with

states Xi+1 and Xi−1) or if the pose constraint was formed between them (i.e. loop closing
was detected and trajectory update executed). Nodes in the graph Tg are represented by the
states and connections between nodes Ni and N j exist if the element (i, j) in the matrix TI is
1. Weight of the connection wi , j between the nodes Ni and N j is

wi , j =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

fc(i , j), if ∣i − j∣ = 1

0, otherwise

. (4.67)

Calculating connection weight this way ensures that connections made by previous loop

closing have 0 weight and will not increase measured topological distance between two

states. Once the graph is generated, information gain from closing the loop between states

Xi and X j can be calculated by �nding the shortest path from a node Ni to a node N j using

the A∗ algorithm, and then calculating the total weight of the path. When calculated in
such a way, the total weight of the path is also refereed to as the topological distance Tdi , j

between states Xi and X j. �e higher
Tdi , j the more information is gained from the loop

closing. Let’s again reefer to Fig. 5.2 for an example. �e information gained from the �rst

loop closing (Xl , Xu) is:

Tdu,l =
l
∑
e=u+1

fc(e − 1, e) ,

while the information gained from the second loop (Xp, Xo) is:

Tdo,p =
o
∑
e=u+1

fc(e − 1, e) + fc(u, l) +
p−1
∑
e=l

fc(e , e + 1) .

If the update did not occur between (Xl , Xu),
Td′o,p would have the following value

Td′o,p =
l
∑
e=o+1

fc(e − 1, e) +
p−1
∑
e=l

fc(e , e + 1) .

It can be seen that Tdo,p is much smaller than Td′o,p since

o
∑
e=u+1

fc(e − 1, e) + fc(u, l) ≪
l
∑
e=o+1

fc(e − 1, e) .

Now that the trajectory accuracy impact of the potential trajectory update can be

measured, decision can be made which updates to perform and which to ignore. All loop

closings detected by FAB-MAP, whose topological distance is larger than the prede�ned

threshold Tdmax , are reported to the Local Map Registration algorithm (LMR).
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4.3.5 Local maps registration

In order to perform trajectory and map update, the relative pose between two states Xi and

X j must be estimated and reported to the SLAM back-end as a constraint. �is is accom-

plished by the Local Map Registration (LMR) algorithm based on the approach described

in [135]. Given two local maps representing two sets of 3D planar surface segments, LMR

searches for the relative pose between these two local maps which maximizes overlapping

between the surface segments of the �rst local map and the surface segments of the second

local map, transformed by this pose into the reference frame of the �rst local map. �e

approach presented in [135] is primarily designed for use with RGB-D cameras, while the

LMR applied in this SLAM solution represents an adaptation of this approach to registra-

tion of two local maps acquired by the 3D LIDAR. Only a brief description of the applied

registration approach with emphasis on the di�erences between the method presented in

[135] and the LMR applied here is presented. For more details on the method the reader is

referred to [135].

�e considered LMR approach generates multiple hypotheses about the pose of the

reference frame S j corresponding to the state X j with respect to the reference frame Si
corresponding to the state Xi . �e hypotheses are generated by selecting small sets of

pairs (Fa,i , Fb, j) such that the surface segments selected from Mi have similar geometric

arrangement to the corresponding segments selected fromM j.�en, EKF-based registration

of the selected surface segments fromMi to the corresponding surface segments fromM j

is performed, resulting in a hypothetical relative pose between Xi and X j, which can be

represented bywi , j = (Ri , j, ti , j), where Ri , j is the rotationmatrix de�ning the orientation and

ti , j is the translation vector de�ning the position of X j relative to Xi . In general, the number

of possible combinations of feature pairs, which can be used for generating hypotheses, is

very large. In order to achieve computational e�ciency, a strategy for selection of feature

pairs proposed in [134] and described in detail in [135] is applied. It is based on the feature

ranking according to a measure of their usefulness in the pose estimation process.�e result

of this hypothesis generation process is a set of hypotheses about the pose wi , j. Besides the

correct hypothesis, this set usually contains many false hypotheses. �e number of false

hypotheses is signi�cantly reduced by using the coarse information about the pose wi , j

provided by SLAM trajectory to constrain the selection of planar surface segment pairs

(Fa,i ,Fb, j) to those which satisfy coplanarity criterion and overlapping criterion with respect
to this initial pose estimate Iwi , j, as proposed in [135].

�e initial pose estimate Iwi , j, required by the LMR is de�ned by the rotation matrix
IRi , j, translation vector

Iti , j and covariance of the transformation IPi , j. In order to calculate
Iwi , j, unscented transform is used. Inputs to the unscented transform are vector vP

vP = [ti qi t j q j]T, (4.68)

where ti , qi , t j and q j are positions and orientation quaternions assigned to trajectory states

Xi and X j, and its covariance matrix ΣP. Both vP and ΣP are obtained from the SLAM

trajectory. Nonlinear function used in the unscented transform is equal to the measurement

model (4.28) modi�ed to operate on Euler angles instead of quaternions for representing

rotation, since LMR requires rotation matrix as input.
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�e main di�erence between the method applied in [129] and the original LMR ap-

proach presented in [135] is in the hypothesis evaluation stage. In this stage, each generated

hypothesis wi , j is assigned a conditional probability P(wi , j∣M j,Mi) representing the esti-
mated probability that wi , j is the pose of X j relative to Xi ifM j is a local map consisting of

planar surface segments segmented in the state X j andMi is a local map consisting of planar

surface segments segmented in the state Xi . �e hypothesis with the highest estimated

probability is selected as the �nal solution.

Assuming that the prior probabilities of all hypotheses are equal,maximizing P(wi , j∣M j,Mi)
is equivalent to maximization of likelihood p(M j∣wi , j,Mi), i.e. the conditional probability
of segmenting the local map M j with particular parameters in the state X j if the local

mapMi is detected in the state Xi and the pose of X j relative to Xi is wi , j. �e probability

p(M j∣wi , j,Mi) is computed as follows:

p(M j∣wi , j,Mi) = ∏
Fb , j∈M j

max{max
Fa , i∈M i

(p(Fb, j∣wi , j, Fb, j ≡ Fa,i)), p(Fb, j)} , (4.69)

where p(Fb, j∣wi , j, Fb, j ≡ Fa,i) is the probability of detecting a planar surface segment Fb, j
with particular parameters in the state X j if this segment represents the same surface as

the segment Fa,i detected in the state Xi , while p(Fb, j) represents the prior probability of
detecting a planar surface segment with parameters equal to Fb, j.

FRa,i
Fta,i

Ri,j ti,j

FRb,j
Ftb,j

FSb,j

Fa,i

Fb,j

Si
Sj

FSa,i

Figure 4.9: Relative pose between planar surface segments Fa,i and Fb, j.

Probabilities p(Fb, j∣wi , j, Fb, j ≡ Fa,i) and p(Fb, j) are computed using the approach pro-
posed in [135]. While in [135] only plane normal is considered in probability computation,

in LMR used in the present SLAM solution, the plane o�set is also considered in the same

manner. �e probability p(Fb, j∣wi , j, Fb, j ≡ Fa,i) for a particular pair (Fa,i , Fb, j) is computed
only if surface segment Fb, j, transformed to the reference frame Si of the local mapMi using

the rotation matrix Ri , j and translation vector ti , j, overlaps su�ciently with Fa,i . Reference
frames Si and S j of the local maps Mi and M j are shown in Fig. 4.9, together with two

planar surface segments Fa,i and Fb, j and their reference frames SFa , j and SFb , j .
As stated before, the approach presented in [135] is originally designed for RGB-D

cameras. Due to relatively narrow FOV of RGB-D cameras, in many cases, relatively small

number of dominant surfaces is captured within the camera FOV. �erefore, in addition to

supporting plane parameters of the detected planar surface segments, the segment shape
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must also be considered in the place recognition process in order to allow reliable distinction

between geometrically similar places. In order to include the information about the surface

shape in the hypothesis evaluation stage, in [135] planar surface segments are represented

by sets of square patches approximating the surface shape. However, 3D LIDAR has a

360○ FOV, allowing it to capture many dominant surfaces in the local environment. �e
information provided by the plane parameters of the detected surfaces has shown to be

su�cient for a reliable registration of two views. Furthermore, in contrast to the research

presented in [135] where the discussed approach is used to recognize the particular place

among a relatively large number of possible candidate local maps, in [129], the considered

approach is used for registration of only two close local maps, making the discrimination

of surface segments according to their precise surface shape unnecessary. �erefore, time

consuming surface sampling is not applied and overlapping of the scene surface segment

with a corresponding planar surface segment ismeasured by an alternative approach. Instead

of counting overlapping surface patches, which is the approach applied in [135], overlapping

of two corresponding planar surface segments is measured by approximating these surface

segments with ellipsoids whose radii are de�ned by the eigenvalues of their covariance

matrices Σp.

Overlapping between two planar surface segments Fa,i and Fb, j is measured by Maha-
lanobis distance between distributions of points of these two surface segments represented

by their centroids F ta,i and F tb, j and covariance matrices Σpa , i and Σpb , j , which is computed

by

dp(Fa,i , Fb, j;wi , j) = (F ta,i − F tb, j)T(Σpa , i + Σpb , j + Σw)−1(F ta,i − F tb, j) , (4.70)

where Σw represents the uncertainty of the estimated pose wi , j. Covariance matrix Σw is

added to the covariance matrix Σp i , j of the surface segment Fb, j because this segment is
transformed in the reference frame Si using pose wi , j. Covariance matrix Σw is de�ned

using a simplifying assumption that the uncertainty in translation is equal in all directions

and that the uncertainty in rotation around all three axes is equal. It is computed as follows

Σw = σ2t I3×3 + σ2R(rTrI3×3 − rrT) , (4.71)

where I3×3 is a unit matrix, σt and σR represent uncertainty of the estimated translation and

rotation, respectively, and

r = F tb, j − ti , j . (4.72)

Parameters σt and σR are determined experimentally. Pair of planar surface segments Fa,i
and Fb, j is considered as successful match if the following condition is satis�ed

dp(Fa,i , Fb, j;wi , j) ≤ εp , (4.73)

where the threshold εp is computed according to a desired probability assuming χ2 distribu-
tion of dp distance.

At this moment the derived SLAM solution possess all the required components to work

autonomously in complex 3D environments and produce compact and accurate map and

accurate robot location. In the next section active SLAM component is presented which

allows it to maintain the map and the trajectory accuracy while coupled with the exploration

algorithm.
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Algorithm 2: Active SLAM algorithm
1: loop:
2: if More than nmax states are added without the loop closing occurring then
3: Calculate Euclidean distance Edk, j between the current robot pose Xk and all other

states X j, 1 < j < k
4: if Edk, j ≤E dmax then
5: Calculate topological distance Tdk, j

6: if Tdk, j ≥T dmin then
7: Stop the robot from exploring

8: Send the robot to state X j

9: if Loop closed then
10: Send the robot to the exploration goal that was set before the exploration

was stopped

11: end if
12: end if
13: end if
14: end if

4.4 active slam component

�emain questionwhenusing the active SLAM is how to de�ne a criterionwhich determines

when the robot motion should be in�uenced by the active SLAM. In [130] the main criterion

is the build up of uncertainty in the robot current pose. �is is measured by counting the

number of consecutively added states into the trajectory without the loop closing occurring.

Once this number exceeds the prede�ned threshold nmax , active SLAM algorithm tries to

�nd suitable states for loop closing around the robot current pose. In contrast to the normal

loop closing detection, which requires two states to have measurements taken from roughly

the same pose, in this case it is enough that Euclidean distance between the state X j and

the current robot pose Xk is lower than the prede�ned threshold
Edmax . Once, such state

is identi�ed, topological distance between X j and Xk is calculated the same way as if it is

a loop closing detected by the FAB-MAP. If the topological distance is larger than Tdmin

robot is stopped and sent to close the loop in X j. If, upon arrival at X j the loop closing is

not immediately detected, the robot follows previously traversed path, towards state X j+1,
until the loop detection occurs. Once the loop is closed, robot returns to its previous goal

set by the exploration algorithm. �ese steps are summarized in the Algorithm 2.

�e aim of any exploration algorithm is to �nd a minimal number of poses from

where to take scans in order to build a detailed map of the environment. �e algorithm

needs to guarantee a complete exploration of the environment within a �nite number of

measurements. �e exploration algorithm used in combination with the presented active

SLAM solution is based on the exploration strategy described in [139] and [140], which is an

extension of Ekman’s exploration algorithm [141] by removing the rigid constraints on the

range sensor and a robot localization. In [141] was shown that the exploration of polygonal

environments guarantees a complete coverage considering no positional uncertainty and
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an ideal range sensor. Under the assumption that in our SLAM the uncertainty is lower

each time when active SLAM closes a loop, our exploration strategy completely explores the

environment. Since the used path planning algorithm works only in 2D and since the active

SLAM component was tested in indoor environment the 2D version of the exploration

algorithm was chosen, due to its simpler integration and robustness.

�e exploration starts with no a-priori information on the environment and a�er the

�rst laser scan in 2D an initial environment model is generated. �e model consists out of

lines vectorized from the initial scan. Based on the initial map and information available

from the �rst scan, the next best robot pose is calculated. �e next candidate scan poses are

de�ned 1m in front of the lines which separate explored and unexplored area, so-called jump

edges. �e jump edges are generated by connecting the two adjacent points in one scan if

the distance between points is above some threshold value, i.e. connecting discontinuities

in a range data. For details see [139].

Figure 4.10 shows generated candidate poses in 2D Xi and X j from the current robot

pose Xk. �e jump edges are marked with red color. Among all the jump edges the next

Xi Xj

Xk

α11 α21

Figure 4.10: Jump edges from the current robot pose Xk

best scan position is chosen according to a criterion that maximizes the area explored in

the next scan and minimizes a distance from the current robot position to the jump edge.

Estimation of the explored area in the next step is done by the angle between potential

candidate position and two jump edge ends as shown on Fig. 4.10. Also the angles according

to the other jump edges are taken into account which leads to the following criterion for

candidate position X j:

I j = k1
1

dk, j
+ k2

N
∑
i=1

αi j, (4.74)

where dk, j represents a path length from the current robot pose to the candidate pose,

while αi j refers to the angle between candidate poses Xi and X j, and k1 and k2 are tuning
parameters used to treat angles and path distance equally. In each step the exploration node

communicates with a path planning module, receiving the distance to the all candidates

position, i.e. path length. �e best candidate scan position is sent to the planner module

which drives the robot to it to take the scan. �e whole procedure is then repeated. For
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planning the path from one exploration or active SLAM goal to another we used solution

presented in [142]. It uses receding horizon control approach for the trajectory execution

based on the path planned by the D* algorithm [143].

4.5 functional flow diagram of the proposed slam solution

To summarize the presented passive SLAM solution, functional �ow diagram of the entire

system including front-end and back-end components is presented in Fig. 4.11. It depicts

all steps, from predicting current robot pose using odometry, to re�nement of the global

map. Functional �ow diagram consists of the same major components as the overall system

concept diagram shown in Fig. 4.1, but presents them in more detailed view by segmenting

them to several function blocks. All blocks represented with green color belong to the

SLAM backendmodule and all orange blocks belong to the Global map building module.
Each block marked with black color corresponds to related module of the overall system

concept diagram. It is important to notice that since map building and localization are two

separate processes, the orange blocks are executed in parallel with the green blocks. �is

means that once trajectory update is complete, SLAM backend does not wait for the global
map building to �nish but continues to augment and update the robot trajectory in the

meantime.�is ensures that timely global map operations, like update a�er the loop closing,

do not a�ect pose accuracy.

Predict current pose 
using odometry

Sec. 4.2.2

Add new state
Add state Xk to the 

trajectory
Sec. 4.2.3

Build local map Mk 
from point cloud Pk

Sec. 4.3.2

Loop closing 
with Xj

Estimate pose 
between Xk and Xj

Sec. 4.3.5

Update trajectory
Sec. 4.2.4

Update local maps 
Mk and Mj 

Sec. 4.3.3

Reformat global 
planar surfaces 

Sec. 4.3.3

Update global map 
with Mk and Mj 

Sec. 4.3.3

Update global map 
with Mk and Mk-1 

Sec. 4.3.3

Refine global map
Sec. 4.3.3

NO

YES

YES
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Figure 4.11: Functional �ow diagram of the entire SLAM system.

�is concludes the derivation of the SLAM system. In the sequel the experimental

results, proving the e�ectiveness of the presented SLAM solution and its components, are

presented.

4.6 experimental results

In order to test the developed SLAM solution and all its components, experiments were

conducted in three stages. First point cloud segmentation and registration algorithm was

tested, then experiments were conducted using the complete SLAM solution and �nally

active SLAM component was tested. All algorithms were implemented in Robot Operating
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System (ROS) [144] using C++ programming language and both experiments were executed

on Lenovo�inkpad P50 with 8GB RAM and Intel Core i7@2.6Ghz processor running

64-bit Ubuntu 14.04 LTS operating system.

4.6.1 Test results for point cloud segmentation and registration

Developed point cloud segmentation and local map registration algorithm, which for the

purpose of this testing is dubbed (PCS-LMR), was compared with the state-of-the-art local

3D registration algorithms: two variants of Normal Distributions Transform (NDT) and

two variants of ICP, using standardized benchmarking protocol [101] on the structured

environment datasets. Also, PCS-LMR was compared to one global alternative, Minimally

Uncertain Maximum Consensus (MUMC) method proposed in [72], using the "Collapsed

car park" dataset1. �e "Collapsed car park" dataset consists of 35 point clouds collected

with a mobile platform and a 2D LIDAR mounted on a pan-tilt unit. �e comparison was

made with the currently available implementation of MUMC2 which works more accurately

than the original one described in [72], but does not have graph relaxation method. Because

of this both algorithms were tested only for planar segmentation and registration on a

consecutive point clouds and trajectory was constructed based on these measurements; no

loop closing constraints were added nor pose graph optimizations performed. One of the

main parameters which impacts the MUMC performance is the number of planar surface

segments used in matching, i.e. "�lter percentage threshold". In MUMC, the planar surface

segments are sorted in the decreasing order of their statistical certainty, and only the top

�lter-percentage-threshold is used for matching. �is means that the lower threshold values

increase computation speed but decrease the accuracy.

�is parameter was chosen to be the lowest possible which still produces relatively

accurate registrations based on qualitative analysis of the trajectory and the map since

neither a ground truth trajectory nor a 3D model is available. Figure 4.12 shows MUMC

trajectories for three di�erent threshold values and the trajectory obtained by PCS-LMR.

As can be seen, the trajectories of PCS-LMR and the MUMC trajectory for the threshold

of 60% (MUMC60) are the most similar, MUMC trajectory for the threshold set at 40%

(MUMC40) is still close to the �rst two, while MUMC trajectory for the threshold of 20%

(MUMC20) is severely degraded. Since computation time forMUMC40 is signi�cantly lower

than for MUMC60% (Table 4.3), and there is no exact way to assess the accuracy of the

trajectories, PCS-LMR was compared to the MUMC40. �e resolution of each of the three

image planes used to project a point cloud in PCS-LMR was set to 512 × 663.

Table 4.3: Mean, maximum and minimum registration times of consecutive point clouds for PCS-

LMR and MUMC with di�erent �lter thresholds. All times are in seconds.

MUMC60 MUMC40 MUMC20 Our

Mean 23.30 8.02 2.83 0.29

Max 123.84 35.00 7.02 0.42

Min 3.54 1.73 0.95 0.11

1 http://robotics.jacobs-university.de/node/292

2 provided by the courtesy of Prof. Pathak, Prof. P�ngsthorn and Prof. Vaskevicius
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Figure 4.12: Estimated trajectories using PCS-LMR and usingMUMCwith di�erent �lter percentage

threshold values.

�e trajectory estimation accuracy was tested indirectly by observing the quality of

mapping of dominant planar structures in the scene, e.g the walls, the �oor, the ceiling

etc. Once the trajectory has been estimated, it was used to transform the extracted planar

surface segments to the coordinate frame of the �rst scan. �en, the comparison was made

how well the planar surface segments extracted from the point clouds align with each other

in the case the trajectory acquired from MUMC40 and in the case PCS-LMR trajectory was

used.�e planar map of the area constructed from all 35 scans using PCS-LMR is shown on

Fig. 4.13. Some elements are not shown because smaller planes have been �ltered out too

improve visibility. All planar surface segments with the same color belong to the same point

cloud. �ree main groups of planar segments can be distinguished: �rst is the wall, second

is the �oor and third is the ceiling group. Figure 4.13 also shows zoomed parts of the map.

From the zoomed parts it can be seen how well the planar surface segments from di�erent

scans align with each other for each of the three groups. Figure 4.14 shows the same map,

but built with trajectory estimated using MUMC40. Both PCS-LMR and the MUMC work

well on this dataset although PCS-LMR does align planes somewhat better which can be

best seen on the ceiling group.

Table 4.4 shows computation times for PCS-LMR and for MUMC40. It can be seen that

PCS-LMR is about 4 times faster in the segmentation and 26 times faster in the registration.

Such high computation times for MUMC40 method are due to the fact that MUMC is a

global method, i.e. does exhaustive search for the most consistent set of planar surface

correspondences without an initial guess, while initial guess of PCS-LMR was set to zero

pose with high uncertainty.
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Figure 4.13: Planar map built using trajec-

tory estimated by PCS-LMR.

Figure 4.14: Planar map built using trajectory esti-

mated by MUMC40.

Table 4.4: Mean, maximum and minimum computation times for segmentation (seg). and registra-

tion (reg.) of point clouds. All times are in seconds.

PCS-LMR MUMC40

Seg. Reg. Total Seg. Reg. Total

Mean 0.17 0.29 0.46 0.70 8.02 8.72

Max 0.22 0.42 0.62 0.82 36.00 36.78

Min 0.13 0.11 0.22 0.59 1.73 2.35

�e dataset used to compare PCS-LMR method with local 3D registration algorithms

is the "Challenging data sets for point cloud registration algorithms"3 described in [145].

�is dataset consists of point clouds from 6 distinctive environments and covers both

indoor and outdoor situations as well as structured and unstructured environments. �e

exact pose of every point cloud in relation to the �rst point cloud is provided by a highly

accurate di�erential GPS solution.�e dataset was used in [146] to test several state of the art

approaches for 3D scan matching. In total 5 algorithms were tested: Point based ICP variant

described in [100], Plane based ICP variant described in [99], P2D-NDT method described

in [147], D2D-NDTmethod described in [106] andMUMCmethod from [72].�e protocol

for testing is available on the dataset website. From each environment, 35 di�erent pairs of

scans are selected and for each pair 196 initial transforms are given. �e initial transforms

are derived from the ground truth transforms by adding di�erent magnitude pose o�sets

and, depending on its di�erence from the ground truth, a pair is marked as easy, medium

3 http://projects.asl.ethz.ch/datasets/doku.php?id=laserregistration:evaluations:home
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or hard for matching. Details of the entire test protocol including the initial pose generation

can be found in [101].�e results of the testing are available on the dataset web page for each

algorithm except for MUMC, since MUMC does not make use of initial transform. �e

results for MUMCmethod are available in [146] and show how well the method performs

depending on the overlap between two point clouds for each of the 35 pairs.

PCS-LMR was tested only on indoor datasets since it is designed to work in structured

environments which contain enough planar structure (i.e. indoor and outdoor urban en-

vironments). Outdoor environments of the considered dataset are de�cient in dominant

planar surfaces, required for PCS-LMR, and hence on these environments PCS-LMR is

not considered competitive with other methods. Two indoor environments that PCS-LMR

wast tested with are the Apartment and the Stairs datasets. Apartment is the largest of the 6

datasets, consisting of 45 scans averaging 365000 points per scan. It includes dynamic con-

ditions resulting from moving furniture between scans and consists of multiple re�ecting

surfaces. �e Stairs dataset consists of 31 scans with average of 191000 points per scan. It is

intended to test registration algorithms when there are rapid variations in scanned volumes

and when the hypothesis of the planar scanner motion is incorrect.
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Figure 4.15: Cumulative translation error prob-

ability for the Apartment dataset

(dashed line represents error of 0.5

m).

Figure 4.16: Cumulative rotation error proba-

bility for the Apartment dataset

(dashed line represents error of

20○).

Figures 4.15 and 4.16 show the cumulative probability of the translation and orientation

error, respectively, for the Apartment dataset a�er all 35*196 combinations were matched. It

is assumed that the pose estimates which di�er from the true values for more than 0.5 m

with respect to translation or more than 20 degrees with respect to rotation are not useful

for robot navigation and focus our analysis to data within these error bounds. It can be

seen that PCS-LMR outperforms all other methods in accuracy both for translation and

orientation. More than 82% of translation errors are lower than 0.5 m, and more than 90%

of rotation errors are lower than 20○. However in the Apartment dataset PCS-LMR failed to
provide relative pose estimate in 24 out of 6720 matchings (0.36%) which was automatically

detected by the method itself.

Figures 4.17 and 4.18 show the cumulative probability of the translation and rotation

error, respectively, for the Stairs dataset a�er all 6720 combinations were matched. It can be
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Figure 4.17: Cumulative translation error

probability for the Stairs dataset

(dashed line represents error of

0.5 m).

Figure 4.18: Cumulative rotation error probabil-

ity for the Stairs dataset (dashed line

represents error of 20○).

seen that PCS-LMR algorithm has translation error greater than 0.5 m for approximately 5%

measurements more than D2D-NDT, but has more accurate rotation estimation. Rotation

estimation error of PCS-LMR is less than 20○ in approximately 80% cases, while D2D-NDT
achieves this result in approximately 65% cases. For the Stairs dataset there were only 3

matchings without estimate (0.045%).

Computation times for the Apartment and Stairs datasets are shown in Tables 4.5 and

4.6. It can be seen that only D2D-NDT is slightly faster than PCS-LMR.�e computation

time for PCS-LMR was computed by combining the segmentation times for two point

clouds and the time needed to perform registration. However, in reality almost always

only one newly arrived point cloud has to be segmented while all past point clouds have

already been segmented before. �is is why a practical application computation time of our

algorithm would be even smaller. Furthermore, it has to be mentioned that D2D-NDT and

P2D-NDT methods were tested using Intel Core i7@3.5 Ghz while PCS-LMR was tested on

Intel Core i7@2.6Ghz. Onemore advantage of PCS-LMR is that the map is represented with

planar surface segments resulting in much smaller memory consumption in comparison to

map representations which consist of points.

Table 4.5: Mean, maximum and minimum computation times of all 6720 relative poses for the

Apartment dataset.

ICP Point ICP Plane P2D D2D PCS-LMR

Mean 4.37 2.35 0.62 0.22 0.36

Max 25.62 15.16 1.35 0.44 0.64

Min 0.71 0.26 0.09 0.13 0.23
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Table 4.6: Mean, maximum and minimum computation times of all 6720 relative poses for the Stairs

dataset.

ICP Point ICP Plane P2D D2D PCS-LMR

Mean 2.45 1.50 0.86 0.22 0.35

Max 17.60 11.08 3.19 0.78 0.42

Min 0.21 0.15 0.06 0.07 0.29

4.6.2 Test results for the SLAM system

Developed SLAM system was tested on two datasets. One dataset was acquired indoor

while driving a mobile robot through our university building. �e other, outdoor dataset is

available online4 and was acquired by Ford Motor Company while driving their specially

equipped Ford F-250 pickup truck.

Indoor experiment. �e indoor experiment was conducted using equipment shown

in Fig. 4.19. A mobile platform Husky A200 was driven with an average speed of 1m/s

through our university building. It was equipped with Velodyne HDL-32E LIDAR and

Xsens MTi-G-700 IMU sensor. Velodyne HDL-32E has a vertical �eld of view of 40○ with
angular resolution of 1.33○. Its measurement rate was set to 10Hz. Resolution of all three
image planes used for projecting point cloud was set to 320 × 240.

IMU sensor

3D LIDAR

START

8

6
12

13

 

1
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4
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7

910

11

END

Figure 4.19: Husky with sen-

sors

Figure 4.20: Ground plan of the environment and simpli�ed robot’s

trajectory.

�e ground plan of the testing environment and the simpli�ed robot trajectory are

depicted in Fig. 4.20.�is environment provides challenging conditions for SLAM including

many re�ective surfaces (i.e. windows and marble �oors) and moving people as shown in

Fig. 4.21.

During the experiment, 320 states were added to the SLAM trajectory. �e graph pre-

sented in Fig. 4.22 shows the computation time for the point cloud segmentation process for

4 http://robots.engin.umich.edu/So�wareData/Ford
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Figure 4.21: Conditions in indoor environment.
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Figure 4.22: Point cloud segmentation time. Figure 4.23: Global map update time.

every state added to the trajectory. It can be seen that it is always below 200 ms. Although

ground truth trajectory could not be provided, the actual SLAM trajectory presented in

Fig. 4.24 shows that the robot passed accurately through narrow passages like doors and

corridors. Figure 4.24 also shows comparison between �nal SLAM and odometry trajec-

tories. From the comparison it can be seen that SLAM has managed to estimate accurate

trajectory although odometry used for prediction has accumulated high amount of error

during the experiment. Both SLAM and odometry trajectory start from the initial robot’s

pose marked with green dot, and the ending poses are marked with red dots.

Figure 4.23 shows computation time of updating the global map a�er the new state

is added to the trajectory. It can be seen that the mean time of the global map update is

around 250 ms, but there are spikes in the computation time which are the result of loop

closing detection a�er which additional steps described in Sec. 4.3.3 were performed. In

ideal case, there would be only one spike a�er every loop closing and computation time

would then return back to low values at the next global map update between consecutive

local maps. However, in reality, computation time increases/decreases gradually before/a�er
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Figure 4.24: Comparison between the odometry

trajectory (cyan) and SLAM trajec-

tory (blue).

Figure 4.25: Total number of planar surface

segments (scaled by 10) and

global planar surfaces.

the loop closure. Because the LIDAR has very long range upon entering already mapped

areas, planar surface segments that belong to the surfaces already included in the global

map are segmented from newly acquired point clouds before the loop closing happens, and

consequently planar surface segments are matched only with previous local maps which

results in new global planar surfaces being added to the global map. �ey are combined

with already existing ones in the re�nement step, which is why computation time rises even

before the loop closing. When the loop closing happens, additional steps further extend the

computation time, especially if the trajectory changed signi�cantly. Since mapping works in

parallel with the trajectory estimation, new states are added to the trajectory while update

of the global map a�er the loop closing is being performed. Because of this, local maps

from newly added states are not immediately incorporated into the global map. When the

global map update is done, there is more than one local map that has to be incorporated

into the global map using algorithm described in Sec. 4.3.3. �ey are incorporated at the

next update of the global map, but since there are several of them, this update also takes

longer than when incorporating only one local map, and consequently more than one states

could be added to the trajectory before the update is complete. �is is why the computation

time gradually decreases a�er the loop closing. From the map update time, it can also be

seen that used loop closing technique performs well by selecting only highly informative

loop closing states. Although the platform was moving along previously traversed trajectory

over signi�cant distances and came close to several of previously added states, only one

loop closing was initiated.

Figure 4.25 shows the total number of planar surface segments contained within all

global planar surfaces (blue) and the total number of global planar surfaces a�er every global

map update (red). At the end of the experiment, out of the 24273 planar surface segments in

all global planar surfaces, the �nal global map contains only 1036 surfaces, which proves that

the number of planar surface segments merged in the global map is signi�cant. It can also

be seen that the number of planar segments in the global map sometimes decreases a�er

the global map is updated with new local maps. �is is direct result of merging multiple

global planar surfaces in the same global planar surface.



4.6. Experimental results 79

Figure 4.26 shows the complete global 3D map of the area built by the SLAM system,

a�er the last state was added to the SLAM trajectory. �e roof plane was removed from

the map in order to show interior structure. It can be seen that reobserving places does

not introduce duplicate planar surface segments into the map. �is is because localization

has remained accurate and all re-observed planar surface segments are correctly merged

into one global plane. It can also be seen that the �nal global map contains only static

environment features, i.e. map building method managed to �lter out the moving objects

because either they represent outliers in the matching process or can not be described as

strong planar features. Video of the experiment is available online5. In order to at least

qualitatively estimate modelling accuracy of the SLAM system, 2D ground plan of the test

area was extracted from the global 3D model and plotted over 2D CAD ground plan of the

building in Fig. 4.27. It can be seen that they align well.

Figure 4.26: 3D model of the test area.

Outdoor experiment. Outdoor experiment was conducted using publicly available

dataset from FordMotor Company [148].�e dataset was acquired with a Ford F-250 pickup

truck driving through downtown Dearborn. �e vehicle was equipped with a professional

(Applanix POS LV) and consumer (Xsens MTI-G) IMU, a di�erential GPS, a Velodyne

5 https://youtu.be/vWoS_9wSNJw
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1 meter

Figure 4.27: Ground plan from SLAM (blue) overlayed over the CAD ground plan (red).

HDL-64E 3D LIDAR, two push-broom forward looking Riegl LIDARs and a Point Grey

Ladybug3 omnidirectional camera system. Velodyne HDL-64E has 64 vertical laser beams

which is twice as much as Velodyne HDL-32E LIDAR used in the indoor experiment. �e

vertical FOV of the Velodyne HDL-64E is 40○, which is the same as Velodyne HDL-32E.
Since rotation rate is also 10Hz it generates double the number of points per scan. �e data

from the di�erential GPS has been used as a ground truth. Odometry for prediction was

acquired the same way as in the indoor experiment by fusing the data from Xsens IMU and

the wheel encoders data contained within the Applanix POS LV raw sensor measurements.

Figure 4.28 shows the test vehicle Ford F-250 equipped with sensors and sample images

taken by the vehicle’s camera while driving downtown Dearborn. It can be seen that there

were multiple moving objects in the area as well as that the dataset was collected during

daytime and represents real world scenario for urban environment. Average velocity of the

vehicle was 20km/h while the maximum velocity was 45km/h. Total distance travelled was

around 1.5km. Resolution of all three image planes used for projecting point cloud was set

to 1024 × 297.
In order to show real time capability of the developed SLAM system even with LIDAR

with higher resolution, every acquired point cloud was segmented and relative poses were

calculated between consecutive local maps. Figure 4.29 shows segmentation times for point

clouds (mean/max value is around 250ms/375ms) and Fig. 4.30 shows time required to

compute relative poses (mean/max value is around 1.8ms/3ms). Segmentation time is larger

than in indoor experiment since the resolution of every image plane used for projecting

point cloud had to be increased in order to accommodate for higher resolution of Velodyne
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Figure 4.28: Vehicle used in the dataset collection and sample images taken from the environment.

HDL-64E compared to Velodyne HDL-32E (64 instead of 32 vertical laser beams) and to

allow projection of planar surface segments from larger distances.

0 500 1000 1500
180

200

220

240

260

280

300

320

340

360

380

Point cloud ID

t (
m

s)

 

 
mean value

Figure 4.29: Point cloud segmentation time.
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Figure 4.30: Relative pose computation time.

In total 280 states were added to the SLAM trajectory. SLAM, odometry and ground

truth trajectories are shown in Fig. 4.31. Since loop closing is possible only at the end of the

drive, �rst part of the trajectory does not change much because loop closing at the end has

very little information gain for that part of the trajectory. Two loop closings were detected,

�rst between states (X267, X19) and second between states (X280, X0). Corrections that SLAM
made can be best seen on lower part of the trajectories (marked with dashes in Fig. 4.31)

where the SLAM trajectory is much more precise than odometry trajectory and is almost

identical to the ground truth trajectory. RMS error of SLAM and odometry trajectories

with the respect to the ground truth trajectory has also been calculated

RMSESLAM =
√
∑n

k=1 d(Xk ,GTk)
n

RMSEodom =
√
∑n

k=1 d(Ok ,GTk)
n

,

(4.75)

where n is the number of states in the trajectory, d(Xk ,GTk) is Euclidean distance between
state Xk of the SLAM trajectory and the ground truth at time step k and d(Ok ,GTk) is
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Figure 4.32: Absolute errors of �nal odom-

etry trajectory (blue) and

SLAM trajectory (red).

Euclidean distance between odometry and the ground truth trajectories at time step k. �e
calculated RMS errors are:

RMSESLAM = 4.48m RMSEodom = 11.22m

�eerror of the SLAMtrajectory is about 2.5 times smaller than the error of the odometry

trajectory. What is more important, the �nal poses of the SLAM and the ground truth

trajectories are almost the same, which means that if the vehicle had continued to move,

its estimated pose would remain accurate whereas odometry error would increase further.

�is would result in even more expressed odometry versus SLAM RMS error ratio in the

second lap with additional big loop closing events. Figure 4.32 shows the absolute error of

the �nal odometry and the SLAM trajectories. �e absolute error is calculated as Euclidean
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Figure 4.33: Global map update time a�er each

augmented state.

Figure 4.34: Total number of planar surface seg-

ments and global planar surfaces.

distance between the ground truth pose at time step k and SLAM state Xk (red) / odometry

pose at time step k (blue). It can be seen that our SLAM system is able to recover from
relatively large localization dri� accumulated in large-scale environments.

�e global map update time is shown in Fig. 4.33. We can seen that the time increases as

more global planes are added to the map but remains in real-time domain throughout the

experiment. Spikes in the update time are due to the loop closing detections. �e reasons

for the residual spikes are the same as in the indoor experiment. Figure 4.34 shows the

number of global planar surfaces compared to the number of planar surface segments within

them a�er each map update. At the end of the experiment, there were 3631 planar surface

segments and only 667 global planar surfaces. Merging algorithm has reduced the number

of planar surfaces in the global map by 5.45 times. Since there is no ground truth for the

map in this dataset, only qualitative map accuracy analysis can be performed by showing

generated planar global map together with the SLAM trajectory in Fig. 4.35. Several areas

of the global map are zoomed in for better representation. As in the indoor experiment, it

can be seen that there are almost no duplicate planes. However, some of the moving objects

(e.g. cars) are present in the map (marked with dotted circles) since their speed was too low

when �rst observed and could not be di�erentiated from the static objects. Video of the

outdoor experiment is also available online6.

4.6.3 Test results for the active SLAM component

In order to test the active SLAM component, the same platform from Fig. 4.19 was used.

However, it was additionally equipped with the SICK LMS100-1000 2D LIDAR to accom-

modate for the exploration and path planning limitations. �e robot was driven in the

same indoor environment as for the indoor SLAM testing. As explained, there is no ground

truth for the robot trajectory in that environment. However, accuracy of both map building

and the robot trajectory achieved by the presented SLAM solution was already proven by

previous two sets of experimental results. �e main goal when testing the active SLAM was

to prove that using active SLAM can drastically increase the accuracy of the exploration

6 https://youtu.be/HboixGB2umY
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Figure 4.35: Globalmap generated fromFord dataset. Dotted circles representmoving objects present

in the map.

algorithm in comparisons when it it not used. In order to do that two experiments in the

same environment were completed: the �rst one with an active SLAM turned o� and the

second one with an active SLAM turned on. �e accuracy was tested by comparing the 2D

map created by the union of point clouds recorded by a 2D laser at each time step during

motion and taken from locations estimated by the SLAM. From the map generated in this

way it is easy to spot localization error. As the error increases, the point clouds that should
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represent a scan of the same location overlap less and less, thus creating distortions in the

map.

Figure 4.36 shows the generated map and the robot trajectory when an active SLAM

was turned o�. Although the trajectory in the �rst (le�) room robot explored seems like

loop closing should be detected, it was not. �e robot’s angle of rotation was too di�erent

and the RGB images did not match. �is is a clear example where an active SLAM would

help. Since this large loop closing was missed, odometry errors that accumulated over time

were not corrected. As a result, we have a moderate localization error making distortions of

the map in the �rst room explored and even more distortions in the second room that was

explored.

start location

final location

trajectory

5 m

Figure 4.36: Generated map and trajectory without active SLAM. Black rectangles represent the

robot footprint at all goals it was sent to.

Figure 4.37 shows a map of the same area but generated with an active SLAM turned

on. Robot’s trajectory is divided in three main parts. �e �rst part (marked with magenta

color) represents a robot’s motion before an active SLAM cancelled the exploration. Since

there were no major loop closures up till the state 18 was added, an active SLAM started

searching for the possible loop closures immediately a�er the next trajectory augmentation.

�e maximum Euclidean distance (Edmax), for the second condition, was set to 8m. We can

see that this condition was also met for several states during the robot’s motion from state

18 to a location marked with red ’x’. �e only condition le� to be satis�ed, in order for the

loop closing process to start, was minimal topological distance. Parameter Tdmin was set to

25m. When a robot arrived at the position marked with a red ’x’, the state 2 satis�ed this

condition. In that moment the exploration was cancelled and the robot was sent to the state

2. When it arrived at the state 2 it continued to follow the previously traversed path up till

the state 29 was augmented.�is part of the robot’s motion is shown in Fig. 4.37 as the green

trajectory. When the state 29 was added into the trajectory, a loop closure was detected

between the state 10 and the state 29. Since this was a large loop closure, the robot exited
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Figure 4.37: Generated map and trajectory with active SLAM. Black rectangles represent the robot

footprint at all exploration goals the robot was sent to, with the exception of rectangle

labelled with the number 29. It represents a SLAM state in which the robot closed

the loop and continued to the previously set exploration goal. Cyan circle represents

maximum Euclidean threshold Edmax

loop closing process and started going to the goal previously set by the exploration (marked

with purple icon in Fig. 4.37). As it can be seen from the last part of the robot’s trajectory,

no other location was suitable for an active SLAM to initiate the loop closing and the robot

continued exploring until the whole area was explored. �e generated map is much better

compared to a map from experiment without an active SLAM. Both rooms have very little

deformations. �e passage between the two rooms is clear, scans of objects and walls in the

second room that robot visited are almost completely overlapped and the angle between the

two rooms is correct. �ese two experiments show that there is a considerable improvement

in the map accuracy when the active SLAM is used.

�e main drawback of the proposed solution is the requirement for switching between

exploration and active SLAM goals. �is is done due to the inability of the planner to

take into account possible information gain from closing the SLAM loop. �e negative

side of this can best be seen from Fig. 4.37. �e trajectory shown in the green color is

traversed while the robot was searching for the loop closing required by the active SLAM

and is a complete waste of time from the exploration perspective. �is was solved in [149].

�ere, a modi�cation to the D* algorithm was presented which allowed it to take into

account negative costs of the cells used to plan the trajectory. �e value of the negative cell

is proportional to the information gain from closing the loop by moving the robot through

that cell. �is information gain is calculated using explained topological distance approach.

Using this approach means that there is no requirement to stop the robot from exploring,

but instead the possible loop closing states are taken into account during the planning

of the trajectory to the exploration goal. Although, this drastically increases exploration

speed, it does not have signi�cant impact on the accuracy of the active SLAM which is why

no additional experiments were conducted for comparing the SLAM accuracy with this

algorithm.
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4.7 summary

In this chapter, a fast active planar surface 3D SLAM solution based on ESDSF back-end

was presented that is designed to work on full �eld of view 3D point clouds obtained from

the 3D LIDAR measurements. Besides exploiting the sparsity of the ESDSF information

matrix, there are three key elements in the derived SLAM front-end that allow the presented

SLAM solution to work fast in large-scale environments. First is the e�cient processing

of 3D point clouds achieved by projecting them onto 2D image planes and then perform-

ing segmentation of projected point clouds into planar surface segments. Second is the

adaptation of pose constraint calculation algorithm developed in [135], which was initially

intended for use with RGB-D cameras. It has been modi�ed to respect new uncertainty

model of the 3D-LIDAR and to work with planar surface segments extracted from 360○

�eld of view. Also, it takes into account SLAM trajectory as initial guess for generating

pose constraint which reduces the number of outliers and speeds up the calculation time.

�ird key element is the algorithm for planar global map generation. Instead of simply

transforming segmented planar surfaces into one coordinate frame, a new technique has

been developed that combines all planar surface segments that lie on the same plane in the

environment into one global planar surface whose parameters are estimated based on the

uncertainty models of every planar surface segment contained within. Using this approach

has signi�cantly reduced the number of planar surface segments in the global map since

all re-observed segments and segments that belong to the same plane are represented as

one global planar surface. �e result is the global map which requires much less memory

and consequently allows fast processing. Additionally an active SLAM extension to the

derived front-end is presented which gives the SLAM solution the ability to in�uence the

robot movement and ensure more frequent loop closing detections, thus increasing the

overall accuracy. It bene�ts from the used ESDSF back-end in two ways. First it uses its

state representation to allow the robot to easily follow its previous path until loop detection

occurs. Second, it does not use uncertainty as a �xed measure for cancelling the exploration

since it can lead to a longer and repetitive loop closures, but instead counts the number of

states added into the trajectory without the update step being triggered.

�e e�ectiveness of the SLAM solution has been demonstrated on three sets of experi-

ments. First set consist of experiments designed to test planar segmentation and registration

algorithm. It was conducted on the two very di�erent publicly available datasets and the

algorithm was compared to 5 state-of-the-art-methods. �e results proved that it can match

and even outperform them in both accuracy and speed. �e second set of experimental

results was intended to test the accuracy of the complete SLAM solution. It was done using

one publicly available dataset collected with commercially available vehicle and one dataset

collected while the mobile platform was driving through our university building. �ese

experiments con�rmed that the proposed SLAM algorithm managed to signi�cantly im-

prove accuracy of both vehicles trajectories as well as generate planar global map with high

reduction in the number of planar surface segments compared to the total number of planar

surface segments in the local maps. Finally, the third set of experiments was conducted to

test SLAM solution with the active component. It proved that the addition of this active

component can signi�cantly increase mapping and localization accuracy in the event that
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SLAM is coupled with higher level algorithm such as the exploration algorithm.



5
Exactly sparse delayed state �lter on Lie groups for

Long-term SLAM

�is chapter consists of two parts. �e �rst part presents a second scienti�c contribution

of the present thesis published in [150], which introduces a novel exactly sparse delayed

state �lter on Lie groups (LG-ESDSF). �e second part of this chapter presents a third

scienti�c contribution submitted for review in [151], which allows SLAM back-ends based

on ESDSF to work over long-term while the robot is continuously moving through the same

large-scale environment.

Regardless of the SLAM back-end version, there is always the need to estimate the

robot pose and poses of map landmarks which inherently in 3D reside on SE(3). From
the SLAM solutions overview given in the previous chapters, we can see that �ltering

solutions dominantly rely on the Euler angles or quaternions for representing these poses.

Although su�cient, �ltering with these representations within Euclidean frameworks does

not represent the natural way of characterizing uncertainties and relations between the state

vector elements. �is problem was also encountered when using quaternions in ESDSF

back-end in the previous chapter. Because of rotation quaternions requirement to remain

unit quaternions normalization was required a�er every update. unit hypersphere (see

works of [152] and [153]). �is is in contrast to the state-of-the-art graph optimization

back-ends, which relied more on using the insights of Lie groups and Lie algebras within

the framework. �is is one of the main reasons why accuracy of the �ltering approaches

was generally not on par with the accuracy of the graph based SLAM solutions. It is also the

main reason why, a�er graph-optimization approaches solved computational complexity,

they became dominantly used back-ends in the modern SLAM solutions. Some �ltering

approaches did utilize insights from Lie groups and applied it, to an extent, on the EKF

and PF SLAM, as in [154], but in the end, resorted to the graph optimization framework

and used Lie group insights to de�ne and manipulate the graph edges, as in [155]. In the

end, although some modi�cations were done to the �lter itself, what lacked was a deeper

structural change to the EKF itself. Changes in this �eld began to happen only recently with

the introduction of the EKF on Lie groups (LG-EKF) in [156]. By representing the states on

Lie groups, and performing �ltering equations in the pertaining Lie algebra, LG-EKF is able

to respect the geometry of the state space, thus achieving greater estimation accuracy of

both the mean and the covariance. Solutions to the unscented Kalman �lter on Lie groups

(LG-UKF) also appeared in [157], then were followed by the continuous-discrete EKF on

89
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Lie groups in [158], and invariant �lters on Lie groups of [159]. However, in order to bear the

potential for state-of-the-art SLAM performance, the solution to the information form of

the LG-EKF, i.e., the extended information �lter on Lie groups (LG-EIF), was still missing;

nevertheless, this was solved recently in the work presented in [160]. Now, with the LG-EIF

developed, the basis were set to develop a SLAM solution that is not only capable of using

sparse structure of the SLAM information form, but which also respects the state space

geometry by representing states on Lie groups. �e ESDSF on Lie groups (LG-ESDSF)

presented in [150] retains all the good characteristics of the classic ESDSF implementation,

but also respects the state space geometry by negotiating uncertainties and employing

�ltering equations directly on Lie groups. LG-ESDSF derived this way is able to attain

state-of-the-art performance comparable to graph optimization based SLAM back-ends.

�is is proven by direct comparison with g2o in which LG-ESDSF achieves slightly better

accuracy with much faster computation times. Moreover, LG-ESDSF coupled with stereo

based front-end has been submitted for online evaluation protocol available within the

KITTI dataset [84]. Currently, it ranks second among the stereo vision approaches and �rst

among all the tested visual SLAM solutions.

Although respecting the state space geometry does enhance SLAM accuracy, all SLAM

solutions have a limited operation time a�er which they are unable to perform trajectory

andmap optimization in real time.�is is due to the accumulation of states which inevitably

occurs regardless on the used approach to optimization. �e algorithm presented in [151]

allows the SLAM based on ESDSF to maintain real time performance by removing states

that have little new information. �is means that while the robot moves through the same

environment information matrix remains almost constant in size. More importantly, this is

achievedwithout destroying the sparsity of the informationmatrix thus ensuring continuous

fast calculation of the update step.

�e rest of the chapter is organized as follows. In the following section the preliminaries

of the Lie group and Lie algebra are explained. Next, the derivation of the ESDSF on Lie

groups is presented. A�erwards, details of the algorithmwhich allows real time performance

of ESDSF based SLAM in the long-term are given. Finally, experimental results, proving

the e�ectiveness of the LG-ESDSF and its long-term capability, are presented.

5.1 lie group and algebra preliminaries

�is section serves as a brief introduction to the necessary prerequisites for derivation of

the ESDSF on Lie groups, while for a more rigorous treatment of the subject the reader is

referred to [161]. A Lie group G is a group which has the structure of a smooth manifold. A

tangent space TX(G) is associated to X ∈ G such that it is placed at the group identity, called
Lie algebra g, and then transferred to any X ∈ G by applying corresponding (le� or right)
action ([162]). �e Lie algebra g is an open neighbourhood around the zero-element in the

tangent space of G at the identity. In the present thesis matrix Lie groups are used which are

usually the ones considered in engineering and physical sciences.

�e matrix exponential expG and logarithm logG establish a local di�eomorphism
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Figure 5.1: An illustration of mappings within the triplet of Lie group G, Lie algebra g and the

Euclidean space Rp.

between the group and the pertaining algebra

expG ∶ g→ G and logG ∶ G→ g . (5.1)

�e Lie algebra g ⊂ Rn×n associated to a p-dimensional matrix Lie group G ⊂ Rn×n is a
p-dimensional vector space de�ned by a basis consisting of p real matrices Er, r = 1, .., p,
o�en referred to as generators, see [163]. Furthermore, a natural relation between g and Rp

is given through a linear isomorphism by

[⋅]∨G ∶ g→ Rp and [⋅]∧G ∶ Rp → g . (5.2)

For brevity, following notation of [164] will be used:

exp∧G(x) = expG([x]∧G) and log
∨
G(X) = [logG(X)]∨G , (5.3)

where x ∈ Rp and X ∈ G. An illustration of the abovemappings is given in Fig. 5.1. In addition,
two more operators are required—the adjoint representation of a Lie group and Lie algebra,

respectively denoted as AdG and adG. �ey appear due to general non-commutative nature

of matrix Lie groups, i.e., XY ≠ YX. However, the non-commutativity can be captured by
the so-called adjoint representation of G on g as follows

X exp∧G(y) = exp∧G(AdG(X)y)X , (5.4)

where X ∈ G, y ∈ Rp. �is can be seen as a way of representing the elements of the group as

a linear transformation of the group’s algebra. �e adjoint representation of g, adG, is in fact

the di�erential of AdG at the identity. A more detailed discussion on these concepts and the

used notation can be found in [161].

�e �rst thing required to make use of ESDSF on Lie groups, is to establish an error

distribution on Lie groups. If a random variable describing the error, ε ≜ log∨G(X I), is tightly
focused around the identity element X I , it can be well described with a Euclidean Gaussian

in the pertaining algebra ε ∼ NRp(0p×1, P) as in [165], and then it is said that X follows a
concentrated Gaussian distribution (CGD) on G around the identity element (confer [158]

for details). �is distribution is then regarded as a distribution on Lie groups at the identity

element, but which can further be translated over G by using the le� action. Finally, by
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combining the error distribution de�nition and le� action, a random variable X ∈ G is
de�ned as

X = µ exp∧G (ε) , with X ∼ G(µ, P) , (5.5)

with mean value µ ∈ G, covariance P ∈ Rp×p, and G denoting the CGD as in [165]. In the
derivation of LG-ESDSF, the special Euclidean group SE(3) is employed. Group details,
together with the group operators are given in Appendix A.2.

In the next section, derivation of LG-ESDSF is explained using the Lie group fundamen-

tals described here.

5.2 esdsf on lie groups

To derive the ESDSF on Lie groups several building blocks have to be developed. Funda-

mentally, the information form of the LG-EKF [158] is required and computation of the

augmentation and marginalization of a CGD has to be computed. In [160] the problem of

the information formwas solved and the extended information �lter on Lie groups (LG-EIF)

was presented. �e augmentation and marginalization of the CGD were presented in [164]

in the context of iterated LG-EKF, where authors solved the prediction step by approximat-

ing the Chapman-Kolmogorov equation with a joint distribution and then marginalizing

the posterior state. In this thesis the same train of thought is followed and this result is

extended to the prediction equations of ESDSF on Lie groups.

5.2.1 State space construction

First, states Xi of the robot trajectory Tn are now represented by an SE(3) group element
instead of quaternions and position vectors.

Xi = [Ri ti
0 1

] , Xi ∼ G(µX i , ΣX i , i) , (5.6)

where Ri is a member of the special orthogonal group SO(3), given as a 3 × 3 rotation
matrix de�ning robot orientation in the global frame, and ti = [xi , yi , zi] represents the
robot position in the global frame. In contrast to the Euclidean ESDSF, the trajectory Tn is

no longer a vector, but rather a block diagonal matrix consisting of n SE(3) elements, i.e.,

Tn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1 0 0 0

0 X2 0 0

⋮ ⋮ ⋱ ⋮
0 0 0 Xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ G = SE(3) × ... × SE(3) . (5.7)

However, following the idea of the information �lter approach to LG-EIF presented in [160],

rather than keeping the trajectory in the form of the matrix Tn, the states are stored in the
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form of concatenated Lie algebra se(3) elements

τn = log∨G (Tn) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
⋮
xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

log
∨
G (X1)

log
∨
G (X2)
⋮

log
∨
G (Xn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

xi ∼ N(µx i , Σx i , i) = N(ηx i , Λx i , i),
τn ∼ N(µn , Σn) = N(ηn , Λn) ,

(5.8)

where xi ∈ se(3) represents the state Xi ∈ SE(3)mapped to the Lie algebra, while τn can
be seen as a whole trajectory Tn mapped to the Lie algebra. �e relations between the

information matrix Λn, the information vector ηn, the trajectory mean value in Lie algebra

µn, and the covariance matrix Σn follow the same equations as in the standard ESDSF, i.e.,

µn = Λ−1n ηn and ηn = Σ−1n µn.

5.2.2 Motion model

�emotion prediction is assumed to follow a non-linear �rst orderMarkov process similarly

to (4.4), except that the motion is now de�ned directly on G as

Xn+1 = f (Xn , Ωn ,wn) = Xn exp
∧
G (Ωn +wn) , (5.9)

where Xn ∈ G is the state,wn ∼ NRp(0,Qn) is a p-dimensional white Gaussian process noise,
and Ωn = [∆t, ∆r] represents a robot displacement measured by odometry between Xn and

Xn+1. Change in the position component is represented by ∆t = [∆x , ∆y , ∆z], while the
change in rotation ∆r is represented using the Lie algebra parametrization of the special
orthogonal rotation group SO(3) (Euler-axis convention). �e process noise covariance
Qn represents uncertainty of the odometry. �e state covariance matrix is propagated as

follows

Σn+1 = FnΣnFTn +Ψ(Ωn)QnΨ(Ωn)T (5.10)

Fn = Ad (exp∧G (−Ωn)) +Ψ(Ωn)Ck , (5.11)

where Ψ is the right Jacobian of G (see [166]), while Ck denotes the linearization of the

motion model (5.9) at Xn as in [158], which is given as

Ψ(v) =
∞
∑
m=0

(−1)m
(m + 1)! ad(v)

m , v ∈ Rp , (5.12)

Cn =
∂
∂ε
Ω (Xn exp

∧
G (ε))∣ε=0 . (5.13)

Since Ω(⋅) is not a function of the state Xn, (5.13) evaluates to zero, i.e., Cn = 0, hence (5.10)
evaluates to

Fn = Ad (exp∧G (−Ωn)) . (5.14)

For brevity, the following notation is introduced

Qn = ΨnQnΨ
T
n , Ψn = Ψ(Ωn) . (5.15)
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5.2.3 Prediction step

In the prediction step of the LG-ESDSF, similarly as in the prediction step of the ESDSF,

the trajectory is �rst augmented with the new state Xn+1. A�erwards, depending on the
marginalization threshold, the state Xn can be either kept or marginalized. Given that, if

the threshold is exceeded, the state Xn is permanently kept as a part of Tn+1.

Augmentation. Following the equations for state augmentation in standard ESDSF

(4.13) and (4.14) and newly derived matrices Fn andQn the distribution parameters Λn+1
and ηn+1 associated to the trajectory τn+1 evaluate to

ηn+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q−1

n (µxn+1 − Fµxn)
ηxn − FT

n Q
−1

n (µxn+1 − µxn)
ηxn−1
⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Λn+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q−1
n −Q−1

n Fn 0

−FT
n Q−1

n Λxn ,n + FT
n Q−1

n Fn Λxn ,n−1
0 Λxn−1,n Λxn−1,n−1
⋮ ⋮ ⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Marginalization. If the marginalization threshold is not exceeded and the marginal-

ization needs to be performed, the previous state Xn is removed, while the new state Xn+1
becomes Xn. �e equations for combining augmentation and marginalization are in the

vein of the iterated LG-EKF prediction presented in [164]; however, for the information

form and LG-ESDSF the procedure is di�erent, which is why the resulting expressions for

ηn and Λn are presented

ηn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q−1
n Fnβ−1n ηxn + αn(µxn+1 − Fnµxn)

ηxn−1−Λxn−1xn(ηxn −FT
n Q−1

n (µxn+1−Fnµxn))
ηxn−2
⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Λn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

αn Q−1
n Fnβ−1n Λxn ,n−1 0

Λxn−1,n β−1n FT
n Q−1

n γn Λxn ,n−1
0 Λxn ,n−1 Λxn−1,n−1
⋮ ⋮ ⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

αn = (Qn + FnΛ
−1
xn ,nF

T

n )−1 , (5.16)

βn = (Λxn ,n + FT
n Q−1

n Fn) ,
γn = Λxn−1,n−1 − Λxn−1,n β−1n Λxn ,n−1 .

Since now equations for both augmentation and marginalization steps have been derived to

operate on Lie algebra, this concludes the derivation of the prediction step of the LG-ESDSF.
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5.2.4 Measurement model and LG-ESDSF update

�e discrete measurement model on matrix Lie groups is given as

Zn+1 = h(Tn+1) exp∧G′(vn+1), (5.17)

where Zn+1 ∈ G′, h ∶ G → G′ is a C1 function, G′ is a p′-dimensional Lie group and vn+1 ∼
NRq(0q×1, Rn+1) is zero-mean white Gaussian noise with covariance Rn+1.

�e update step in LG-ESDSF occurs following similar rationale as in the case of the

Euclidean ESDSF SLAM, i.e., it is performed whenever a loop closing between any two

states Xi and X j is detected, and a relative pose measurement is delivered. However, in

reality, update will almost always occur between the newly augmented state Xn and one or

more states already in the trajectory. For this reason, in the remainder of this section, it is

assumed that the trajectory Tn+1 is being updated a�er the loop closing occurred between
Xn and X j, 0 < j < n. No generality is lost since all equations are valid if Xn is substituted

with Xi (i ≠ j, 1 < i ≤ n). Hence, the �lter operates using the relative poses of the LMR
module as measurements, and the measurement function evaluates to

h(Tn+1) = X−1
j Xn ∈ SE(3) . (5.18)

Accordingly, the innovation term of the LG-ESDSF SLAM is modelled by the following

equation

zn+1 = log∨G (h (Tn+1)−1 Zn+1) . (5.19)

For calculating the updated estimates of the information matrix Λn+1 and the information
vector ηn+1, LG-EIF update equations from [160] are used

η−n+1 = HTn+1R−1n+1zn+1 ,
Λ−n+1 = Λn+1 +HTn+1R−1n+1Hn+1 ,

(5.20)

with Rn+1 being themeasurement uncertainty reported by LMR andmatrixHn+1 is evaluated
as in [158]

Hn+1 =
∂
∂ε

[ log∨G (h(Tn+1)−1h(Tn+1 exp∧G(ε)))]∣
ε=0
. (5.21)

For the SE(3) group calculating the relative pose between states Xn and X j reduces to

simple matrix inverse and multiplication. Given the measurement model (5.18), the matrix

(5.21) evaluates to

Hn+1 = [ 0⋯°
1∶ j−1 zero bl.

jth block
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
−Ad(X−1

n+1)Ad(X j) ⋯0⋯±
j+1∶n−1 zero bl.

nth bl.©
I 0].

Even though a similar result was obtained in [164] for relative pose averaging, it is without

derivation, which is why, for completeness, it is provided in the Appendix A.3. �is result

shows that, similarly to the Euclidean ESDSF, the matrixHn+1 remains sparse consisting of
n 6 × 6 blocks, among which only blocks j and n are non-zero. However, as explained in
[160] for LG-EIF, this does not complete the update step of LG-ESDSF since at this point
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Algorithm 3: LG-ESDSF SLAM back-end pseudocode
1: Set initial values of Λ1, X1, η1, x1
2: loop:
3: Get odometry data Ωn

4: Perform motion model (5.9) to get Xn+1
5: Calculate matrices Fn andQn from (5.11) and (5.15)

6: if permanently adding state Xn to Tn then
7: Calculate ηn+1 and Λn+1
8: if Loop closed between Xn and X j then
9: Get relative pose measurement Zn+1
10: Calculate innovation zn+1 (5.19)
11: Do update via (5.20)–(5.24)

12: end if
13: else
14: Calculate ηn and Λn

15: end if

the mean value µ−n+1 = (Λ−n+1)−1η−n+1 is in general a non-zero vector, thus in collision with
the CGD de�nition (5.5). To overcome this issue, the state reparametrization is performed

as proposed in [158], and the �nal formulae are given as follows

µ−n+1 = (Λ−n+1)−1η−n+1 (5.22)

Λ+n+1 = Ψ(µ−n+1)−TΛ−n+1Ψ(µ−n+1)−1 (5.23)

η+n+1 = Λ+n+1 log∨G (exp∧G(Λ−1n ηn) exp∧G(µ−n)) . (5.24)

Note that η+n+1 and Λ+n+1 di�er from ηn+1 and Λn+1 which are obtained only via augmentation
in the prediction step. �is concludes the derivation of the update step of the LG-ESDSF.

Pseudocode of the entire LG-ESDSF SLAM back-end is given in Algorithm 3.

5.2.5 Covariance estimation and computational complexity analysis

�e same analysis for performance and covariance estimation made for ESDSF in Sec. 4.2.5

is also valid for LG-ESDSF. �e main di�erence is that LG-ESDSF operates in such a way

that by the CGD de�nition (5.5), the uncertainties are assigned to variables located in the Lie

algebra. Since algebra of the special orthogonal group is given in the form of the Euler axis

representation, the uncertainties have to be associated to the same variable type. Because of

this, instead of using the UT tomap uncertainty from Euler angles to quaternion orientation

representation, UT is applied to associate uncertainties to the Lie algebra variables, i.e. the

Euler axis representation.

Computational complexity of the prediction step is also the same as in ESDSF since

the same number of blocks in information matrix are changed during marginalization and

augmentation. Also, the auxiliary vector is used to solve the problem of retrieving the past

states for the prediction and update step the same way as explained for the ESDSF. Because

of this similarities, one of the only computationally demanding step in LG-ESDSF is the
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same as in ESDSF, computation of information matrix inversion. It is required a�er every

update to retrieve updated µn+1 as in ESDSF. However, by examining equations (5.22) to
(5.24) it would appear that there is an extra inversion requirement of Λn+1 in (5.22). To solve
this issue (5.24) can be rewritten as follows

η+n+1 = Λ+n+1 log∨G (exp∧G(Λ−1n ηn) exp∧G(µ−n+1)) (5.25)

= Λ+n+1 log∨G (exp∧G(µn) exp∧G(µ−n+1))
= Λ+n+1µ+n+1 ,

which means that there is no need for �nal computation of µn+1 as it is already calculated
within η+n+1. �erefore, there is also only a single inversion of the information matrix in
LG-ESDSF performed in equation (5.22).

�e last potentially time consuming calculation, which occurs in LG-ESDSF and not

in ESDSF, is the inversion of Ψ(µ−n+1) required in (5.23) during the update. Although
Ψ(µ−n+1) does have the same dimension as Λ−n+1, it is also a sparse matrix and keeps a
strictly tridiagonal block form (not e�ected by the update); hence, its inversion reduces to

n inversions of a 6 × 6 matrix.
�is analysis concludes the derivation of LG-ESDSF. In the following section long-term

capability of SLAM systems based on LG-ESDSF is discussed and algorithm is presented

which allows LG-ESDSF to operate in real time during long term use in scenarios in which

robot continuously moves through the same large-scale environment.

5.3 long-term slam based on lg-esdsf

When the robot continuously moves inside the same area for a longer period of time,

regardless of the used SLAM back-end and front-end, operation time of any SLAM system

is limited. �is is because the number of features in the map and/or states in the trajectory

constantly rises and increases memory and computation requirements. In order to ensure

long-term operation, number of states and features has to be reduced continuously.

If the environment being explored is reasonable in size, most pose graph SLAM systems

will be able to build a complete map of the environment. �e problems will occur when the

robot continues to move repeatedly through the same environment, since the state space

will continue to grow. �e easiest solution would be to stop the SLAM system once the

map has been built and use the constructed map to localize the robot within. Although

straightforward, the main drawbacks of this solution are that:

1. �e robot cannot explore new areas and then return to the explored part without

reinitializing the SLAM.

2. �e robot can no longer improve map accuracy by closing loops.

A better solution would be to allow SLAM to function continuously, but manage the increase

in the number of features and/or trajectory states.

�e solution to this problem, developed in the present thesis, works under the assump-

tion that when the robot moves through an already explored environment, majority of the
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Figure 5.2: Example of a robot trajectory suitable for removing some already added states. First loop

closing occurred in state Xk , second loop closing occurred between states Xl and Xu,

and third loop closing occurred between states Xp and Xo. �e �rst state in the pair

designates the location where loop closing occurred. States Xo and Xu were added to the

trajectory when the robot traversed the area for the �rst time, while states Xp and Xl
were added when it arrived at the same place for the second time.

newly augmented states will have similar poses with the already existing states in the trajec-

tory. Since the robot is equipped with the same sensor con�guration, information gained

from states with similar poses is very low. Given that, main goal of the long-term SLAM is

formulated: all states in the trajectory that have a similar pose to the states added previously,
should be removed (marginalized) in order to preserve long-term real-time operation. One
could argue that there is no need to add new states that are close to the ones already in the

trajectory in the �rst place. In the case of the SLAM base on ESDSF this is not true for two

main reasons:

• Two states can only be marked as close enough a�er the update of the trajectory,

because before the update, due to odometry error, states can be falsely further/closer

from each other. By removing a state falsely detected as close, information is lost. On

the other hand, if truly close states are kept, redundant information is retained.

• SLAM systems based on ESDSF need to add the state Xk to the trajectory, in order to

perform update using information from closing the loop between the added state Xk

and some other state X j.
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5.3.1 Selection and marginalization of close states

Let’s consider a robot moving as shown in Fig. 5.2. �e path between the two loop closings

occurring at Xk and Xl , marked with the full line, contains states that were added during

the traversal of the path that can be safely marginalized. �is is because their measurement

information is already contained within the states added before the �rst loop closing in Xk .

Furthermore, since the loop closing also occurred in Xl , they truly have similar poses to

states already contained in the trajectory. States augmented during the path marked with

the dashed line should be kept, since they contain new measurement information. �e

states added before the loop closing in Xk could also be checked; however, this would be

redundant as they were already checked when loop closing in Xk occurred. In order to

determine how similar the poses of two states Xi and X j are (i.e., how close they are) the

same criteria (4.64) is used as for the computation of pose di�erence between two states

during the calculation of the topological distance in the loop detection algorithm.

Now let’s designate with β the set of all the states between Xl and Xp, from Fig. 5.2,

that can be removed according to (4.64). Moreover, since the robot path between states

Xl and Xp would be very similar to the path traversed between states Xu and Xo, without

the loss of generality, let’s assume that all the states Xi , l < i < p are in β. �e question
arises, how to remove these states from the trajectory and from the information matrix?

First, let’s consider the case where states Xl and Xp, i.e., states which participated in loop

closings, are not in β. �e most important fact about marginalizing states added between
two loop closings is that they are connected only with the neighbouring states. Given that,
(4.18) and (4.19), which were used to marginalize Xn during the LG-ESDSF prediction step,

can also be used here and the sparsity of the information matrix will remain preserved. �e

only changes in the information matrix a�er the removal of states β, besides size reduction,
will be changes to the blocks related to states Xl and Xp. Moreover, since states in β are
neighbouring states, they can bemarginalized in a single block which increases computation

speed in comparison to marginalizing just each state separately.

A�er successfully removing states in β, it has to be decided what to do with Xl and Xp.

�e simplest solution would be to never marginalize states included in the loop closings.

However, in the case of the robot continuously moving through the same environment, a

large number of loop closings can be expected; thus, continuously ignoring these states

would inevitably result in the increase of the information matrix size. �erefore, states

included in loop closings have to bemarginalized in order to ensure the long-term capability.

However, due to the nature of the loop closing procedure, only the state in which previous

loop closing occurred needs to be marginalized, since the current state, e.g., Xp, will become

in the next iteration the previous loop closing state.�is is why in this example only Xl needs

to be marginalized. �e problem with removing loop closing state is that, as mentioned

before, (4.18) and (4.19) should only be used if the state to be marginalized is connected

only with its neighbouring states. However, this is never the case for states that participated

in loop closings. If equations (4.18) and (4.19) were used for marginalization, as explained

in the next section, this would have a negative e�ect on the sparsity of the information

matrix. Possible solutions are to use an approach that preserves the sparsity and reduces the

number of loop closings. In the present solution both have been implemented.



100 5. exactly sparse delayed state filter on lie groups for long-term slam

5.3.2 Marginalization of states included in the loop closings

In order to understand why marginalization of the state Xl would have a negative impact

on the sparsity of the information matrix, let us assume that loop closing between Xl and

Xu was the �rst and between Xp and Xo was the second loop closing (i.e., loop closing in

Xk never occurred). Furthermore, let us assume that we have already marginalized all the

states in β. If (4.18) and (4.19) were used to marginalize Xl , the result would be:

Λ = [Λα − ΛαlΛ
−1
l Λlα Λαγ − ΛαlΛ

−1
l Λlγ

Λγα − ΛγlΛ
−1
l Λlα Λγ − ΛγlΛ

−1
l Λlγ

] , (5.26)

Λαl = [⋯ Λl ,u ⋯ Λl ,l−1]
T
, Λγl = [Λpl

0
] , (5.27)

where Λα represents information from the states α = {X0, X1 ⋯ Xl−1} augmented before
the state Xl , Λγ represents information of states γ = {Xp, Xp+1} and Λαl , Λαγ, and Λlγ

represent their cross-information. As the result of the following expression:

Λα − ΛαlΛ
−1
l Λlα , (5.28)

two blocks, Λl−1,u and Λu,l−1, will be inserted into the new information matrix, while four
more blocks will be added by the following expressions:

Λαγ − ΛαlΛ
−1
l Λlγ , (5.29)

Λγα − ΛγlΛ
−1
l Λlα . (5.30)

In total, six new blocks will be inserted and seven existing blocks will be removed. While

this may seem �ne, the problems will start to occur during future marginalization. For

example, a�er the third loop closing andmarginalization of new β states, Xp is marginalized

from the information matrix. �e term Λαp then becomes

Λαp = [⋯Λp,u ⋯ Λl ,o ⋯ Λl ,l−1]
T
. (5.31)

�is would result in �ve more blocks from (5.28) and four more block from (5.30) and

(5.29). Although (5.30) and (5.29) always add four blocks, number of new blocks added

by (5.28) will continue to increase and the number of removed blocks will always remain

seven. If this process would continue, the number of new blocks in matrix Λ would increase

quadratically with the number of consecutively marginalized states that participated in

loop closings. �is describes the worse case scenario in which all the states from β are
marginalized. If some states between consecutive loop closings are not in β and remain
in the information matrix, or if we marginalization of loop closing states was periodically

skipped, the loss of sparsity would be slowed down. However, in that case there would still

be an increase in the number of states.

In order to solve the problem of losing sparsity of the information matrix, an approach

to approximate the dense information matrix with a sparse one has to be found. Two most

recent approaches applicable to SLAM based on ESDSF are the works presented in [167]

and [168]. In [167] authors presented a solution for long-term SLAM by approximating
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the dense sparse matrix with a sparse one using the Chow Liu tree (CLT) of [108]. CLT

approximates a probability distribution p(θ) with p′(θ) in a way that (i) each variable is
conditioned only on one other variable and that (ii) Kullback-Leibler divergence between p
and p′ is minimized:

p(θ) = p(θm)
m−1
∏
i=1

p(θ i ∣θ i+1, ⋯ , θm) (5.32)

≈ p(θm)
m−1
∑
i=1

p(θ i ∣θ i+1) = p′(θ). (5.33)

�e authors used CLT to approximate only the elimination cliques disregarding constraints

in the remainder of the pose graph. �e authors then use the resulting CLT to compute the

constraints which remain in the pose graph. In [168] the authors compute CLT from the

entire information matrix which ensures taking into account all the pose graph constraints.

Furthermore, the authors also introduced generic linear constraint (GLC) factors to ensure

that the resulting information matrix will have full-rank. In the present solution the same

sparsi�cation method as in [168] is applied, but without the use of GLC factors as it is

assumed that all measurements are such that the full-rank of the information matrix will

always be preserved.

By using the aforementioned sparsi�cation method, the sparsity of the information

matrix can be ensured, regardless of the states chosen for marginalization. However, it

should be noted that with every approximation some information is lost and error in the

SLAM trajectory increases. Moreover, sparsi�cation creates some computational overhead

and increases the update complexity. Given that, sparsi�cation is not performed a�er every

marginalization of β, but only when the information matrix becomes so dense that its
inversion takes too long to be acceptable for real-time operation.

Although updating trajectory a�er each loop closing increases SLAM accuracy, as

explained in Sec. 4.3.4, closing larger loops a�ects accuracy more than closing the smaller

ones. Furthermore, there are also some negative e�ects of performing update a�er every

loop closing in the terms of long-term SLAM solution presented here:

1. Sparsi�cation is required more frequently.

2. �ere will be less states in β that can be marginalized faster.

�is is why topological distance approach for rejecting loop detectionswith little information

gain, explained in Sec. 4.3.4, is also used here. �is ensures, that by changing the minimum

topological distance threshold Tdmin, requirement for sparsi�cation can be controlled. If

frequent repeated loop closings are allowed, sparsi�cation is required more o�en, while

at the same time little information is gained. By reducing the number of accepted loop

closings more states can be marginalized out faster which increases the algorithm speed. Of

course not toomany consecutive loop closings can be rejected, as there is a risk of increasing

the trajectory error beyond allowable tolerances. �e complete algorithm for reducing the

number of states is summarized in Algorithm 4.
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Algorithm 4: State number reduction
1: Last update performed a�er loop closed between Xa, Xi

2: if Loop closed between Xb, X j (b > j) then
3: Compute topological distance Td j,b

4: if Td j,b ≥T dmin then
5: Perform steps 10-12 from Algorithm 3

6: For all states between Xa and Xb �nd f mc (4.64):
7: f mc =min( fc(m, n), 0 < n < a − 1), a ≤ m < b
8: Put all states satisfying f mc ≤ f max

c in set β
9: Put all neighbouring states from β into blocks
10: Marginalize blocks using (4.18) and (4.19)

11: Set Xa = Xb

12: If required, perform sparsi�cation

13: end if
14: end if
15: ∗ Tdmin and f max

c are prede�ned thresholds

Sensors (3D LIDAR, 
sterao camera)

LG-ESDSF back-end

Odometry
Motion model

§ 5.2.2
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Figure 5.3: Schematic layout of the proposed LG-SLAM system.

5.4 experimental results

In order to test the e�ectiveness of the LG-ESDSF back-end and its long-term capability it

needs to be coupled with the SLAM front-end. In the remainder of this chapter complete

SLAM solution based on LG-ESDSF is referred to as LG-SLAM.�e schematic layout of

LG-SLAM is shown in Fig. 5.3 �e experimental testing of the LG-SLAM is divided into

three di�erent scenarios. First, LG-SLAM is compared with two state-of-the-art visual

SLAM algorithms, namely ORB-SLAM and LSD-SLAM, which use g2o as the back-end.

Second, LG-ESDSF and g2o back-ends are compared by using two di�erent front-ends: (i)

stereo odometry with feature tracking (SOFT) [169], and (ii) three-dimensional normal

distributions transform (3D-NDT) [106]. Finally, the LG-SLAM long-term capability is

tested by making it work continuously in the same environment. All algorithms were

implemented using the C++ programming language. Testing machine was a computer with

Intel Core i7@2.6Ghz processor and 8GB of RAM. For solving the sparse matrix equations

the Eigen library [170] was used.

Testing was conducted using two public datasets, the KITTI vision benchmark suite

[84] and the EuRoC dataset [171]. �e KITTI dataset consists of 22 sequences recorded on



5.4. Experimental results 103

di�erent routes under di�erent conditions. Ground truth is provided only for the �rst 11

sequences while others are used for online evaluation. �e dataset o�ers measurements

acquired by 3D LIDAR Velodyne HDL-64E, 2 grayscale cameras Point Grey Flea 2 in

stereo con�guration and two color cameras Point Grey Flea 2 also in stereo con�guration.

Ground truth is provided by an accurate inertial navigation system OXTS RT 3003. For

the recording of the dataset all sensors were mounted on a commercially available vehicle

Volkswagen Passat. �e EuRoC dataset contains in total 11 sequences, out of which �ve were

recorded in a large machine hall and six were recorded in a so-called Vicon room (i.e., a

room equipped with the Vicon motion capture system). For every sequence, measurements

were recorded using the VI sensor [172] mounted on a hexacopter UAV AscTec Neo.�e VI

sensor provides stereo images and synchronized data from the inertial measurement unit

(IMU). Depending on available texture, brightness, and UAV dynamics each sequence is

labelled as easy, medium or di�cult. Ground truth is provided by the Vicon motion capture

system and a laser tracking system, depending on the environment.

Although the KITTI dataset provides its own metric, it does not evaluate absolute errors

between the ground truth and the estimated results, but rather compares errors on parts

of sequences that are from 100 to 800 metres long, hence the bene�ts obtained from loop

closing onlymarginally a�ect themetric. As such, it is designed primarily for evaluating pure

odometry rather than complete SLAM systems. Because of this the automatic evaluation tool

developed for the EuRoC dataset available online1 was also used, which relies on evaluation

of the absolute error. However, it �rst tries to �nd the best �t between the tested and ground

truth trajectories and then computes the error. �is is why a metric based on (4.64) is also

used and rotational erot and translation etran errors were evaluated separately without any
�tting. �e root-mean-squared-error (RMSE) was then calculated and is provided with

the rest of the results. Herein, the error calculated using the online tool is referred to as eF ,
while RMSE of the absolute translational error and absolute rotational error are referred

to as etrans and erot, respectively. Since in the KITTI dataset only tracks 0, 2, 5, 6, 7, and 9
provide suitable loop closures for SLAM front-end based on stereo, results are provided

only for these tracks.

5.4.1 Experimental comparison of LG-SLAM, ORB-SLAM, and LSD-SLAM

Although the stereo version of LSD-SLAM is not available as open source, the results of

testing LSD-SLAM, as well as ORB-SLAM, on the KITTI and EuRoC datasets are available

in their respective papers. Since etrans and erot could not be calculated, for this test, only
eF is provided in Tables 5.1 and 5.2 for all solutions if available (results for LSD-SLAM
are available for only three out of 11 EuRoC sequences while both ORB-SLAM and SOFT

failed to produce meaningful result for the �nal EuRoC track, probably because of incorrect

calibration parameters). Results for the pure SOFT odometry are also provided, which is

the only front-end used in this scenario, since both LSD-SLAM and ORB-SLAM are stereo

visual SLAM solutions.

Given the results on theKITTI dataset in Table 5.1, it can be seen that LG-SLAMachieved

the best results on all the tracks except in two cases. In particular, LSD-SLAM shows the

1 http://vision.in.tum.de/data/datasets/rgbd-dataset/tools# evaluation
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Table 5.1: Results of LG-SLAM, LSD-SLAM and ORB-SLAM on the KITTI dataset.

eF [m]
SOFT LG-SLAM ORB-SLAM LSD-SLAM

KITTI00 3.36 1.18 1.3 1.0
KITTI02 5.52 3.12 5.7 2.6
KITTI05 1.54 0.59 0.8 1.5

KITTI06 0.96 0.49 0.8 1.3

KITTI07 0.4 0.32 0.5 0.5

KITTI09 2.42 1.26 3.2 5.6

Table 5.2: Results of LG-SLAM, LSD-SLAM and ORB-SLAM on the EuRoC dataset. MH stands for

datasets recorded in machine hall, while V stands for dataset recorded in the Vicon room.

E, M and D depict easy, medium and di�cult sequences respectively.

eF [cm]
SOFT LG-SLAM ORB-SLAM LSD-SLAM

MH_01_E 17.2 3.6 4.0 -

MH_02_E 7.8 5.0 4.3 -

MH_03_M 16.8 3.9 3.5 -

MH_04_D 32.8 7.5 7.1 -

MH_05_D 24.4 6.0 5.3 -

V1_01_E 10.8 4.8 8.7 6.6

V1_02_M 14.0 4.8 6.4 7.4

V1_03_D 32.7 4.7 7.2 8.9

V2_01_E 16.2 7.0 6.1 -

V2_02_M 22.4 8.2 5.6 -

best performance on sequences KITTI00 and KITTI02. It can also be seen that LG-SLAM

signi�cantly improved SOFT results in all the tracks. Figure 5.4 shows LG-SLAM, SOFT and

ground truth trajectories for the sequence KITTI00.When the EuRoC dataset results shown

in Table 5.2, are analysed it can be noticed that LG-SLAM outperformed both solutions in

the sequences taken in the Vicon 1 room, while ORB-SLAM was better in 4 sequences from

the Machine Hall and 2 sequences from Vicon room 2. As in the case of the KITTI dataset

LG-SLAM again signi�cantly improved the accuracy with respect to the SOFT odometry.

Additionally, LG-SLAM was compared online on the KITTI dataset, using the built-in

evaluation protocol. For this purpose LG-SLAM was tested on the remaining 10 sequences

and the overall result achieved by LG-SLAM can be seen in Table 5.3 together with other

three best ranked visual SLAM solutions (two of them being ORB-SLAM and LSD-SLAM).

�e complete results with details are also available online2, and, at the time of writing, the

proposed approach ranks second among the stereo vision approaches and �rst among all

tested visual SLAM solutions.

2 http://cvlibs.net/datasets/kitti/eval_odometry.php
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Figure 5.4: LG-SLAM results on the KITTI sequence KITTI00

Table 5.3: KITTI rankings of the state-of-the-art stereo vision SLAM systems at the time of writing.

Method Transl. Rot. [○/m] Sensors

LG-SLAM 0.82 % 0.0020 stereo cameras

ORB-SLAM2 1.15 % 0.0027 stereo cameras

S-PTAM 1.19 % 0.0025 stereo cameras

S-LSD-SLAM 1.20 % 0.0033 stereo cameras

5.4.2 Experimental comparison of LG-SLAM and g2o

Even though both LSD-SLAM and ORB-SLAM use g2o as the back-end, the front-ends are

di�erent. �is is why, in order to conduct a fair comparison between LG-ESDSF and g2o,

clean g2o and LG-ESDSF back-ends have been used and coupled with SOFT and 3D-NDT

front-ends. It was also ensured that both back-ends have exactly the same number of states,

that states are added precisely a�er the same stereo pair or point cloud was processed, and

that the same uncertainty model is used. First, both back-ends were compared on the KITTI

dataset.

�e results for all the three metrics are listed in Table 5.4 for the SOFT and in Table 5.5

for the 3D-NDT front-end. It can be seen that when using SOFT, LG-ESDSF outperforms

g2o in 4 out of 6 sequences in all threemetrics.When using 3D-NDT neither of the solutions

has an advantage over the other. �e error in the track KITTI02 is large, because NDT

accumulated a rotational error in the beginning and the vehicle did not return to the same

area again and the error could not be corrected, even though 3D-NDT performed quite
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Table 5.4: Comparison of g2o and LG-ESDSF on the KITTI dataset with the SOFT front-end.

etrans [m] erot [deg] eF
LG-ESDSF / g2o

KITTI00 4.30 / 4.18 1.35 / 1.26 1.17 / 1.22
KITTI02 12.53 / 12.27 1.16 / 1.47 3.10 / 4.19
KITTI05 1.48 / 1.56 0.53 / 0.44 0.57 / 0.78
KITTI06 1.09 / 1.53 0.77 / 0.93 0.51 / 0.47
KITTI07 0.97 / 1.06 0.63 / 0.68 0.32 / 0.36
KITTI09 2.62 / 2.65 0.77 / 0.81 1.26 / 1.11

Table 5.5: Comparison of g2o and LG-ESDSF on the KITTI dataset with the 3D-NDT front-end.

etrans [m] erot [deg] eF
LG-ESDSF / g2o

KITTI00 8.62 / 8.93 3.60 / 4.71 2.27 / 2.49

KITTI02 98.87 / 120.54 19.29 / 23.92 47.13 / 65.51

KITTI05 2.87 / 3.38 1.92 / 1.65 1.34 / 1.01
KITTI06 3.33 / 3.27 2.25 / 1.25 1.98 / 2.08

KITTI07 1.22 / 1.08 0.97 / 0.95 0.64 / 0.62
KITTI09 14.80 / 13.84 4.05 / 3.35 3.34 / 3.35

well a�erwards.

�e computation time of optimization and update steps were also compared for g2o

and LG-ESDSF with both front-ends. Recorded times are given in Tables 5.6 and 5.7 for the

SOFT and 3D-NDT front-ends, respectively. Provided are maximum tmax, minimum tmin
and mean tmean computation times for all 6 sequences. From the results it can be seen that
all the computation times of the LG-ESDSF update steps are signi�cantly lower compared

to those of the g2o optimization. Furthermore, since update time of LG-SLAM is only

dependent on the number of loop closings and number of states in the trajectory, we can

seen that computation times for LG-SLAM are similar regardless of the used front-end. On

the other hand g2o optimization times depend on the initial condition. However, it can

also be noted that the minimum computation times of g2o are much lower compared to

its maximum computation times, which is due to fast optimization if loop closings appear

frequently. Nevertheless, even minimum computation times of g2o optimization are higher

than that of LG-ESDSF update step. In KITTI07 and KITTI09 minimum optimization

times of g2o are similar to maximum optimization times, because there were very few loop

closings in these trajectories.

Since the EuRoC dataset contains only stereo images, 3D-NDT algorithm could not be

used. Hence LG-ESDSF and g2o were compared only using the SOFT front-end. Results

for all 10 sequences are provided in Table 5.8. As can be seen LG-ESDSF outperforms g2o

in about 80% of sequences. However, it should be noted that since trajectories are shorter,

although more dynamic than in the KITTI dataset, the di�erences are also relatively small.

Table 5.9 shows computation times of the update step for LG-ESDSF and optimization step



5.4. Experimental results 107

Table 5.6: Minimum, maximum and mean computation times of the LG-ESDSF update step and

g2o optimization on the KITTI dataset with the SOFT front-end.

tmin [ms] tmax [ms] tmean [ms]
LG-ESDSF / g2o

KITTI00 11.09 / 50.54 52.10 / 987.17 28.83 / 461.26

KITTI02 32.99 / 49.21 43.66 / 869.65 37.92 / 342.02

KITTI05 8.47 / 40.98 24.42 / 640.31 15.08 / 338.96

KITTI06 7.48 / 35.71 13.50 / 318.87 10.03 / 230.61

KITTI07 5.89 / 184.29 8.07 / 213.08 6.54 / 203.94

KITTI09 13.10 / 458.67 16.58 / 494.56 14.90 / 481.31

Table 5.7: Minimum, maximum and mean computation times of the LG-ESDSF update step and

g2o optimization on KITTI dataset with the 3D-NDT front-end.

tmin [ms] tmax [ms] tmean [ms]
LG-ESDSF / g2o

KITTI00 10.59 / 52.31 37.69 / 957.15 26.72 / 595.73

KITTI02 31.12 / 2.13 38.29 / 997.68 35.50 / 193.22

KITTI05 8.27 / 37.07 21.56 / 627.26 14.05 / 325.59

KITTI06 7.07 / 30.84 12.96 / 305.91 9.26 / 244.75

KITTI07 5.74 / 191.10 6.93 / 197.94 6.26 / 194.65

KITTI09 14.13 / 453.10 15.70 / 470.50 15.01 / 462.49

for g2o. Same conclusions can be drawn as for the KITTI dataset, which states that LG-

ESDSF completes the update step faster than g2o completes the optimization. For example,

maximum computation times (tmax) of the LG-ESDSF update step are between 10 to 30

times shorter than those of g2o optimization.

As a general conclusion it cannot be said that one method clearly outperforms the other.

Although, when all the tested situations are looked at, LG-ESDSF provides more accurate

overall results, the di�erences are small in several cases. However, at the very least it can

be said that LG-ESDSF is comparable to g2o in accuracy, while its main advantage lies in

shorter computation time of the update steps with respect to g2o optimization. Moreover,

the computation time of LG-ESDSF can bemore easily predicted and accounted for. Another

advantage is the fact that there is no need to set parameters like the maximum number of

optimization steps and there is no problem of local minima in LG-ESDSF. In conclusion, it

can be asserted that by negotiating uncertainties and employing �ltering equations on Lie

groups within the ESDSF framework, thus respecting the state space geometry, state-of-the-

art SLAM performance was achieved with a veteran �ltering-based SLAM approach.

5.4.3 Evaluation of the long-term LG-SLAM performance

In order to test Algorithm 4, which allows long term operation of LG-SLAM, the KITTI

dataset was used again, particularly sequences KITTI00 and KITTI05.�ese sequences were

chosen because they are among the longest ones and they have signi�cant trajectory parts
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Table 5.8: Comparison of g2o and LG-ESDSF on the EuRoC dataset.

etrans [m] erot [deg] eF
LG-ESDSF / g2o

MH_01_E 0.159 / 0.213 2.103 / 1.871 0.036 / 0.048

MH_02_E 0.106 / 0.111 1.054 / 1.282 0.050 / 0.048
MH_03_M 0.125 / 0.141 2.101 / 2.449 0.039 / 0.048

MH_04_D 0.292 / 0.280 0.949 / 0.895 0.075 / 0.094

MH_05_D 0.156 / 0.164 0.980 / 1.258 0.060 / 0.086

V1_01_E 0.247 / 0.251 2.321 / 2.423 0.048 / 0.047
V1_02_M 0.093 / 0.088 0.876 / 0.831 0.048 / 0.044
V1_03_D 0.121 / 0.126 1.509 / 1.566 0.047 / 0.052

V2_01_E 0.113 / 0.143 1.897 / 2.137 0.07 / 0.096
V2_02_M 0.076 / 0.079 1.537 / 1.893 0.082 / 0.082

Table 5.9: Minimum, maximum and mean computation times of the LG-ESDSF update step and

g2o optimization on the EuRoC dataset.

tmin [ms] tmax [ms] tmean [ms]
LG-ESDSF / g2o

MH_01_E 0.24 / 2.46 3.22 / 104.16 2.10 / 59.77

MH_02_E 0.20 / 0.63 3.71 / 104.92 2.24 / 53.52

MH_03_M 0.26 / 1.00 7.36 / 184.89 3.71 / 76.49

MH_04_D 0.22 / 1.09 4.60 / 119.76 2.85 / 65.92

MH_05_D 0.38 / 4.03 4.93 / 139.78 2.98 / 72.96

V1_01_E 0.36 / 1.77 3.56 / 67.59 2.17 / 30.06

V1_02_M 0.20 / 1.67 3.83 / 78.18 2.17 / 30.33

V1_03_D 0.40 / 2.86 3.55 / 117.23 2.42 / 52.00

V2_01_E 0.48 / 6.19 2.46 / 20.43 1.19 / 13.53

V2_02_M 0.22 / 1.01 5.92 / 39.98 2.21 / 17.32

that overlap and a loop closing near the beginning. For the testing purposes two consecutive

runs of each trajectory were simulated and SOFT was used for odometry. Although this

does not completely simulate a real-world experiment, since images of the second run

would not be identical, they would be similar enough. Since the goal in this scenario was

not to test the accuracy of the front-end, it is asserted that this approach is adequate to test

the long-term LG-SLAM approach. Another advantage of such a simulation is that, since

images are identical, trajectory augmentation with almost every new state in the second

run results in a loop closing, which is precisely the scenario that needs to be tested. �e

bene�t is also that accurate ground-truth for both experiments is provided.

To test the behaviour of the long term LG-SLAM algorithm, �rst the simulation on both

tracks with two runs was completedwithout using the Algorithm 4 in order to get a reference.

A�erwards, the topological distance was used to reject unnecessary loop closings and the

marginalization of all states that were selected as close enough between two consecutive loop

closings was performed, but without including the states participating in the loop closing.
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Table 5.10: Long-term performance evaluation on KITTI00

eF [m] n nu tu [s] nnew
NO_MARG 1.17 3865 2215 130.62 1949

Tdmin = 80m
NO_LOOP_MARG 1.21 1758 106 2.77 109

ALL 1.27 1645 121 2.86 12
Tdmin = 6m

NO_LOOP_MARG 1.18 2772 1140 47.42 986

ALL 1.19 1646 1183 27.81 18
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Figure 5.5: New states added in the second run of KITTI00 with Tdmin = 80m. Green line repre-
sents trajectory in the �rst run, red × represent states added in the second run for the
NO_LOOP_MARG case, and blue× represent states added for the ALL case. A signi�cant
reduction of added redundant states for the ALL case can be noticed.

�is means that no sparsi�cation was required. Finally, testing of all the components was

performed by also including the state in which the loop closing was detected. �e accuracy

of �nal tracks was evaluated using eF , the number of states n in the trajectory at the end was
counted, total number of updates performed nu was recorded, the total time required for all

trajectory updates tu was measured, and states added in the second run nnew were counted.
Table 5.10 shows the results for KITTI00. Label NO_MARG stands for results acquired

without using the Algorithm 4. Label NO_LOOP_MARG stands for results when the state

in which loop closing occurred was not marginalized and label ALL stands for results

when all the steps of the algorithm were used. �e algorithm performance was tested
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Figure 5.6: New states added in the second run of KITTI05 with Tdmin = 50m. Green line repre-
sents trajectory in the �rst run, red × represent states added in the second run for the
NO_LOOP_MARG case, and blue × represent states added for the ALL case. Again, a
signi�cant reduction of added redundant states for the ALL case can be noticed. Red

rectangle marks the area where the vehicle went right and missed the loop closing in the

area marked with cyan rectangle during the �rst run, while in the second run it continued

straight at the red rectangle and closed the loop at the cyan rectangle.

for two drastically di�erent values of the minimal topological distance Tdmin, one was set
to 80m and the other to 6m. It can also be seen that when the algorithm was not used,

error eF for both runs seen in Table 5.10 remained the same as the error of the single run
(confer eF in Table 5.4). As expected, when rejecting updates and marginalizing blocks
the error increases, while in the case of using sparsi�cation, the error increase is even

further noticeable. However, for all the tests the error increase remained small. When using

the smaller Tdmin, changes in the error were almost insigni�cant, since, in that case, fewer
updates were rejected. �is can be seen from the parameter nu, which also indicates the

correct behaviour of the loop closing rejection part. From Fig. 5.5 it can be seen that, when

states in which update occurred were not marginalized, they were periodically added to

the trajectory a�er each accepted update (red crosses in the �gure). However, updates were

performed only a�er Tdmin was exceeded. When states in which loop closing occurred were
marginalized, only few states were added in the second run (blue crosses in the �gure). �is

can also be con�rmed by consulting the parameter nnew.
�e most interesting parameter is probably tu. As can be seen, when Tdmin is large, time

required to complete all updates is practically the same when sparsi�cation is enabled or

disabled. �is is because very few updates were performed and the e�ect of more dense
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Table 5.11: Long-term performance evaluation on KITTI05

eF [m] n nu tu [s] nnew
NO_MARG 1.04 2150 1163 35.7 1149

Tdmin = 50m
NO_LOOP_MARG 1.29 1072 88 1.31 172

ALL 1.29 997 96 1.30 107
Tdmin = 5m

NO_LOOP_MARG 1.0 1633 650 14.58 669

ALL 1.01 993 669 8.31 105

information matrix was nulli�ed by the time required to do sparsi�cation. Much better

e�ect of sparsi�cation can be seen when Tdmin is small. In this case it can be seen that tu is
much smaller when using sparsi�cation in comparison to the case when it is not used. �is

con�rms the expected e�ect of marginalizing the state in which loop closing was detected.

Results from the test conducted using KITTI05 are displayed in Table 5.11. Most of the

conclusions drawn for the test using KITTI00 can also be made here. �e di�erence is that

in this case sparsi�cation reduces accuracy even less. It can also be seen that in this case eF is
even slightly smaller when using marginalization with small Tdmin than without performing
any marginalization, which is due to rejecting some loop closings that had errors in their

estimates. �e eF of two runs seen in Table 5.10 in this case is larger than in the case of
only one run (confer eF in Table 5.4). �e reason for this is, because unlike in KITTI00, in
KITTI05 two runs are di�erent and one important loop closing is not detected until the end

of the second run. �is can be seen in Fig. 5.6. When robot arrived at the position marked

with red rectangle in the �rst run, it turned right, while in the second run it went straight

and closed the loop in the area marked with the cyan rectangle. From this �gure it can also

be seen that when robot entered a previously unexplored area (straight segments densely

populated with ’x’) the state vector was correctly augmented with new states.

From the results it can be said that the proposed algorithmworks correctly and drastically

reduces the number of unnecessary states in the trajectory.

5.5 summary

In this chapter a novel �ltering SLAM back-end solution based on the ESDSF derived on

Lie groups, dubbed LG-ESDSF was presented. �e developed �lter does not only retain

all the good characteristics of the classic ESDSF implementation, the main being the exact

sparsity of the information matrix, but also respects the state space geometry by negotiating

uncertainties and employing �ltering equations on Lie groups. In addition, a method which

allows LG-ESDSF back-end to work over long-term, while the robot is continuously moving

through already explored environments, was developed. In order to test the LG-ESDSF

back-end, it was coupled with two di�erent front-ends: one based on the stereo camera and

one based on the 3D laser range sensor. Complete SLAM solution was named LG-SLAM.

For testing it two publicly available datasets were used. First dataset was the KITTI dataset

which was recorded with a commercially available vehicle equipped with a 3D LIDAR and
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two pairs of stereo cameras. �e second dataset was the EuRoC dataset recorded with an

UAV equipped with a stereo camera. Results of LG-SLAM were compared with g2o when

coupled with the same front-ends and under the same conditions. Results have showed

that the LG-SLAM achieves similar accuracy as g2o, with signi�cantly faster computation

times of the update step in comparison to the g2o optimization. LG-SLAM has also been

evaluated using the KITTI online evaluation protocol, achieving the second best result

among all the stereo odometry solutions and the best results among all the tested visual

SLAM algorithms. Finally, LG-SLAM long-term performance was checked using the KITTI

dataset. �e results validated the e�ectiveness of LG-SLAM in such conditions. In the end

it can be asserted that although graph-optimization solutions still o�er several advantages

over the �ltering solutions, like easier applicability to a wider range of problems, judging

from the newly proposed method, it can be said that �ltering solutions deserve to be once

again in the focus of the SLAM research.



6
Cooperative SLAM

In this chapter cooperative planar SLAM solution implemented on Lie groups, dubbed

CLG-SLAM, published in [173] is presented. It allows simultaneous execution of SLAM

tasks over multiple heterogeneous agents. �e back-end of CLG-SLAM is based on the

LG-ESDSF presented in Chapter 5. �e front-end is the same as presented in the Chapter 4.

It segments point clouds obtained from 3D LIDAR to represent map as set of planar surfaces

in the same way as explained in Sec. 4.3.3 and loop closing is detected in the same way as

described in Sec. 4.3.4. �e main di�erence is that now global map is not being built on the

agent but on the standalone cloud server from the planar segments sent by each agent.

CLG-SLAM is the most similar to the cooperative SLAM solution presented in [174],

dubbed C2TAM. C2TAM is a mix between centralized and decentralized SLAM system in

which each agent performs its own localization using computationally light visual odometry,

while computational costly steps, including optimization and map building, are executed

on an external server. �e main idea behind CLG-SLAM is also to divide the computa-

tional load; however, there are three key di�erences between CLG-SLAM and C2TAM.

First, instead of graph-optimization back-end, CLG-SLAM uses developed LG-ESDSF

SLAM back-end for each agent. Second, each agent performs its own trajectory estimation

and optimization, while also maintaining local map which allows it to operate completely

independently in the case of other agent and/or server failure. �ird, map of the environ-

ment consists of planar surfaces which drastically reduces the memory and computation

requirements when exchanging and using maps.

�e rest of the chapter is organized as follows. First, brief introduction into the coopera-

tive SLAM is given. �en, CLG-SLAM is explained in details. Finally, experimental results

are presented which prove the e�ectiveness of CLG-SLAM.

6.1 introduction

In general, SLAMmain purpose is to continuously work in the background and provide

estimated map and location to the higher level algorithms, e.g., exploration, navigation etc.

In many cases these higher level algorithms would bene�t from multiple agent cooperation

in order to complete their tasks faster. For example, when considering the exploration task,

which requires building a complete map of the area in the shortest possible time, several

agents (e.g. ground and aerial robots) would complete the task much faster than a single

agent. �e easiest way to do this would be to explore a part of the environment with each

113
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agent using one of the available single agent SLAM algorithms, and thenmerge local maps in

a single global map. However, this solution has several drawbacks, and the most important

one is the inability of one agent to use information from the other agents to increase its own

mapping accuracy. SLAM algorithms that overcome this problem are called cooperative

SLAM algorithms.

Cooperative SLAM has been developed in parallel with single robot SLAM algorithms

and thus cooperative SLAM algorithms can be divided based on the same principles that

SLAM front-ends and back-ends for single robot SLAMare divided. In addition, cooperative

SLAM systems can be divided based on the way they handle speci�c requirements that arise

in the multi robot environments. One of the main di�erences between cooperative SLAM

solutions is whether they are centralized or decentralized. In the centralized SLAM system

most of the computation is done on a prede�ned robot or even in the external source (i.e.

computer server) while robots have only basic processing requirements needed to acquire

and send measurements and receive commands. Examples of such system can be found in

[175, 176]. Main advantage of centralized approach is cheaper robots since all computation is

done in one place and easier data handling. Main disadvantages are lack of robustness since

if the main machine goes o�ine none of the robots can continue to work and requirement

for constant communication with the main machine.

Decentralized cooperative SLAM solutions like [177] use computation power of all

robots to solve certain tasks. Robots within the system are divided into groups of which

each is responsible for computing a certain type of task. Decentralized cooperative SLAM

solutions can work even if one or more of the robots develops a malfunction. However, each

robot must have more computational power and data handling is more complex since every

robot must keep a track on what others are doing and what task is currently being executed.

Front-end part of the cooperative SLAM required to process the data from the sensors

is similar to that of the SLAM system used for the single robot. However, SLAM front-

end in cooperative SLAM has to be able to communicate with other robots and machines

and exchange sensor data and other information. Depending on the bandwidth of the

connection entire raw data can be sent if the bandwidth is high. �is solution is also more

suitable for centralized SLAM systems, since in that case robots do not need to process data,

but simply relay it over the network. In case the bandwidth is limited and/or the agents have

enough power to the process measurement data, before sending it, the data is �ltered, its

size reduced and only the useful part is then in some form transmitted over the network.

Examples of such approach can be found in [178, 179].

Regardless of the SLAM front-end implementation, information sharing and distribu-

tion and other speci�cs of the cooperative SLAM front-ends, the main di�erence between

every cooperative SLAM algorithm is the implementation of the SLAM back-end. As is the

case for single robot SLAM, SLAM back-ends for cooperative SLAM can be divided into

two main groups depending on the optimization techniques. One group contains SLAM

systems that use �ltering based back-ends, while the other group contains SLAM back-ends

that rely upon graph optimization techniques like g2o [55] and iSAM2 [56].

Of all approaches, the easiest transformation from a single to multi robot SLAM is done

when using EKF based back-end. Implementation of cooperative EKF-SLAM [180, 181] is

straightforward since in EKF-SLAM for one robot the state space consists of robot pose
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and pose of the map landmarks. All landmarks and robot poses are connected through

the covariance matrix. In the case of cooperative EKF-SLAM solutions, robot poses and

landmarks extracted by all robots are simply added into the same state-space. However,

cooperative EKF-SLAM su�ers from the same problems as single robot EKF-SLAM.�e

requirement for linearization of both motion and measurement models and slow computa-

tion speed with high numbers of landmarks in the state space. Computational complexity

is even more of a problem in cooperative solution, since number of landmarks increases

more rapidly.

More advanced solutions to cooperative SLAM based on �ltering approach use PF and

EIF. Main advantage of PF multiple robot SLAM [175, 182] is its requirement to linearize

only the measurement model while its real time computation is maintained using Rao-

Blackwellization [41]. As explained before, using EIF for multiple robot SLAM [126] allowed

simpler decentralization of the information acquired by each robot, but the main problem of

EIF remained, slow computation speed when number of landmarks increases. �is problem

was partially solved in [1] with the introduction of SEIF, but sparsi�cation also introduced

inaccuracies.

However, as is the case with SLAM solutions for single agent today, state of the art

cooperative SLAM algorithms use graph optimization back-ends [183, 184] and generally

employ global graph consisting of subgraphs built by each agent. If relative pose between

agents is not known in advance, subgraphs are not connected until the agents meet, whereas

if the relative pose is known, the subgraphs are connected from the beginning. A more

thorough analysis of all aspects and di�erences between various multiple agent SLAM

algorithms can be found in [185].

6.2 cooperative 3d planar slam based on lg-esdsf

CLG-SLAM was designed with the four main goals in mind:

1. To perform computationally costly operations on the standalone server, while only

computationally less demanding tasks are performed by the agents.

2. To be able to quickly exchange maps between agents and server.

3. To be able to continue to operate if cloud server or connection with it fails.

4. To use the experience of some agent for improving the accuracy of another.

Achieving these goals makes CLG-SLAM a fast and robust cooperative SLAM algorithm

capable of running on variable number of heterogeneous agents that require only periodic

wireless communication with the standalone server. �e main assumption of CLG-SLAM is

that relative poses between all agents are known at the beginning. Although this may seem

to be a limiting factor, it is acceptable respecting its intended use for faster exploration. �e

reasoning is that the algorithm does not require to know absolute starting location, but only

relative poses between one reference agent and all other agents. Also, it is only required for

agents to be on the line of sight at the very beginning, hence scans taken from the 3D LIDAR

can be initially matched using the LMR algorithm. Because of this, although condition



116 6. cooperative slam

can be limiting for some tasks, in the case of multiple agent exploration application, this

requirement is easily reachable.

6.2.1 �e overall concept of the proposed cooperative SLAM system

�e overview of the CLG-SLAM system is shown in Fig. 6.1. Each agent in the system

builds its own trajectory using LG-ESDSF back-end. It also performs loop closings and

segmentation of measurements into the planar surface segments. However, global map

building algorithm explained in Sec. 4.3.3 is performed on a standalone Cloud Server (CS).

�is is possible because of the LG-ESDSF property to estimate trajectory independently

from the global map. Once the new local planar mapMi is built, it is sent to the CS alongside

with the current trajectory of the respective agent. A�er CS receives Mi , it incorporates

its planar segments into the global map using current trajectory information. Currently

updated global map is available at any time instant on the CS and any agent or higher

level algorithm running alongside CS (e.g. exploration, navigation) can retrieve it. �e

incorporation of local planar maps from di�erent agents into the global map is possible

based on their trajectories, since their relative poses are known and every trajectory is built

within the same global frame.

NO

Odometry Predict Augment
Loop 

closing
Update trajectory

Build local map

YES

NO

Agent i

Update planar segmentsAdd new planar segments Check for loop closings

Cloud  Server (CS)

Update information

YES

TrajectoryLocal map

Figure 6.1: Overview of the proposed cooperative SLAM solution.

Besides allowing construction of the global map in the same frame from the start, the

most important advantage from knowing relative poses between agents in the beginning

is the ability to improve their entire trajectories and global map every time they meet

later during the environment exploration. When the initial relative pose of the agents is

unknown, their trajectories will be also corrected every time they meet, but the problem is

that the trajectories and global map corrections are almost entirely limited to the area of

the environment that was mapped by both agents before they have met. Although, since all

robot states and map landmarks are connected they will all be corrected in the global frame,

i.e. also outside the overlapping area, their relative poses can only be marginally corrected

until further rendezvouses occur in di�erent locations. Since in the case of multi-agent

exploration the moments when the agent’s trajectories intersect cannot be predicted but

are supposed to be rare, knowing initial relative poses is of great importance for maximally

exploiting information from every meeting.

�e presented architecture of CLG-SLAM inherently achieves the �rst set goal, which is

the separation of computationally more complex SLAM tasks from the less demanding ones.
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As explained in Sec. 5.2.5, all steps of the LG-ESDSF have very low computational cost and

as proven in the experiments presented in Sec. 4.6 local map building and pose constraint

estimation is also computationally inexpensive. �is means that the only computationally

costly operation is the global map building which is accomplished by CS.

One could argue that building local planar maps on-board the agent is unnecessary and

that it should also be performed by the CS. However, having local maps available on-board

an agent helps achieve the second and the third set goal. Since only segmented local planar

maps need to be transferred to the CS instead of the entire point clouds, local map transfer

is simple and quick which ful�ls the second set goal. �e third goal, which requires the

CLG-SLAM to be robust, is achieved since in the case CS or connection with it fails, local

map can be used in combination with the trajectory for navigation to the prede�ned safe

location. Moreover, since the entire system is event triggered, it is also robust to the time

synchronization errors. If the new local map arrives while the CS is busy with incorporating

previously received one, it will simply be incorporated as soon as CS becomes free. �e �nal

goal le� to achieve is the ability of CLG-SLAM to use one agent information to increase the

accuracy of another.

6.2.2 Updating one agent with the information from another agent

In order to use one agent’s information to correct the trajectory of another, loop closing

between their trajectories has to be detected. �is is done by the CS for two reasons:

1. Only CS has the trajectory of every agent.

2. In order to �nd the loop closing between di�erent agents, measurements from all the

agents need to be checked which can be a costly computation.

�e CS searches for possible loop closings in the similar way as a single agent does,

using the algorithm for loop closing detection explained in Sec. 4.3.4. �e example shown

in Fig. 6.2 depicts trajectories from two agents: a (blue) and b (orange). Agents started to
map the environment from poses Xa

0 and Xb
0 and at some point they arrived at poses Xa

i
and Xb

j , respectively, a�er which the CS detected the loop closing. Once the pair (Xa
i , Xb

j ) is

identi�ed for loop closing CS uses LMR to estimate relative pose T j,b
i ,a between them.�e

CS then calculates uncertainties of states Xa
i and Xb

j . �e trajectory which contains the state

with the higher uncertainty is selected for correction based on the other trajectory. Let’s

say that the state Xb
j has higher uncertainty. In order to correct trajectory of the b-th agent,

since every agent possesses only its own trajectory, update must be performed based on the

relative pose between the state Xb
j and some other state Xb

k , k ≠ j from the same trajectory.
Any state can be chosen from b-th agent’s trajectory as Xb

k , but the goal is to choose the state

with the smallest uncertainty because then the loop closing will have the largest impact on

accuracy. �e state that best satis�es both conditions is state Xb
1 since it is the �rst state in

the trajectory. Now in order to perform the update of b-th agent’s trajectory, T0,bj,b has to

be found using new measurement T j,b
i ,a and a-th agent’s trajectory. Since all trajectories are

within the same global frame this can be done as:

T0,bj,b = (Xb
0)−1(Xa

i T
j,b
i ,a ). (6.1)
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Figure 6.2: Example of b-th agent’s trajectory (orange) update using information from a-th agent’s
trajectory (blue).

Finally the update information is sent to the agent immediately a�er calculation and

the trajectory update is performed right a�er the new state is augmented into the agent’s

trajectory. �e process is repeated for every loop closing detected by the CS. Since the loop

is always closed between the �rst trajectory state X1 and another state Xi , it will always

impact the accuracy of all states between X j, 0 < j ≤ i. If the initial relative pose between
agents was not known upfront, this would not be possible since in equation (6.1) Xb

0 and

Xa
i would not reside in the same coordinate frame.

�is concludes the derivation of CLG-SLAM.�e next section presents the experimental

results which prove its e�ectivness.

6.3 experimental results

CLG-SLAM was tested on two datasets. One was the same indoor dataset recorded for

testing the single agent planar SLAM explained in the Chapter 4 while the other was the

KITTI dataset. In order to simulate cooperative behaviour the datasets were divided into

subsets. �en, identical SLAM systems were ran as separate threads simulating individual

agents. Each agent received data from one of the subsets. In both experiments, the CS was

also run on the same computer as a separate thread and independently received data from

each agent. All algorithms were implemented using C++ under ROS and run on portable

computer Lenovo P50 with 8GB RAM and Intel Core i7@2.6Ghz. Since CLG-SLAM is event

based, no generality was lost by simulating all agents and the CS on the same computer as

independent threads.

To test the ability of one agent to improve its accuracy using information from another

agent, the experiments on both datasets were �rst performed without the CS sending loop

closing information to the agents. �is way every agent closed only loops detected by itself.

�en the same experiment was simulated again, but this time the CS sent loop closing

information to the agents.

6.3.1 Test results on the indoor dataset

�e indoor dataset was separated into two subsets, which means cooperation was done

between two agents. Since ground truth trajectory for the indoor dataset is not available,
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Smin [MB] Smax [MB] Smean [MB]

Point clouds

1.17 2.18 2.08

Local maps

0.03 0.20 0.11

Local maps size [MB] / Map size [MB]

30.2 / 2.6

Table 6.1: Sizes of point clouds, resulting local maps and global map.

results of experiments conducted were evaluated the same way as in Chapter 4. �e 2D

ground plan was generated by slicing the global map built by CS at certain height from the

ground and was then overlayed over the ground-truth ground plan. �e results, alongside
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Figure 6.3: Ground plan in the case when CS did

not send any information.
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Figure 6.4: Ground plan in the case when CS

sent loop closing information.

with agents’ trajectories, are shown in Fig. 6.3 and in Fig. 6.4, for the case when CS did not

sent anything to the agents, and for the case when CS sent loop closing information to the

agents, respectively. As can be seen from the resulting �gures, accuracy of the ground plan

is much better in the case when CS sent information to the agents. Many duplicate planes

that represent the same wall have been merged into single plane in the global map and walls

have been correctly aligned.

Table 6.1 shows minimum, maximum and mean sizes of point clouds and the resulting

local maps recorded by both agents. �e segmentation of point clouds drastically reduces

their size, thus allowing lower memory requirements for agents and faster transfer times

over the network to the CS. Final row in Table 6.1 shows comparison between the cumulative

size of all local maps and size of the �nal global map. It can be noticed that the �nal map

size is much smaller than the size of all local maps which allows faster transfer of the global

map and also faster computation times for the tasks which use global map, e.g. exploration,

navigation, etc. Final global map built when the CS sent loop closing information is shown

in 3D in Fig. 6.5.
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Figure 6.5: Global map built by CS when loop closing information was sent to the agents.

6.3.2 Test results on the KITTI dataset

Tests on the KITTI dataset were performed on the �rst track (KITTI00) which was divided

into three subsets, each representing data for one of the three agents. Because the KITTI

dataset does have the ground truth trajectory, it was used for comparing the accuracy of

the �nal trajectories obtained by all three agents when CS did not send update information

to the agents and when it did. For comparison the same metric based on (4.64) explained

in Sec. 5.4 was used. �e odometry on the KITTI dataset used for the prediction step in

LG-ESDSF was estimated using the 3D-NDT algorithm. Trajectories of all three agents

obtained when CS did not send update information are shown in Fig. 6.6, while Fig. 6.7

shows the trajectories when CS sent the update information. �e results of comparison

between complete trajectories obtained by all three agents and the ground truth trajectory

for both cases are given in table 6.2. As can be seen, both rotational and translation errors

decreased when CS sent the updates to the agents. �e e�ect of these updates can best be

seen by comparing trajectory of the �rst agent on Figs. 6.6 and 6.7. We can see that by

closing the loop with the trajectory of the third agent, much of the accumulated rotational

error in the trajectory of the �rst agent was corrected.

Errors when the updates were not sent Error when the updates were sent

etrans [m] erot [deg] etrans [m] erot [deg]
9.15 3.76 8.76 3.2

Table 6.2: Comparison between the complete trajectory accuracy when CS did not send the updates

and when the updates were sent.

Table 6.3 shows comparison between the point cloud sizes and the sizes of the resulting

local maps. �e same conclusions made for the indoor dataset can be made here. However,

the sizes are higher than in the indoor experiment due to the di�erence in the LIDAR used

to obtain the dataset. �e indoor dataset was obtained with Velodyne HDL-32 which has 32

vertical beams, while the KITTI dataset was collected with Velodyne HDL-64, which has

64 vertical beams. Figure 6.8 shows the complete 3D model built by all three agents when
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Figure 6.6: Trajectories of all three agents when

CS did not send updates.
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Figure 6.7: Trajectories of all three agents when

CS sent updates.

Smin [MB] Smax [MB] Smean [MB]

Point clouds

2.83 3.38 3.55

Local maps

0.36 0.78 0.1.34

Total point clouds [GB] / Total local maps [GB]

15.0 / 1.28

Table 6.3: Sizes of point clouds and the resulting local maps.

they received updates from the CS.

Figure 6.8: Global map built by the CS when loop closing information was sent to the agents.
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6.4 summary

In this chapter the cooperative SLAM solution dubbed CLG-SLAM based on previously

developed LG-ESDSF back-end and planar front-end was presented. CLG-SLAM was

developed having four key goals in mind: (i) Separation of computationally complex SLAM

operations from the less demanding ones, (ii) ability to increase mapping accuracy of one

agent by using information from other agents, (iii) using compact map representation which

allows easymap exchange between agents and server and (iv) robustness of the entire system

by allowing each agent to function independently in case the CS or communication with it

fails.

�e �rst goal was achieved using LG-ESDSF back-end, which enables separation of

trajectory estimation from the globalmap building.�is separation enabled transfer of costly

global map building operation to the CS, while thanks to the sparsity of the information

form and fast planar segmentation of point clouds, trajectory estimation and local map

building were able to run on computationally less capable agents. To enable one agent

to increase accuracy of another, an algorithm was developed which runs on the CS and

analyses measurements from all agents in order to �nd loop closing. A�er a suitable loop

closing is detected, it determines which trajectory will be updated and sends the update

information to the respective agent. Compact map representation was achieved by utilizing

developed planar SLAM front-end which segments 3D point clouds into planar surfaces,

thus drastically reducing their size whilemaintaining high level of details. Finally, robustness

was achieved by allowing each agent to maintain its trajectory and local map which gives it

the ability to know where it is and what is around it even if CS or connection with it fails.

�e e�ectiveness of CLG-SLAM was demonstrated using two real world datasets. One is

the indoor dataset recorded in our faculty building and the other is the KITTI dataset.
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Conclusion and outlook

�e development of mobile robotics was �rst focused on producing mobile robots that are

complementary with human abilities. However, within time, the need has arose for robots

that can not only work alongside humans but also completely replace them in wide variety

of tasks, emphasis being on tasks that can endanger humans. �e increased development

and popularity of mobile robots in the last decade has created an illusion that today’s mobile

robots already have such potential. However, accidents like the one in Fukushima nuclear

power plant in Japan has demonstrated how far behind us, in certain tasks, robots really are.

�ere was not a single robot in the world that was able to enter the damaged plant and do

the repairs instead of humans. One of the main challenges in designing the mobile robot

that can successfully replace humans in such situations is in developing algorithms than

can accurately map the environment and estimate accurate robot’s location in that map.

�ese algorithms are also in the main focus of the present thesis.

�ere are three main concepts to solving the localization problem, each giving more

autonomy to the mobile robot. �e most simple and least autonomous method is the one

which uses arti�cially placed beacons in the environment to localize the robot. Next and

more autonomous method is when the map of the environment is built before the robot is

sent to execute tasks in that environment. Although very accurate, this method requires a-

priori knowledge of the environment and as such provides a limiting factor to the autonomy.

�e only method that o�ers full autonomy of the mobile robot is the one which allows the

robot to build the map of the environment and localize the robot within it at the map at the

same time. In mobile robotics, methods that solve this problem are known under common

acronym SLAM (Simultaneous Localization and Mapping).

SLAM is formulated as a probabilistic problem which estimates probability distribution

of map and robot pose conditioned upon all acquired measurements, current control inputs

and previous robot pose. Two basic components of every SLAM solution are: its back-end,

which deals with robot pose and map optimization, based on constraints produced by

the second main component, the SLAM front-end. SLAM front-end deals with sensor

measurements and consists of three main segments: (i) odometry segment used to estimate

current robot pose based on consecutive measurements and previous pose, (ii) loop closing

detection used for determining when the robot has arrived at previously visited locations,

and (iii) pose constraints calculation used to estimate relative pose between measurements

in which loop closing was detected. �ese constraints are then used in the back-end for

pose and map optimization and are essential for maintaining accuracy in the SLAM system.

123
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SLAM back-end approaches can be divided into two main groups. �e �rst one uses

�ltering approach based on prediction and update steps. �e second group comprises

approaches which solve SLAM problem by de�ning it as a non-linear least squares problem

and are referred to as the graph-based SLAM back-ends. �ere are four main �ltering

approaches to the SLAM back-end and they primarily di�er based on the �lter used. �ey

are based on: (i) the Extended Kalman Filter (EKF), (ii) the Particle Filter (PF), (iii) the

Extended Information Filter (EIF), and (iv) the Sparse Extended Information Filter (SEIF).

Graph based SLAM solutions mainly di�er by the terms included into the minimization

criterion and by the optimizations used to make them more computationally e�cient. In

this thesis the main focus is on the �ltering based approaches.

�e �rst scienti�c contribution of the thesis is the SLAM solution based on Exactly

Sparse Delayed State Filter (ESDSF) back-end and the planar based SLAM front-end. ESDSF

is a special form of the EIF �lter, which has the same state space as PF back-end. Instead of

estimating only current pose of the robot and the poses of all map landmarks, it estimates

robot’s trajectory consisting of discrete past robot poses. As a result map landmarks become

independent on each other and are conditioned only upon the discrete robot state at which

they were extracted. �is allows fast map estimation that can be done in parallel with the

trajectory estimation. Moreover, by using this state space, the information matrix becomes

exactly sparse and does not require sparsi�cation step, like in SEIF, which makes ESDSF

more accurate. �is sparsity can then be exploited by a special sparse matrix solver to

drastically decrease computation time.

Planar front-end is based on the planar segmentation algorithm which extracts planar

segments from the 3D point clouds obtained by the 3D LIDAR. It performs this very fast

because it projects the point clouds into three 2D image planes. Each point is de�ned by

the pixel coordinates, and by the pixel value which is equal to the point distance from

the LIDAR’s coordinate frame. �e Delaunay triangulation is then used to combine these

pixel-points into planar segments. All segments extracted from the same point cloud are put

into local maps which are a�erwards used for the pose constraint calculation and the global

map building. Pose constraint calculation is done using Local Map Registration (LMR)

algorithm which matches segments from two local maps by checking their coplanarity and

overlapping and then uses matched pairs for relative pose hypothesis generation.

To be more speci�c, the �rst scienti�c contribution is actually the global map building

algorithm which builds global planar map from the planar segments in local maps. �e

easiest way to do that would be to simply transform all planar segments based on the

SLAM trajectory into one coordinate frame. However, this would result in many duplicate

segments which would occur when two local maps would consist of segments extracted

from measurements taken from the same place. Moreover, planar surfaces like walls and

�oors would be represented bymany di�erent planar segments instead of one.�e proposed

algorithm solves this by combining all coplanar segments into a single global planar surface.

Each global planar surface parameters are estimated based on the parameters of all local

planar segments it consists of. Also, algorithm maintains connections between local maps

and global surfaces and allows very fast updating of the global map when the trajectory

optimization occurs.

�e second scienti�c contribution of the thesis arises from the need of correct pose
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representation in �ltering based SLAM back-ends. Regardless of the SLAM version, there is

always the need to estimate the robot’s pose and poses of map landmarks which inherently in

3D reside on SE(3). Filtering solutions dominantly rely on the Euler angles or quaternions
for representing those poses. Although su�cient, �ltering with those representations within

Euclidean frameworks does not represent a natural way of characterizing uncertainties and

relations between the state vector elements. �is problem was also encountered when using

quaternions in ESDSF back-end because of the requirement on rotation quaternions to

remain unit quaternions. Since state-of-the-art graph optimization back-ends rely more

on using the insights of Lie groups and Lie algebras to represent pose, this was one of the

main reasons why �ltering approaches were generally not on par with the graph-based

optimization based SLAM performance. Changes in this �eld began to happen only recently

with the introduction of the EKF on Lie groups (LG-EKF) and the extended information

�lter on Lie groups (LG-EIF).�e knowledge gained from the derivation of LG-EKF and LG-

EIF was used to derive a novel implementation of ESDSF on Lie groups (LG-ESDSF). �e

LG-ESDSF allowed the ESDSF update and prediction equations to be computed directly on

the Lie groups, which as a result had a positive impact on the overall accuracy. Derived LG-

ESDSF is able to retain all the good characteristics of the classic ESDSF,main being the sparse

information matrix, and achieve accuracy of state-of-the-art graph-optimization SLAM

back-ends. Moreover, thanks to the usage of sparse matrix solvers, it is also considerably

faster. �is was proven by extensive testing on two publicly available datasets, one of them

being the KITTI dataset which also has online evaluation protocol. LG-ESDSF was coupled

with visual front-end based on stereo cameras and currently holds the best result of all the

tested visual SLAM solutions.

�e third scienti�c contribution of the thesis is also connected with LG-ESDSF and is

based on the algorithm which allows LG-ESDSF back-end to maintain the ability to work

online for a long period of time while the robot is moving trough the same environment.

Once the robot builds the complete map of the environment, the SLAM algorithm can be

turned o� and some of the algorithms for localization based on the given map can be used.

However, if we want the robot to continue exploring new areas at some point, or if we want

to further increase the accuracy of the map and location, we need to reinitialize the entire

SLAM which is complex and can never be as accurate as if the SLAM had continuously

worked online. �e problem is that if we leave SLAM online, the new states will be added

continuously and consequently will result in inability to perform calculations on time for

real-time operation. To solve this the new algorithm is introduced which removes states

from the state space that hold very little new information. Also the algorithm preserves

the sparsity of the reduced size information matrix thus allowing the SLAM to continue

operating continuously over long periods.

�e last (fourth) scienti�c contribution of the thesis is in allowing the developed SLAM

solution based on the LG-ESDSF back-end and the described planar front-end to work

cooperatively on multiple agents. �is is especially useful when SLAM is coupled with

higher level algorithms, like exploration algorithm, which greatly bene�t from the multiple

agents working towards the same goal. �e easiest way to do this would be to explore a

part of the environment with di�erent agent, using one of the available single agent SLAM

algorithms, and then merge local maps in a single global map. However, such solution
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has several drawbacks, and the most important one is the inability of one agent to use

information from other agents to increase its own mapping accuracy.�e SLAM algorithms

that can solve this problem are called cooperative SLAM algorithms. Cooperative SLAM

algorithm presented in the present thesis uses state space formulation of the ESDSF to

perform lower complexity operations on the agents, while the more complex operations

are performed on a standalone server which communicates with the agents wirelessly. �e

agents perform trajectory optimization and local map building, while the server performs

global map building. Local planar maps are easily sent to the server due to their small size

alongside with the trajectory. �e server uses trajectories of each agent to �nd the loop

closings between them and calculate pose constraints. �ese constraints are then sent to

each agent and thus the information of one agent is used to improve localization accuracy

of other agents. Cooperative SLAM system built this way is also robust to the server or

agent failure, since each agent has its own trajectory and local map which it can use to

navigate safely. Moreover, developed cooperative SLAM is also immune to synchronization

problems since it is event triggered.

As can be seen from many di�erent algorithms and research �elds covered within this

thesis, the SLAM solution includes knowledge and theoretical advancements from large

variety of di�erent areas, probably more than any other algorithm in mobile robotics. As

such, there is always a need for improvement in many di�erent aspects.

Today, ever more powerful CPUs and GPUs allow highly complex algorithms to be

processed online, and development in sensors technology has allowed modern robotic

systems to perceive the environment better than ever. However, there is still the lack of

robustness when combining all these algorithms, and more importantly there is still the

lack of an algorithm that would allow perception of the environment similarly to the way

as humans do. Advancements in these two areas will mark the development of future

state-of-the-art SLAM algorithms.

When concerning the robustness in SLAM two key aspects are extremely important.�e

�rst one is the incorporation of measurements from many di�erent sensors and perceiving

those measurements as a single information used to build the map and estimate location

with increased accuracy. �e second important aspect is the ability of SLAM to recover

from the incorrect loop closing detection. Today, although there are several solutions that

can cope with few incorrect detections, multiple wrong pose constraints will render any

SLAM algorithm useless.

Most important advancements in future SLAM algorithms will come from the better

understanding of the sensor measurements. When robots will become capable of accurately

segmenting objects from the environment and make connections between those objects,

possibility of wrong loop detection or even wrong feature matching will become much less

possible. �e problem is that robot has to be able to do that regardless of the sensor setup,

and has to do that in real-time. Although, current algorithms cannot quite cope with those

scenarios, they are improving very fast, and advancements in the arti�cial intelligence and

robot vision will soon make such scenarios a reality. When this does occur it will mark the

moment in mobile robotics which will be of the same importance as the introduction of the

�rst SLAM algorithm.
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a.1 planar surface segment covariance transformation

�e parameter uncertainties of planar surface segment Fi ,m are transformed from SFi ,m into
local coordinate frame SF j ,n of planar surface segment F j,m as (matrices E, Σq i ,m , C and Pn,i
are de�ned in Sec. 4.3.3).

Σ̃q j ,n = EΣq i ,mET + CPn,iCT (A.1)

In general case, given surface segment pair (Fi ,m, F j,n), their perturbation vectors (qi ,m, q jn)

and rotation matrix Rm,n and translation vector tm,n between their local mapsMm andMn

we can de�ne a non-linear function h that transforms parameters of F j,n into SFi ,m :

h =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎣

FxT
j,n

F yTj,n

⎤⎥⎥⎥⎥⎥⎥⎦
Rm,n

Fz i ,m+[Fxi ,m F yi ,m]s i ,m
√
1+sTi ,m s i ,m

− s j ,n√
1+sTj ,n s j ,n

ri ,m + (F tTi ,m − (F t j,n − tm,n)TRm,n)
Fz i ,m+[Fxi ,m F yi ,m]s i ,m

√
1+sTi ,m s i ,m

− r j,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.2)

where �rst two rows represent transformation of the x , y coordinates of the normal Fni ,m,

third row represents transformation of the distance Fρi ,m, vector s = [sx sy] is a part of
perturbation vector q describing uncertainties of Fn in SF , r represents uncertainty Fρ, and
vectors Fx, F y and Fz represent columns of the rotation matrices:

FRi ,m = [Fxi ,m F yi ,m Fzi ,m] FR j,n = [Fx j,n
F y j,n Fz j,n] . (A.3)

In order to get expected values of the transformed parameters e de�ned in equation (4.46)
we evaluate h for s = 0 and r = 0

e = h∣s=0,r=0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎣

FxT
j,n

F yTj,n

⎤⎥⎥⎥⎥⎥⎥⎦
Rm,n

Fzi ,m

(F tTi ,m − (F t j,n − tm,n)TRm,n)Fzi ,m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.4)
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Jacobian matrix C of the function h given with (A.2) can be calculated as

C = ∂h
∂w

∣
q i ,m=0,q j ,n=0

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎣

FxT
j,n

F yTj,n

⎤⎥⎥⎥⎥⎥⎥⎦
Jϕ(ϕ,Fz j, n) 02×3

−(F t j,n − tm,n)T Jϕ(ϕ,Fz j, n) FzTj,nRT
m,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.5)

where vector w = [ϕm,n tm,n], vector ϕm,n = [α β Θ] represents Euler angles corresponding
to rotation matrix Rm,n, and Jacobian Jϕ(ϕ, Fz j,n) is calculated as

Jϕ(ϕ, p) =
∂(R(ψ)p)

∂ψ
∣ψ=ϕ (A.6)

Calculation of matrix E from the function h is done using the following equation

E = ∂h
∂q

∣
q i ,m=0,q j ,n=0

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎣

FxT
j,n

F yTj,n

⎤⎥⎥⎥⎥⎥⎥⎦
Rm,n

⎡⎢⎢⎢⎢⎢⎣

FxT
i ,m

F yTi ,m

⎤⎥⎥⎥⎥⎥⎦
0

(F tTi ,m − (F t j,n − tm,n)TRm,n)
⎡⎢⎢⎢⎢⎢⎣

FxT
i ,m

F yTi ,m

⎤⎥⎥⎥⎥⎥⎦
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.7)

a.2 special euclidean group SE(3)

�e group SE(3) describes a 6 DoF rigid body pose and is formed as a semi-direct product
of the Euclidean space vector R3 and the special orthogonal group SO(3)1, corresponding
to translational and rotational parts, respectively. �is group is de�ned as

SE(3) = {(R t
0 1

) ⊂ R4×4 ∣ {R, t} ∈ SO(3) × R3} .

A Euclidean space vector representing the pose of a rigid body consisting of position

t = [t1 t2 t3] and orientation ϕ = [ϕ1 ϕ2 ϕ3] vectors is obtained by concatenating the two, x =
[t ϕ]T. Mapping of the pertaining Euclidean space to Lie algebra, i.e., (⋅)∧

SE(3) ∶ R6 → se(3),
is then constructed as

x∧SE(3) = [ϕ
∧
SO(3) t
0 0

] ∈ se(3) , (A.8)

ϕ∧SO(3) =
⎡⎢⎢⎢⎢⎢⎣

0 −ϕ3 ϕ2
ϕ3 0 −ϕ1
−ϕ2 ϕ1 0

⎤⎥⎥⎥⎥⎥⎦
∈ so(3) , (A.9)

1 �e Euclidean space can be formed only by employing direct product, while other ways to concatenate Lie

groups also exist, i.e., semi-direct product, twisted product etc.



A.3. Derivation of the Lie measurement JacobianH 129

while its inverse, (⋅)∨
SE(3) ∶ se(3) → R6, follows trivially from (A.8) and (A.9). �e exponen-

tial, performing mapping expSE(3) ∶ se(3) → SE(3), is determined as follows:

exp∧SE(3)(x) = [C Lt
0 1

] (A.10)

C = exp∧SO(3)(ϕ)

= cos(∣ϕ∣)I + (1 − cos(∣ϕ∣))ϕϕ
T

∣ϕ∣2 + sin(∣ϕ∣)
ϕ∧
SO(3)
∣ϕ∣

L = sin(∣ϕ∣)∣ϕ∣ I+(1− sin(∣ϕ∣)∣ϕ∣ )ϕϕ
T

∣ϕ∣2 +
1−cos(∣ϕ∣)

∣ϕ∣2 ϕ∧SO(3).

�e logarithm, performing the mapping logSE(3) ∶ SE(3) → se(3), is calculated by decon-
structing X, and determining ϕ by using

logSO(3)(X) = θ
2 sin(θ)(X − XT)

s.t. 1 + 2 cos(θ) = Tr(X)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

θ ≠ 0 −π < θ < π

θ = 0 log(X) = 0
.

(A.11)

�en, from (A.10), we can determine t. In order to determine the adjoints for SE(3), we
need to deconstruct the state X ∈ SE(3) and the vector x ∈ R6. Firstly, we extract the rotation
part C and the translation part t from X, and secondly, we split the translation part t and
the orientation part ϕ from x. �en, the adjoints AdSE(3) and adSE(3) are

AdSE(3)(X)=[C tC
0 C

] , adSE(3)(x)=
⎡⎢⎢⎢⎢⎣

ϕ∧
SO(3) t∧

SO(3)
0 ϕ∧

SO(3)

⎤⎥⎥⎥⎥⎦

a.3 derivation of the lie measurement jacobian H

When the loop closing occurs between the states Xi and X j we need to evaluate

Hn+1 =
∂
∂ε

[ log∨G (h(Xi , X j)−1h((Xi , X j) exp∧G(ε)))]∣
ε=0

in order to perform update using (5.20). First we evaluate

h((Xi , X j) exp∧G(ε)) = (X j exp
∧
G(ε j))−1Xi exp

∧
G(εi) = exp∧G(−ε j)X−1

j Xi exp
∧
G(εi).

�en, we evaluate

h(Xi , X j)−1h((Xi , X j) exp∧G(ε)) =
= (X−1

j Xi)−1 exp∧G(−ε j)X−1
j Xi exp

∧
G(εi)

= X−1
i X j exp

∧
G(−ε j)X−1

j Xi exp
∧
G(εi)

= X−1
i exp

∧
G(Ad(X j)(−ε j))X jX−1

j Xi exp
∧
G(εi)

= X−1
i exp

∧
G(Ad(X j)(−ε j))Xi exp

∧
G(εi)

= exp∧G(Ad(X−1
i )Ad(X j)(−ε j))X−1

i Xi exp
∧
G(εi)

= exp∧G(Ad(X−1
i )Ad(X j)(−ε j)) exp∧G(εi).
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Using Baker–Campbell–Hausdor� formula we obtain

Hn+1 =
∂
∂ε

[εi +Φ(εi)Ad(X−1
i )Ad(X j)(−ε j) +⋯]∣ε=0

= [ 0⋯°
1∶ j−1

j
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
−Φ(εi)Ad(X−1

i )Ad(X j)⋯0⋯±
j+1∶i−1

i
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