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PRAĆENJE VIŠE GIBAJUĆIH OBJEKATA
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abstract

Autonomous navigation of an agent strongly relies on the capability of tracking multiple

moving objects using various on-board sensing technologies. In the thesis we �rst consider

a type of application arising when multiple objects are tracked using a microphone array

as a single on-board sensor system. Both objects and measurements state space in this

application arise as directional value represented either as a vector belonging to a unit

sphere or equivalently as an angle.�e thesis presents a method for multiple moving objects

tracking on the unit sphere based on the von Mises distribution de�ned directly on this

space of interest, and probability hypothesis density �lter based on random �nite sets.

�e state of objects in the agent’s surrounding are typically determined with their

position and orientation which evolve on a non-Euclidean geometry. �e orientation of

such object can be described using a special orthogonal group, while full pose, including

translation vector and orientation information, can be given with a special Euclidean group

employing either their 2 or 3 dimensional counterparts. �e thesis further proposes several

methods for estimating motion evolving on the special Euclidean group based on the

extended Kalman �lter on Lie groups, and accounting for the statistics of concentrated

Gaussian distribution. It also describes approaches for performing full body human motion

estimation using marker position measurements or inertial measurement units, accounting

for the full kinematic chain of the body.

As an alternative to the extended Kalman �lter on Lie groups, the thesis proposes the

estimation method relying on an information form for states evolving on matrix Lie groups.

A trivial example of suitable application is when the number of measurements is larger than

the size of the state space, while other examples include any �lter constructed such that the

information form can be exploited in terms of computational complexity.

As an extension of the multiple moving objects tracking algorithm limited exclusively

to the space of a unit circle, the thesis proposes two methods suitable for applications when

states evolve on matrix Lie groups. �e �rst one relies on joint integrated probabilistic data

association �lter modi�ed such that it can operate with variables on matrix Lie groups,

while the second one employs the probability hypothesis density �lter on matrix Lie groups.

In the thesis we propose an approach to reduction of mixture of concentrated Gaussian

distributions, which is an essential part of the probability hypothesis density �lter.

keywords: multiple moving objects tracking, Lie groups, directional statistics, concen-

trated Gaussian distribution, extended Kalman �lter, extended information �lter, random

�nite sets, probability hypothesis density, joint integrated probabilistic data association

ix



sažetak

praćenje više gibajućih objekata zasnovano na slučajnim konačnim

skupovima i lievim grupama

Autonomna navigacija predstavlja radikalnu tehnologiju koja će zasigurno izmijeniti ljudsko

društvo transformirajući navike i djelovanje ljudi i povećavajući djelotvornost i sigurnost

izvršenja različitih vrsta poslova. Ta je tehnologija zasnovana na sposobnostima percepcije

i predikcije inherentno nepredvidljivih dinamičkih okruženja, što autonomnom objektu

omogućava dijeljenje radnoga prostora s drugim objektima. Tek pošto razumije uzorke

ponašanja i karakteristike gibanja objekata oko sebe, autonomni sustav može započeti

s autonomnom operacijom. Praćenje više gibajućih objekata u tome smislu predstavlja

fundamentalni problem. Naime, autonomni sustav akciju mora izvršiti oslanjajući se na

nesavršene senzorske podatke, a razina nesigurnosti tih podataka značajno ovisi o tipu

dinamičkog okruženja pa tako u proizvodnim pogonima ona može biti poprilično mala,

dok primjerice u prometnom sustavu ili općenito u urbanim okruženjima ona može biti

vrlo velika. Vjerojatnosni pristupi u području autonomnih sustava i navigacije mobilnih

robota koriste se već dugi niz godina u svrhu percepcije i modeliranja prostora te lokalizacije

i upravljanja gibanjem mobilnih robota, ali se sve donedavno tome problemu pristupalo

s pretpostavkom da su sve razmatrane varijable takvih sustava Euklidske te da je njihova

statistika dobro opisana Gaussovom razdiobom. Istraživanje prikazano u ovoj disertaciji

bavi se problemom praćenja više gibajućih objekata u vjerojatnosnom smislu, tako što je

gibanje pažljivo modelirano uzimajući u obzir ne-Euklidsku geometriju prostora. Varijable

stanja sustava u ovome su radu opisane Lievim grupama koje se često pojavljuju u �zikalnim

znanostima i inženjerstvu.

U nastavku je obrazložen naslov disertacije. Problem praćenja više gibajućih objekata

važno je razmatrati drugačije od estimacije stanja jednoga objekta. Naime, osim potrebe za

vjerojatnosnim pristupom procjeni stanja sustava, u slučaju praćenja više gibajućih objekata

potrebno je voditi računa o njihovom promjenjivom broju tijekom vremena. Pretpostavka

ovoga rada jest da su podaci prikupljeni sa senzora obrađeni u koraku predprocesiranja,

dok algoritam praćenja kao ulazne informacije koristi skup točkastih mjerenja. Elementi

skupa mjerenja stoga mogu odgovarati mjerenjima stvarnih ili lažnih objekata, gdje lažni

objekti mogu biti uzrokovani ograničenjima senzora ili algoritma predobrade. Dakle, osim

procesnog i mjernog šuma, algoritam praćenja više gibajućih objekata mora voditi računa i

o pojavama kao što su (i) nesigurnost uzroka mjerenja, (ii) nastajanje i nestajanje objekata,
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(iii) lažnamjerenja, (iv) propuštenamjerenja te (v) pridruživanjemjerenja objektima. Naslov

disertacije nadalje sadrži pojam slučajnih konačnih skupova koji su privukli značajnu pažnju

u području praćenja više gibajućih objekata tijekom posljednjih 15-ak godina. Razlog je taj

što su skup stanja objekata i skup mjerenja prirodno opisani kao slučajni konačni skupovi

umjesto da je svaki objekt opisan kao nezavisna varijabla.

Sljedeći važan element disertacije razmatramogućnost opisivanja prostora stanja sustava

koristeći ne-Euklidske varijable. Donedavno se u statističkim pristupima u inženjerskim

aplikacijama u pravilu zanemarivala potencijalno ne-Euklidska geometrija prostora, dok se

u posljednje vrijeme sve više tehnika bavi statističkim pristupima koji omogućavaju da se

geometrija prostora uzima u obzir. Na taj je način moguće izbjeći teorijske i implementaci-

jske probleme koji se tipično pojavljuju u primjenama u kojima se prostorna ograničenja ne

uzimaju u obzir na odgovarajući način. Najjednostavniji je primjer ne-Euklidskog prostora

stanja prostor jedinične kružnice. Primjerice, takav se prostor javlja u primjenama u kojima

se koristi polje mikrofona. Kako bi se opisalo stanje sustava u statističkom smislu, moguće je

koristiti vonMisesovu razdiobu koja je de�nirana izravno nad prostorom jedinične kružnice

te je kao takva u mogućnosti uzeti u obzir globalnu geometriju ovog ne-Euklidskog pros-

tora. Zbog svojih karakteristika ta se razdioba može koristiti u okviru Bayesovog �ltra.

Međutim, ako se razmatra kompleksnija vrsta prostora stanja, kao što je položaj objekta u

2D ili 3D okruženju, pridruživanje nesigurnosti takvome stanju nije jednostavno provesti.

Iz toga se razloga često koristi vektorski zapis stanja te pridruživanje nesigurnosti oblika

Gaussove razdiobe. Ipak, umjesto toga moguće je koristiti pridruživanje nesigurnosti stanju

prikazanom Lievom grupom. Takav pristup omogućava veću �eksibilnost u opisu nesig-

urnosti sustava, nego kada se isto opisuje elipsoidalnim Gaussovim komponentama, dok

sam zapis u prostoru Lievih grupa pruža veću robusnost algoritama te izbjegava pojavu

singulariteta. Nesigurnost je u ovome radu pridružena stanju opisanom Lievim grupama

korištenjem koncentrirane Gaussove razdiobe (engl. concentrated Gaussian distribution -

CGD), gdje je srednja vrijednost µ ∈ G opisana elementom na grupi, a nesigurnost je opisana

matricom kovarijanci Σ pridruženoj pomaku u tangencijalnom prostoru grupe. Slučajna

varijabla X koja je na taj način de�nirana zapisuje se kao X ∼ G(µ, Σ) te vrijedi

X = µ exp∧
G
(ξ) , i ξ ∼ N(0, Σ) ,

gdje je exp∧G preslikavanje iz tangencijalnog prostora grupe g, koji se često naziva Lievom

algebrom (odgovara Euklidskom prostoru), na Lievu grupu G.

Von Misesova razdioba uzima u obzir globalnu geometriju prostora, no zbog različitih

ograničavajućih elemenata za kompleksnije tipove prostora to nije uvijek moguće. S druge

strane, pristupi zasnovani na CGD-u mogu barem lokalno uzeti u obzir geometriju prostora

te tako povećati točnost i robusnost algoritama estimacije u kojima se susreće ne-Euklidska

geometrija. Primjer primjene analiziran u ovome radu praćenje je većega broja gibajućih

objekata čija stanja nisu Euklidske veličine, već su opisana Lievim grupama.

Disertacija je podijeljena u sedam poglavlja. Prvo poglavlje prikazuje uvod u disertaciju.

Drugo i treće poglavlje daju opširan pregled pozadine rada. Četvrto poglavlje prikazuje

glavne rezultate disertacije. Peto poglavlje donosi zaključak rada i pruža pregled mogućeg

budućeg istraživanja. U poglavljima šest i sedam prikazan je popis objavljenih radova koji

čine disertaciju te doprinos autora disertacije svakome od njih. Na posljetku, nakon popisa



bibliogra�je priloženi su radovi koji prikazuju rezultate disertacije. Disertacija je izrađena

po skandinavskom modelu te je sačinjena od po četiri časopisna i konferencijska članka. U

nastavku su ukratko prikazani i opisani glavni doprinosi disertacije.

#1 Metoda praćenja više gibajućih objekata na jediničnoj sferi na temeljumjerenja smjera

zasnovana na von Misesovoj razdiobi i slučajnim konačnim skupovima.

Većina algoritama praćenja više gibajućih objekata zasniva se na Bayesovom �ltru, a s

obzirom na potrebu korištenja ne-Euklidskog stanja sustava, evaluacija Bayesove rekurzije

može biti vrlo zahtjevna. U prvom je redu izazovno riješiti Chapman-Kolmogorovu jed-

nadžbu Bayesove predikcije (konvolucijski integral) u zatvorenoj formi tako da rezultirajuća

razdioba ima isti oblik razdiobe kao i početna. Nadalje je potrebno integrirati informaciju

o mjerenju evaluirajući Bayesovo pravilo i zadržavajući se u prostoru iste razdiobe. Von

Misesova razdioba je primjer u kojemu konvolucijski integral ne rezultira egzaktno novom

von Misesovom komponentom, ali rezultirajuća razdioba može biti dobro opisana von Mis-

esovom razdiobom. S druge strane, korekcija rezultira izravno von Misesovom razdiobom

bez aproksimacija.

Disertacija se bavi problemom praćenja više gibajućih objekata na prostoru jedinične

kružnice primjenom �ltra vjerojatnosti gustoće hipoteza koji predstavlja aproksimaciju

optimalnog Bayesova �ltra de�niranog korištenjem teorije slučajnih konačnih skupova. U

radu [Pub1] prikazan je izvod rekurzivnog �ltra vjerojatnosti gustoće hipoteza korištenjem

mješavine von Misesovih razdioba te je uspoređen s �ltrom vjerojatnosti gustoće hipoteza

zasnovanom na Gaussovoj razdiobi na simuliranom i stvarnom skupu podataka. Filtar

zasnovan na von Misesovoj razdiobi ostvario je smanjenje pogreške od 10, 5%, odnosno

2, 8% s obzirom na mjeru optimalnog pridruživanja uzoraka.

#2 Metoda praćenja objekta u prostoru specijalne euklidske grupe zasnovanana proširenom

Kalmanovu �ltru na Lievim grupama.

Lieve su grupe prirodan prostor stanja za opis položaja i gibanja krutoga tijela. Položaj

krutoga tijela, što uključuje njegovu poziciju i orijentaciju, može se opisati korištenjem

specijalne Euklidske grupe SE(2) ili SE(3), ovisno o tome radi li se o 2D ili 3D prostoru.

Istraživanja o razdiobama koje mogu opisati nesigurnosti izravno na specijalnoj Euklidskoj

grupi vrlo su intenzivna, međutim do sada nije pronađen način na koji se to može činiti, a

da se pritom zadrže neka od svojstava razdiobe korisna za integraciju u Bayesov �ltar. Iz

toga je razloga pristup estimaciji ovdje zasnovan na lokalnom pristupu korištenjem CGD-a

čiji se parametri djelomično oslanjaju na oba prostora – srednja je vrijednost de�nirana na

Lievoj grupi, dok je kovarijanca pridružena tangencijalnom prostoru, tj. Lieovoj algebri.

Provedena istraživanja u okviru disertacije započela su razmatranjem specijalne or-

togonalne grupe SO(2) uz korištenje modela konstantne akceleracije u okviru proširenog

Kalmanova �ltra na Lievim grupama (engl. extended Kalman �lter on Lie groups - LG-EKF)

u svrhu praćenja govornika poljem mikrofona [Pub2]. Zaključeno je da zbog komuta-

tivnosti grupe SO(2) njezina primjena rezultira istim odzivom kao i u slučaju korištenja

pretpostavke Euklidskog prostora uz prošireni Kalmanov �ltar (engl. extended Kalman �lter



- EKF) s dodanom heuristikom za zatvaranje prostora u točkama −π i π. Nadalje, razmatrano

je korištenje specijalne Euklidske grupe SE(2) uz pretpostavku svesmjernog gibanja, ko-

rištenjem modela konstantne brzine u okviru LG-EKF-a [Pub3]. Tim je pristupom moguće

inherentno uzeti u obzir spregnutost rotacije i translacije sadržane u stanju opisanom

grupom SE(2). Osim toga, pridruživanje nesigurnosti grupi SE(2) pruža veću �eksibilnost,

nego što je to slučaj s izravnim pridruživanjem vektorskom zapisu. Tako, primjerice, osim

elipsoidalnih krivulja nesigurnosti ovakav opis omogućuje ostvarivanje kontura oblika ba-

nane. U radu je uspoređen predloženi �ltar s nekoliko standardnih �ltarskih pristupa iz čega

je vidljivo da �ltar zasnovan na LG-EKF-u postiže veću točnost za slučaj svesmjernog gibanja

približno konstantne brzine. Konačno, u okviru rada razvijen je �ltar za estimaciju stanja

zglobova cijeloga čovjekova tijela zasnovan na LG-EKF-u koristeći grupe SO(2), SO(3) i

SE(3), a koji se oslanja na mjerenja pozicija markera [Pub4] i inercijalnih mjernih jedinica

[Pub5]. Za oba su slučaja izvedene jednadžbe rekurzije LG-EKF-a. Izvod jednadžbi za osv-

ježavanje stanja zglobova na temelju mjerenja akcelerometra prikazan je u prilogu [*Pub5].

Usporedba performansi predloženoga algoritma s pristupom zasnovanim na Eulerovim

kutovima i EKF-u provedena je nad simuliranim i stvarnim podacima te se pokazalo da

predloženi algoritam ostvaruje manju pogrešku.

#3 Prošireni informacijski Kalmanov �ltar za estimaciju stanja namatričnim Lievim gru-

pama.

Informacijski je �ltar dualni �ltar klasičnom Kalmanovu �ltru. On se oslanja na isti skup

pretpostavki kao i Kalmanov �ltar, ali koristi drukčiju parametrizaciju. Informacijski �ltar

umjesto srednje vrijednosti i kovarijance koristi informacijsku matricu i informacijski

vektor. Najvažnija je prednost informacijskog �ltra manja računska složenost u slučajevima

kada je broj mjerenja velik ili općenito kada struktura estimacijskog problema može biti

dobro iskorištena u takvoj alternativnoj parametrizaciji. Istodobna lokalizacija mobilnog

robota i kartiranje nepoznatog prostora (engl. simultaneous localization and mapping -

SLAM) primjer je primjene u kojoj informacijski oblik �ltra može biti dobro iskorišten.

Nadalje, SLAM je također primjer primjene gdje je važno uzeti u obzir geometriju prostora u

svrhu povećanja točnosti izvođenja algoritama. Rješenja SLAM-a donedavno su bila gotovo

isključivo zasnovana na �ltarskim pristupima, točnije proširenom informacijskome �ltru

(engl. extended information �lter - EIF). Najvažnije inačice �ltara za korištenje u SLAM-u su

prošireni informacijski �ltar s rijetkom strukturom (engl. sparse extended information �lter

- SEIF) te egzaktno rijedak �lter s odgođenim stanjem (engl. exactly sparse delayed state �lter

- ESDSF).

Položaj mobilnog robota u SLAM-u najčešće je opisan elementom SE(3) pa je stoga u

novijim pristupima čest slučaj da algoritmi pokušavaju uzeti u obzir geometriju prostora.

Ipak, ti su pristupi zasnovani su na optimizacijskim metodama budući da donedavno nisu

postojali �ltarski pristupi koji bi mogli uzeti u obzir geometriju prostora stanja. Kao treći

doprinos ovoga rada predložen je prošireni informacijski �ltar na Lievim grupama (engl.

extended information �lter on Lie groups - LG-EIF) [Pub6]. U radu je prikazana teorijska

podloga LG-EIF rekurzije i primjena predloženog �ltra za praćenje orijentacije krutoga

tijela korištenjem velikog broja senzora. Provedena je i usporedba s EIF-om zasnovanim na



Eulerovim kutovima te je analizirana računska složenost s obzirom na osvježavanje stanja

�ltra korištenjem velikog broja senzora. Rezultati prikazuju da predloženi �ltar postiže

bolju konzistentnost performansi i manju pogrešku estimacije te da istovremeno zadržava

manju računsku složenost informacijskog oblika u slučaju većega broja mjerenja.

#4 Metoda praćenja više gibajućih objekata na Lievim grupama zasnovana na koncentri-

ranoj Gaussovoj razdiobi i slučajnim konačnim skupovima.

Potreba za zapisom sustava korištenjem ne-Euklidskog prostora stanja uz praćenje gibajućih

objekata javlja se u (i) različitim tradicionalnim inženjerskim disciplinama (sigurnost i

nadzor, kontrola zračnog prometa, praćenje svemirskih objekata i sl.) te u (ii) modernim

inženjerskim poljima (autonomni sustavi i robotika). Ne-Euklidski prostor stanja javlja se

uvijek kada je stanje objekta predstavljeno položajem u kojemu je uključena i informacija o

orijentaciji kao ne-Euklidskoj veličini oslanjajući se primjerice na grupu SE(2) ili SE(3).

Prvi dio doprinosa koji je predložen u ovome radu zasnovan je na �ltru združenog

integriranog vjerojatnosnog pridruživanja podataka (engl. joint integrated probabilistic data

association - JIPDA) na matričnim Lievim grupama koji predstavlja specijalan slučaj algo-

ritma zasnovanog na slučajnim konačnim skupovima [Pub7]. Vjerojatnost svakog mogućeg

događaja ne evaluira se izravno u prostoru Lieve grupe G, već u prostoru Lieve algebre

g pridružene propagiranom stanju razmatranoga objekta. Predloženi je pristup testiran

korištenjem stvarnoga podatkovnog skupa prikupljenog u urbanom prometnom okruženju

s višesenzorskim sustavom stereo kamere i dvaju radara. Nesigurnosti senzora modelirane

su na Lievim grupama dok je stanje sustava prikazano grupom SE(2).

Drugi je dio doprinosa novi aproksimacijski �ltar vjerojatnosti gustoće hipoteza za

praćenje više gibajućih objekata na Lievim grupama (LG-PHD). Taj je �ltar zasnovan na

statističkommodelu CGD-a te kao i svaki �ltar vjerojatnosti gustoće hipoteza ima karakteris-

tiku damu se eksponencijalno povećava broj komponenata kroz vrijeme. Broj komponenata

stoga semora kontrolirati korištenjemmetoda smanjenjamješavine komponenata. U okviru

disertacije predložen je pristup smanjenju broja komponenata u mješavini CGD-ova [Pub8].

U radu su analiziranemogućnosti odgovarajuće reparametrizacije komponenata CGD-a koja

omogućuje evaluaciju Kullback-Leiblerove udaljenosti te strategiju odabira i spajanja kom-

ponenata. Budući da reparametrizacija dviju komponenata uključuje izbor tangencijalnog

prostora za reparametrizaciju, u radu je detaljnije analiziran upravo taj korak smanjenja

broja komponenata. Detaljan izvod LG-PHD-a prikazan je u dodatnom materijalu [*Pub8].

ključne riječi: praćenje više gibajućih objekata, Lieve grupe, usmjerena statistika,

koncentrirana Gaussova razdioba, prošireni Kalmanov �ltar, prošireni informacijski �l-

tar, slučajni konačni skupovi, �ltar gustoće vjerojatnosti hipoteza, združeno integrirano

vjerojatnosno pridruživanje podataka
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1
Introduction

A
utonomous navigation relies on the ability to perceive and anticipate inherently

unpredictable dynamic environments based on imperfect sensor data. �e degree of

uncertainty signi�cantly varies in di�erent environments, and while in assembly lines it

may appear small, environments such as tra�c systems or urban areas emerge being highly

unpredictable. �e probabilistic approaches in the �eld of autonomous systems and mobile

robotics have already payed tribute to the uncertainty in perception and action [1], but until

recently they used to rely on the assumption that the considered variables are Euclidean

and the statistics of uncertainty is well described using Gaussian distribution. �e research

conducted in this thesis deals with the task of multiple moving objects tracking performed

in a probabilistic manner, while the motion modeling is carefully performed relying on

non-Euclidean state description. In particular, the system variables are described by Lie

groups, which is a type of manifold o�en encountered in physical sciences and engineering.

1.1 motivation and problem statement

1.1.1 Multiple moving objects tracking

Multiple objects tracking (MOT) is an essential problem in the �eld of autonomous systems

and mobile robotics. In any environment, where an autonomous system operates sharing

its workspace with humans or other subjects, it has to be able to perceive the environment,

recognize obstacles including static andmoving objects, and anticipate their future behavior.

Finally, only when understanding the characteristics and motion patterns of objects in

the surrounding, and a�er being able to predict the future progress of those objects, an

autonomous system can continue reasoning about safe continuation of operation. An

illustration of an autonomous system operating in a dynamic environment is shown in

Fig. 1.1.

Let us continue now by decomposing the title of the thesis. �e problem of multiple

objects tracking needs to be considered as opposed to the problem of a single object state

estimation. A�er set into a probabilistic framework, estimation of a state of a single object

deals with the problem of determining the best guess about the true object state following

the process and measurement models which are respectively a�ected by the process and

measurement noise. Determining the best guess about the true object state is as well the

main goal of aMOT application, while it aims at accurately determining the state of multiple

objects concurrently, being aware that the number of objects varies in time due to appearing

1



2 1. introduction

Figure 1.1: An illustration of an autonomous system operating in a dynamic environment populated

with other moving objects.

and disappearing of objects. Furthermore, when referred to a standard MOT setting, it is

typically assumed that the set of measurements at each instance is preprocessed into a set of

points or detections. Some of the set members correspond to true objects, while some appear

as false alarms due to a limited sensor system used for data acquisition and/or an imperfect

preprocessing algorithm. To summarize, apart from process and measurement models

uncertainty, typical for general probabilistic estimation applications, inMOT applications one

has to contend withmuchmore complex sources of uncertainty, such as (i) themeasurement

origin uncertainty, (ii) births and deaths of objects, (iii) false alarm, (iv) missed detections,

and (v) data association [2].

Next, the title continues by denoting that the underlying MOT approach is based on

random �nite sets (RFS). �is concept gained a great deal of attention in the tracking com-

munity during the last 15 years [3] since it arises naturally from the reasoning that the set

of objects and set of measurements are described as random sets, rather than multiple

independent random variables. �e RFS paradigm in MOT applications is developed upon

the theory of �nite-set statistics (FISST) [4], and formal extension of conventional Bayesian

state estimation algorithms to general multiple objects–multiple sensors tracking.

1.1.2 Motion modelling on Lie groups

�e �eld of probabilistic estimation has experienced a rapid upturn in the early 1960s with

the development of a Kalman �lter (KF) [5]. Since the KF is originally designed for linear

Gaussian systems, during the next several decades research community mostly focused

on dealing with di�erent types of non-linearities in the motion and measurement models,

while the variables were mostly assumed to be Euclidean. However, in the last few years,

the formalism exploiting the non-Euclidean (manifold) geometry of the state space was

extensively employed in a wide range of applications, due to theoretical and implementation

di�culties that may show up by treating a constrained problem naively employing classical

Euclidean space tools [6].

Probably the most trivial example of a non-Euclidean manifold is the unit circle. �e

subject matter of the statistics considered when the observations arise on the sample space
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#1: x ∈ [−π, π]

#2: x ∈ R2 ; ∣∣x∣∣ = 1

#3: x ∈ SO(2) ⊂ R2×2, xTx = I, det(x) = 1

Figure 1.2: An illustration of the sound source tracking using microphone array and the list of several

possible representations of the space of unit circle.

of a circle is usually referred to as directional statistics [7]. An example where such problem

appears is the tracking by employing a microphone array. �is is illustrated in Fig. 1.2,

where several di�erent ways of representing the state of a circular variable are also provided.

In order to describe the state of such directional variable one can employ the von Mises

distribution (vM) which is de�ned directly on the unit circle [8], and captures the global

geometry of this space. Due to some useful properties, this distribution is applicable for

manipulation within a Bayesian probabilistic framework.

Lets further consider two more complex examples involving typical robotic platforms,

respectively operating in 2D and 3D environments. We �rstly consider the example of a

mobile platform operating in 2D, where the associated state space can be considered using

the traditional position-orientation vector x = [tx ty θ]T and the Gaussian uncertainty

associated to it. Unfortunately, it has been observed that already a simple di�erential drive

mobile robot exhibits more complex shape of uncertainty contours than the �exibility of

standard elliptical Gaussians supports. Alternatively, it is possible to exhibit more �exi-

ble uncertainty contours by associating uncertainty to the state described by the special

Euclidean group X ∈ SE(2). In particular, the uncertainty can be associated to this state

through the pertaining tangent space with 3 degrees-of-freedom (dof), thus gaining more

�exibility and possibly boosting the performance of estimation algorithms [9].

Secondly, we consider the example of an areal vehicle operating in 3D,where traditionally

the state space is considered using the position-orientation vector x = [tx ty tz ϕ ψ θ]T and

the Gaussian uncertainty associated to it. In this case, the pose and its associated uncertainty

can be alternatively described using the special Euclidean group X ∈ SE(3) which is, in

contrast to the Euler-angle based representation, free of singularities and avoids the need

to enforce constraints when solving optimal estimation problems [10]. �e uncertainty

can be considered in the pertaining tangent space and stored using the zero-mean 6 dof

perturbation vector with an associated covariance matrix. �is approach to uncertainty

association is called the concentrated Gaussian distribution (CGD), and can be applied for

any member of a matrix Lie group. We emphasize that both SE(2) and SE(3) groups belong

to the family of matrix Lie groups.

A random variable X has a CGD of mean µ ∈ G and covariance matrix Σ, written
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X ∈SE(2)={(
R t

0 1
) ∣ {R, t} ∈ SO(2) × R2}

SO(2)={R ⊂ R2×2 ∣RTR = I, det(R) = 1}

X ∈SE(3)={(
R t

0 1
) ∣ {R, t} ∈ SO(3) × R3}

SO(3)={R ⊂ R3×3 ∣RTR = I, det(R) = 1}

Figure 1.3: Lie group representation of the state of a di�erential drive mobile robot considered in 2D

(X ∈ SE(2), le�, with accompanied uncertainty contours illustrated in grey for Gaussian
and black for CGD) and an aerial vehicle considered in 3D (X ∈ SE(3), right).

X ∼ G (µ, Σ), if

X = µ exp∧
G
(ξ) and ξ ∼ N(0, Σ) (1.1)

where exp∧G performs mapping from the Euclidean space (tangent space of the Lie group

referred to as Lie algebra) to Lie group G. Other important examples of Lie groups of interest

are special orthogonal group SO(2) and SO(3), special unitary group SU(2), invertible

matrices, homographies, similarity transformations, etc [11]. �e two previously discussed

examples involving di�erential drive mobile robot and an aerial vehicle are illustrated in

Fig. 1.3.

�e vM captures the geometry of the unit circle in a global manner, but due to various

limiting factors such global approach may not be possible for an arbitrary manifold. On

the other hand, the approaches relying on CGD can at least locally account for the state

space geometry and thus boost the performance of estimation algorithms regarding both

ease and stability of implementation and the overall accuracy. �is thesis questions if the

world in the surrounding of an autonomous system can be assumed to be Euclidean, and

develops approaches for dealing with eventually non-Euclidean nature of state space for

various types of objects, but also di�erent measurements which arise on non-Euclidean

manifolds including microphone arrays, radar units or camera systems.

1.2 original contributions

Four original contributions of the thesis essentially revolve about probabilistic estimation

methods suitable for operating on variables arising on Lie groups rather than the Euclidean

space. �e scienti�c contributions of this thesis resulting from the performed research are:

#1 Method for multiple moving objects tracking on the unit sphere based on the von

Mises distribution and the random �nite sets.

#2 Method for moving object tracking in the space of the special Euclidean group based

on the extended Kalman �lter on Lie groups.

#3 Extended information Kalman �lter for state estimation on matrix Lie groups.
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#4 Method formultiplemoving objects tracking on LieGroups based on the concentrated

Gaussian distribution and the random �nite sets.

A more detailed discussion on the scienti�c contributions of the thesis is given in Sec. 4.

1.3 outline of the thesis

�e thesis is organized into seven chapters. Among them, two chapters particularly provide

the background material of the thesis. A�er discussing the main results of the thesis and

providing some concluding remarks, contributing publications are included in the thesis.

Herea�er, we present the outline of the thesis with a short summary of the contents.

Ch 2 �is chapter presents the general mathematical background and sets up the context

of the problem of probabilistic estimation on manifolds. �e introductory part of the

chapter reveals the problematic of (i) computational potential of �ltering methods in

forms of Kalman and information �lters, and (ii) discusses the potential of global vs.

local approaches to accounting for the non-Euclidean geometry of considered vari-

ables. A�erwards, some basic background material including the Bayesian recursion,

extended Kalman and extended information �lter is provided. Finally, the basics on

global circular statistics and local approach to estimation on Lie groups is presented.

Ch 3 �is chapter comprises the methods for multiple moving objects tracking, by provid-

ing an extensive overview of both traditional and widely accepted methods, as well as

recent approaches. A�erwards, it provides some underlying ideas of the probabilis-

tic hypothesis density (PHD) �lter and provides an approximation of this �lter for

nonlinear systems based on the Gaussian mixture and the extended Kalman �lter.

Since manipulation with mixtures of distributions represents an essential task in

many multiple objects tracking applications, here we provide a brief recapitulation

of techniques for component number reduction. Finally, we describe the optimal

subpattern assignment (OSPA) metric for evaluation of the multiple objects tracking

algorithms.

Ch 4 A description of the main scienti�c contributions of the thesis is given here.

Ch 5 �is chapter brings the conclusions of the thesis and presents some ideas for future

work from the viewpoint of open theoretical questions, application perspective and

evaluation challenges.

Ch 6 Here we include the list of publications contributing the main results of the thesis.

Ch 7 �is chapter gives a statement on the author’s contribution to each of the included

publications.

A�er the seven chapters follows the list of referenced bibliography. Finally, the publications

giving the main results of the thesis which were previously published in peer-reviewed

journals or in proceedings of international scienti�c conferences are included.



2
Probabilistic state estimation on manifolds

P
robabilistic state estimation has been widely accepted approach in a variety of

engineering problems and scenarios in both traditional application domains including

tracking and surveillance, aerospace engineering, telecommunications and medicine, as

well as in some modern �elds such as computer vision, speech recognition and many others.

Probabilistic approaches pay tribute to the uncertainty in perception, by relying on a key

idea of representing the uncertainty in an explicit manner using the calculus of probability

theory [1]. A long history of research in this �eld experienced appearance of many di�erent

estimation methods, designed for di�erent use-cases depending on the (i) (non)linearity of

system model, (ii) the characteristics of underlying statistics as well as (iii) the state space

geometry of the variables of an estimation interest that are possibly non-Euclidean.

2.1 introduction

2.1.1 Probabilistic state estimation

�e nature of applications of our interest cover such cases where the full or partial obser-

vations of the system occur sequentially at time instants k ∈ N, while in the meantime the

system is assumed to follow some motion model. Hence we aim to consider estimation ap-

proaches which recursively apply (i) the prediction/propagation step relying on the assumed

motion/propagation model and (ii) the correction/update step employing measurements

once they become available. In this thesis, the processes will follow either continuous or

discrete motion models, while the update will usually be given with measurements at some

discrete time instant. �e background idea of the overall random variable estimation of our

interest is called Bayesian since its implementation is grounded in the Bayes theorem [12].

�is enables us to build-in some (i) prior knowledge on the value of the considered random

variable, (ii) the uncertain motion model which the variable is expected to follow, and (iii)

the uncertain measurement model which the sensor is expected to follow.

⊳ kalman filtering. Probably the most important application of the Bayesian re-

cursion is the Kalman �lter (KF), and majority of Bayesian approaches used nowadays

are somehow built upon the similar assumptions used in the KF’s original derivation. In

particular, the KF was presented in seminal works of Kalman [5], and Kalman and Bucy [13],

originally developed for linear systems described with Gaussian statistics and evolving on

Euclidean space. Although it was originally derived for a linear problem, the Kalman �lter is

6
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habitually applied with impunity and considerable success to many nonlinear problems [14].

�is extensions are introduced in [15] and are generally called the extended Kalman �lter

(EKF). Over time, many other methods designed following the basic concepts of KF have

also appeared. Some prominent examples are iterative extended Kalman �lter (IEKF) [16],

unscented Kalman �lter (UKF) [17, 18, 19], cubature Kalman �lter (CKF) [20, 21], quadrature

Kalman �lter (QKF) [22, 23], and many others. Also, if the underlying distribution is not

Gaussian and if it is possibly multimodal then di�erent approaches relying on particle

[24] and mixture �lters [25, 26] need to be utilized. However, since the thesis focuses on

unimodal EKF-like approaches, we do not provide the exhaustive overview of other �ltering

methods.

⊳ information filtering. From the viewpoint of processing complexity, another

important aspect of Bayesian �ltering is the information �lter (IF), which is the dual of the

KF. It is as well relying on the state representation by a Gaussian distribution [27] and is

the subject of the same assumptions underlying the KF. While the KF is represented by the

�rst two moments, i.e., mean and covariance, the IF relies on the canonical parametrization

consisting of an information matrix and information vector [28]. As well as KF, IF operates

cyclically in two steps: the prediction and update step. �e main characteristics which

make signi�cant di�erence between the two parameterizations lie in the complexity of

the prediction and update steps. �e advantage of the IF lies in the update step when the

number of measurements is larger than the size of the state space, since in this case the

update step is additive. In contrast, when the opposite applies, the prediction step is additive

and computationally less complex for the KF. Hence, what is computationally complex in one

parameterization turns out to be simple in the other (and vice-versa) [1]. �e most common

extension of the linear IF to non-linear systems is following similar linearization approach

as in the vein of EKF. �e resulting �lter is called the extended information �lter (EIF) [27].

Respecting di�erent applications and di�erent types on non-linearity, various strategies

have been developed within the information form framework over time. �is includes

sigma-point information �lter [29], square-root information �lter [30, 31, 32], unscented

information �lter (UIF) [33], sparse extended information �lter (SEIF) [34], exactly sparse

delayed-state �lter (ESDSF) [35], etc.

2.1.2 Estimation on manifolds

Apart from the non-linearity of the motion and measurement models, for the overall

estimation performance it is important to account for the state space geometry and the

association of uncertainty when the underlying space is not Euclidean. �is is motivated

by theoretical and implementation di�culties caused by treating a constrained problem

naively with Euclidean tools. Hence recently, many works have been dedicated to associating

uncertainty to, and estimating the state of, non-Euclidean systems.

⊳ estimation of circular variables. Working with directional data, especially

under uncertainty, imposes a problem on how to represent them in a probabilistic frame-

work. �is subject matter is usually referred to as directional statistics [7], since it mainly
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studies the observations which are unit vectors either in the plane where the sample space

will be a circle, or in the three dimensional space where the sample space will be a sphere.

�e robotics community has already recognized the bene�ts of the directional distributions

applied for modeling directional data. Although the approaches which rely on wrapped

distributions were still recently successfully used in di�erent applications [36, 37], the desire

for globally capturing the entire geometry of the state space in�uenced more intensive

employment of directional distributions. Some early applications of the vM distribution

de�ned on the unit circle [8] were presented in [38] where it was used for odometry eval-

uation in order to deal with the heading changes for topological model learning. Later,

in [39] authors proposed a solution for solving large-scale partially observable Markov

decision processes applying the same distribution. In [40, 41, 42, 43], the same distribution

was used in the context of a single speaker localization and tracking in order to model the

state and the microphone array measurements as a vMmixture and evaluated in the context

of Bayesian estimation framework. �is distribution has also been successfully applied

for people trajectory shape analysis [44], radar processing [45], and a multitarget tracking

application [46].

�e von Mises-Fisher distribution [47] is de�ned on a unit hypersphere, and hence vM

is also sometimes considered only as its special case. It was already utilized in applications

like single target tracking [48], as well as in multitarget tracking applications [49]. Another

distribution which can be considered as directional is a Bingham distribution used for de-

scribing the inference directly on the space of quaternions. It actually models variables with

180○ symmetry, and was used in [50, 51, 52] and in [53] where, furthermore, a second-order

�lter was derived which included also the rotational velocity. �ese approaches, advocating

the unit hypersphere as the appropriate �ltering space, showed better performance of the

Bingham �lter and the underlying global estimation approach with respect to the EKF.

From the engineering perspective, distributions de�ned directly over the entire space of

interest seem to be attractive since they are able to globally capture the state space geometry,

but unfortunately their practical applicability is o�en very limited. An important question

arises regarding the possibility of evaluating the pdf normalization constants in closed form.

�is issue makes the Bayes prediction and correction hard to evaluate in the closed form as

well. However, the vM distribution contains some properties that could be easily exploited

within the Bayesian framework, which make it applicable for practical use. In this thesis we

analyze the directional multitarget application for 2D case, relying on the vM distribution,

which is hence more formally introduced in Sec. 2.4.1.

⊳ estimation on lie groups. Some of the most prominent examples of the non-

Euclidean geometries are the orientation and the pose of a rigid body mechanical systems.

Lie groups are natural ambient (state) spaces for description of such systems.�e orientation

of a rigid body is o�en described using special orthogonal groups SO(2) or SO(3) as 2– and

3–dimensional counterparts. �e pose is o�en represented with special Euclidean groups

SE(2) or SE(3), where again they represent 2– and 3–dimensional counterparts [54, 55].

Respecting the �eld of robotics, the SE groups have been used from the very early days,

while associating the uncertainty came into focus later [56]. �e most o�en used concept

for associating the uncertainty to Lie groups is the concept of CGD, which assumes that the
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eigenvalues of covariance are small, hence almost all the mass of distribution is contained

around the mean value [57, 58].

From the application perspective, an early example of error propagation on the SE(3)

group with applications to manipulator kinematics was presented in [59]. �erein the

authors developed a closed-form solution for the convolution of the CGDs on SE(3). In [57]

the authors proposed a solution to Bayesian fusion on Lie groups by assuming conditional

independence of observations on the group, thus setting the fusion result as a product of

CGDs, and �nding the single CGD parameters which are closest to the beginning product.

One of the �rst signi�cant works which combines both, uncertainty propagation and fusion

on the group, was presented in [10], where authors exclusively deal with the SE(3) group. A

more general approach proposed for dealing with any matrix Lie groups in the vein of the

‘classical’ EKFwas proposed in [60].�erein authors derived a nonlinear continuous-discrete

extendedKalman �lter on Lie groups (LG-EKF), meaning that the prediction step is presented

in the continuous domain, while the update step is discrete. In an earlier publication [61],

the authors presented a discrete version of the LG-EKF. Another approach to a nonlinear KF

on manifolds was presented in [62]. It iss designed to operate on a wider range of manifolds

than LG-EKF, and is following the ideas of the unscented transform and the UKF itself.

Some works have also addressed the uncertainty on the SE(2) group proposing new

distributions [52, 63], but these approaches still do not provide a closed-form Bayesian

recursion framework for both the prediction and update that can include non-linear models.

Additionally, in [64] authors use Gaussian process kernels for estimating the 6 dof motion

of an UAV, while in [65] authors study the appearance of multi-modal pdfs on SO and SE

groups and propose an approach relying on mixtures of projected Gaussians.

Another important group is a 3D similarity transform Sim(3) which represents an

extension of SE(3), but includes an additional parameter referred as scaling factor. Such

group may be appropriately employed in mono-vision SLAM tasks when the scale is not

known [66].�e quaternions have also been previously mentioned in the context of circular

variables, and it was also noted that the Bingham distribution can globally capture the

nature of this space. However, quaternions are also members of Lie groups and can be

represented in matrix form as they are isomorphic to the special unitary group SU(2)

[11]. Alongside circular variables and Lie groups which are in the focus of the thesis, there

also exist a variety of manifolds signi�cant for the engineering community, and alongside

this idea several approaches for �ltering on such manifolds were developed. �is includes

Grassmann manifolds [67, 68], Riemannian Manifolds [69, 70], Stiefel manifolds [71], and

other speci�c types of manifolds [72, 73].

2.1.3 Application signi�cance

⊳ pose estimation. Pose and ego-motion estimation represent some of the most

prominent examples of employment of manifold approaches. In [74] authors studied the

problem of registering local relative pose estimates to produce a global consistent trajectory

of a moving robot relying on probabilistic uncertainties associated to Lie groups. Authors

in [9] speci�cally study the uncertainty of a motion of a two-wheeled robot and discuss

the signi�cance of associating the uncertainty to variables on the groups, rather than the
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Euclidean space. In [75] authors study error growth in position estimation from noisy

relative pose measurements by carefully accounting for the geometry of the SE(2) and

SE(3) groups. In [62] authors demonstrate the �lter on a synthetic dataset addressing the

problem of trajectory estimation by posing the system state to reside on the manifold

combining Euclidean space with an SO(3) group, while in the end they also demonstrate

their approach on SLAM application relying on graph optimization.

In [76] authors perform fusion of optical �ow and inertial measurements for robust

egomotion estimationmodifying theUKF by following the similar approach as was proposed

by [62], and applying it for a legged robot application. �e same application was developed

in [77], and the same estimation approach was used, although di�erent sensor setup was

employed. Alongside the estimation algorithm, in [77] the authors proposed a careful

observability analysis by employing the concept of Lie derivatives [78]. In [79] authors use

only IMU and contact information for estimating the state of the leg of a humanoid robot

and use quaternion representation and an EKF implementation. In [60], the authors have

demonstrated the e�ciency of the �lter on a synthetic camera pose �ltering problem by

forming the system state to reside on the direct product of an SO(3) group with a Euclidean

space vector representing sequentially camera orientation, object position, angular and

radial velocities. A problem of an estimation of a complex kinematic chain has also recently

been observed, and although several Euler angles-based solutions exists [80], an approach

employing Lie groups have recently been proposed [81].

A tracking task can be seen as an extension of a pose estimation problem in terms of

sources of uncertainty of a measurements. A pioneer work on tracking on manifolds was

presented in [82] where authors perform �eet tracking by modeling the target motion as

a particle describing the motion on SE(3) and employing the particle �ltering approach.

Another particle �ltering based approach applies a �rst-order autoregressive state dynamics

and use coordinate-invariant particle �lter on the SE(3) group in a single-target visual

tracking application [83].

⊳ attitude estimation. Attitude also represents an important manifold from the

estimation perspective. Although suitability of Euler angle-based representation was proven

in many practical application, the presence of singularities and non-orthogonality of compo-

nents caused these algorithms to experience di�erent disadvantages. Hence, recent �ltering

approaches relying on SO or quaternion-based setting managed to signi�cantly outper-

form the traditional Euler angle-based approaches, and have become standard in di�erent

application �elds. In particular, in [84] author presented real-time estimation of a rigid

body orientation from measurements of acceleration, angular velocity and magnetic �eld

strength by using quaternions and is one of the �rst authors who carefully treats the inherent

properties of unit quaternions. Later, in [85] authors used a similar approach to attitude

estimation by employing the same sensor setup. In [86] the authors also built upon similar

ideas, and particularly derived the so-called manifold-constrained UKF. Recently, in [87]

the authors have proposed an invariant EKF applied for attitude estimation, where they

managed to systematically exploit the invariance properties to design stochastic �lters on

SO(3). Although majority of approaches rely on local techniques, some approaches have

also tempted to globally account for the geometry of SO(3) group. Hence in [88] authors
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have used numerical parametric uncertainty techniques, noncommutative harmonic analy-

sis, and geometric numerical integration for obtaining the global uncertainty propagation

scheme for the attitude dynamics of a rigid body. In [89] author numerically solved the

Fokker-Planck equation on the SO(3) group via noncommutative harmonic analysis to

obtain computational tools to propagate a pdf over the attitude kinematics, and �nally uses

it for attitude motion planning and estimation. �e more in-depth survey of nonlinear

attitude estimation approaches is available in [90].

⊳ manipulator kinematics and control. An early application of associating

the uncertainty to SE(3) group was presented in [91], and later in [56].�erein, the constant

position motion model was assumed, and the uncertainty is assumed to be small. �is

pioneering systematic methodology of propagating and fusing spatial uncertainties was

applied for actions in an assembly task. A more careful treatment of error propagation was

later presented in [59] where more general propagation model was used. While in [59] a

�rst-order error propagation on the SE(3) group was presented, the same authors have later

extended the approach to second-order error propagation [92].

�ere has also been several control applications where a manifold geometry was ex-

ploited. In [93, 94] authors used the SE(3) group representation for describing the state of

steerable needle which is in the focus of their control application. �ey particularly derived

the equations for parametrically propagating the uncertainty accounting for the geometry

of the SE(3) state space. Another approach relying on Lie group representation of highly

articulated robot and applied in invasive surgery was presented in [95]. �e position and

orientation of every robot link evolves in SE(3), while authors used the EKF implementation

such that the state vector is de�ned using elements of Lie algebra representation.

⊳ calibration. A popularity of quaternion based approaches has risen via time, and

many authors have tried to exploit the geometry of a quaternion state space by employing

the nonlinear propagation functions. However, in the update stepmajority of the approaches

relied on the post-normalization, and hence forced the mean to preserve the unit constraint.

Calibration is a ‘classic’ application of such quaternion based EKF or UKF approaches. In [96,

97] authors used a quaternion based EKF formulation which fuses di�erent measurements

with inertial sensors and does not only estimate pose and velocity of an UAV, but also

estimates sensor biases, scale of the positionmeasurement and self (inter-sensor) calibration.

Similarly, in [98] authors combined visual and inertial sensing for navigation, with an

emphasis on the ability to self-calibrate the camera–IMU transformation, but use UKF

�ltering approach. In [99] authors developed a framework for fusion of di�erent sensors

allowing for their self-calibration by relying on an IEKF implementation. Alterntively to

quaternion approaches, in [100] authors performed an extrinsic calibration between two

sensors mounted rigidly on a moving body by describing the 6 dof state using SE(3) group.

A more general approach to calibration in terms of state space geometry was proposed

in [101]. �erein authors use non-linear optimization on constraint graphs and combine

it with a principled way of handling non-Euclidean spaces (class of box-plus spaces as in

the vein of [62]) making it particularly easy to solve non-trivial multi-sensor calibration

problems. �eir developed Matlab framework is available as open source toolkit.
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⊳ slam. An early SLAM application accounting for the state space geometry was presented

in [102], where the state is given as a group element, while the estimation error is represented

locally by a di�erential location vector. �e authors refer to this concept as the symmetries

and perturbations map (SPmap), while they use the EKF implementation. Another EKF-based

SLAM using the quaternion-based approach and accounting for the state space geometry

was presented in [103], and relies on the quaternion normalization in the update step. A

direct approach to visual EKF-based SLAM which uses the SE(3) representation is presented

in [104]. In [105] the authors preintegrated a large number of inertial measurement unit

measurements for visual-inertial navigation into a single relative motion constraint by

respecting the structure of the SO(3) group and de�ning the uncertainty thereof in the

pertaining tangent space.

A quite prominent example of an application where the need arises for computational

bene�ts of the IF and the geometric accuracy of Lie groups is SLAM. SLAM is of great practical

importance in many robotic and autonomous system applications since it represents a

problem of acquiring a map of an unknown environment, and simultaneously localizing

itself within the map. �e earliest SLAM solutions were based on an EKF implementation

and in practice they could handle maps that contain a few hundred features, while in

many applications maps are orders of magnitude larger [34]. �erefore, the EIF is o�en

employed and widely accepted for SLAM [106]. �e EIF based approaches reached its

zenith with sparsi�cation techniques resulting withSEIF [34] and ESDSF [35]. However, the

localization component of SLAM conforms the pose estimation problem as arising on Lie

groups. Furthermore, the mapping part of SLAM consists of landmarks whose position, as

well, arises on SE(3). �erefore, some recent SLAM solutions approached the problem by

respecting the geometry of the state space [107, 108, 109], since signi�cant cause of error in

such application was determined to stem from the state space geometry approximations.

However, these SLAM solutions, although able to account for the geometry of the state space,

exclusively rely on graph optimization [66, 110, 111], but still not on �ltering approaches

(although �ltering approaches have still recently been successfully used for plain odometry

applications [112, 113]).

2.1.4 Organization of the chapter

�e rest of the chapter is organized as follows. �e underlying background estimation

theory in the form of a Bayesian �ltering is presented in Sec. 2.2. �e traditional solution

to the Bayes �ltering problem in the form of an extended Kalman �lter and an extended

information �lter, suitable for operation with Euclidean variables is given in Sec. 2.3. A basic

overview of the vM distribution is given in Sec. 2.4. �e last section of this chapter provides

directions for evaluation of the LG-EKF including (i) mathematical preliminaries useful for

understanding the necessary mappings between the triplet including Lie group, Lie algebra

and Euclidean space, (ii) basics on the concept of CGD, and (iii) equations for the LG-EKF

Sec. 2.5.
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2.2 bayesian filtering

�e Bayesian �lter has a recursive form and operates in two steps. Firstly, based on the

prior knowledge and motion model, the prediction can be performed. Secondly, once the

measurement becomes available, the update step is executed.

2.2.1 Model of the system

To de�ne the �ltering problem, we consider the evolution of the discrete system from time

instant k − 1 to k following the motion model given as

xk = f (xk−1, uk−1) +wk−1 , k ∈ N , (2.1)

where f is a nonlinear function of the system state x and control actions u at time step

k − 1, while w is process noise. �e objective of estimation is to recursively estimate xk from

measurements given via another non-linear function

zk = h(xk) + vk , k ∈ N , (2.2)

where h is possibly a nonlinear function in the system state and v is a measurement noise.

2.2.2 Statistical inference

From a Bayesian perspective, the estimation problem is to recursively calculate some degree

of belief in the state x at time instant k, i.e., xk, given the measurement data zk [24].

From the perspective of the pdf, we are striving to estimate the density p(xk ∣ z1∶k), i.e.,

the pdf of the state xk given the history of all measurements z1∶k , o�en referred as posterior

at time instant k. �is may be obtained recursively applying the prediction and update

steps. Assuming that the posterior p(xk−1 ∣ z1∶k−1) is available, the prediction step particularly

involves calculating the prior pdf via the Chapman–Kolmogorov equation [24]

p(xk ∣ z1∶k−1) = ∫ p(xk ∣ xk−1)p(xk−1 ∣ z1∶k−1)dxk−1 , (2.3)

where p(xk ∣ xk−1) is the probabilistic model of the state evolution.

In the update step, once the measurement zk becomes available, it can be used to update

the prior via the Bayes rule

p(xk ∣ z1∶k) =
p(zk ∣ xk)p(xk ∣ z1∶k−1)

p(zk ∣ z1∶k−1)
, (2.4)

where the pdf p(zk ∣ xk) represents our likelihood function de�ned by the sensor model

(2.2) and p(zk ∣ z1∶k−1) represents a normalization constant. For implementation purposes,

the three probability distributions are required; (i) the initial belief p(x0), (ii) the mea-

surement probability p(zk ∣ xk), (iii) state transition probability p(xk ∣ xk−1). �is recursive

propagation of the posterior density is only a conceptual solution, while in general it cannot

be determined analytically. However, solutions do exist in a restrictive set of cases which

will be brie�y introduced in the thesis [24]. Furthermore, one should note that there is

nothing intrinsic in the Bayesian �lter propagation and update steps that would limit this

concept to operating on Euclidean spaces only. �is thesis shows several applications of

this concept in various non-Euclidean problems.
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2.2.3 Validation gate

�e normalization constant p(zk ∣ z1∶k−1) results from applying the marginalization of the

state xk from the nominator of (2.4) as

p(zk ∣ z1∶k−1) = ∫ p(zk ∣ xk)p(xk ∣ z1∶k−1)dxk . (2.5)

�is probability can further be used for validation gate purposes, so as to reject highly

unlikely measurements/outliers. In particular, the validity of a measurement zk is directly

evaluated through (2.5) [114].

2.3 traditional probabilistic state estimation

Since the concept of Kalman �ltering represents an important aspect of this thesis, the EKF

is brie�y presented in the sequel.

2.3.1 Extended Kalman �lter

Let us assume that the system is given with motion (2.1) andmeasurement models (2.2), and

process and measurement noises are Gaussian given as wk ∼ N(0,Qk), vk ∼ N(0, Rk). We

also assume the system state and measurement spaces are Euclidean, i.e., xk ∈ Rn, zk ∈ Rm,

∀k ∈ N . If the posterior at time instance k−1 is a Gaussian distribution xk−1 ∼ N(µk−1, Σk−1),

the predicted state xk∣k−1 is given with parameters

µk∣k−1 = f (µk−1, uk−1) (2.6)

Σk∣k−1 = Fk−1Σk−1F
T
k−1 + Qk−1 ,

where F is state transition matrix de�ned to be the Jacobian

Fk−1 =
∂ f

∂x
∣
x=µk−1

. (2.7)

Having the estimated prior xk∣k−1 ∼ N(µk∣k−1, Σk∣k−1), once having the measurement zk

available, the updated state of the system is evaluated as

Kk = Σk∣k−1H
T
k (HkΣk∣k−1H

T
k + Rk)

−1 (2.8)

µk = µk∣k−1 + Kk(zk −Hkµk∣k−1)

Σk = (I − KkHk)Σk∣k−1 ,

where H is measurement matrix de�ned to be the Jacobian

Hk =
∂h

∂x
∣
x=µk∣k−1

. (2.9)

A complete and intuitive derivation of KF is available in [1].

When considering the validation gating, the validity of a measurement is determined

from its residual (or innovation) with the predicted observation, which results from (2.5)

producing a Gaussian distribution of the innovation as [106]

N(zk −Hkµk∣k−1,HkΣk∣k−1H
T
k + Rk) . (2.10)
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Validation is computed by gating the normalized innovation squared (NIS; also commonly

known as the Mahalanobis distance) as

(zk −Hkµk∣k−1)
T(HkΣk∣k−1H

T
k + Rk)

−1(zk −Hkµk∣k−1) ≤ χ2d , (2.11)

where χ2 is a chi-square pdf, and d is innovation dimension.

�e above recursion results from the �rst-order Taylor series expansion of nonlinear

motion and measurement models, and although higher-order EKF [115] exist, its practical

usage is not nearly as o�en as �rst-order based approximation [27].

2.3.2 Extended Information �lter

While KF relies on moment representation of Gaussian distributions using mean µ and

covariance Σ parameters, the IF replaces themwith canonical parameters called information

vector y and information matrix Y . �e relation between the two set of parameters are

given as

Nc(y,Y) = Nc(Σ
−1µ, Σ−1) , Nm(µ, Σ) = Nm(Y

−1y,Y−1) , (2.12)

where index m denotes the moment representation, while c represents the canonical repre-

sentation. Since moment representation is considered ‘classical’, in the rest of the thesis we

omit speci�cally using index m when referring to it.

Given the same assumptions as in the EKF case about motion and measurement models,

and if the posterior at time instance k − 1 is a Gaussian distribution given with canonical

parameters xk−1 ∼ Nc(yk−1,Yk−1), the predicted state xk∣k−1 is calculated as

µk∣k−1 = f (Y−1
k−1y, uk−1) (2.13)

Yk∣k−1 = (Fk−1Y
−1
k−1F

T
k−1 + Qk−1)

−1

yk∣k−1 = Yk∣k−1µk∣k−1 ,

where F is state transition matrix de�ned as in the EKF case. Having the estimated prior

xk∣k−1 ∼ Nc(yk∣k−1,Yk∣k−1), once having the measurement zk available, the updated state of

the system is calculated as

yk = yk∣k−1 +HTkR
−1
k (zk − h(µk∣k−1) +Hkµk∣k−1) (2.14)

Yk = Yk∣k−1 +HTkR
−1
k Hk ,

whereH is measurementmatrix de�ned as in the EKF case. Furthermore, ifN measurements

are available at time step k through di�erent measurement models hi and measurement

noise r i
k
∼ N(0, Ri ,k), the updated information vector and matrix become

yk = yk∣k−1 +
N

∑
i=1

HTi ,kR
−1
i ,k(zi ,k − hi(µk∣k−1) +Hi ,kµk∣k−1) ,

Yk = Yk∣k−1 +
N

∑
i=1

HTi ,kR
−1
i ,kHi ,k .

(2.15)
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2.4 directional estimation

2.4.1 Von Mises distribution

�e vM distribution is a continuous parametric probability distribution de�ned on the unit

circle S1, or equivalently on interval [0, 2π), i.e. the 1-dimensional sphere with unit radius

and center at the origin. A unit random vector x is said to have a vM distribution vMF(µ, κ)

if its probability density function (pdf) is of the following form [8]

p(x; µ, κ) =
1

2πI0(κ)
exp (κ cos(x − µ)) , x ∈ S2, (2.16)

where 0 ≤ x < 2π, µ ∈ [0, 2π) denotes the mean angle, κ ≥ 0 is the concentration parameter

and I0 is the modi�ed Bessel function of the �rst kind and of order zero [7]. �e modi�ed

Bessel function of the �rst kind and of order n ∈ N is de�ned by the following expression

In(κ) =
1

2π ∫ 2π
0

exp(κ cos ξ) cos(nξ)dξ. (2.17)

�e vM distribution is o�en referred as the circular analogue of the normal distribution on

the real line: it is unimodal, symmetric around mean angle µ, and the concentration param-

eter κ is analogous to the inverse of the variance. Several examples of the vM distribution

are given in Fig. 2.1.

Figure 2.1: Examples of the vM distribution on the unit 1–sphere, with equal mean directions and

concentration parameters of 50 (red), 150 (green), and 500 (blue), which correspond

approximately to standard deviations of 8.2○, 4.7○ and 2.6○, respectively [116].

2.5 estimation on lie groups

2.5.1 Mathematical preliminaries

A Lie group G is a group which has the structure of a smooth manifold with the smooth

group operators of composition and inversion.Moreover, each point X ∈ Ghas an associated

tangent space TX(G), called the Lie algebra of G and denoted , which almost completely

captures a curved object like G [117].�e Lie algebra g, which is of the same dimension as G,

admits a binary operation [⋅, ⋅] called the Lie bracket, which re�ects the non-commutative

content of the group operation, and we usually consider this space being placed at the

group identity. Furthermore, if the group G is a matrix Lie group, then G ⊂ Rn×n and group
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Figure 2.2: An illustration of mappings within the triplet of Lie group G – Lie algebra g – Euclidean

space Rp [121].

operations are simply matrix multiplication and inversion. Although not all Lie groups are

matrix groups, the majority of them has an equivalent matrix representation—especially

the ones considered in physical sciences [60]. Moreover, the theorem [118] says that every

Lie algebra is isomorphic to a matrix Lie algebra, thus we will simply say ‘Lie algebra’ rather

than ‘matrix Lie algebra’.

�e Lie algebra g ⊂ Rn×n associated to a p-dimensional matrix Lie group G ⊂ Rn×n is a

p-dimensional vector space de�ned by a basis consisting of p real matrices Er, r = 1, . . . , p,

o�en referred to as generators [119]. In particular, a Lie algebra is an open neighbourhood

around 0p in the tangent space of G at the identity In. �e matrix exponential exp
G
and

matrix logarithm log
G
establish a local di�eomorphism between G and g as

exp
G
∶ g→ G and log

G
∶ G→ g. (2.18)

Furthermore, a natural relation exists between the p-dimensional Lie algebra g and the

Euclidean space Rp, and is given through a linear isomorphism

[⋅]∨G ∶ g→ R
p and [⋅]∧G ∶ R

p → g. (2.19)

For brevity, we will use the notation in the vein of [120]

exp∧
G
(x) = exp

G
([x]∧G) and log

∨
G
(X) = [log

G
(X)]∨G, (2.20)

where x ∈ Rp and X ∈ G. An illustration of these concepts is given in Fig. 2.2.

Lie groups are generally non-commutative, i.e., XY ≠ YX. However, the non-commutativity

can be captured by the so-called adjoint representation of G on g [58]

X exp∧
G
(y) = exp∧

G
(AdG(X)y)X , (2.21)

which can be seen as a way of representing the elements of the group as a linear transforma-

tion of the group’s algebra. �e adjoint representation of g, adG, is in fact the di�erential

of AdG at the identity. Another important result for working with Lie group elements is

the Baker-Campbell-Hausdor� (BCH) formula, which enables representing the product of

Lie group members as a sum in the Lie algebra. We will use the following BCH formulae

[122, 58]

log
∨
G
(exp∧

G
(x) exp∧

G
(y)) = y + φG(y)x + O(∣∣y∣∣2), (2.22)

log
∨
G
(exp∧

G
(x + y) exp∧

G
(−x)) = ΦG(x)y + O(∣∣y∣∣2), (2.23)
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Figure 2.3: An illustration of theCGDG(Id , Σ).�emean value Id resides on the groupG ⊂ GL(d;R)
while the covariance matrix Σ belongs to GL(p;R). On the right we depict the corre-
spondingN c Gaussian in Rp with mean value 0p and covariance matrix Σ [121].

where φG(y) = ∑
∞
n=0

Bn adG(y)n
n!

, Bn are Bernoulli numbers, and ΦG(x) = φG(x)−1. For many

common groups used in engineering and physical sciences closed form expressions for

φG(⋅) and ΦG(⋅) can be found [10, 58]; otherwise, a truncated series expansion is used.

2.5.2 Concentrated Gaussian distribution

Let us assume that a random variable X taking values in G has the probability distribution

with the probability density function (pdf) of the following form [59]

p(X; Σ) = β exp(−
1

2
(log

∨
G
(X))TΣ−1 log∨

G
(X)) , (2.24)

where β is a normalizing constant such that (2.24) integrates to unity, and Σ is a positive

de�nite p × p matrix. Seemingly, in notation ξ = log
∨
G
(X) ∈ Rp, density (2.24) has the

structure of a zero mean Gaussian with covariance matrix Σ. However, observe that the

normalizing constant β di�ers from (2π)−p/2(det Σ)−1/2 and, in the sense of Rp, it is only

de�ned on an open neighborhood of the origin. Additionally, we will assume that all

eigenvalues of Σ are small, thus, almost all the mass of the distribution is concentrated in a

small neighborhood around the mean value, and such a distribution is called a CGD [59].

Furthermore, we say that a random variable X has a CGD of mean µ ∈ G and covariance

matrix Σ, written X ∼ G (µ, Σ), ifM−1X has the CGD of mean Id and covariance Σ [59], i.e.,

the density of G (µ, Σ) is given by

p(X; µ, Σ) = β exp (−
1

2
(log

∨
G
(µ−1X))TΣ−1 log∨

G
(µ−1X)). (2.25)

Correspondingly, a random variable X can be seen as

X = µ exp∧
G
(ξ) , with X ∼ G(µ, Σ) . (2.26)

An illustration of the CGD is provided in Fig. 2.3.

2.5.3 Extended Kalman �lter on Lie groups

For the general �ltering approach onmatrix Lie groups, the system is assumed to bemodeled

as satisfying the following equation [61]

Xk = f (Xk−1,ωk−1) = Xk−1 exp
∧
G
(Ω̂k−1 + ωk−1) , (2.27)
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where Xk ∈ G is the state of the system at time k, G is a p-dimensional Lie group, ω ∼

NRp(0p×1,Q) is white Gaussian noise and Ω̂ = Ω(X) ∶ G→ Rp is a non-linear C2 function.

�e prediction step of the LG-EKF, based on the motion model (2.27), is governed by

the following formulae

µk∣k−1 = µk−1 exp
∧
G
(Ω̂k−1) (2.28)

Σk∣k−1 = Fk−1Σk−1F
T
k−1 +ΦG(Ω̂k−1)Qk−1ΦG(Ω̂k−1)

T , (2.29)

where µ ∈ G and Σ ∈ Rp×p are predicted mean value and the covariance matrix, respectively,

hence the state remains G–distributed Xk∣k−1 ∼ G(µk∣k−1, Σk∣k−1). �e operator F , a matrix

Lie group equivalent to the Jacobian of f (X , n), and ΦG are given as follows

Fk−1 = AdG (exp∧
G
(−Ω̂k−1)) +ΦG(Ω̂k−1)Ck−1 (2.30)

ΦG(a) =
∞
∑
m=0

(−1)m

(m + 1)!
adG(v)m , a ∈ Rp (2.31)

Ck−1 =
∂

∂ξ
Ω (µk−1 exp

∧
G
(ξ))∣ξ=0 . (2.32)

�e discrete measurement model on the matrix Lie group is modelled as

Zk = h(Xk) exp
∧
G′ (mk) , (2.33)

where Zk ∈ G
′, h ∶ G→ G′ is a C1 function and mk ∼ NRq(0q×1, Rk) is white Gaussian noise.

�e update step of the �lter, based on the measurement model (2.33), strongly resembles

the standard EKF update procedure, relying on the Kalman gain Kk and innovation vector

νk calculated as follows

Kk = Σk∣k−1H
T
k (HkΣk∣k−1H

T
k + Rk)

−1

νk = Kk (log
∨
G′ (h(µk∣k−1)

−1Zk)) . (2.34)

�ematrixHk can be seen as the measurement matrix of the system, i.e., a matrix Lie group

equivalent to the Jacobian of h(Xk), and is given as

Hk =
∂

∂ξ
[log

∨
G′ (h(µk∣k−1)

−1h (µk∣k−1 exp
∧
G
(ξ)))]∣ξ=0 . (2.35)

Finally, having de�ned all the constituent elements, the update step is calculated via

µk = µk∣k−1 exp
∧
G
(νk) (2.36)

Σk = ΦG(νk) (I
p×p − KkHk)Σk∣k−1ΦG(νk)

T . (2.37)

As in the case of the prediction step, the state Xk+1 ∼ G(µk , Σk) remains G–distributed a�er

the correction as well. For a more formal derivation of the LG-EKF, the interested reader is

referred to [61] and [121].
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Moving objects tracking based on random �nite

sets

M
ultiple objects tracking has a long history spanning over 50 years referring to

the problem of jointly estimating the trajectories, e.g., position and orientation as

well as their respective velocities and accelerations, and the number of objects in the space,

relying on the observations from sensor data. Driven by aerospace applications in the 1960’s,

it �nds its application in diverse traditional engineering disciplines such as intelligence,

surveillance and reconnaissance, radar/sonar applications, air tra�c control, etc. During the

last decade, advances in MOT techniques along with sensing and computing technologies,

have opened up numerous research venues such as robotics and autonomous systems,

computer vision, biomedical research, agriculture and forestry, epidemiology and public

health, communications networks, oceanography, remote sensing, etc [123].

3.1 introduction

From the viewpoint of the several sources of uncertainty appearances (described in Ch.1)

among whom each appears challenging itself, data association attracted probably the most

signi�cant attention of the overall research community. �e reasoning might lie in the fact

that all other sources of uncertainty can be considered as special cases of the data association

task. For example, one can contend with the recognition of births and deaths only once the

data association task �gures out that the existing list of recognized objects does not match

the evolving observations well. Furthermore, false positive and false negative observations,

i.e., false alarms andmissed detections, can also be considered only a�er the data association

task �gures out that the list of existing objects does not overlap with the observations well.

Given the previous discussion, the MOT application can be considered as a task which

aims at tracking a random number of objects receiving a random number of measurements.

Among all the existingMOT approaches, the most popular are naive global nearest neighbor

approaches (GNN) [124], the joint probabilistic data association (JPDA) [125, 126], themultiple

hypothesis tracking (MHT) [127, 128], and commonly referred to as RFS based multi-object

�lters [129, 130]. Although recent developments in RFS have yielded a variety of tracking

methods that claim to avoid data association (o�en referred to as data association-free

approaches), it was proven that bothMHT and JPDA can be derived within the RFS framework

[131], thus representing only special cases of RFS approaches. �e research community o�en

intentionally follows the terminology which inherently abuses the true relation between data

20
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association based approaches and data association-free approaches, by referring toMHT and

JPDA as non-RFS. Herein we emphasize that although they were not intentionally developed

through the theory of RFS, the data association is still implicitly present in majority of

RFS-based �lters, and hence the distinction between the traditional and RFS approaches is

obvious only from the viewpoint of the theoretical background.

�e traditional data association-based approaches explicitly formulate and reason over

association hypotheses describing the correspondence of measurements and objects. In

contrary, the RFS-based approaches data association is implicitly present. As such, the RFS-

based algorithms, introduced byMahler, have gained a great deal of attention in the tracking

community during the last 15 years.�is paradigm is developed upon an engineering friendly

version of point process theory called �nite-set statistics (FISST) [4, 132]. �e summary

of motivations, concepts, techniques, and applications of FISST, and description on how

conventional single-sensor, single-object formal Bayesian modeling is carefully extended

to general data fusion problems, is given in the tutorial “Statistics101" [129]. Although

the background theory of FISSTmay appear involved, a�er years of research the optimal

multi-sensor–multi-object recursive Bayes �lter was successfully used to derive principled

statistical approximations in the form of PHD �lters [3, 133], cardinalized PHD (CPHD) �lters

[134, 135], multi-Bernoulli (MB) �lters [136], etc. �e basic ideas of these approximations are

summarized in another tutorial by Mahler called “Statistics102" [137].

In the subsequent part of this introduction section, an overview of the traditional MOT

methods including (i) MHT and (ii) JPDAF, and the RFS-based methods including (i) PHD,

(ii) CPHD and (iii) MB, are provided.

3.1.1 Overview of traditional methods

⊳ mht. �e underlying idea of the MHT algorithm is the hypothesis generation process

which considers di�erent phenomenons of measurement origin uncertainty since (i) it is

unknown if a measurement is from an object or due to clutter, (ii) it is unknown which mea-

surement originates from which object, (iii) it is unknown if missed detection events have

occurred due to less than unity probability of detection [138]. Each possible combination of

the previous phenomenons generates a hypothesis, which can be limited by performing

gating. GNN in this context can be seen as MHT which keeps only the hypothesis with the

maximum total track score or the minimum total cost, while MHT uses a deferred decision

logic [124].

�ere exist two types of MHT algorithms, the hypothesis-oriented (HOMHT) [127, 139]

and the track-oriented (TOMHT) [140] algorithm.�e original idea of MHT, presented in

[127], was theHOMHT, where a number of global hypotheses between consecutive scans were

kept, whereas the number of association hypotheses or tracks grew exponentially. Since this

issue was shown to be easily handled by TOMHT, these approaches were utilized signi�cantly

more o�en than HOMHT. TOMHT can then be further divided into tree based [140, 141] and

non-tree based [142, 139] approaches. �e HOMHT keeps a number of global hypotheses

between consecutive scans whereas tree based TOMHT only maintains a number of ‘target’

trees, each containing a number of tracks which are not compatible. In tree based TOMHT,

the best global hypothesis is formed from the existing set of tracks and the N-scan pruning
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[124] and track-score based pruning are used to limit the number of tracks from growing

exponentially [138]. An early e�cient implementation of the tree based TOMHT algorithm

in which the N-best hypotheses are determined in polynomial time is presented in [143].

On the other hand, a number of di�erent non-tree TOMHT variants were proposed [123],

but due to the intuitive interpretation and the clarity of the tree based TOMHT, the non-tree

methods never attracted such signi�cant attention as tree based methods. Several di�erent

varieties of the probabilisticMHT (PMHT), relying on so� a posteriori probability associations

were also developed, but they never attracted signi�cant attention [144, 145, 146, 147]. and

since this is not in the focus of the thesis we do not consider them any further. A general

motivation for MHT, its basic principles and the alternative implementations in common

use are summarized in [128].

⊳ jpdaf. �e early research on probabilistic data association approaches was exclusively

focused on single object tracking applications, accounting for some basic phenomenons

related to themeasurement origin uncertainty.�e seminal paper byYaakov Bar-Shalom and

Edison Tse [125] proposed the probabilistic data association PDA approach which grounded

the basis for the entire research on probabilisticMOT research.�e PDA algorithm calculates

the association probabilities to the object being tracked for each validated measurement at

the current time. �e joint probabilistic data association JPDA approach is a multi-object

extension of the PDA [126], relying on the assumption that the number of tracked objects is

known.�e key feature of the JPDA is that it evaluates the conditional probabilities of the joint

association events, where each event represents one combination ofmeasurements-to-object

associations. Typically the state estimation algorithm, which is carried out upon events

evaluation is calculation of marginal association probabilities. �ese marginal probabilities

are obtained from the joint probabilities by summing over all joint association events in

which the marginal event of interest (respecting each object separately) occurs [148]. �e

state estimation equations are then decoupled among the objects and exactly the same as in

PDA. For this purpose, JPDA shows tendency that tracks of closely spaced objects become

overlapped due to the shared measurements across tracks, when this sharing lasts for

many frames or scans [148]. Alternatively, more realistic assumption accounts for possible

correlations between states of two objects a�er sharing some measurements, yielding a

covariance matrix with o�-diagonal blocks which re�ect the correlation between the state

estimation errors of the objects. �is approach is called JPDA coupled �lter (JPDAC). �is

problem is well-known as a problem of track coalescence, and some improvements on

this topic are available in [149]. Over time, some approximations of JPDA designed for

circumventing the combinatorial complexity for large number of objects have also been

developed [150]. A tutorial on PDA and JPDA techniques is available in [148].

Mušicki et al. managed to rederive PDA without an initial assumption of track exis-

tence which was an important relaxation of the original PDA assumptions, and called the

algorithm integrated probabilistic data association IPDA [151]. As such, this algorithm simul-

taneously provides expressions for both probability of track existence and data association.

Later, Mušicki and Evans managed to extend the JPDA with the concept of object existence

probability for individual track [152] and called the algorithm joint integrated PDA (JIPDA).

�is concept easily allows for track management in terms of false track discrimination or
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newly birth tracks con�rmation. Recently, some directions for performance/computation

resources trade-o� for JIPDA were discussed in [153].

�e main di�erence in the overall ideas of MHT and JPDA is that MHT uses a Gaussian

posterior of the object states at the rear end of its sliding window, conditioned on the chosen

hypothesis up to that point in time while it ignores all other association hypotheses. JPDA

on the other hand relies on a so� decision since it averages over all the possibilities, which

is never totally correct but never totally wrong [148]. However, it is interesting to note that

although the RFS approaches have recently attracted a signi�cant attention, some PDA-based

approaches are still the focus of ongoing research [154].

3.1.2 Overview of RFS-based methods

FISST enables formal extension of conventional single-sensor, single-object Bayesian proba-

bilistic modeling to general data fusion problems relying on the Bayesian convolution and

fusion de�ned over random sets, rather that random variables. Such de�nition of Bayesian

prediction and correction suited well with the nature of the multi-sensors–multi-object

detection and tracking problems. In particular, the concept of a random set is de�ned to

contain an uncertain number of random variables, i.e., each of the objects’ state is presented

as random variable, while the size of the set is presented with a random number. Hence, the

multi-object �ltering algorithm tempts at estimating states of objects as well as the number

of objects existing in space. An intuitive interpretation of FISST-based MOT is given in [155].

One of the �rst signi�cant RFS-based �lters was developed by Mahler in 2003 [3], where

author proposes the �lter which propagates a �rst-order statistical moment of a random set,

rather than the entire distribution, and called the approach PHD �lter. Early PHD applications

were mostly relying on particle �ltering approaches based on the work presented in [156],

and referred to as a generic particle PHD �lter. Some interesting applications of such �lter

are multisensor vehicle tracking presented in [157] and an exclusive vision-based application

presented in [158]. It is also worth mentioning that the estimation for the particle PHD �lter

requires clustering of particles into groups, which involves additional processing, relying

on techniques such as the auxiliary particle PHD �lter [159], or measurement driven particle

PHD �lter [160]. A seminal work on a derivative of the PHD is presented in [133], where

authors present the closed form solution for the Bayesian recursion of the PHD �lter under

the ‘linear Gaussian multitarget model’ assumption, and refer to it as Gaussian mixture

probability hypothesis density GM-PHD �lter. �erein, the authors also provide directions

for the similar algorithms employed for nonlinear propagation and measurement models

following the ideas of EKF and UKF for general state estimation (as given in Sec. 2), referring

to the PHD alternatives as EK-PHD and UK-PHD, respectively. Further research related to the

GM-PHD was dealing with di�erent topics related to this �lter such as convergence analysis

[161] as well as other issues regarding initiating, propagating and terminating tracks [162]

that are not speci�cally referenced in the original GM-PHD paper [133].

In 2007 [134], a �lter which propagates not only the PHD but also the entire probability

distribution on objects number was derived in closed form and called the cardinalized

probability hypothesis density (CPHD). Again, In the vein of the GM-PHD, under the assump-

tion of ‘linear Gaussian multitarget model’, the Gaussian mixture cardinalized probability
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hypothesis density GM-CPHD �lter was derived [163, 135], while it was �rst applied for a

ground moving object tracking application with jointly employing digital road maps for

road constraint [164].

At this time, large part of the research community have also dealt with the problems

of estimating or learning the parameters typical for MOT applications and usually used in

both traditional and RFSs approaches, such as unknown clutter intensity [165, 166, 167, 168],

object birth intensity [160], and detection pro�le [167]. Also, since both PHD and CPHD

have been originally developed such that the newly birth components were induced via

a mixture of components, it was signi�cant to provide a relaxation of this assumption

supporting the uniform object birth model over the entire space of interest [169]. �ey have

also been extended to multiple models [170], extended objects [171, 172], multiple sensors,

superpositional measurements, distributed multi-object �ltering, etc. [138].

Already at this early theoretical stages of development of RFS approaches, they have

attracted a signi�cant attention in practical applications, such as information fusion in

automotive engineering [173]. A performance comparison of PHD and CPHD versus JIPDA

was presented in [174].

In addition to the PHD and CPHD �lters, Mahler has proposed the multi-object multi-

Bernoulli (MeMBer) recursion as a tractable approximation to the Bayes multi-object recur-

sion under low clutter density scenarios [130], which approximately propagates the complete

multi-object posterior density rather than only the moments and cardinality distributions.

In particular, MeMBer propagates the parameters of a multi-Bernoulli RFS that approximates

the posterior multi-object RFS. Since the originalMeMBer overestimates the cardinality hence

generating bias in the number of objects, cardinality-balanced multi-object multi-Bernoulli

(CBMeMBer) �lter was proposed by [136]. �e �rst particle �ltering implementation as well

as GM implementation for ‘linear Gaussian multitarget models’ were presented in [136]. A

robust version of anMB �lter for adaptive learning of non-homogeneous clutter intensity and

detection probability while �ltering was proposed in [175]. An early tutorial on Bernoulli

�lters including the theory, implementation and applications is available in [176].

A�erwards, Vo and Vo [177] claim that the conjugacy is highly desirable in multi-object

inference, and hence introduce the conjugate priors for the standard multi-object likelihood

function, which are closed under RFS Bayes prediction (Chapman-Kolmogorov equation)

and correction (Bayes rule), and refer to the �lter as generalized labeled multi-Bernoulli

GLMB �lter. In particular, if starting with the proposed conjugate initial prior, then all

subsequent predicted and posterior distributions have the same form as the initial prior.

Some directions and details for e�cient implementations were chronologically presented in

[178, 179, 180] and [181]. Although in this thesis we do not speci�cally consider the labeling

task, the general MOT algorithms can also involve labels joint to each tracked object. An

example which inherently accounts for this possibility is GLMB. It is also worth mentioning

that the research on MB �lters was also signi�cant from the viewpoint of the practical

applications, whereas one of the most advanced autonomous driving-related projects, i.e.,

autonomous driving at Ulm University, was relying on a GLMB �lter implementation [182].

It is also important to mention also that many di�erent SLAM approaches have been

developed upon the theory of RFS, including PHD-based [183, 184, 185, 186, 187, 188, 189] and

MB-based [190] SLAM approaches.
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3.1.3 Organization of the chapter

�e rest of the chapter is organized as follows.�e underlying description of themulti-object

Bayes �ltering de�nition with an illustration of the set integral is given in Sec. 3.2. Section

3.3 provides the background of the PHD �lter which was as well used in the thesis, and

provides the equations for the example of a �nite mixture approximation of the PHD in

the form of GM-PHD. In Sec. 3.4 we deal with the problem of mixture component number

reduction, which appears due the the nature of the PHD correction step when the number

of components geometrically increases in each step of the �lter. For this purpose several

topics such as (i) component distance measure, (ii) component picking strategy and (iii)

component merging equations are discussed. �e last section (Sec. 3.5.1) represents the

overview of existing metrics suitable for a MOT applications.

3.2 random finite sets based multi-object bayes filter

In anMOT scenario, at time k−1 the scenemight consist ofNk−1 objects, X
1
k−1, . . . , X

Nk−1
k−1 ∈ Rn,

whose number is a subject to change due to births and deaths. In turn, the objects give rise

toMk measurements, Z
1
k
, . . . , Z

Mk

k
∈ Rm, whose origin is unknown; some objects might not

have been detected while somemeasurements are false alarms.�emulti-object approach of

[130] addresses this problem by modeling the states and measurements as RFS, which consist

of random variables where the set cardinality is also a random variable. More formally at

time k

Xk = {X1k , . . . , X
Nk

k
} ∈ FX

Zk = {Z1k , . . . , Z
Mk

k
} ∈ FZ ,

(3.1)

where FX and FZ denote spaces of all �nite subsets X and Z , respectively. �e �nal goal of

the multi-object Bayes �ltering [130] is to estimate the multi-object posterior probability

distribution p(Xk ∣ Zk) via ‘classical’ Bayes �lter form

p(Xk ∣ Z1∶k−1) = ∫ p(Xk ∣ Xk−1)p(Xk−1 ∣ Z1∶k−1)δXk−1

p(Xk ∣ Z1∶k) =
p(Zk ∣ Xk)p(Xk ∣ Z1∶k−1)

∫ p(Zk ∣ Xk)p(Xk ∣ Z1∶k−1)δXk

,

(3.2)

where Z1∶k = {Z1, . . . ,Zk} is the history of all the measurements, p(Xk ∣ Xk−1) is the multi-

object Markov transition density which is equivalent to the single state propagation pdf

given in (2.3), p(Zk ∣ Xk) is the multisource likelihood function equivalent to single source

measurement model pdf appearing in (2.4) and the integrals in (3.2) are set integrals as

de�ned by themulti-object calculus in [130]. Analytic solution to (3.2) is derived in [177, 178]

with generalization to general multi-object densities presented in [180]. However, o�en

utilized are principled approximations among which the PHD �lter is an example.

3.3 probability hypothesis density filter

�e idea of the PHD �lter is to propagate the intensity function Dk, i.e. the �rst order

statistical moment of the multi-object density, in lieu of the multi-object density p(Xk ∣ Z1∶k)
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itself. Although there is information loss due to this step, it is outweighed by the gain in

alleviating the computational intractability of the multi-object Bayes �lter. Function Dk is

not a density function, but is uniquely characterized by the property that given a region S

of single-object space X the integral ∫S Dk(X)dX yields the expected number of objects in

S. Hence, the PHD �lter reasons �rst on the level of group behavior and then attempts to

detect and track individual objects only as the quantity and quality of data permits [130].

To present the PHD �lter, the following assumptions also need to be used [133, 130]

• Each object evolves and generates independent observations.

• Clutter is Poisson distributed with the corresponding intensity λz and independent

of object-originated measurements.

• �e predicted multi-object p(Xk ∣ Z1∶k−1) in (3.2) is distributed according to the multi-

object Poisson distribution.

Under these assumptions, it can be shown that the posterior intensity can be propagated

in time via the PHD recursion, i.e., by evaluating two successive steps—prediction and

correction. �e prediction is governed by the following equation [130]

Dk+1∣k(X) = bk+1(X) + ∫X pS ,k+1(ζ)pk+1∣k(X ∣ ζ)Dk(ζ)dζ , (3.3)

where pk+1∣k(X ∣ ζ) is single-object Markov transition density, pS ,k(X) is the probability of

survival of existing objects given their previous state and bk(X) is the object birth intensity.

In conjunction, the PHD correction is governed by

Dk+1(X) = [1 − pD,k+1(X)]Dk+1∣k(X)+

∑
Zk+1∈Zk+1

pD,k+1(X)pk+1(Z ∣X)Dk+1∣k(X)

λZc(Z) + Dk+1∣k[pD,k+1(X)pk+1(Z ∣X)]
,

(3.4)

where Dk+1∣k[ f (X)] = ∫X f (X)Dk+1∣k(X)dX , λZ is clutter intensity with its spatial distri-

bution c(Z), pk(Z ∣X) is single-source likelihood function and pD,k(X) is probability of

object detection given its current state. We also make further assumptions that do not

necessarily restrict the method just to such scenarios, but serve only for the purposes of

the clarity of presentation. For example, note that we have omitted spawning from existing

objects, thus (3.3) does not represent a general form of the PHD �lter prediction, and we

shall also assume that pD,k(X) = pD and pS ,k(X) = pS are constant and independent of the

previous object state. We also assume that the spatial distribution of clutter c(Z) is uniform

over the whole measurement space Z , since no additional assumptions on the design of the

space is induced.

�e PHD recursion does not admit closed-form solutions in general [130], however

sequential Monte Carlo (SMC) approximations [156] and the Gaussian multi-object model

approach based on Gaussian mixtures (GM) [133] render the aforementioned problem

soluble. In this thesis, in the vein of [133], we propose an MOT approach as in the vein of

[133] and hence for the completeness of the thesis we provide the equations for GM-PHD.
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3.3.1 Gaussian Mixture PHD �lter

We now continue by providing equations of the PHD recursion. Under certain assumption

which is in the literature referred to as ‘linear Gaussian multi-target model’ [133], the

PHD recursion (3.3)-(3.4) admits a closed form solution. However, for the completeness

of presentation of the background material of the thesis here we consider an extension

to nonlinear object models in the vein of a single-object EKF �lter denoted EK-PHD. In

particular, the ‘linear Gaussian multi-target model’ assumes each object follows a motion

following the linear Gaussian dynamical model and the linear Gaussianmeasurementmodel

given as

f (xk∣k−1) = N(Fk−1xk−1,Qk−1) (3.5)

h(zk ∣xk) = N(Hkxk , Rk) , (3.6)

where F is a state transition matrix, while H is the observation matrix of a linear system.

However, we use a relaxed version appropriate for more general nonlinear model where

xk = f (xk−1,wk−1) (3.7)

zk = h(xk , vk) , (3.8)

where f and h are nonlinear propagation and measurement functions, respectively, while

w and v are process and measurement noises.

Lets assume that the posterior intensity at time k is a GM of the form

Dk−1(X) =

Jk−1
∑
i=1

w i
k−1N

i
k−1(X) , (3.9)

where w i
k−1 is the weight of the i-th component of the mixture joint to distributionN

i
k−1 =

N(µ i
k−1, Σ

i
k−1). Given this assumption, and a�er employing (3.3) and (3.7), the predicted

intensity Dk∣k−1(X) is under linearization given as GM

Dk∣k−1(X) =

Jb
k

∑
i=1

wb,i
k
N b,i

k
(X) +

J s
k∣k−1

∑
i=1

ws,i
k∣k−1N

i
k∣k−1(X) , (3.10)

where ws,i
k∣k−1 = pSw

i
k−1 and J

s
k∣k−1 = Jk−1. �e �rst sum of the term (3.10) brings in the newly

born components, while the second one describes the survived objects. A componentN i
k∣k−1

represents the component resulting a�er applying the EKF prediction onN i
k−1. �e predicted

number of objects can be calculated by taking the integral of (3.10) over the entire state

space X

Nk∣k−1 =

Jb
k

∑
i=1

wb,i
k
+

J s
k∣k−1

∑
i=1

ws,i
k∣k−1. (3.11)

At this point we have �nished the less complex prediction step, whereas now we shall

move on to the correction which appears to be slightly more involved. �e key steps of the

prediction of EK-PHD �lter are summarized in Alg. 1, where the function Pred(⋅) denotes

the EKF prediction.
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Algorithm 1:�e prediction step of the EK-PHD �lter

Require: {w i
k−1,N

i
k−1}

Jk−1
i=1 , {w

b,i
k
,N b,i

k
}
Jb
k

i=1, pS

1: j ← 0 (initialization)

2: for i ∶= 1 to Jb
k
(# of newly born components) do

3: w
j

k∣k−1 ← wb,i
k
;N

j

k∣k−1 ← N
b,i
k
; j ← j + 1

4: end for
5: for i ∶= 1 to Jk−1 (# of components existing at k) do
6: w

j

k∣k−1 ← pS w
b
k−1 ;N

j

k∣k−1 ← Pred(N
i
k−1) ; j ← j + 1

7: end for
8: Jk∣k−1 ← j (# of predicted components)

9: return {w i
k∣k−1,N

i
k∣k−1}

Jk∣k−1
i=1

Assuming that the predicted intensity at time k is a GM of the form

Dk∣k−1(X) =

Jk+1∣k

∑
i=1

w i
k∣k−1N

i
k∣k−1(X) , (3.12)

a�er employing (3.4), the corrected intensity Dk(X) is given as

Dk(X) = (1 − pD)

Jk∣k−1

∑
i=1

w i
k∣k−1N

i
k∣k−1(X) +

Jk∣k−1

∑
i=1

Mk

∑
j=1

w
i , j

k
N

i , j

k
(X) . (3.13)

where

w
i , j

k
=

pDw
i
k∣k−1q

i , j

k
(Z)

λZc(Z) + pD∑
Jk∣k−1
l=1 w l

k∣k−1q
l , j

k
(Z)

, (3.14)

q
i , j

k
(Z) = N(Z

j

k
; h(µ i

k∣k−1),S
i , j

k
) , (3.15)

S
i , j

k
= H

i , j

k
Σ
i , j

k∣k−1H
i , jT

k
+ Rk , (3.16)

whileN
i , j

k
= N (µ

i , j

k
, Σ

i , j

k
) denotes the result of EKF-like update of i-th predicted component

with j-th measurement. Finally, the corrected number of objects can be calculated by taking

the integral of (3.13) over the entire state space X

Nk = (1 − pD)

Jk∣k−1

∑
i=1

w i
k∣k−1 +

Jk∣k−1

∑
i=1

Mk

∑
j=1

w
i , j

k
. (3.17)

�e key steps of the correction of EK-PHD �lter are summarized in Alg. 2, where the function

Innov(⋅) denotes the EKF innovation evaluation, function Correct(⋅) represents the EKF

correction of mean and covariance, and Reduction(⋅) represents the execution of mixture

reduction algorithm.

3.4 mixture component reduction

During the recursion process of the PHD �lter the number of components inevitably in-

creases; �rst due to inclusion of newly birthed, or in some applications spawned, components
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Algorithm 2:�e correction step of the EK-PHD �lter

Require: {w i
k∣k−1,N

i
k∣k−1}

Jk∣k−1
i=1 , {Z

j

k
∈ Zk}

Mk

j=1 , pD

1: for i ∶= 1 to Jk∣k−1 (non-detected components) do
2: w i

k
← (1 − pD)w

i
k∣k−1 ;N

i
k
← N i

k∣k−1
3: end for
4: j ← 0 (measurement designator)

5: for all Zk ∈ Zk do
6: j ← j + 1 , s j ← 0 (per measurement intensity)

7: for i ∶= 1 to Jk∣k−1 (detected components) do
8: l ← i + j Jk∣k−1

9: [q
i , j

k
(Z)] ← Innov(N i

k∣k−1, Z
j

k
)

10: w l
k
← pDw

i
k∣k−1 q

i , j

k
(Z), s j ← s j +w l

k

11: N l
k
← Correct(N i

k∣k−1, Z
j

k
)

12: end for
13: for i ∶= 1 to Jk∣k−1 (re–weighting) do
14: w

i+ j Jk∣k−1
k

← w
i+ j Jk∣k−1
k

/(λZc(Z) + s j)

15: end for
16: end for
17: Jk ← ( j + 1)Jk∣k−1 (# of components existing at k)

18: {w i ,R
k
,N i ,R

k
}
JR
k

i=1 ← Reduction({w
i
k
,N i

k
}
Jk
i=1)

19: return {w i ,R
k
,N i ,R

k
}
JR
k

i=1

and second due to the nature of the PHD correction step. Namely, correcting the predicted

mixture by multiple measurements results in a geometrical increase in the component

number, which can be seen from (3.13). Given that, component number reduction schemes

are necessary [133]. Since this procedure is executed practically at each iteration, it should be

computationally modest, but still keep a reasonable level of accuracy. Reduction procedures

basically require three ingredients: (i) a component distance measure, (ii) a component

picking algorithm and (iii) component merging equations.

3.4.1 Component distance measure

�e distance measure is a key ingredient in the reduction scheme and although numerous

distance measures between distributions exist, motivated by to practical and theoretical

aspects we concentrate on those appropriate for �nite mixtures. Statistically and information

theoretically motivated distance measure is the Kullback–Leibler (KL) distance, also known

as the Kullback–Leibler divergence or the relative entropy [191], and de�ned as

DKL(p, q) = ∫X p(x) log(
p(x)

q(x)
)dx .

It belongs to a wider class of distance measures called f-divergences or Ali-Silvey distances

[192]. Another statistical and information theoretical class of generalized distances are Rényi
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α-divergences [193] given by the following expression

D
(α)
R (p, q) =

1

α − 1
log ∫X p(x)αq(x)1−αdx

and parametrized by real parameter α. In the limit α → 1, the Rényi α-divergence yield

the KL distance. Another well-established distance measure when α = 1/2 is called the

Bhattacharyya distance [194]. However, given the discussion presented in [195], we rely our

approaches on KL divergence and hence continue with further discussion on it.

3.4.2 Symmetrized Kullback-Leibler divergence

Furthermore, since the mixtures of distributions appearing in PHD are weighted, in order to

be used here, themeasure needs to be customized for weighted (unnormalized) distributions,

and additionally symmetrized. Since scaled symmetrized Rényi α-divergences neglect the

respective weights of components, for the purpose we consider the scaled symmetrized KL

distance [195]. �e distance measure between pdfs p and q, with their respective weights

wp and wq, is then given as [192]

DsKL(wpp,wqq) =
1

2
[wpDKL(p, q) +wqDKL(q, p)] +

1

2
(wp −wq) log

wp

wq

. (3.18)

⊳ von-mises distributions. �e equations for reducing the number of the compo-

nents in a mixture of von Mises distributions is presented in [195]. For the completeness of

the thesis we also provide the equations herein. Given two vMpdfs p(µp, κp) and q(µq , κq),

the KL distance is given as

DKL(p, q) = log
I0(κq)

I0(κp)
+ A(κp)(κp − κq cos(µp − µq)). (3.19)

where A(x) = I1(x)/I0(x) with Ip(x) as the the modi�ed Bessel function of the �rst kind

and of order p.

⊳ gaussian distributions. Given two Gaussian distribution pdfs, p(µp, Σp) and

q(µq , Σq), the KL distance is evaluated as

DKL(p, q) =
1

2
{tr [(Σq)

−1Σp] − K + logR
∣Σq∣

∣Σp∣
+ (µq − µp)

T(Σq)
−1(Σq − Σp)}, (3.20)

where tr( . ) and ∣ . ∣ designate matrix trace and determinant, respectively, while K is the

mean vector dimension.

3.4.3 Component picking strategy

With having de�ned the appropriate distancemeasure between the distributions we can now

employ the component picking algorithmwhich will tell us how to screen the whole mixture

and which components to pick for merging. Here we will consider two component picking

strategies interesting from the practical viewpoint, i.e., (i) Exhaustive pairwise [196], and (ii)
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West’s [197] algorithms. �e Exhaustive pairwise algorithm determines distances between

all components and merges the closes two, while West’s algorithm sorts the components

according to their respective weights, then �nds and merges the component most similar to

the �rst one. �e resulting component is then inserted back to the mixture with respect to

its weight and the procedure is repeated until the desired number of components is reached.

3.4.4 Component merging equations

⊳ von-mises distributions. �emerged vM component has the optimal parameters

in the KL sense obtained by following

µ∗ = arctan
wpA(κp) sin µp +wqA(κq) sin µq

wpA(κp) cos µp +wqA(κq) cos µq

w∗A2(κ∗) =w2pA
2(κp) + 2wpwqA(κp)A(κq) cos(µp − µq),

(3.21)

where w∗ = wi + w j, while w∗, µ∗ and κ∗ designate the parameters resulting from the

component merging procedure.

⊳ gaussian distributions. Given several Gaussian distributions the component

merging equations follow as [196]

w∗ = ∑
i

wi , µ∗ =
1

w∗∑
i

wiµi

Σ∗ =
1

w∗∑
i

wi [Σi + µi(µi)
T] − µ∗(µ∗)T (3.22)

where w∗, µ∗ and Σ∗ designate the parameters resulting from the component merging.

Although (3.22) works for an arbitrary number of components, in our case we will always

merge just two components.

An example of the pseudocode of the merging algorithm using West’s picking strategy

and Gaussian distribution is given in Algorithm 3.

3.5 metrics for evaluation

�e metric for evaluating the MOT algorithm needs to account for various appearances in

contrary to the single-object estimation where it is typically adequate to involve only a miss

distances as the Euclidean or Mahalanobis distance. �e MOT performance metric needs to

involve measures of e�ectiveness (MoEs) such as missing tracks, false tracks, state estimation

error (position, velocity, heading), track initiation delay, track overshoot, track label swaps,

cardinality estimation, and is alongside strongly scenario and operation dependent. �e

problem of choosing MoEs is questionable from two viewpoints; (i) how to choose the

relevant MoEs since it is fairly arbitrary and far from clear and (ii) which choice is adequate

from the theoretical point of view, since MoEs can be correlated.

Since the performance evaluation approaches are strongly application dependent, it

is hard to establish an adequate genericMOT evaluation framework that will embrace all

the previously introduced MoEs. For this reason, here we focus our overview on popular
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Algorithm 3:Mixture reduction using West’s algorithm
Require: P = {wi ,Ni}

J
i=1

1: (Order set P ascending by weights)

P ← {P ∶ wi ≤ w j, i < j, i , j ∈ {1, 2, . . . , ∣P∣}}

2: while ∣P∣ > N do
3: for i = 2 ∶ ∣P∣ do
4: d(i) ← DsKL(w1N1,wiNi) calculate via (3.18)

5: end for
6: j ← argmin

i∈2,3,...,∣P∣
d(i)

7: (Remove components 1 and j)

P ← P ∖ {wi ,Ni}i=1, j

8: w∗,N ∗ ← calculate via (3.22)

9: (Insert the merged component by weight)

P ← P ∪ {w∗,N ∗}

10: end while
11: return {wi ,R ,Ni ,R}

JR
i=1

approaches that tempt to provide the generic physically intuitive and information-theoretic

consistent metrics. �ese metrics are more suitable in cases where a ground truth data is

available, which is most o�en the case for experiments provided on synthetic data. �e

alternative would include the algorithm-free metrics [198] that focus on di�erent MoEs, but

unfortunately merely one-at-the-time. �e application dependent metrics have also been

in the focus of recent research [199] (including CLEARmetrics [200], CLEARMOTmetrics

[201], MOTA/MOTP [199]), but since we look for more general metrics, such are application

dependent possibilities are not considered here.

One of the seminal works proposing the MOT performance metric is the Optimal Mass

Transfer (OMAT) metric [202]. It is based on the Wasserstein distance and resolves some

issues of the Hausdor� metric, such as the insensitivity to di�erences in the cardinality of

the estimator as an important performance measure. However, several weaknesses of OMAT,

such as its inability to operate with empty sets, have been addressed and resolved a�erwards

in [203]. �is new metric is called OSPA and has comprehended both the spatial distance

measure and the cardinality estimation. OSPA also provides a framework for penalizing the

appearance of multiple estimates for a single object.�e problem at hand, where two sets are

collections of tracks and not collections of vectors is deeply addressed in [204], proposing

a metric called the ‘OSPA metric for track’ (OSPAT). �is metric further accounts for the

distance violation related to the mislabelling, which is of vital signi�cance in variety ofMOT

applications. A work presented in [205] has gone further solving a few more issues resulting

in ‘OSPA for multiple tracks’ (OSPAMT). It aims at providing the framework such that the

resulting metric, which is the sum of spatial distance and label distance, does not violate

the triangle inequality. Furthermore, it discusses the rede�nition of optimal assignment of

pairs of tracks between two sets that more directly addresses the MOT problem.
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3.5.1 Metric de�nition

Let us de�ne a metric space (X ,D), where function D ∶ X × X → R+ = [0,∞) is a metric

that satis�es the following three axioms for all X ,Y , Z ∈ X

1. Identity: D(X ,Y) = 0 if and only if X = Y .

2. Symmetry: D(X ,Y) = D(Y , X).

3. Triangle inequality: D(X ,Y) ≤ D(X , Z) + D(Z ,Y).

Upon that, the metric should be incorporating physical meaning and employing relevant

MoEs for MOT problem.

3.5.2 Optimal subpattern assignment

Let dc(x , y) ≜min(c, d(x , y)) be the distance between x , y ∈W ,W ∈ RN , cut o� at c > 0.

Let further Πk be the set of permutations on {1, 2, ..., k} for any k ∈ N = {1, 2, ...}. For

1 ≤ p < ∞ and arbitrary subsets X = {x1, ..., xn} and Y = {y1, ..., ym} ofW , where m ≤ n,

m, n ∈ N0, de�ne the following

Dc
p(X ,Y) ≜ (

1

n
(min

π∈Πn

m

∑
i=1

dc(xi , yπ(i))
p + cp(n −m)))

1

p

(3.23)

and if m > n, Dc
p(X ,Y) ≜ Dc

p(Y , X). Furthermore, for p →∞

Dc
∞(X ,Y) ≜

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

minπ∈Πn
max1≤i≤n dc(xi , yπ(i)) if m = n

c if m ≠ n

. (3.24)

�e functionDc
p is called the OSPAmetric of order p and cut o� c. It is interesting to mention

that OSPA satis�es the metric de�nition conditions, and a formal proof is given in [203].

OSPA is shown to eliminate some shortcomings of OMAT as follows:

• Consistency.�e OSPAmetric penalizes relative di�erences in cardinality by introduc-

ing an additive component on top of the average distance.

• Intuitive construction.�e OSPA construction eliminates any element of arbitrariness

by providing an objective and intuitively reasonable criterion for the assignment,

while at the same time observing the metric axioms.

• Geometry dependence. For a given c and p,Dc
p distance does not substantially depend

on the size of the ground truth pattern.

• Cardinality zero.�e OSPAmetric is de�ned between any two point patterns.

• Compatibility with mathematical theory.�e OSPA generates the vague topology on

the space of �nite point patterns on W, which is the standard topology used in point

process theory.
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�e OSPAmetric can be computed e�ciently by using the Hungarian or Munkres methods

for optimal assignment, which is by theoretical complexity just as good as OMAT.

�e combined localization and cardinality error represented by theOSPAmetric conceals

the reason for the large distance, whence the metric may be split up into a localization and

cardinality error

Dc,loc
p (X ,Y) ≜ (

1

n
min
π∈Πn

m

∑
i=1

dc(xi , yπ(i))
p)

1

p

(3.25)

Dc,card
p (X ,Y) ≜ (

1

n
cp(n −m))

1

p

. (3.26)

Although this is not a metric on the space of �nite subsets any more, it can be interpreted

as error measures due to localization only and cardinality only (penalized at maximal

distance).

For object tracking, however, we o�en require a metric on the space of �nite sets of

tracks, where a track has been de�ned as a labeled temporal sequence. For such requirements

the OSPAmetric does not provide the full support, hence its extensions have come to the

focus of consideration for the MOT research. �is extensions need to be directed towards

incorporation of information about track continuity or switching of track labels. However,

since we do not consider the labeling problem speci�cally, we chose original OSPA as an

adequate metric for our applications of interest.
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�emain scienti�c contributions of the thesis

T
he four original contributions of the thesis essentially revolve about probabilistic

methods in estimation and multiple moving objects tracking relying on the models of

uncertainty respecting the pertaining geometry of the system described using Lie groups.

�e �rst and the last contributions of the thesis deal with the problem of multiple moving

objects tracking when the state arises on non-Euclidean manifold [Pub1, Pub7, Pub8]. �e

second and third contributions deal with the problem of estimation in the space of the

special Euclidean group [Pub2, Pub3, Pub4, Pub5], the extended information �lter tailored

for the geometry of matrix Lie groups [Pub6]. �e discussion on contributions follows in

the sequel.

#1 Method for multiple moving objects tracking on the unit sphere based on the vonMises

distribution and the random �nite sets

�e state of the system can generally appear to be non-Euclidean which with all the usual

issues makes the MOT problem even more complex. In particular, most of the MOT ap-

proaches somehow rely on the Bayesian recursion and although there is nothing intrinsic

in this concept, it is a real challenge to develop a computationally tractable solution for

the non-Euclidean geometries. Firstly, it is challenging to solve the Chapman–Kolmogorov

equation (Bayesian prediction) in closed form, such that it results with the same type of

distribution as the beginning one. Secondly, given a distribution associated to a predicted

value and employing a measurement likelihood, it is challenging evaluate the Bayes rule

(Bayesian update) hopefully again obtaining the same type of distribution.

�e vM is an example of directional distribution de�ned on the unit circle and as such

captures the geometry of the state space in a global manner. Given two vMs, the convolution

integral of Bayesian prediction does have an exact solution, but the result is not a vM

distribution. However, the resulting distribution can be well-approximated with another

vM based on circular moment matching. �e update step on the other hand exhibits a vM

distribution without approximations.

�e �rst contribution deals with the MOT task on the unit circle, based on the PHD

�lter which represents an approximation of the optimal multi-object Bayes �lter developed

upon the theory of RFS. We particularly derive a closed-form recursion of the PHD �lter

yielding a �nite vMmixture approximation (vM-PHD) [Pub1]. �e vM-PHD is compared to

the GM-PHD on a synthetic dataset of 100 randomly generated multi-object scenarios and

35
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on the real-world PETS2009 dataset, and achieved respectively a decrease of 10.5% and 2.8%

in the OSPAmetric.

#2 Method for moving object tracking in the space of the special Euclidean group based on

the extended Kalman �lter on Lie groups

Lie groups are natural ambient spaces for description of the dynamics of rigid body me-

chanical systems. A common state space representation of a rigid body object pose is the

one using semi-direct product of the SO group for orientation and the Euclidean trans-

lation vector, yielding the 2D and 3D counterparts denoted SE(2) and SE(3). Although

development of a convenient distribution de�ned directly on an SE group represents a

signi�cant research goal, so far there does not exist such solution suitable for employment

in the standard Bayesian framework. Hence, the global approach used for development of

the �rst contribution is not possible when the underlying state space is SE rather than the

simple unit circle. �e CGD is a distribution with parameters which partially combine both

worlds, including a mean value de�ned on a Lie group and the uncertainty described with

the Gaussian variance in the Euclidean world arising as a tangent space at the mean value.

�e research respecting this contribution begins with the consideration of special orthog-

onal group SO(2) and emulation of the constant acceleration model used within LG-EKF,

and was applied for the problem of speaker tracking with a microphone array [Pub2]. An

important concluding remark of [Pub2] is that application of SO(2) group within LG-EKF

yields the same result as heuristically wrapping the angular variable within the EKF frame-

work which is due to commutativity of this group. Next, we continued with the research

on pose estimation employing the SE(2) group and emulating the constant velocity model

used within LG-EKF suitable for tracking of an omnidirectional motion [Pub3]. By using

this modeling approach we inherently account for the nature of coupling between the

rotation and translation parts of SE group. In accordance, association of uncertainty to

an SE(2) group exhibits more �exibility, i.e., supports the banana shaped forms of un-

certainty contours, rather than only elliptical contours. When compared to the classical

constant velocity KF/EKF in a omnidirectional motion tracking application, the proposed

�lter outperforms the classical approach for a wide range of acceleration change intensities.

Finally, we developed the constant acceleration model within LG-EKF framework for the

full body human motion estimation employing SO(2), SO(3) and SE(3) groups, by relying

on 3D marker position measurements in [Pub4] and inertial measurement units in [Pub5].

In both cases we provided derivation of the LG-EKF recursion for the articulated motion

estimation. Detailed derivation of accelerometer based update is given in supplementary

material [*Pub5]. We compared the performance of the proposed approaches with the Euler

angles-based EKF, and showed that these algorithms achieve better performance in both

simulations and real-world experiments.

#3 Extended information Kalman �lter for state estimation on matrix Lie groups

�e IF is the dual of the classicalKF, and is the subject of the same assumptions underlying the

KF. Whereas the KF is represented by mean and covariance, the IF relies on the parametriza-

tion consisting of an information matrix and an information vector. Probably the simplest
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advantage of the IF is recognized in the update step when number of measurements is larger

than state space size, while the opposite applies for the KF.

Although IFs have been successfully applied in a number of applications facing large

number of measurements, features or demanding a decentralized �lter form, a quite promi-

nent example of an application where the need arises for computational bene�ts of the

IF is SLAM. Additionally, in SLAM applications the need arises for the geometric accuracy

of Lie groups as well. �e earliest SLAM solutions were based on the EKF, which turned

out being inadequate approach due to limitations in maps size, hence EIF soon became

widely accepted for SLAM and reached its zenith with SEIF and ESDSF. However, the pose in

SLAM usually conforms the variables arising on SE(3) groups, and therefore in some recent

solutions it was determined that the approximation in state space geometry represents a

signi�cant cause of error, and the new approaches accounting for this geometry were devel-

oped. However, these SLAM solutions exclusively relied on graph optimization approaches

since no �ltering approaches in the form of IF on Lie groups were available.

As a third contribution, the extended information �lter on matrix Lie groups (LG-EIF)

is proposed [Pub6]. We provided the theoretical development of the LG-EIF recursion

equations and the applicability of the proposed approach is demonstrated on a rigid body

attitude tracking problem with multiple sensors. We particularly compared the proposed LG-

EIF to an EIF based on Euler angles, and analyzed its computational complexity regarding the

multisensor update with respect to the LG-EKF. �e results showed that the proposed �lter

achieves higher performance consistency and smaller error by tracking the state directly on

the Lie group and that it keeps smaller computational complexity of the information form

with respect to large number of measurements.

#4 Method for multiple moving objects tracking on Lie Groups based on the concentrated

Gaussian distribution and the random �nite sets

While the �rst contribution deals with a global approach to MOT problem [Pub1] as a long-

term goal for nearly any non-Euclidean probabilistic application, many MOT applications

deal with objects and measurements whose state space is non-Euclidean and is o�en more

complex than a simple unit circle. Furthermore, both (i) diverse traditional engineering

disciplines (intelligence, surveillance, air tra�c control, resident space objects tracking)

and (ii) some modern engineering �elds (autonomous systems and robotics) deal with

the objects described with their pose including the orientation variables, which instantly

de�nes their non-Euclidean nature. Many of those applications can successfully rely on Lie

group representation of the tracked objects, particularly employing either SE group, and

the �ltering approach presented as part of the second contribution. Now, when put into

MOT context several additional questions arises.

As the �rst part of this contributionwe proposed to use a solution based on the JIPDA�lter,

which was shown to be derived within the RFS framework (as part of the family of JPDA-like

approaches). OurMOT solution uses a modi�ed JIPDA �lter suitable for operation on matrix

Lie groups [Pub7]. In particular, the probabilities of each event of the �lter do not reason

over the space of the variable itself, but rather in the tangent Lie algebra space associated to

the predicted state of some considered object. Only a�er the innovation vector is determined,
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we use the addition operator, which on the group appears as matrix multiplication, and

hence update the considered object state.�e proposed approach is tested using a real-world

dataset collected in urban tra�c scenarios with the multisensor setup consisting of a radar

and a stereo camera mounted on top of a vehicle.�e uncertainties of sensors were modeled

in polar coordinates on Lie Groups, while the states were represented with SE(2) groups.

As the second part of this contribution we proposed a mixture approximation of the

PHD �lter tailored for matrix Lie groups, denoted LG-PHD. It is based on the mixture of

CGDs, and as any PHD �lter, it inherently faces the problem of an ever increasing number

of mixture components. For this purpose, the growth of components must be controlled

by approximating the original mixture with the mixture of a reduced size. As part of the

thesis we propose a reduction approach for mixture of CGDs. �is entails appropriate

reparametrization of CGD parameters to compute the KL divergence, and pick and merge

the CGDmixture components. Since reparametrization of two di�erent components requires

choosing the appropriate tangent space, we also provide an extensive analysis on the choice

thereof. Detailed derivation of the LG-PHD is given in supplementary material [*Pub8]. We

compared the performance of LG-PHD �lters relying on di�erent choices of tangent space

using the OSPAmetric.
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Conclusions and future work

A
utonomous navigation represents a highly disruptive technology that will certainly

change the way people live and behave, and transform the work practices raising the

e�ciency and safety in di�erent types of services. A problem of multiple moving objects

tracking has been the focus of di�erent research studies for several decades and represents an

essential feature in the autonomous navigation task. Still, the ‘tracking research community’

in majority of applications approach this problem by neglecting the non-Euclidean state

space geometry of typically tracked objects, and usually assume the underlying statistics

follow a ‘classical’ Gaussian distribution.

5.1 the main conclusions of the thesis

�is thesis considers the MOT task by emphasizing the problem of the geometry of the

state space associated to tracked objects and employed measurements, especially from the

viewpoint of uncertainty description. �e problem of associating uncertainty to di�erent

non-Euclidean geometries is herein considered in the twofold manner; �rst by using the

statistics which globally captures geometry, and second by using an uncertainty description

which locally accounts for it. However, the estimation approaches capable of accounting for

a global geometry of the non-Euclidean ambient space represent an ultimate goal.

One part of the thesis dealt with the MOT problem when the underlying state and mea-

surement space was a direction/a unit circle.�is approach was based on the vM distribution

which is de�ned directly on the space of interest. Since given two vMs, the convolution

integral of Bayesian prediction can be approximated with another vM, and since Bayesian

update given two vMs results explicitly with another vM, we could proceed with develop-

ment of the MOT solution. �e main challenge when applying this distribution in a MOT

application was to account for many additional statistical appearances that do not exist in an

estimation-only task. �e thesis started by developing a method for directional MOT appli-

cation and derivation of a novel mixture approximation of the PHD �lter tailored speci�cally

for the system on the unit circle (vM-PHD). �e resulting �lter required some principled

approximations to achieve closed-form and ensure numerical stability. �e conclusion

respecting the optimal subpattern assignment metric is that globally accounting for the

circular geometry of the state space can signi�cantly boost accuracy of MOT applications

arising on this type of manifold.

Although the global uncertainty description seems to be attractive, its practical applica-
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bility is o�en very limited. For this purpose, next part of the thesis dealt with the description

of dynamics of a rigid body mechanical system representing its pose with the special Eu-

clidean group (SE) and orientation with the special orthogonal group (SO).�e uncertainty

was associated to these Lie groups relying on the concept of CGD, parametrized with the

mean value on the group and the Gaussian variance in the Euclidean space obtained as a

tangent space at the mean value. As part of this research we studied several models on Lie

groups employed in di�erent applications, including alternatives to Euclidean space based

constant velocity and constant acceleration models but this time arising on Lie groups.

Before proceeding with di�erent motion models, as probably the simplest Lie group

representative, we studied the SO(2) group by analyzing it in the context of the mathemati-

cally grounded framework of LG-EKF. We have shown that the similar result is obtained by

heuristically wrapping the EKF. �is result did not seem unexpected given that SO(2) is

abelian, i.e., commutative, but gives an interesting theoretical perspective on estimation

and tracking with the heuristically modi�ed EKF. On the other hand, it was shown that

employment of SE(2) group in the case when rotational dynamics exists can signi�cantly

boost the quality of estimation. In particular, when both dynamics in translation and ro-

tation induce the system it is more appropriate to use a constant velocity model on SE(2)

than the EKF based constant velocity and turn rate model or the linear KF based constant

velocity model. As part of the thesis we further combined SE(3), SO(2) and SO(3) Lie

group representatives in a novel algorithms for the full body human motion estimation

based on (i) body worn marker position measurements and (ii) inertial measurement units.

�e human joints were described with SO(2) or SO(3) groups depending on the number of

dofs, while the initial joint representing the connection of the body with the world reference

frame was represented with an SE(3). �e motion was assumed to follow the constant

acceleration model within the LG-EKF framework. We evaluated the performance of the

proposed methods on both simulation and real-world motion capture data, comparing it

with the Euler angles-based EKF, and additionally with the commercial so�ware Vicon IK

when dealing with marker measurements. It was shown that the LG-EKF-based solutions

improve estimation for highly dynamic motions and are not a�ected by gimbal lock.

Next, the thesis deals with the problem of estimation on matrix Lie groups when it may

be adequate to apply an information form. Given the advantages of the IF form and dealing

with �ltering on Lie groups, a natural question on casting the LG-EKF in the information

form while keeping its additivity and computational advantages arises. We proposed a

new state estimation method which embedded the LG-EKF with an EIF form for non-linear

systems, thus endowing the �lter with the information forms advantages, while keeping

the accuracy of the LG-EKF for stochastic inference. �e �lter was tested on the problem of

rigid body attitude tracking assuming a constant velocity model with multiple sensors. �e

results have shown that the �lter can accurately track the attitude and exhibits lower RMSE

with respect to the Euler angles based EIF, and keeps the computational advantages of the

update step with respect to the LG-EKF.

Finally, two solutions to the MOT problem for the system arising on Lie groups were

proposed in the thesis. �e �rst one was based on the JIPDA �lter, and modi�ed such that

it is able to operate on Lie groups, hence reasoning about probabilities and the combined

innovation vector in the tangential Lie algebra space. �e proposed MOT approach was
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tested in an advanced driver assistance system application on a real-world dataset collected

using a radar and a stereo camera mounted on top of a vehicle. �e stereo camera estimated

relative displacement of the vehicle, using stereo visual odometry, generating measurements

as cluster centers of optical �ow vectors not conforming to the estimated motion. �e radar

directly reported its measurements to the �lter, thus complementing the stereo camera

measurements. Both radar and stereo camera were modeled as polar sensors, while the

vehicle state resided on SE(2) group, thus enabling more reliable model of uncertainties

supporting the banana-shaped contours, in contrast to elliptical uncertainty contours given

by the ‘classical’ Gaussian distribution.

We have also developed the PHD �lter tailored for the topology of Lie groups (LG-PHD),

and studied the problem of manipulating the size of the mixture of CGD components. For

this purpose, the reduction scheme for mixture of CGD components, including evaluation

of the KL divergence, as well as component picking and merging scheme are considered.

5.2 further research directions

�e thesis includes some theoretical results that could possibly be further applied in di�erent

applications. One such example is the LG-EIFwhich represents an estimation framework that

could be applied for further development of �ltering based SLAM approaches. In particular,

the �ltering based SLAM solutions reached its zenith with appearances of sparsi�cation

approaches applied over some original EIF implementations, resulting with sparse EIF and

exactly sparse delayed-state �lters. Soon a�er, optimization based SLAM solutions prevailed

over the �ltering based solutions since they dominated in performance over a wider range

of applications. �e herein presented LG-EIF could represent a basis for development of a

new �lter-based back-end for solving SLAM.

�e thesis deals with the global estimation approach if it was possible to have a distribu-

tion closed under convolution and Bayes rule. Otherwise, it relies on the approximations

developed upon the concept of concentrated Gaussian distribution. Unfortunately, subtle

global distributions characterized with useful properties, such as an analytic solution to

the Chapman-Kolmogorov convolution integral or closed form under application of the

Bayes rule, are generally uncommon. For this purpose, further research direction in terms

of theoretical aspects may point towards development of some better approximations of Lie

group random variables rather then relying on the concept of CGD.

Considering theMOT applications, it is important to note that the question of an optimal

solution to a complexMOT system is still open, while the key goal of the ongoing research is to

develop near-optimal, scalable and numerically e�cient algorithms. Furthermore, alongside

the traditional �elds whereMOTwas applied, some new large-scale real-world problems such

as space objects tracking and giga-pixel video surveillance system, have come in the research

focus. �ese problems usually include thousands of tracked objects and appearance of some

additional issues that were neglected in this thesis, such as extended objects appearance,

multiple source measurements, coalescence problem, etc. Additionally, although MOT �eld

is experiencing a rapid development relying on a large scienti�c community working on new

algorithms, an interesting contribution to the community would be providing an exhaustive

comparison of di�erent MOT approaches since the research in this area is limited.
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he results presented in this thesis are based on the research carried out during the
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(LAMOR) headed by Professor Ivan Petrović, at the University of Zagreb, Faculty of Electrical

Engineering and Computing, Croatia, as a part of three research projects: including:
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• [2015 − 2016] FER-KIET - Advanced Technologies in Power Plants and Rail Vehicles
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�e thesis includes eight publications written in collaboration with co-authors of the

published papers. �e author’s contribution to each paper consists of the text writing, the

so�ware implementation, performing the required simulations and experiments, and results

analysis and presentation.

Pub1 In the paper entitled Von Mises Mixture PHD Filter the author proposed a novel

mixture approximation of the PHD �lter tailored speci�cally for the topology of an

MOT system on the unit circle relying on the vM distribution, which arises whenever

the state and the sensor measurements are circular. �e author has implemented the

newly proposed algorithm in Matlab and analyzed the performance of the proposed

�lter comparing it with the GM-PHD on a synthetic dataset of 100 randomly generated

multi-object scenarios with respect to the optimal subpattern assignment metric.

Pub2 In the paper entitled On wrapping the Kalman �lter and estimating with the SO(2)

group the author analyzes the LG-EKF for directional tracking of moving object in
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2D assuming the constant angular acceleration model on the Lie groups including

SO(2) (orientation) and Euclidean variables (velocity and acceleration). �e author

particularly shows that LG-EKF �lter derivation based on themathematically grounded

framework of �ltering on Lie groups (including SO(2) group) yields the same result

as heuristically wrapping the angular variables within the EKF framework. �e author

has applied the proposed �lter for a real-world speaker tracking with a microphone

array using the implementation under the Robotic Operating System (ROS), while the

accuracy was evaluated with ground truth data obtained by a motion capture system.

Pub3 In the paper entitledMoving object tracking employing rigid body motion on matrix

Lie groups the author proposed a novel method for estimating rigid body motion by

modeling the object state using special Euclidean group SE(2) and employing the

LG-EKF constant velocity model. �e performance of the �lter is then analyzed using

Matlab implementation on a large number of synthetic trajectories and compared

with (i) the EKF constant velocity and turn rate model and (ii) the linear KF constant

velocity model.

Pub4 In the paper entitled Full Body Human Motion Estimation on Lie Groups Using 3D

Marker PositionMeasurements, in collaborationwith co-authors, the author proposed

a new algorithm for full body human motion estimation using 3D marker position

measurements. For this purpose, the LG-EKF is used for stochastic inference on SO(2),

SO(3) and SE(3) groups. �e motion prediction follows the constant acceleration

model, while the update and observation equations are derived for positional mea-

surements, accounting for the kinematic chain. �e performance of the �lter was

evaluated in both simulation and on real-world motion capture data, comparing it

with the Euler angles based EKF.

Pub5 In the paper entitled Human motion estimation on Lie groups using IMU measure-

ments, in collaboration with co-authors, the author proposed a new algorithm for full

body human motion estimation using inertial measurement units. �e LG-EKF was

employed for an arbitrary chain con�guration consisting of SO(2) or SO(3) joints.

�e motion prediction follows the constant acceleration model, while the update was

derived for gyro and accelerometer measurements, accounting for in�uence of the

kinematic chain. �e performance of the �lter was evaluated in simulations and on

real-world data, comparing it with the Euler angles based EKF.

*Pub5 �ismaterial provides a detailed derivation of accelerometer update within the LG-EKF

framework employing an arbitrary kinematic chain, thus serving as a supplementary

material to [Pub5].

Pub6 In the paper entitled Extended information �lter on matrix Lie groups the author

proposed a new state estimation algorithm called the extended information �lter on

Lie groups (LG-EIF) �e paper presents the theoretical development of the LG-EIF

recursion equations and the applicability of the proposed approach is demonstrated

on a rigid body attitude tracking problem with multiple sensors, comparing the
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proposed LG-EIF to an EIF based on Euler angles, and analyzing its computational

complexity with respect to the LG-EKF.

Pub7 In the paper entitled Radar and stereo vision fusion for multitarget tracking on the

special Euclidean group the author uses a combination of a radar and a stereo vision

system to perform the MOT task, by relying on the measurements and object states

described using Lie groups. �e paper also presents the adaptation of the JIPDA �lter

for MOT application on matrix Lie groups. �e implementation in ROS was used for

testing the algorithm on a real-world dataset collected with the describedmulti-sensor

setup in urban tra�c scenarios.

Pub8 In the paper entitledMixture Reduction on Matrix Lie Groups the author proposes

a mixture reduction approach for CGDs de�ned on matrix Lie groups. �is entails

appropriate reparametrization of CGD parameters to compute the KL divergence, pick

andmerge the mixture components.�e author also describes anMOT �lter, i.e., prob-

ability hypothesis density �lter on matrix Lie groups (LG-PHD) with approximation

based on a �nite mixture of CGDs, and uses it as a study example for the proposed

mixture reduction method.

*Pub8 �is material provides a more detailed overview of derivation of LG-PHD, thus serving

as a supplementary material to [Pub8].
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Von Mises Mixture PHD Filter
Ivan Marković, Member, IEEE, Josip Ćesić, Student Member, IEEE, and Ivan Petrović, Member, IEEE

Abstract—This letter deals with the problem of tracking mul-
tiple targets on the unit circle, a problem that arises whenever
the state and the sensor measurements are circular, i.e. angular-
only, random variables. To tackle this problem, we propose a novel
mixture approximation of the probability hypothesis density filter
based on the von Mises distribution, thus constructing a method
that globally captures the non-Euclidean nature of the state and
the measurement space. We derive a closed-form recursion of the
filter and apply principled approximations where necessary. We
compared the performance of the proposed filter with theGaussian
mixture probability hypothesis density filter on a synthetic dataset
of 100 randomly generated multitarget trajectory examples cor-
rupted with noise and clutter, and on the PETS2009 dataset. We
achieved respectively a decrease of 10.5% and 2.8% in the optimal
subpattern assignement metric (notably 16.9% and 10.8% in the
localization component).
Index Terms—Directional statistics, multitarget tracking, prob-

ability hypothesis density filter, von Mises distribution.

I. INTRODUCTION

M ULTITARGET TRACKING (MTT) is a complex
problem in which, apart from single target tracking

issues like process and sensor noise, false alarms and imperfect
detection, we have to additionally contend with measurement
origin uncertainty, data association and target births and deaths
[1]. The data association-based seminal MTT algorithms such
as multiple hypothesis tracker (MHT) [2] and joint probabilistic
data association (JPDA) filter [3] approach the MTT problem
by considering explicit measurement-to-target association. In
contrast, the formulation based on random finite sets (RFSs)
does not demand explicit associations between measurements
and targets, but rather treats the collections of states and
measurements as RFSs where both the set elements and its
cardinality are random variables. This approach to MTT allows
the casting of foundation for the optimal multitarget Bayes filter
[4]. Within this concept various algorithms for multitarget and
multisensor tracking were developed, such as the probability
hypothesis density (PHD) [4]–[6], cardinalized PHD (CPHD)
[7], [8], and multi-Bernoulli filters [9]–[12].
In this letter, we propose a novel mixture approximation

of the PHD filter tailored specifically for the topology of a
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MTT system on a non-Euclidean geometry, namely the unit
circle. This problem arises whenever the state and the sensor
measurements are circular, i.e. angular-only, variables and
appear when tracking targets with omnidirectional cameras,
microphone arrays and similar omnidirectional sensors [13].
The filter is based on the von Mises (vM) distribution defined
on the unit circle itself, thus yielding a finite mixture approxi-
mation in the vein of [6] and can be theoretically applied to all
the RFS algorithms involving finite mixture implementations.
Previous works that performed estimation on the unit circle
described the state either with a single component [14]–[19]
or a finite mixture [20]–[23]. However, none of the previous
works approach the MTT problem based on the theory of RFS
directly on the unit circle.

II. THE MULTITARGET BAYES FILTER

In an MTT scenario, at time the scene might consist
of targets, , whose number
is a subject to change due to births and deaths. In turn, the tar-
gets give rise to measurements, , whose
origin is unknown; some targets might not have been detected
while some measurements are false alarms. The multitarget ap-
proach of [9] addresses this problem by modeling the states
and measurements as RFSs, which consist of random variables
where the set cardinality is also a random variable. More for-
mally at time

(1)

where and denote spaces of all finite subsets and
, respectively. The final goal of the multitarget Bayes filtering

[9] is to estimate the multitarget posterior probability distribu-
tion via ‘classical’ Bayes filter form

(2)

where is the history of all the measure-
ments, is the multitarget Markov transition den-
sity, is the multisource likelihood function and the
integrals in (2) are set integrals as defined by the multitarget
calculus in [9]. Analytic solution to (2) is derived in [24]–[26]
with generalization to general multiobject densities presented
in [27]. However, often utilized are principled approximations
among which the PHD filter is an example.

A. The Probability Hypothesis Density Filter

The idea of the PHD filter is to propagate the intensity func-
tion , i.e. the first order statistical moment of the multitarget

1070-9908 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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density, in lieu of the multitarget density itself. Al-
though there is information loss due to this step, it is outweighed
by the gain in alleviating the computational intractability of the
multitarget Bayes filter. Function is not a density function,
but is uniquely characterized by the property that given a region
of single-target space the integral yields the

expected number of targets in . Hence, the PHD filter reasons
first on the level of group behavior and then attempts to detect
and track individual targets only as the quantity and quality of
data permits [9].
Given that, the PHD filter operates by evaluating two succes-

sive steps—prediction and correction. The PHD prediction is
governed by the following equation [9]

(3)

where is single-target Markov transition density,
is the probability of survival of existing objects

given their previous state and is the target birth intensity.
In the sequel we shall make assumptions that do not restrict

the proposed method just to such scenarios, but serve only for
the purposes of the clarity of presentation. For example, note
that we have omitted spawning from existing targets, thus (3)
does not represent a general form of the PHD filter prediction,
and we shall also assume that is constant
and independent of the previous target state. In conjunction, the
PHD correction is governed by

(4)

where , is clutter
intensity with its spatial distribution , is
single-source likelihood function and is
probability of object detection given its current state. In the
sequel we shall assume that the spatial distribution of clutter

is uniform over the whole measurement space and that
is constant and independent of the current

object state.
Recursions (3) and (4) are derived under the assumptions that

[6], [9]: (i) each object evolves and generates independent ob-
servations, (ii) clutter is Poisson distributed and independent of
object-originated measurements and (iii) the predicted multi-
target in (2) is distributed according to the mul-
titarget Poisson distribution. The PHD recursion does not admit
closed-form solutions in general [9], however sequential Monte
Carlo (SMC) approximations [5] and the linear Gaussian multi-
target model approach based on Gaussian mixtures (GM) render
the aforementioned problem soluble. In this letter, in the vein of
[6], we derive a closed-form solution for the vM -PHD filter.

III. THE VON MISES PHD FILTER

A. Von Mises Distribution
The vM distribution is a continuous parametric probability

distribution defined on the unit circle, or equivalently on interval
, with pdf given by [28]

(5)

where , denotes the mean angle,
is the concentration parameter and is the modified Bessel
function of the first kind and of order zero [29]. The vM dis-
tribution is often referred as the circular analogue of the normal
distribution on the real line: it is unimodal, symmetric around
mean angle , and the concentration parameter is analogous
to the inverse of the variance.

B. Mathematical Preliminaries
As stated in Section II we are working with angular-onlymea-

surement and are interested in estimating target directions in one
dimension, thus our state space and our measure-
ment space .
Proposition 1: Given two vM densities, and

, the following relations hold:
(a) convolution formula [29]

(6)

where , and
with as the the modified Bessel func-

tion of the first kind and of order . The integral in (6)
does have an exact solution, but the result is not a vM
distribution and would prevent obtaining a closed-form
filter. Therefore, the approximation (6) based on circular
moment matching is used, which has been shown to be
quite satisfactory [14], [15], [29].

(b) product formula

(7)

where

(8)

(9)

The scaling factor that multiplies the vM density in (7)
can be seen as the result of integrating the left-hand side
in , thus similarly to (6) can be approximated as [13]

(10)

The result can be seen as a vM ‘innovation’—similar be-
havior is also exhibited by the Gaussian distribution [6],
[30]. The approximation is only necessary for numerical
stability due to large concentration parameters and un-
like (6), it is not a prerequisite for analytical tractability.
We now turn to stating explicitly the required PHD filter
models.

Assumption 1: The single-target Markov transition density
and the single-source sensor likelihood functions are both de-
fined by vM densities

(11)
(12)

where and are concentration parameters modeling
process and measurement noise. The given transition density
essentially models a Brownian-type motion on the circle.
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Assumption 2: The birth intensity function is a von Mises
mixture of the form

(13)

The number of the newly birthed targets is governed by a
Poisson distribution with the corresponding intensity .
Assumption 3: The false alarm rate is governed by a Poisson

distribution with the corresponding intensity , while the spa-
tial distribution of false alarms is considered to be uniform over
the whole measurement space , thus .

C. The Von Mises Mixture PHD Filter Recursion
At his point we finally have all the necessary ingredients to

derive the proposed vM -PHD filter.
Proposition 2: Given the Assumptions 1–2 and that the pos-

terior intensity at time is a vM mixture

(14)

the predicted intensity is also a vM mixture

(15)
where . What basically happens
at the prediction stage is that the birth intensity function is added
to the posterior vM mixture, which is in the second sum-
mation predicted to time .
The predicted number of objects can be calculated by taking

the integral of (15) over the whole state space

(16)

Proposition 3: Given the Assumptions 1–3 and that the pre-
dicted intensity at time is a vM mixture

(17)

where , the posterior intensity at time
is also a vM mixture of the following form

(18)

where is the number of measurements and

(19)

and and are given by (8) and (9) with and
in lieu of and . The first summa-

tion accounts for the undetected components, while the double
summation term accounts for the crossproduct of all the pre-
dicted components and the obtained measurements.
By taking the integral of (18) over the whole state space

we can calculate the posterior number of targets in the scene

(20)

At this stage, as in the case of the GM-PHD filter [6], at the
end of each iteration we will have a vM mixture representing
the intensity function of the posterior multitarget distribution.
What remains is (i) to extract the estimated states of the tracked
targets and (ii) to handle the geometrically growing number of
components after each correction step (18) in order to keep the
computational tractability.

D. PHD Mixture Component Reduction and State Estimation
The component reduction needs to be computationally cheap

since it will be executed after each iteration step. In [31] we
have analyzed and compared reduction algorithms for the ex-
ponential family of distributions by using the vM distribution
as a study example. Although there were several more accurate
reduction techniques, the reduction based on West’s algorithm
[32] was computationally the least intensive.
For the distance measure in the present letter we use the sym-

metrized scaled Kullback-Leibler (KL) distance [33], which for
two vM weighted components, and

, is given by

(21)

where is the ‘standard’ KL distance [34] be-
tween two vM densities [31]

(22)

The West’s algorithm works on the principle of ordering the
mixture components according to their weights and then finds
the closest component to the first one according to the chosen
distance measure. Then, the closest pair of components is
merged and the resulting one is inserted back into the mixture
per its respective weight. The merged component
has the following parameters optimal in the KL sense

(23)

where . The procedure is repeated until the
desired, application dependent, number of components is
reached. For more details regarding the reduction algorithm and
component merging method please confer [31].
In [6] for the GM-PHD filter it was proposed to estimate the

states of the tracked targets by picking components with
largest weights. We follow the same train of though except that
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Fig. 1. Matlab’s boxplot of cumulative OSPA over 100 multitarget trajectories.
On average the vM -PHD outperforms the GM-PHD by 10.5% in total OSPA
(left), out of which 16.9% in the localization component (middle), and 2.6% in
the cardinality component (right).

before the picking we reduce the PHD mixture with the West’s
algorithm to , where is a scaling factor. Empirically
we have noticed that this lowers the chance of loosing peaks
belonging to tracked targets. Note that the mixture with
components is used only for target state estimation, while the
mixture with components is utilized in the future
filtering steps. Furthermore, special attention was given to nu-
merical issues, since the function for quickly
reaches the maximum value that can be stored in double preci-
sion floating point representation. Hence, we have implemented
numerically stable evaluations of the [35] and the
Bessel function ratio [36], while the inverse was
numerically calculated [37].

IV. EXPERIMENTS

In order to validate and test the performance of the vM -PHD
filter, we have devised a multitarget simulation scenario with
angle-only measurements. The targets moved on the unit circle
with constant angular velocity of 1 deg/s to which zero-mean
Gaussian noise with standard deviation of 0.25 deg/s was se-
quentially added. Initial number of objects in the scene was set
to three, the probability of survival was 0.99, while the Poisson
rate of births was 0.05. Each object had 0.95 probability of being
detected by the sensor corrupted with zero-mean vM noise and a
concentration parameter corresponding to a standard deviation
of 1.5 deg [15]. False alarms were uniformly distributed with
a Poisson rate of 1.6 false alarms per scan. We generated 100
examples of such a multitarget scenario and compared the per-
formance of the vM -PHD with the GM-PHD filter (taking into
account the state circularity). The filters were also compared
on the PETS2009 dataset [38], [39] by tracking the azimuth of
the backprojected world coordinates. As a performance metric
we used the optimal subpattern asignement (OSPA) metric [40],
which was developed with the goal of being a consistent metric
for performance evaluation of multitarget filters.
In Fig. 1 we present performance comparison of the vM -PHD

and GM-PHD filter, where for each of the 100 trajectories a cu-
mulative OSPA was calculated and its statistics is depicted. The
vM -PHDnoticably outperforms theGM-PHDfilter in the local-
ization component of the OSPA (even with small measurement
noise), while in cardinality the difference is less pronounced. In
Fig. 2 localization and cardinality estimation are depicted for an
example of the vM -PHD where in total 7 targets were success-
fully tracked. A time instant from this example with correctly
estimated targets even when the number of false alarms (5) is
larger than the number of objects (4) is depicted in Fig. 3(a). A

Fig. 2. Results for a scenario with 7 targets. In the upper figure black dashed
lines are true trajectories with black circles and squares as trajectory starting
and terminating points. Green circles are estimated states, while red pluses are
false alarms. In the lower figure the black and green lines represent the true and
the estimated number of objects. The Matlab source code and a supplementary
MP4 format movie clip are available at http://ieeexplore.ieee.org.

Fig. 3. The vM mixture corrected PHDs (blue solid line) after reduction to 5
components for state extraction along with false alarms (red vertical lines), four
targets (black vertical lines) and four measurements (green vertical lines): (a)

, (b) , .

more rare example where false alarms were erroneously chosen
as target estimates due to closely spaced targets and several con-
secutive false alarms (around ) is shown in Fig. 3(b). On
the PETS2009 dataset the total OSPA was reduced 2.8%, out of
which 10.8% in the localization, while cardinality component
was equal.

V. CONCLUSION
In this letter we have proposed a novel mixture approximation

of the PHD filter tailored specifically for multitarget tracking
system on the unit circle. We have achieved this by modeling
the state and measurements as circular random variables whose
uncertainty was described by the von Mises distribution. The
resulting filter required some principled approximations to
achieve closed-form and ensure numerical stability. Using the
OSPA metric we compared the performance of the vM-PHD to
the GM-PHD on 100 multitarget trajectories and the PETS2009
dataset, achieving respectively on average a decrease in the
OSPA metric by 10.5% and 2.8% (notably 16.9% and 10.8%
in the localization component). The vM-PHD has potential
applications in all the multitarget tracking scenarios working
with circular state and measurement representations.
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Abstract—This paper analyzes directional tracking in 2D with
the extended Kalman filter on Lie groups (LG-EKF). The study
stems from the problem of tracking objects moving in 2D
Euclidean space, with the observer measuring direction only,
thus rendering the measurement space and object position on
the circle—a non-Euclidean geometry. The problem is further
inconvenienced if we need to include higher-order dynamics in the
state space, like angular velocity which is a Euclidean variables.
The LG-EKF offers a solution to this issue by modeling the state
space as a Lie group or combination thereof, e.g., SO(2) or its
combinations with Rn. In the present paper, we first derive the
LG-EKF on SO(2) and subsequently show that this derivation,
based on the mathematically grounded framework of filtering
on Lie groups, yields the same result as heuristically wrapping
the angular variable within the EKF framework. This result
applies only to the SO(2) and SO(2)× Rn LG-EKFs and is not
intended to be extended to other Lie groups or combinations
thereof. In the end, we showcase the SO(2) × R2 LG-EKF, as
an example of a constant angular acceleration model, on the
problem of speaker tracking with a microphone array for which
real-world experiments are conducted and accuracy is evaluated
with ground truth data obtained by a motion capture system.

I. INTRODUCTION

In moving object tracking, it is not uncommon to work
with sensors that can provide only direction to the object in
question. The measurement and estimation state space have
a specific geometry of their own, which is different from the
geometry of the true trajectory space. The problem is challeng-
ing, because, although the motion of the object resides either
in 3D or 2D Euclidean space, corresponding measurements
reside either on the sphere or the circle, respectively. Namely,
if we are measuring and estimating only the direction to the
object in 2D, i.e., the azimuth, the state and measurements will
bear the non-Euclidean properties of angles. However, if we
are to extend the state space so that it includes both the angular
velocity and acceleration (which are Euclidean variables), so
that we can apply a higher-order dynamic motion model, we
are faced with constructing a ‘hybrid’ state space consisting
of both the non-Euclidean and Euclidean variables.

There exist Bayesian methods based on the principle of
assumed density filtering with directional distributions on
the circle, namely the von Mises distribution, the wrapped
Gaussian distribution and the Bingham distribution (which
actually models variables with 180◦ symmetry), that capture
intrinsically the non-Euclidean nature of angular random vari-
ables [1]–[6]. The benefit of these approaches is that they
take globally into account the geometry of the state space.

For example, in the case of the von Mises distribution it has
been shown that the filter outperforms the naive Kalman filter,
which treats angles like regular Euclidean variables, and the
modified Kalman filter, which takes into account the nature
of angles by wrapping them on the circle [4], [7]. However,
extending the state space with additional variables of different
geometry, e.g., to analytically model the azimuth with the
von Mises distribution and the range or the angular velocity
with the Gaussian distribution and capture correctly the cross-
correlations, remains a challenge.

The SO(2) group is a set of orthogonal matrices with deter-
minant one, whose elements geometrically represent rotations.
This makes it an interesting candidate for estimation with
angular variables. Furthermore, a filter could be derived not
just for SO(2), but also for combinations of SO(2) with R.
This would enable us to create the aforementioned ‘hybrid’
state vector that would join both non-Euclidean and Euclidean
variables within the same filter and enable a seamless uti-
lization of higher-order system models with constant angular
velocity or acceleration. An extended Kalman filter on matrix
Lie groups was recently proposed in [8]. It provides us with a
mathematical framework for solving the ‘hybrid’ state space
problem. Indeed, the filter can be applied directly for any
state that is a combination of Lie groups, since a Cartesian
product of Lie groups is a Lie group [8]. However, it should
be noted that the LG-EKF is a local approach, in the sense that
it does not take globally the geometry of the state space into
account, but locally captures the geometry of state space via
exponential mapping. Another approach would be to model the
whole state space as a Euclidean vector within the ‘classical’
Kalman filter framework, and wrap the operations involving
angular variables. Indeed, this was performed in [4] to modify
the unscented Kalman filter for angular state estimation, in [9]
to take idiosyncrasies of directional statistics when using polar
or spherical coordinates in the cubature Kalman filter, and in
[7] to modify the Gaussian mixture probabilistic hypothesis
density filter for multitarget tracking on a circle.

In this paper we propose to analyze the LG-EKF for
directional tracking of moving objects in 2D. First, we look
into deriving the LG-EKF on the SO(2), which also serves
as a gentle introduction to the subject matter since the LG-
EKF introduces non-trivial notation. Second, we model the
directional moving object tracking in 2D as an estimation
problem on the Lie group composed of the direct product
SO(2) × R2, i.e., a group that represents the moving object
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azimuth, angular velocity and angular acceleration. For the
motion model, we use the constant angular acceleration model.
In the end, we show that the SO(2) LG-EKF filter derivation
based on the mathematically grounded framework of filtering
on Lie groups yields the same result as heuristically wrapping
the angular variables within the extended Kalman filter (EKF)
framework. Since for the case of Rn the LG-EKF evaluates
to EKF [8], this results also extends to SO(2) × R2 LG-
EKF and an R3 EKF when wrapping the angular component.
Please note that this result applies only to the SO(2) filter
and is not intended to be extended to other Lie groups or
combinations thereof. Indeed, given that SO(2) is abelian,
i.e., commutative, the result does not seem unexpected, but
we assert that it gives interesting theoretical perspective on
estimation and tracking with the heuristically modified EKF.
Before we proceed with the filter derivation, we introduce
some necessary formal definitions and operators for working
with matrix Lie groups.

II. MATHEMATICAL BACKGROUND

A. Wrapping the Kalman filter

In this section we shall assume that wrapping operation
amounts to enforcing the angular variable to be in the [−π, π]
interval, and we designate this operation as follows

wπ(x) = mod(x+ π, 2π)− π. (1)

Note that when computing the difference between two angular
variables, the wrapping effect of the circle should be taken into
account, e.g., the difference between 178◦ and −178◦ should
evaluate to 4◦. This is also achieved by (1) when the difference
is given as the argument, i.e., difference between two angles
x and y is computed as wπ(x− y).

Let us assume the following system model

xk+1|k = fk(xk, uk) + nk, nk ∼ N (0, Q) (2)

where xk is the system state, uk is the control input, nk
is process noise, and fk( · ) is the non-linear system state
equation. In the EKF the idiosyncrasies of angular data appear
most prominently in the correction step when calculating the
innovation, which should be computed as

xk+1 = xk+1|k +Kk wπ(zk − hk(xk+1|k)), (3)

where Kk is the Kalman gain, zk is the measurement, and
hk( · ) is the non-linear measurement equation.

To demonstrate this, let us take a simple example of
having an identity measurement equation, xk+1|k = 358◦,
zk = 2◦ and Kk = 0.5. If we would not wrap the innovation,
the updated state would yield a clearly incorrect result of
xk+1 = 180◦ inlieu of xk+1 = 360◦. For practical purposes,
after correction and prediction the system state can be checked
to the required interval by computing xk+1 ← wπ(xk+1). In
the sequel when we refer to the modified Kalman filter, it
entails treating angular variables with the previously intro-
duced operation. Furthermore, we assume that the reader is
familiar with EKF equations, which we will not present or
derive explicitly in order to keep the brevity of the paper.

B. Lie Groups
A Lie group G is a group which is also a smooth manifold

and the group composition and inverse are smooth functions
on the manifold G. A manifold is an object that looks locally
like a piece of Rn and G is ‘smooth’ in the sense that is
has a tangent space, of the appropriate dimension, at each
point. Take for example the circle, a curve in R2 which looks
locally (but not globally) like R1. For a matrix Lie group the
composition and inverse are simply matrix multiplication and
inversion, with the identity element In×n [10].

A Lie Algebra g is an open neighborhood of 0n×n in
the tangent space of G at the identity In×n. The matrix
exponential expG and matrix logarithm logG establish a local
diffeomorphism between Lie groups and Lie algebras [8]

expG : g→ G, logG : G→ g. (4)

The Lie Algebra g associated to a p-dimensional matrix Lie
group G ⊂ Rn×n is a p-dimensional vector space [10]. A
linear isomorphism between g and Rp is given by

[·]∨G : g→ Rp, [·]∧G : Rp → g. (5)

Lie Groups are not necessarily commutative. The following
two operators capture this property
• the adjoint representation of G on Rp

AdG : AdG(X)x =
[
X[x]∧GX

−1]∨
G (6)

• the adjoint representation of Rp on Rp

adG : adG(x)y = [[x]∧G [y]∧G − [y]∧G [x]∧G ]
∨
G (7)

where x, y ∈ Rp. In the sequel, these operators, the exponen-
tial and logarithmic mapping are given concrete form for the
pertinent Lie groups.

C. The SO(2) group
In this example our system state (azimuth of the tracked

object) is modeled as the group G = SO(2), i.e., as the rotation
matrix Xk = Rθk

Rθk =

[
cos θk − sin θk
sin θk cos θk

]
. (8)

The composition and inverse in SO(2) are simply evaluated
as X1X2 = R1R2, X

−1 = RT. For this case the associated
Lie algebra which bridges Xk ∈ G and xk = θk ∈ R1 is
g = so(2), and the following holds

[θk]∧G =

[
0 −θk
θk 0

]
. (9)

The link between SO(2) and so(2) is given by the exponential
and logarithmic mapping

expG([θk]∧G) = Rθk : so(2)→ SO(2), (10)
logG(Rθk) = [θk]∧G : SO(2)→ so(2). (11)

Due to the commutativity of SO(2), the adjoint operators are

adG(θk) = 0, AdG (expG ([θk]∧G)) = 1. (12)

These properties greatly simplify the LG-EKG formulae for
the SO(2) group which will become evident in the sequel.



D. The SO(2)× R2 group

In this section we propose to model the system state as the
Cartesian product of groups G = SO(2)×R2. This is a slight
abuse of notation intended for clarity, since when talking about
R within the group or algebra, we are actually referring to the
group of algebra representation of R, for which the explicit
representation is given further in the paper. The moving object
state Xk will represent the azimuth of the target as a rotation
matrix Rθk ∈ SO(2), angular velocity as a real number ωk ∈
R, and angular acceleration also as a real number αk ∈ R.
The system state Xk can be symbolically represented as

Xk =




Rk [
1 ωk
0 1

]

[
1 αk
0 1

]




=



Rk
ωk
αk




G

. (13)

Note that composition and inverse on such a group is evaluated
as follows

X1X2 =




R1R2

ω1 + ω2

α1 + α2




G

, X−1 =



RT

−ω
−α




G

. (14)

The associated Lie algebra is g = so(2)×R2 which bridges
the state on the Lie group Xk ∈ G with the vector xk =
[θk ωk αk]T ∈ R3, and the following holds

[xk]∧G =




[θk]∧SO(2)

[ωk]∧R
[αk]∧R


 =




[θk]∧SO(2)

ωk
αk




g

,

(15)

where [θk]∧SO(2) is given by (9), while

[ωk]∧R =

[
0 ωk
0 0

]
and [αk]∧R =

[
0 αk
0 0

]
. (16)

The link between the group G and the associated algebra g is
defined by the exponential mapping

expG ([xk]∧G) =




expSO(2)

(
[θk]∧SO(2)

)

ωk
αk




G

=



Rk
ωk
αk




G

,

(17)

and logarithmic mapping

logG (Xk) =




logSO(2) (Rk)

ωk
αk




g

=




[θk]∧SO(2)

ωk
αk




g

. (18)

Furthermore, since SO(2) and R are abelian and the Cartesian
product of abelian groups is abelian, the adjoint operators are
again trivial

adG(xk) = 03×3, AdG (expG ([xk]∧G)) = I3×3. (19)

III. THE EKF ON MATRIX LIE GROUPS

As in the case of classical Kalman filtering, we need to
begin by defining a motion model by which we will calculate
the prediction. For general filtering on matrix Lie groups, the
system model is defined by the following equation [8]

Xk+1 = f(Xk, uk, nk) = Xk expG

(
[Ω̂k + nk]∧G

)
, (20)

where Xk ∈ G is the system state at time k, G is a
p-dimensional Lie Group, nk ∼ NRp(0p×1, Qk) is white
Gaussian noise and Ω̂k = Ω(Xk, uk) : G × Rw → Rp is
the system state equation which describes how the model
acts on the state and control input in order to calculate the
displacement.

Note that the function of Ω̂k is to take the system state
which resides on G and the control input which resides on Rw,
calculate the displacement by applying the system model, and
then transfer the displacement to the vector space Rp where
additive noise is added. This displacement is then transferred
to the associated Lie algebra by the [ . ]∧G operator and then
exponentially mapped back to the Lie group to be added by
way of composition to the system state Xk. Given that, a
question arises how to implement a specific system model,
since in LG-EKF it operates through a displacement? That is,
how to construct Ω̂k from fk(xk, uk)? The first step would be
to write the system equation as fk(xk, uk) = xk + f̂k(xk, uk)
which can then be practically ‘translated’ to appropriate Ω̂k.
Note that generality is not lost here since −xk can be included
within f̂k(xk, uk),

The prediction step of the LG-EKF is governed by the
following formulae [8]

µk+1|k = µk expG

(
[Ω̂k]∧G

)
(21)

Pk+1|k = FkPkFTk + ΦG(Ω̂k)QkΦG(Ω̂k)T , (22)

where µk ∈ G is the estimated mean value of the system state
Xk, Pk ∈ Rp×p is the estimated covariance matrix, while other
terms are non-trivially calculated matrices

Fk = AdG

(
expG

(
[−Ω̂k]∧G

))
+ ΦG(Ω̂k)Ck, (23)

ΦG(ν) =

∞∑

m=0

(−1)m

(m+ 1)!
adG(ν)m, ν ∈ Rp, (24)

Ck =
∂

∂ε
Ω (µk expG ([ε]∧G) , uk−1)|ε=0 . (25)

The parameter ε ∈ Rp can be seen as a Lie algebraic error
which is approximated as being distributed according to a
classical Euclidean Gaussian distribution ε ∼ NRp(0p×1, Pk).
It is interesting to note that the mean value µk resides on
the Lie group G, while the covariance matrix Pk describes
uncertainty in Rp. Although at first this appears peculiar, it
is a consequence of modeling the uncertainty of states on
Lie groups by the assumption of the concentrated Gaussian
distribution Xk ∼ G(µk, Pk). In essence, the state resides on
the group, but its uncertainty resides on the tangential vector
space. For a more formal introduction of this concept, please
confer [8].



The discrete measurement model on the matrix Lie Group
is given as follows

zk+1 = h(Xk+1) expG′ ([mk+1]∧G′) , (26)

where zk+1 ∈ G′, h : G → G′, and mk+1 ∼ NRq (0q×1, Rk)
is white Gaussian noise. Note that here a different group G′ is
used since the system state and measurements might belong to
different groups. Having the measurement model defined, we
can proceed now to the update step which will first constitute
the calculation of the Kalman gain

Kk+1 = Pk+1|kHTk+1

(
Hk+1Pk+1|kHTk+1 +Rk+1

)−1
,
(27)

where the measurement matrix Hk+1 is calculated via

Hk+1 =
∂

∂ε

[
logG′

(
h(µk+1|k)−1

h
(
µk+1|k expG ([ε]∧G)

))]∨
G |ε=0

.
(28)

Furthermore, the innovation vector multiplied by Kalman gain
is computed as

νk+1 = Kk+1

[
logG′

(
h(µk+1|k)−1zk+1

)]∨
G′ . (29)

Finally, the update of the system state and covariance matrix
can be evaluated as [8]

µk+1 = µk+1|k expG ([νk+1]∧G) (30)

Pk+1 = ΦG(νk+1)
(
Ip×p −Kk+1Hk+1

)
Pk+1|kΦG(νk+1)T .

(31)

We can notice similarities between the LG-EKF and EKF
equations and, indeed, when G and G′ are Euclidean spaces the
LG-EKF reduces to EKF [8]. Furthermore, due to the results
(12) and (19), matrices Fk and ΦG(ν) for both SO(2) and
SO(2)× R2 evaluate to

ΦG(ν) = I, Fk = I + Ck. (32)

In the sequel we derive the LG-EKF for the groups which
we propose to utilize for tracking of moving objects with
angular measurements and show that in this special case the
LG-EKF reduces to the heuristically modified EKF.

A. LG-EKF on SO(2)

In this section we derive the LG-EKF filter for state esti-
mation on G = SO(2). For this group, mathematically dense
LG-EKF equations are simplified and serve well to intuitively
grasp the mechanics of the filter.

1) Prediction: Let us take two examples of system models.
In the first we assume a stationary process, i.e., in the
prediction the mean value will remain unchanged except for
the uncertainty that is added through the process noise (this is
similar to the von Mises filter [1])

xk+1|k = xk + nk, nk ∼ NR1(0, σ2
Q). (33)

This yields the LG-EKF system model Ω(Xk) = 0 with the
same process noise nk, which when inserted in (21) will

evaluate through the exponential as an identity matrix, thus
leaving the mean value unperturbed.

In order to compute the prediction of the covariance matrix
via (22), given the result in (32), we only need to determine
Ck. In this case the Lie algebraic error is ε ∈ R1 and due to
the system model the matrix Ck evaluates to zero, thus leaving
Fk = 1, and the prediction equations are

µk+1|k = µk, Pk+1|k = Pk +Qk. (34)

As we can see, these are the same formulae that an EKF
prediction would yield with (33) as the system model.

As the second example, we take the non-linear system [4]
where the robot rotary joint angle was estimated

xk+1|k = xk + c1 sin(xk) + c2 + nk, (35)

where second and third term account for gravity and velocity,
while the final term is again one-dimensional white Gaussian
noise. This yields the following LG-EKF system model

Ω(Xk) = c1 sin([log(Xk)]∨G) + c2. (36)

Note that [log(Xk)]∨G is necessary to bring the rotation matrix
with parameter µk to a scalar angle in R1. The Lie algebraic
error is again ε ∈ R1 and given the system model (36) matrix
Ck evaluates to

Ck =
∂

∂ε
Ω

([
cosµk − sinµk
sinµk cosµk

] [
cos ε − sin ε
sin ε cos ε

])

|ε=0

=
∂

∂ε
Ω

([
cos(µk + ε) − sin(µk + ε)
sin(µk + ε) cos(µk + ε)

])

|ε=0

=
∂

∂ε
(c1 sin(µk + ε) + c2)|ε=0 = c1 cosµk (37)

This means that Fk = 1 + c1 cosµk, and that the LG-EKF
prediction equations are

µk+1|k = µk expG ([c1 sin([log(Xk)]∨G) + c2]∧G)

Pk+1|k = Pk(1 + c1 cosµk)2 +Qk. (38)

We can see that the covariance prediction formula is identical
to the EKF covariance prediction.

More generally, to demonstrate the equivalence of the
modified EKF and SO(2) LG-EKF prediction steps we need
to show that Fk = 1 + Ck is equal to

Fk =
∂fk(xk, uk)

∂xk |xk=µk

, (39)

where Fk is the state transition matrix, i.e., the EKF system
state Jacobian of (2). By inspecting (37) we can notice that
for SO(2) the argument within Ω will always be the sum of
the mean value and the Lie algebraic error µk + ε. This gives

Fk = 1 +
∂

∂ε
Ω(expG([µk + ε]∧G), uk)|ε=0

= 1 +
∂

∂ε
f̂k(µk + ε, uk)|ε=0

= 1 +
∂

∂ε
(fk(µk + ε, uk)− (µk + εθ))|ε=0

=
∂fk(µk + ε, uk)

∂ε |ε=0
=
∂fk(ξk, uk)

∂ξk |ξk=µk

, (40)



where variable substitution was performed in the last step:
ξk ← µk + ε, ∂ξk ← ∂ε. In the end Fk evaluates to the EKF
Jacobian Fk when the underlying group is SO(2).

2) Correction: Since we are measuring angles, we define
the measurement Lie group as G′ = SO(2) and the measure-
ment function h : SO(2)→ SO(2)

h(Xk+1) = Rk+1, mk+1 ∼ NR1(0, σ2
R), (41)

which is trivial since the measurement and state group are the
same, while the measurement noise is a one-dimensional white
Gaussian noise. As in the prediction step, the associated Lie
algebra is g′ = so(2).

To compute the correction step, we need to evaluate (28)
for the LG-EKF on SO(2). The composition of the predicted
mean µk+1|k and the Lie algebraic error yields

h(µk+1|k expSO(2)([ε]
∧
SO(2))) =

[
cos(µk+1|k + ε) − sin(µk+1|k + ε)
sin(µk+1|k + ε) cos(µk+1|k + ε)

]
.

(42)

Since h(µk+1|k)−1 is the transpose of the corresponding
rotation matrix, by inserting these results in (28) we can
calculate the measurement matrix

Hk+1 =
∂

∂ε

([
logG

([
cos ε − sin ε
sin ε cos ε

])]∨

G

)

|ε=0

= 1 (43)

Given this results it is straightforward to see that Kalman
gain and covariance update equation of SO(2) LG-EKF are
equal to the EKF equations. The state correction equations
yield the same result, except that the LG-EKF takes wrapping
into account by composition of rotation matrices, while the
modified EKF computes everything in R1 and would need to
wrap the corrected state with wπ( · ).

B. LG-EKF on SO(2)× R2

In this section we derive the LG-EKF filter for state estimation
on G = SO(2) × R2. Given the demonstrated equality of
the SO(2) LG-EKF and the modified EKF and that LG-EKF
reduces to EKF for Euclidean spaces, it is intuitive to expect
that this result would extend to groups derived by composing
SO(2) with Euclidean spaces. In the sequel we illustrate this
property by deriving a constant angular acceleration model for
tracking with angle-only measurements.

1) Prediction: Given the state representation, we can now
define the system model. For this purpose, we use the constant
angular acceleration model Ω̂k = Ω(Xk) : G→ R3

Ω(Xk) =



Tωk + 1

2T
2αk

Tαk
0


 , nk ∼ NR3(0, Q). (44)

Note that the displacement due to motion is calculated first
in R3 and then according to (21) transferred to Lie algebra
g, exponentially mapped to the group G and then by way of
composition added to the system state Xk.

In this case, the Lie algebraic error is ε = [εθ εω εα]T ∈ R3,
hence the composition of the mean value µk and ε yields

µk expG([ε]∧G) =




RkRε
ωk + εω
αk + εα




G

, (45)

with RkRε has the same for as the matrix product in (42). By
applying the motion model (44) on this results we get

Ω(µk expG([ε]∧G)) =



T (ω + εω) + 1

2T
2(α+ εα)

T (α+ εα)
0


 . (46)

To compute the prediction step for the covariance matrix, we
need to calculate matrix Fk. Since adjoint operators are trivial,
using (46) we calculate

Fk = I + Ck =




1 T 1
2T

2

0 1 T
0 0 1


 . (47)

We can see that the matrix Fk evaluates to the well known
transition matrix of the classical EKF constant acceleration
motion model.

2) Correction: Since here we track moving objects by
measuring angles, we define the measurement Lie group G′ =
SO(2) and the measurement function h : SO(2)×R2 → SO(2)

h(Xk+1) = Rk+1, mk+1 ∼ NR1(0, σ2
R) (48)

which in this case simply extracts the rotation matrix Rk+1

from Xk+1. Calculation of the matrix Hk+1 is the same as in
(28), except that ε is now a vector

Hk+1 =
∂

∂ε
(εθ)|ε=0 = [1 0 0]. (49)

Again, the same result as we would expect for the EKF
measurement matrix.

IV. EXPERIMENTS

As a practical example of an application of the studied filter
we apply this on the problem of speaker tracking with a micro-
phone array and in the present paper we test the SO(2)×R2

LG-EKF on real-world data. For the sound acquisition we
used the ManyEars framework consisting of an 8-channel
USB sound card [11], while for obtaining measurements we
used the beamforming algorithm for speaker localization [12]
implemented under the Robot Operating Systems [13] within
the same framework. The maximum of the beamforming
energy was picked as the speaker measurement.

The experiments were conducted in a 120 m2 room with
parquet wooden flooring and one side covered with windows.
The speaker was simulated by a loudspeaker playing an
excerpt from Nature’s podcast Audiophile in English. The area
in which the loudspeaker moved was covered by a motion
capture system, which was used to generate ground truth data.
In order to handle outliers, we used validation gating; namely,
the innovation matrix Sk+1 = Hk+1Pk+1|kHT

k+1 +Rk+1 was
calculated and we applied the standard χ2–test

νk+1S
−1
k+1ν

T
k+1 < γ, (50)
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Fig. 1: Performance of the LG-EKF on SO(2)×R2 when tracking a moving
speaker. The solid black line is the ground truth as given by the motion capture
system, the green solid line is the estimated state of the speaker, while the
gray circles represent measurements, i.e. outputs of the beamformer. State
RMSE is given in the title of each of the subfigures.

where the threshold γ was determined from the inverse χ2
p

cumulative distribution at a significance level a = 0.95 and
p degrees-of-freedom. Figure 1 shows the experiment results
and corroborates that the filter successfully manages to track
the moving speaker in spite of the number of outliers. Note
that the modified EKF would yield the same results, except
that in the case of the LG-EKF the system state was defined
on SO(2) × R2 and the idiosyncrasies of angular data were
intrinsically taken care of.

V. CONCLUSION

In this paper we have studied directional moving object
tracking in 2D based on the extended Kalman filter on matrix
Lie groups. First, we have proposed to analyze this estimation

problem by modeling the state to reside on the SO(2) group.
Subsequently, we have shown that the SO(2) filter derivation
based on the mathematically grounded framework of filtering
on Lie groups yields evaluates to heuristically wrapping the
extended Kalman filter. We emphasize that this result applies
only to the SO(2) filter and is not intended to be extended
to other Lie groups or combinations thereof. Second, we have
derived the constant angular velocity SO(2)×R2 filter, where
the system state consisted of azimuth, angular velocity and
angular acceleration. For this filter we showcased a real-world
experiment of a speaker tracking problem with a microphone
array by assessing the accuracy using the ground truth obtained
by a motion capture system.
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IEEE Signal Processing Letters, vol. 22, no. 12, pp. 2229–2233, 2015.

[8] G. Bourmaud, R. Mégret, M. Arnaudon, and A. Giremus, “Continuous-
discrete extended Kalman filter on matrix Lie groups using concentrated
Gaussian distributions,” Journal of Mathematical Imaging and Vision,
vol. 51, no. 1, pp. 209–228, 2015.

[9] D. F. Crouse, “Cubature / Unscented / Sigma Point Kalman Filtering
with Angular Measurement Models,” in International Conference on
Information Fusion, 2015, pp. 1550–1557.

[10] G. S. Chirikjian, Stochastic Models, Information Theory, and Lie
Groups, Volume 2: Analytic Methods and Modern Applications.
Springer, 2012.

[11] F. Grondin, D. Létourneau, F. Ferland, V. Rousseau, and F. Michaud,
“The ManyEars open framework,” Autonomous Robots, vol. 34, no. 3,
pp. 217–232, 2013.

[12] J.-M. Valin, F. Michaud, and J. Rouat, “Robust localization and tracking
of simultaneous moving sound sources using beamforming and particle
filtering,” Robotics and Autonomous Systems, vol. 55, no. 3, pp. 216–
228, 2007.

[13] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng, “ROS : an open-source Robot Operating
System,” IEEE International Conference on Robotics and Automation
(ICRA), Workshop on Open Source Software, 2009.



publications 75

publication 3

J. Ćesić, I. Marković and I. Petrović. Moving object tracking employing rigid body motion

onmatrix Lie groups. International Conference on Information Fusion (FUSION). Heidelberg,

Germany, 2109–2115, 2016.



Moving object tracking employing rigid body
motion on matrix Lie groups
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Abstract—In this paper we propose a novel method for
estimating rigid body motion by modeling the object state directly
in the space of the rigid body motion group SE(2). It has
been recently observed that a noisy manoeuvring object in
SE(2) exhibits banana-shaped probability density contours in
its pose. For this reason, we propose and investigate two state
space models for moving object tracking: (i) a direct product
SE(2) × R3 and (ii) a direct product of the two rigid body
motion groups SE(2) × SE(2). The first term within these two
state space constructions describes the current pose of the rigid
body, while the second one employs its second order dynamics,
i.e., the velocities. By this, we gain the flexibility of tracking
omnidirectional motion in the vein of a constant velocity model,
but also accounting for the dynamics in the rotation component.
Since the SE(2) group is a matrix Lie group, we solve this
problem by using the extended Kalman filter on matrix Lie
groups and provide a detailed derivation of the proposed filters.
We analyze the performance of the filters on a large number of
synthetic trajectories and compare them with (i) the extended
Kalman filter based constant velocity and turn rate model and
(ii) the linear Kalman filter based constant velocity model. The
results show that the proposed filters outperform the other two
filters on a wide spectrum of types of motion.

I. INTRODUCTION

A wide area of robotics research has extensively focused on
the practical approaches of using different types of manifolds.
Besides performance, filters operating on manifolds can
provide other advantages as they avoid singularities when
representing state spaces with either redundant degrees of
freedom or constraint issues [1], [2]. Among the manifolds,
the homogeneous transformation matrices, also referred to as
the rigid body motion group SE(n), hold a special repute.
They have been used in a variety of applications, and have
risen to popularity firstly through manipulator robotics [3], [4]
and later through vision applications [5], [6]. Even though the
state description using the rigid body motion group, for both
the 2D and 3D case, has been a well known representation,
techniques for associating the uncertainty came into focus
later [7]. So far, the rigid body motion group with associated
uncertainty has been used in several robotics applications
such as SLAM [8], motion control [9], shape estimation [10],
pose estimation [11] and pose registration [12].

Among them, pose estimation represents one of the central
problems in robotics. Recently in [11] the authors discussed
the advantages of employing uncertainties on SE(2) (therein
called the exponential coordinates) with respect to Euclidean
spaces and have provided the means for working in the
exponential coordinates rather than representing the robot’s

Fig. 1: An illustration of an omnidirectional mobile robot
manoeuvring in both translational and rotational components. The
banana shaped uncertainty contours, representing the positional
uncertainty in the next step, are formed by modeling the uncertainty
on the SE(2) group (blue), while the elliptical shaped contours appear
modeling the uncertainty in R2 (gray).

position with Gaussians in Cartesian coordinates. This stems
from the fact that the uncertain robot motion, and consequently
its pose, usually exhibit banana-shaped probability density
contours rather than the elliptical ones [13], as illustrated in
Fig. 1. The classical Kalman filter is designed to operate
in the Cartesian space and as such does not provide a
framework for filtering directly on the SE(2) group. Recently,
some works have addressed the uncertainty on the SE(2)
group proposing new distributions [14], [15]. However, these
interesting approaches do not yet provide a closed-form
Bayesian recursion framework (involving both the prediction
and update) that can include higher order motion and non-
linear models.

An extended Kalman filter on matrix Lie groups (LG-EKF)
has been recently proposed in [16]. It provides an estimation
framework for filtering directly on matrix Lie groups, of which
the SE(2) group is a member. In accordance with the needs of
moving object state estimation problems, higher order motion
often needs to be exploited, as in the vein of the constant
velocity (CV) or acceleration motion models [17], but in the
space such as the rigid body motion group SE(2). In the
present paper we propose a method for moving object tracking
employing its second order motion directly on the SE(2) group
based on the discrete LG-EKF. For this purpose, we model the
state space either as a direct product of (i) a rigid body motion
group and a Euclidean vector or (ii) two rigid body motion
groups, i.e.,

(i) SE(2)× R3 or (ii) SE(2)× SE(2) = SE(2)2. (1)

In both cases the first term tracks the pose of the object, while
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the second one handles the velocities. In the end, we conduct
experimental validation of the proposed filters on synthetic
data and compare their performance with the CV and constant
turn rate and velocity (CTRV) motion models [18] used within
the classical extended Kalman filter (EKF) framework.

The rest of the paper is organized as follows. Section II gives
an insight into the motivation behind the present paper. Section
III provides the preliminaries including the basic definitions
and operators for working with matrix Lie groups, with
emphasis on the special euclidean group SE(2). The method
for exploiting higher order motion is presented in Section IV
and the proposed estimation strategies are investigated on a
synthetic dataset and compared with two Kalman filter based
methods. Finally, concluding remarks are drawn in Section V.

II. MOTIVATION

The choice of the state space and the approach to the
motion modelling present a significant focus of this paper.
The physical interpretation behind associating the uncertainty
with the SE(2) group has been analyzed in [11]. Therein,
the authors particularly study the shape of the uncertainty
by considering differential drive mobile robot motion. The
authors conclude that the SE(2) approach provides significant
flexibility in describing the position uncertainty, enabling one
to analytically work with banana-shaped uncertainty contours.
In this work, given the previous moving object tracking
discussion, we aim to track omnidirectional motion in order to
achieve high flexibility in motion modeling. This is motivated
by considering tracking in unknown dynamic environments
comprising of multiple unknown moving objects. For example,
a mobile robot building a map of an unknown environment
consisting of humans and other robots with various kinematics,
or a busy intersection with mixed traffic involving cars, trams,
motorcycles, bicycles and pedestrians.

By searching for the flexibility to control the velocities in
both x and y direction, as well as the rotational velocity, one
comes to formulation of the state space as SE(2)×R3. In this
case, the SE(2) term tracks the pose of a rigid body object
supporting the forming of banana-shaped uncertainty contours,
while the R3 term describes velocities along the three axis in a
classical manner forming elliptical-only contours. Examples of
omnidirectional mechanical robot platforms implementations
which can be described by this state space construction are
the Palm Pilot Robot, Uranus, and Killough [19], which are
based on the Swedish 45◦/90◦ wheels.

However, if we consider a robot construction that has
additional flexibility of controling the steering angle of one
or more wheels, it turns out that by sampling such kinematic
models the uncertainty in the space of velocities also has
banana-shaped contours. Given that, we further propose
to model the state space as SE(2)2 group where now the
second term exploits the second order motion (velocities),
and supports the flexibility of forming the banana-shaped
uncertainty contours in the velocity space. Examples of
mechanical omnidirectional robot platforms capable of such
motion are the Nomad XR4000 and Hyperion [19]. Detailed

physical and kinematic interpretations of these models are,
however, out of the scope of this paper and are a subject for
future work.

III. PRELIMINARIES

A. Lie groups and Lie algebra

In this section, we provide notations and properties for
matrix Lie groups and the associated Lie algebras which will
be used for the filter including the SE(2) group in the state
space. For a more formal introduction of the used concepts,
the interested reader is directed to [20], where the author
provides a rigorous treatment of representing and propagating
uncertainty on matrix Lie groups.

The SE(2), specifically, is a matrix Lie group. A Lie
group is a group which has the structure of a smooth
manifold, i.e., it is sufficiently often differentiable [2], such
that group composition and inversion are smooth operations.
Furthermore, for a matrix Lie group G these operations are
simply matrix multiplication and inversion, with the identity
matrix In×n being the identity element [20]. An interesting
property of Lie groups, basically curved objects, is that they
can be almost completely captured by a flat object, such as
the tangential space; and this leads us to an another important
concept—the Lie algebra g associated to a Lie group G.

Lie algebra g is an open neighborhood of 0n×n in
the tangent space of G at the identity In×n. The matrix
exponential expG and matrix logarithm logG establish a local
diffeomorphism between these two worlds, i.e., Lie groups
and Lie algebras

expG : g→ G and logG : G→ g. (2)

The Lie algebra g associated to a p-dimensional matrix Lie
group G ⊂ Rn×n is a p-dimensional vector space defined by
a basis consisting of p real matrices Ei, i = 1, .., p [9]. A
linear isomorphism between g and Rp is given by

[·]∨G : g→ Rp and [·]∧G : Rp → g. (3)

Lie groups are not necessarily commutative and require the
use two operators to capture this property and thus, enable the
adjoint representation of (i) G on Rp denoted as AdG and (ii)
Rp on Rp denoted as adG [20]. All the discussed operators
in the present section are presented later in the paper for the
proposed state space constructions.

B. Concentrated Gaussian Distribution

Another important concept in the LG-EKF framework is that
of the concentrated Gaussian distribution (CGD). In order to
define the CGD on matrix Lie groups, the considered group
needs to be a connected unimodular matrix Lie group [21],
which is the case for the majority of martix Lie groups used
in robotics.

Let the probability density function (pdf) of X , a state on
a p-dimensional matrix Lie group G, be defined as [22]

p(X) = β exp

(
−1

2
[logG(X)]∨

T

G P−1[logG(X)]∨G

)
, (4)



where β is a normalizing constant chosen such that (4)
integrates to unity. In general β 6= (2π)−p/2|P |−1/2 with | · |
being the matrix determinant and P a positive definite matrix.

Furthermore, let ε be defined as ε , [logG(X)]∨G . If we
now assume that the entire mass of probability is contained
inside G, then ε can be described by ε ∼ NRp(0p×1, P ).
This represents the CGD on G around the identity [16].
Furthermore, it is a unique parametrization space where the
bijection between expG and logG exists. Now, the pdf of X
can be ‘translated’ over the G by using the left action of the
matrix Lie group

X = µ expG ([ε]∧G) , with X ∼ G(µ, P ) , (5)

where G denotes the concentrated Gaussian distribution [16],
[22] with the mean µ and the covariance matrix P . In other
words, the mean µ of the state X resides on the p-dimensional
matrix Lie group G, while the associated uncertainty is
defined in the space of the Lie algebra g, i.e., by the linear
isomorphism the Euclidean vector space Rp. By this, we have
introduced the distribution forming the base for the LG-EKF.

C. The SE(2) group

The motion group SE(2) describes the rigid body motion
in 2D and is formed as a semi-direct product of the plane
R2 and the special orthogonal group SO(2) corresponding to
translational and rotational parts, respectively. It is defined as

SE(2) =

{(
R t

01×1 1

)
∈ R3×3 | {R, t} ∈ SO(2)× R2

}
.

(6)
Now, we continue with providing the basic ingredients for
handling SE(2), giving the relations for operators from III-A,
needed for manipulation between the triplet (Lie group G, Lie
algebra g, Euclidean space Rp).

For the Euclidean spaced vector x =
[
x y θ

]T
, the most

often associated element of the Lie algebra se(2) is given as

[x]∧SE(2) =




0 −θ x
θ 0 y
0 0 0


 ∈ se(2) . (7)

Correspondingly, its inverse [·]∨SE(2) is trivial.
The exponential map for the SE(2) group is given as

expSE(2)([x]∧G) =




cos θ − sin θ tx
sin θ cos θ ty

0 0 1


 ∈ SE(2) (8)

tx =
1

θ
[x sin θ + y(−1 + cos θ)] (9)

ty =
1

θ
[x(1− cos θ) + y sin θ)] . (10)

For T = {R, t} ∈ SE(2), the logarithmic map is

logSE(2)(T ) =

[
v
θ

]∧

SE(2)
∈ se(2) (11)

θ = logSO(2)(R) = atan2(R21, R11) (12)

v =
θ

2(1− cos θ)

[
sin θ 1− cos θ

cos θ − 1 sin θ

]
t . (13)

The Adjoint operator AdG used for representing T ∈ SE(2)
on R3 is given as

AdSE(2)(T ) =

[
R Jt

01×2 1

]
with J =

[
0 1
−1 0

]
. (14)

The adjoint operator adG for representing x ∈ R3 on R3 is
given by

adSE(2)(x) =

[
−θJ Jv
01×2 1

]
, (15)

where v = [x y]T ∈ R2.

IV. RIGID BODY MOTION TRACKING

A. EKF on matrix Lie groups

For the general filtering approach on matrix Lie groups, the
system is assumed to be modeled as satisfying the following
equation [23]

Xk+1 = f(Xk, nk) = Xk expG

(
[Ω̂k + nk]∧G

)
, (16)

where Xk ∈ G is the state of the system at time k, G is
a p-dimensional Lie group, nk ∼ NRp(0p×1, Qk) is white
Gaussian noise and Ω̂k = Ω(Xk) : G → Rp is a non-linear
C2 function.

The prediction step of the LG-EKF, based on the motion
model (16), is governed by the following formulae

µk+1|k = µk expG

(
[Ω̂k]∧G

)
(17)

Pk+1|k = FkPkFTk + ΦG(Ω̂k)QkΦG(Ω̂k)T , (18)

where µk+1|k ∈ G and Pk+1|k ∈ Rp×p are predicted mean
value and the covariance matrix, respectively, hence the state
remains G–distributed Xk+1|k ∼ G(µk+1|k, Pk+1|k). The
operator Fk, a matrix Lie group equivalent to the Jacobian
of f(Xk, nk), and ΦG are given as follows

Fk = AdG

(
expG

(
[−Ω̂k]∧G

))
+ ΦG(Ω̂k)Ck (19)

ΦG(v) =
∞∑

m=0

(−1)m

(m+ 1)!
adG(v)m , v ∈ Rp (20)

Ck =
∂

∂ε
Ω (µk expG ([ε]∧G))|ε=0 . (21)

The discrete measurement model on the matrix Lie group
is modelled as

Zk+1 = h(Xk+1) expG′ ([mk+1]∧G′) , (22)

where Zk+1 ∈ G′, h : G→ G′ is a C1 function and mk+1 ∼
NRq (0q×1, Rk+1) is white Gaussian noise.

The update step of the filter, based on the measurement
model (22), strongly resembles the standard EKF update
procedure, relying on the Kalman gain Kk+1 and innovation
vector νk+1 calculated as follows

Kk+1 = Pk+1|kHTk+1

(
Hk+1Pk+1|kHTk+1 +Rk+1

)−1

νk+1 = Kk+1

([
logG′

(
h(µk+1|k)−1Zk+1

)]∨
G′

)
. (23)
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Fig. 2: Each of the subfigures represents an example of two compounding transformations for different levels of rotational uncertainty (given
in blue). The grey circles represent 50 sampled uncertain transformations by employing both translational and rotational uncertainties. This
particular situation appears when a robot moves from the current position to the next position associated with the next discrete moment in
time, with standard deviation of the rotation σω .

The matrix Hk can be seen as the measurement matrix of the
system, i.e., a matrix Lie group equivalent to the Jacobian of
h(Xk), and is given as

Hk+1 =
∂

∂ε

[
logG′

(
h(µk+1|k)−1

h
(
µk+1|k expG ([ε]∧G)

))]∨
G |ε=0

.
(24)

Finally, having defined all the constituent elements, the update
step is calculated via

µk+1 = µk+1|k expG ([νk+1]∧G) (25)

Pk+1 = ΦG(νk+1)
(
Ip×p −Kk+1Hk+1

)
Pk+1|kΦG(νk+1)T .

(26)

As in the case of the prediction step, the state Xk+1 ∼
G(µk+1, Pk+1) remains G–distributed after the correction as
well. For a more formal derivation of the LG-EKF, the
interested reader is referred to [16].

Since the employment of the SE(2)×R3 follows the similar,
but slightly simpler derivation, in the sequel we derive the
LG-EKF filter for estimation on the state space modelled as
SE(2)2. This approach is in our case applied, but not limited,
to the problem of moving object tracking.

B. LG-EKF on SE(2)2

As mentioned previously, we model the state X to evolve
on the matrix Lie group G = SE(2)2 which is symbolically
represented by

X =




[
Rθ t
01×2 1

]

[
Rω tv
01×2 1

]


 =

(
Ts

Td

)

G

, (27)

where Ts is the stationary component and Td brings the second
order dynamics. Note that the matrix Lie group composition
and inversion are simple matrix multiplication and inversion,
hence the previous symbolic representation can be used for all
the calculations dealing with operations on G.

The Lie algebra associated to the Lie group G is denoted
as g = se(2)2, thereby for x =

[
xp xd

]T ∈ R6, where xp =[
x y θ

]T
and xd =

[
vx vy ω

]T
, the following holds

[x]∧G =

[
[xp]

∧
SE(2)

[xd]
∧
SE(2)

]
=

(
[xp]

∧
SE(2)

[xd]
∧
SE(2)

)

g

. (28)

The exponential map for such defined G is

expG([x]∧G) =




expSE(2)

(
[xp]

∧
SE(2)

)

expSE(2)

(
[xd]

∧
SE(2)

)




G

. (29)

Now, we have all the necessary ingredients for deriving the
terms to be used within the LG-EKF. Several examples of the
uncertain transformations following the SE(2)2 motion model
are shown in Fig. 2 (the SE(2) × R3 model would exhibit
similar behaviour).

1) Prediction: We propose to model the motion (16) of the
system by

Ω(Xk) =
[
Tvxk

Tvyk Tωk 0 0 0
]T ∈ R6 , (30)

nk =
[
T 2

2 nxk

T 2

2 nyk
T 2

2 nωk
Tnxk

Tnyk Tnωk

]T
∈ R6 .

With such a defined motion model, the system is corrupted
with white noise over three separated components, i.e., nx
the noise in the local x direction, ny the noise in the local y
direction and nw as the noise in the rotational component.
Given that, the intensity of the noise components acts as
acceleration over the associated axes in the system. If the
system state at the discrete time step k is described with
Xk ∼ G(µk, Pk), the mean value and the covariance can be
propagated using (17) and (18).

The covariance propagation is more challenging, since it
requires the calculation of (21). For the Lie algebraic error
ε ,

[
εx εy εθ εvx εvy εω

]
, we need to set the following

Ω (µk expG ([ε]∧G))

=




∆Tvxk
+ ∆T cosωk v1 −∆T sinωk v2

∆Tvyk + ∆T sinωk v1 + ∆T cosωk v2
∆Tωk + ∆Tεω

03×1


 .

(31)

where

v1 =
[
εvx sin εω + εvy (cos εω − 1)

]
ε−1ω

v2 =
[
εvx(1− cos εω) + εvy sin εω

]
ε−1ω .

(32)

Let Ω1,k, Ω2,k and Ω3,k denote the first three rows of the
vector (31), respectively (whereas the last three rows are trivial
Ω4,k = Ω5,k = Ω6,k = 0). Even though the multivariate limits
∂Ω1,k

∂εω
|ε=0 and

∂Ω2,k

∂εω
|ε=0 appear involved, their derivation
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Fig. 3: Examples of three different simulated trajectories, generated with the SE(2)2 motion model, with different intensities of process noise
over rotational components, i.e., standard deviation in rotational component was σω = [0.01 0.1 1]◦. The blue line corresponds to SE(2)2

filter, while the green line represents the CV model (SE(2)× R3 and CTRV are omitted for clarity).

∂Ω1,k

∂εvx
|ε=0 = ∆T cosωk

sin εω
εω

−∆T sinωk
cos εω − 1

εω
|ε=0 = ∆T cosωk

∂Ω1,k

∂εvy
|ε=0 = ∆T cosωk

cos εω − 1

εω
−∆T sinωk

sin εω
εω
|ε=0 = −∆T sinωk

∂Ω1,k

∂εω
|ε=0 = ∆T cosω

(εvx cos εω − εvy sin εω)εω − [εvx sin εω + εvy (cos εω − 1)]

ε2ω

−∆T sinω
(εvx sin εω + εvy cos εω)εω − [εvx(cos εω − 1) + εvy sin εω]

ε2ω
|ε=0 = 0

∂Ω2,k

∂εvx
|ε=0 = ∆T sinωk ,

∂Ω2,k

∂εvy
|ε=0 = ∆T cosωk ,

∂Ω2,k

∂εω
|ε=0 = 0

∂Ω3,k

∂εvx
|ε=0 = 0 ,

∂Ω3,k

∂εvy
|ε=0 = 0 ,

∂Ω3,k

∂εω
|ε=0 = ∆T

(33)

follow from patient algebraic manipulations. The resulting
terms are shown in (33). The matrix Ck is finally then given
as

Ck =



03×3

∆T cosωk −∆T sinωk 0
∆T sinωk ∆T cosωk 0

0 0 ∆T
03×3 03×3


 . (34)

The adjoint operators AdG and adG are formed block
diagonally as

AdG(X) = diag
(
AdSE(2)(Ts), AdSE(2)(Td)

)
,

adG(x) = diag
(
adSE(2)(xs), adSE(2)(xd)

)
.

(35)

The last needed ingredient is the process noise covariance
matrix Qk. Assuming the constant acceleration over the
sampling period ∆T , we model the process noise as a discrete
white noise acceleration over the three components: nxk

, nyk
and nωk

. At this point, we can use the equation (18) for
predicting the covariance of the system.

2) Update: The predicted system state is described with
Xk+1|k ∼ G(µk+1|k, Pk+1|k) and now we proceed to updating
the state by incorporating the newly arrived measurement
Zk+1 ∈ G′. In this case, we choose the measurements to arise
in the Euclidean space R2, measuring the current position of

the tracked object in 2D. This choice is application related
and is more discussed in the next section. For this reason and
since the Euclidean space is a trivial example of a matrix Lie
group, we introduce the representation of z =

[
xz yz

]T ∈ R2

in the form of a matrix Lie group Z ∈ G′ ⊂ R3×3 and Lie
algebra [z]∧R2 ∈ g′ ⊂ R3×3

Z =

[
I2×2 z
01×2 1

]
and [z]∧R2 =

[
02×2 z
01×2 0

]
. (36)

Please note there exists a trivial mapping between the members
of the triplet R2, g′ and G′, hence the formal inverses of the
terms from (36) are omitted here.

The measurement function is the map h : SE(2)2 → R2.
The element that specifically needs to be derived is the
measurement matrix Hk+1, which in the vein of (33),
requires using partial derivatives and multivariate limits.
Again, we start with definition of the Lie algebraic error
ε =

[
εx εy εθ εvx εvy εω

]
. The function to be partially

derived is given as

[
logG′

(
h(µk+1|k)−1h

(
µk+1|k expG ([ε]∧G)

))]∨
G =[

cos θk+1|k p1 − sin θk+1|k p2
sin θk+1|k p1 + cos θk+1|k p2

]
,

(37)



∂H1,k+1

∂εx
|ε=0 = cos θk+1|k

sin εθ
εθ
− sin θk+1|k

cos εθ − 1

εθ
|ε=0 = cos θk+1|k

∂H1,k+1

∂εy
|ε=0 = cos θk+1|k

cos εθ − 1

εθ
− sin θk+1|k

sin εθ
εθ
|ε=0 = − sin θk+1|k

∂H1,k+1

∂εθ
|ε=0 = cos θk+1|k

(εx cos εθ − εy sin εθ)εθ − [εx sin εθ + εy(cos εθ − 1)]

ε2θ

− sin θk+1|k
(εx sin εθ + εy cos εθ)εθ − [εx(cos εθ − 1) + εy sin εθ]

ε2θ
|ε=0 = 0

∂H2,k+1

∂εx
|ε=0 = sin θk+1|k ,

∂H2,k+1

∂εy
|ε=0 = cos θk+1|k ,

∂H2,k+1

∂εθ
|ε=0 = 0

(39)

where

p1 = [εx sin εθ + εy(cos εθ − 1)] ε−1θ
p1 = [εx(1− cos εθ) + εy sin εθ] ε

−1
θ .

(38)

Let H1,k+1 and H2,k+1 denote the two rows of expression
(37). In order to derive (24), we need to determine partial
derivatives and multivariate limits over all directions of the
Lie algebraic error vector, and the result is given in (39). The
final measurement matrix Hk+1 amounts to

Hk+1 =

[
cos θk+1|k − sin θk+1|k 0 0 0 0
sin θk+1|k cos θk+1|k 0 0 0 0

]
. (40)

Again, the interested reader is directed to perform algebraic
manipulations when calculating the multivariate limits for
proving (40). Here we deal with rather simple and most
common measurement space, but as well as in some recent
works [24], the filter from Section IV-A enables us to
incorporate nonlinear measurements if needed.

Now we have all the means for updating the filter by
calculating the Kalman gain Kk+1 and the innovation vector
νk+1 (23), and finally correcting the mean µk+1 (25) and the
covariance matrix Pk+1 (26).

C. Simulation

In order to test the performance of the proposed filters,
we have simulated trajectories of a maneuvering object in
2D, where the motion of the system was described by the
SE(2)×R3 and SE(2)2 models. Three examples of generated
trajectories with the SE(2)2 model, with different levels of
rotational process noise, are given in Fig. 3. In order to test
performance of the proposed filters, we conducted statistical
comparison of SE(2)×R3 and SE(2)2, with two conventional
approaches, i.e., (i) the EKF based constant turn rate and
velocity and (ii) the KF based CV models.

The noise parameters that generated the trajectories were
set as follows: nvx ∼ N (0, 0.12), nvy ∼ N (0, 0.12),
nω ∼ N (0, σ2

ω), where σω took 30 equidistant values in
the interval [0, 3]. For each of these values of σω we have
generated 100 trajectories and compared the performance of
the four filters. The measurement noise was set to mx ∼
N (0, 0.52) and my ∼ N (0, 0.52). Special attention was given
to parametrization of process noise covariance matrices in
order to make the comparison as fair as possible. Statistical

evaluation of the root-mean-square-error (RMSE) in object’s
position is depicted in Fig. 4. It can be seen that the SE(2)2

and SE(2)×R3 filters significantly outperform the other filters.
Specifically, when the rotation is not very dynamic, the KF
based CV filter follows the trajectories well, while with the
increase in σω its performance drops significantly. On the
contrary, when the rotation is not very dynamic, the EKF based
CTRV filter struggles to follow the trajectories correctly, while
with the increase in σω its performance gets closer to the one
of the proposed filters.

Considering the varying dynamism in the rotation, we
assert that the SE(2) × R3 and SE(2)2 show very similar
behaviour, while significantly outperforming the other two
filters. Particularly, they present the best of the two worlds:
the CV and the CTRV behaviour. Here we present statistical
evaluation conducted on the trajectories generated by the
SE(2)2 model, Results on the trajectories generated by the
SE(2)×R3 model showed similar inter-performance, they are
omitted from the present paper. Furthermore, in simulations we
only measured the position, i.e., the measurement space was in
R2, while measuring additionally the orientation, i.e., making
the measurement space SE(2), would only further highlight
the potential of the SE(2)2 filter. Both of the presented
omnidirectional motion models are proven to be very flexible
and capable of capturing various types of motion that can
be encountered in, e.g., busy intersection consisting of cars,
trams, bicycles, motorcycles, and pedestrians or an unknown
environment that a robot enters for the first time consisting of
different robot platforms and humans.

V. CONCLUSION

In this paper we have proposed novel models for tracking
a moving object exploiting its motion on the rigid body
motion group SE(2). The proposed filtering approach relied
on the extended Kalman filter for matrix Lie groups, since
the rigid body motion group itself is a matrix Lie group.
Therefore, we have modeled the state space as either a direct
product of the of the SE(2) group and the R3 vector, i.e.,
SE(2)×R3, or two SE(2) groups, i.e. SE(2)× SE(2), where
the first term described the current pose, while the second
term handled second order dynamics. We have analyzed the
performance of the proposed filters on a large number of
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Fig. 4: Performance statistics obtained over 100 generated
trajectories for 30 different values of σω . We have compared the
proposed filter SE(2)2 (blue) and SE(2) × R3 (orange) with the
EKF based CTRV (green), KF based CV (red), and measurements
(black), where the solid lines corresponds to mean values, while
transparent areas correspond to one standard deviation (in both +/−
directions) of each of the associated RMSEs. We can notice that the
SE(2)×R3 and SE(2)2 filters, whose difference is barely noticable,
exhibit similar behaviour, outperforming the other two filters.

synthetic trajectories and compared them to (i) the EKF
based constant velocity and turn rate and (ii) the KF based
constant velocity models. The SE(2)× R3 and SE(2)2 filters
showed similar performance on the synthetic dataset, and have
significantly outperformed other well-established approaches
for a wide range of intensities in the rotation component.

Even though the presented work was applied on a tracking
problem, we believe it can serve as a starting point for
further exploitation of estimation on matrix Lie groups and
its applications on different problems. The use of higher order
dynamics may be of special interest for the domain of robotics,
as well as for multi-target tracking applications. Furthermore,
these techniques could also find application in other rigid body
motion estimation problems requiring precise pose estimation
and higher-order motion.
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Full Body Human Motion Estimation on Lie Groups Using 3D Marker
Position Measurements

Josip Ćesić∗, Vladimir Joukov‡, Ivan Petrović∗ and Dana Kulić‡

Abstract— This paper proposes a new algorithm for full
body human motion estimation using 3D marker position
measurements. The joints are represented with Lie group
members, including special orthogonal groups SO(2) and
SO(3), and a special euclidean group SE(3). We employ the
Lie Group Extended Kalman Filter (LG-EKF) for stochastic
inference on groups, thus explicitly accounting for the
non-euclidean geometry of the state space, and provide the
derivation of the LG-EKF recursion for articulated motion
estimation. We evaluate the performance of the proposed
algorithm in both simulation and on real-world motion capture
data, comparing it with the Euler angles based EKF. The
results show that the proposed filter significantly outperforms
the Euler angles based EKF, since it estimates human motion
more accurately and is not affected by gimbal lock.

I. INTRODUCTION

Human bodies have evolved to perform complex
manipulation and locomotion tasks. We are able to
accomplish very intricate movements, carry light and heavy
loads, achieve energy efficient locomotion at various speeds,
reject disturbances, and adapt to environment constraints.
Inspired by the human body, robotics researchers aim to
develop systems with similar capabilities. To design a
humanoid that can perform as well as a person, researchers
must first capture and analyze human motion. Accurate
pose estimation allows the design of controllers to simulate
human like movements on a robot through motion re-
targeting and imitation learning. In human-robot interaction
the participant’s pose must be known to guarantee safety
and to allow collaborative tasks. Finally, to improve the
performance of assistive devices in rehabilitation or to
enhance user’s capabilities with an exoskeleton, the system
must be able to reproduce human like movements [1].

Optical motion capture is a method to record the
movements from body worn markers observed by multiple
cameras. The 3D positions of the markers are extracted
from the images using the relative positions of the cameras
to each other and are analyzed to compute the pose.

Typically, a kinematic model of the participant is defined
based on anthropomorphic tables or by measurement
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Mapping in Dynamic Environments (cloudSLAM) and by the Ministry of
Science, Education and Sports of the Republic of Croatia under the grant
Center of Research Excellence for Data Science and Cooperative Systems
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and markers are assumed rigidly attached to the skeleton
links. Unfortunately, for a full body skeletal model, there
is no closed form solution for the inverse kinematics
(IK). Differentiating the positions of the attached markers
with respect to the joint angles and forming a Jacobian
matrix allows to iteratively solve for joint angles using the
pseudoinverse of the Jacobian. In singular configurations
the Jacobian is not invertible. It is possible to include a
non-zero damping constant in the least squares minimization
to maintain full rank; various damping factors have been
proposed [2].

The Jacobian inverse based methods do not account for
stochastic error in marker position measurements, are greatly
affected by outlier measurements, and are not capable of
predicting future poses. By treating the skeleton pose as a
state and 3D marker positions as measurements, recursive
stochastic estimators can be used to help reduce the effect
of stochastic marker position errors. Including the joint
positions, velocities, and accelerations in the motion model
of the filter helps to maintain correct pose estimate during
short term occlusions. Various stochastic filters have been
proposed for IK, such as the Smart Sampling Kalman Filter
[3] and the Unscented Kalman Filter [4]. The filtering
approach can even be used to perform estimation from
unlabeled markers [5]. Bonnet et al. modelled not only
kinematics but also the dynamics of a human body within
an EKF to estimate the pose and dynamic parameters [6].

In the aforementioned methods the kinematic models are
rigid links connected with joints that may be rotational,
translational, or spherical. All of these formulations are
representations of transformations in the euclidean space.
However, human motion and many other types of motion
of interest in robotics do not occur in Euclidean space, but
rather arise on curved geometries often called manifolds. By
using the manifold representations, the overall performance
of wide variety of applications can be significantly improved
[7]–[9]. In particular, the attitude of an object can be
modelled as a special orthogonal group SO(n), n = 2, 3,
while the pose can be modelled as a special euclidean
group SE(n), n = 2, 3 [7]. Notably, both SO(n) and SE(n)
belong to a family of matrix Lie groups. Recently, several
theoretically rigorous approaches for filtering on manifolds
have been proposed. In [10] the authors proposed an EKF
able to perform estimation respecting the geometry of matrix
Lie groups. Alongside, the unscented transform-based [11]
and the particle-based [12] approaches have also attracted
significant attention.

The benefit of manifolds for human action recognition
has already been explored in the literature. In [13] the
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authors exploited the manifold structure by relying on the
particle filter for learning purposes, while in [14] the authors
use different manifolds as priors for manifold learning.
Devanne et al. have used a spatio-temporal modeling of
trajectories in a Riemannian manifold for action recognition
purposes [15]. Recently, Brossette et al. have proposed the
posture generation problem that encompasses non-Euclidean
manifolds as well [16].

In this paper, we propose an algorithm for human motion
estimation on Lie groups, which uses 3D marker position
measurements. We explicitly account for the geometry of
the state space and apply Lie group EKF (LG-EKF) for
stochastic inference on Lie groups. We employ a constant
acceleration model [17] in the motion prediction step and
derive the update and observation equations for positional
measurements. We compare the performance of the proposed
approach with the Euler angles-based EKF, and show that the
proposed algorithm achieves significantly better performance
in both simulations and real-world experiments.

The paper is organized as follows. In Sec. II we present
the theoretical preliminaries addressing the association of
uncertainties to Lie groups, and provide the basic relations
needed for forward kinematics of articulated bodies with
groups. In Sec. III we derive the proposed estimation
approach. In Sec. IV we describe the Euler angle-based
approach, while in Sec. V we present the validation results.

II. MATHEMATICAL BACKGROUND

In this section we provide the mathematical background for
performing human motion estimation on matrix Lie groups.
We first discuss a human body modeling approach and the
corresponding state space construction, and after provide the
relations for manipulating the required Lie group members.

A. Construction of the state space

Before proceeding to filtering, we first construct the
state space for representing a human that models body
flexibility to a satisfactory level. Therefore we determine the
appropriate Lie Group representation for each joint based
on its mobility. For example, 1 DoF revolute joints are
represented with a special orthogonal group SO(2), while 3
DoF spherical joints are modelled with a special orthogonal
group SO(3). To localize the human in 6 DoF space, we use
a special euclidean group member SE(3) for connecting the
origin of the space with the base of the body, modeling both
translational and rotational motion. Finally, the state of the
system modelling a human is constructed by concatenating
Lie group members via a Cartesian product, starting with
SE(3), and extending with either SO(2) or SO(3) groups.

For example, a human leg can be constructed as

SE(3) × SO(3) × SO(2) × SO(2) × SO(2) . (1)

Here, the first term represents the 3D position and orientation
of the waist with respect to the reference frame, the second
term represents the hip as a spherical joint, the third describes
the knee, while the last two represent the two dimensional
ankle as shown in Fig. 1 (left).

SO(2) × SO(2)

SO(2)

SE(3)
SO(3)

Z

X

Y

RXRY RZZ

Fig. 1: Left: Lower body kinematic model joints represented by their
respective group members. Middle: Same lower body in prismatic
and revolute (Euler angle) joint representation. Right: Full body Lie
Group model with attached markers.

Fig. 2: An illustration of mappings within the triplet of Lie group
G, Lie algebra g and the Euclidean space Rp.

B. Lie groups and Lie algebra

We now introduce the concept of Lie groups and Lie algebra
as prerequisites for estimation on Lie groups [18].

Generally, a Lie group G is a group which has the structure
of a smooth manifold. Group operators, composition and
inversion, are smooth operations, given simply as matrix
multiplication and inversion. Lie algebra g elements
represent a tangent space of a group at the identity element
[19]. In particular, a Lie algebra is an open neighborhood
around 0p in the tangent space of G at the identity In.
The matrix exponential expG and matrix logarithm logG
establish a local diffeomorphism between G and g as

expG : g → G and logG : G → g. (2)

The Lie algebra g associated to a p-dimensional matrix Lie
group G ⊂ Rn×n is a p-dimensional vector space defined by
a basis consisting of p real matrices Er, r = 1, .., p, often
referred to as generators [20]. A linear isomorphism between
g and Rp is given by

[·]∨G : g → Rp and [·]∧G : Rp → g. (3)

An illustration of the above mappings is given in Fig. 2.
In addition, in Lie group based calculus we need two more

operators – adjoint representation of a Lie group, denoted
as AdG and Lie algebra adG. More detailed discussion on
adjoints and the used notation can be found in [18] and [10],
respectively.

C. Concentrated Gaussian distribution

To make use of EKF on Lie groups, the Gaussian error
distribution covariance must be established. Distribution on
the group tightly focused around the identity element XI

827



can be expressed on the Lie algebra [21] with probability
density function given as

p(XI) = β exp

(
−1

2
[logG(XI)]∨

T

G P−1[logG(XI)]∨G

)
,

where β is a normalizing constant and P is a positive definite
matrix. If ε � [logG(XI)]∨G is tightly focused, it can be
described with a classical Gaussian ε ∼ NRp(0p×1, P ). The
distribution of random variable XI can be translated over
G by using the left action of the Lie group, and finally a
random variable X can be seen as

X = μ expG (ε∧G) , with X ∼ G(μ, P ) , (4)

where G denotes the so called concentrated Gaussian
distribution (CGD) [21]. For a more formal introduction,
the interested reader is referred to [18].

D. Special orthogonal group SO(2)

The SO(2) group represents a rotation around a single axis:

SO(2) =
{
X ⊂ R2×2 | XTX = I, det(X) = 1

}
. (5)

For a euclidean space vector consisting of an angle x = φ,
the Lie algebra so(2), is given as

x∧
SO(2) =

[
0 −φ
φ 0

]
∈ so(2) . (6)

where (·)∧SO(2) : R1 → so(2). Its inverse, (·)∨SO(2) : so(2) →
R1, follows trivially from relation (6). The exponential for
SO(2), performing expSO(2) : so(2) → SO(2), is given as

expSO(2)(x
∧
SO(2)) =

[
cos φ − sin φ
sin φ cos φ

]
, (7)

while the inverse operator, logSO(2) : SO(2) → so(2), can
be evaluated from (7). Due to the commutativity of SO(2),
the adjoint operators are given as

AdSO(2)(X) = 1 and adSO(2)(x) = 0 . (8)

These properties will greatly simplify the LG-EKF formulae.

E. Special orthogonal group SO(3)

The SO(3) group represents an orientation of a rigid body
in 3D space, and is defined as

SO(3) =
{
X ⊂ R3×3 | XTX = I, det(X) = 1

}
. (9)

For a euclidean joint space vector x = [φ1 φ2 φ3]
T, the Lie

algebra so(3) is given as a skew symmetric matrix

x∧
SO(3) =

⎡
⎣

0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0

⎤
⎦ ∈ so(3) . (10)

where (·)∧SO(3) : R3 → so(3). Its inverse, (·)∨SO(3) : so(3) →
R3, follows trivially from (10). The exponential for SO(3),
performing mapping expSO(3) : so(3) → SO(3), is given as

expSO(3)(x
∧
SO(3)) = cos(|x|)I3+

+ (1 − cos(|x|))xxT

|x|2 + sin(|x|)
x∧
SO(3)

|x| .
(11)

The logarithm, performing mapping logSO(3) : SO(3) →
so(3), is given as

logSO(3)(X) =
θ

2 sin(θ)
(X − XT)

s.t. 1 + 2 cos(θ) = Tr(X){
θ �= 0 −π < θ < π

θ = 0 log(X) = 0
.

(12)

The adjoints AdSO(3) and adSO(3) are respectively given as

AdSO(3)(X) = X and adSO(3)(x) = x∧
SO(3) . (13)

F. Special euclidean group SE(3)

The group SE(3) describes 6 DoF rigid body pose and is
formed as a semi-direct product of the euclidean space vector
R3 and the special orthogonal group SO(3)1, corresponding
to translational and rotational parts, respectively. This group
is defined as

SE(3) =

{(
R t
0 1

)
⊂ R4×4 | {R, t} ∈ SO(3) × R3

}
.

For a euclidean space vector representing the pose of a rigid
body consisting of a 3DoF position vector t and a 3DoF
orientation vector φ, where x = [t φ]T, the Lie algebra se(3)
is

x∧
SE(3) =

[
φ∧
SO(3) t

0 0

]
∈ se(3) . (14)

where (·)∧SE(3) : R6 → se(3). Its inverse, (·)∨SE(3) : se(3) →
R6, follows trivially from (14). The exponential for SE(3),
performing mapping expSE(3) : se(3) → SE(3), is given as

expSE(3)(x
∧
SE(3)) =

[
C Lt
0 1

]
(15)

C = expSO(3)(φ
∧
SO(3))

L =
sin(|φ|)

|φ| I3 + (1 − sin(|φ|)
|φ| )

φφT

|φ|2 +
1 − cos(|φ|)

|φ|2 φ∧
SO(3).

The logarithm, performing mapping logSE(3) : SE(3) →
se(3), is calculated by deconstructing X , and determining
φ by using (12). Then, from (15) we can determine t.

In order to determine the adjoints for SE(3), we need to
deconstruct the state X ∈ SE(3) and vector x ∈ R6. Firstly,
we extract the rotation part C and translation part t from X ,
and secondly, we split the translation part t and orientation
part φ from x. Then, the adjoints AdSE(3) and adSE(3) are

AdSE(3)(X) =

[
C tC
0 C

]
, adSE(3)(x) =

[
φ∧
SO(3) t∧SO(3)

0 φ∧
SO(3)

]
.

We next present the new human motion estimation method
based on the LG-EKF.

1The euclidean space can be formed only by employing direct product,
while other ways to concatenate Lie groups also exist, i.e., semi-direct
product, twisted product, etc.
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III. HUMAN MOTION ESTIMATION ON LIE GROUPS

The LG-EKF performs motion prediction and measurement
update steps recursively, assuming a constant acceleration
model (CA) [17] for each joint.

A. Motion prediction step
The LG-EKF approach assumes the motion model of the
system can be described with the following equation

Xk+1 = f(Xk, nk) = Xk expG

(
[Ω̂k + nk]

∧
G

)
, (16)

where Xk ∈ G is the state of the system at time k, G is a
p-dimensional Lie group, nk ∼ NRp(0p×1, Qk) is zero mean
white Gaussian noise with covariance Qk and Ω̂k = Ω(Xk) :
G → Rp is a non-linear C2 function.

For example, assuming a CA motion model and
considering a single SO(2) joint with associated angular
velocity and angular acceleration, the state would be given
by X ∈ G = SO(2) × R1 × R1, and

Ω̂k =

⎡
⎣

T q̇k + T 2

2 q̈k
T q̈k
0

⎤
⎦ ∈ R3 , nk =

⎡
⎣

T 2

2 na
k

Tna
k

na
k

⎤
⎦ ∈ R3 , (17)

where qk, q̇k and q̈k are the angle, angular velocity
and angular acceleration represented in tangential space,
respectively2. The term na

k represents the acceleration
increment during the k-th sampling period [17].

In general, the state of the system X is formed by using
direct (Cartesian) product between the group members,
i.e., by placing them block-diagonally. Then, after applying
expG or logG, the element will stay in the block diagonal
arrangement. The motion model Ω̂k can be seen as
representing an addition to the current state, and for N
joints it is given as Ω̂k = [Ω̂1

k Ω̂2
k ... Ω̂N

k ]T. The motion
model and the process noise associated with the i-th joint,
i.e., Ω̂i

k and ni
k, are elements of euclidean space Rr, where

r = 3 × (# DoF) since position, velocity and acceleration
are included. Hence, for the associated group member
SO(2), SO(3) and SE(3), the coefficient is r = 3, r = 9
and r = 18.

We assume the posterior distribution at step k − 1
follows the concentrated Gaussian distribution assumption
G(μk−1, Pk−1). The mean propagation of the LG-EKF is
then governed by

μk+1|k = μk expG

(
[Ω̂k]

∧
G

)
, (18)

while the covariance prediction is governed by

Pk+1|k = FkPkFT
k + ΦG(Ω̂k)QkΦG(Ω̂k)

T . (19)

The operator Fk represents a matrix Lie group equivalent to
the Jacobian of f(Xk, nk), and is calculated by

Fk = AdG

(
expG

(
[−Ω̂k]

∧
G

))
+ ΦG(Ω̂k)Ck

Ck =
∂

∂ε
Ω (μk expG (ε∧G))|ε=0 .

(20)

2Euclidean space Rp belongs to a family of Lie groups, while for
constructing G we employ its matrix representation obtained by matrix
embedding. It is also a subgroup of SE(n) where a pure translation is
employed [18].

Ck represents the linearisation term where the argument of
the motion model is the current state Xk with an incremental
perturbation additively added in each of the p directions.
Contrary to the conventional EKF, a linear additive process
noise injects the system as a function of the current state
of the system over the transformation ΦG(Ω̂k)QkΦG(Ω̂k)

T,
where ΦG appears due to the displacement of the tangential
space during the prediction step, and is given as

ΦG(v) =
∞∑

i=0

(−1)i

(i + 1)!
adG(v)i , v ∈ Rp . (21)

B. Measurement update step

We next derive the update step by employing position
measurements of markers attached to a human body obtained
by a motion capture system. The markers are assumed to
be rigidly attached to a predetermined skeletal model. The
discrete measurement model on the matrix Lie group is
modelled as

Zk+1 = h(Xk+1) expG′ ([mk+1]
∧
G′) , (22)

where Zk+1 ∈ G′, h : G → G′ is a C1 function
and mk+1 ∼ NRq (0q×1, Rk+1) is zero-mean white
Gaussian noise with covariance Rk+1. The measurement
function, in our marker based approach, is given as
h(Xk+1) = diag{h(Xk+1)

1, h(Xk+1)
2, .., h(Xk+1)

M},
where M block-diagonally placed measurement components
correspond to M marker position measurements, and hence
the measurement space is given as G′ = R3M .

The update step of the filter strongly resembles the
standard EKF update procedure, relying on the Kalman gain
Kk+1 and innovation vector νk+1 calculated as

Kk+1 = Pk+1|kHT
k+1

(
Hk+1Pk+1|kHT

k+1 + Rk+1

)−1

νk+1 = Kk+1

([
logG′

(
h(μk+1|k)

−1Zk+1

)]∨
G′

)
. (23)

The matrix Hk+1 can be seen as a matrix Lie group
equivalent to the Jacobian of h(Xk+1), and is given as

Hk+1 =
∂

∂ε

[
logG′

(
h(μk+1|k)

−1h(με
k+1|k)

)]∨
G′ |ε=0

,

where h(με
k+1|k) = h(μk+1|k expG (ε∧G)), describes the

variation of markers’ positions for an infinitesimal motion
ε. We now evaluate the part of Hk+1 corresponding to the
i-th marker’s measurement Zi

k+1. This relation is given as

Hi
k+1 =

∂

∂ε

(
logG′

(
h
(
K0

si(Xk+1|k)
)−1

h
(
K0

si(X
ε
k+1|k)

)))∨
G′ |ε=0

(24)

=
∂

∂ε

⎛
⎜⎜⎝logG′

⎛
⎜⎜⎝

⎡
⎢⎢⎣

I
0

K0
si(X

ε
k+1|k)

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦

⎤
⎥⎥⎦

⎞
⎟⎟⎠

⎞
⎟⎟⎠

∨

G′ |ε=0

,

where K0
si(Xk+1|k) stands for the forward kinematics of

the i-th marker for a given predicted state Xk+1|k, while
K0

si(X
ε
k+1|k) = K0

si

(
Xk+1|k expG (ε∧G)

)
corresponds to the
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forward kinematics for the infinitesimally perturbed state
Xk+1|k. Note that the term K0

si(Xk+1|k)−1 vanishes after
applying the partial derivatives over ε. We now decompose
the kinematics term K0

si(Xk+1|k) into several parts as

K0
si(Xk+1|k) = K0

j (Xk+1|k)X
j
k+1|kKj+1

si (Xk+1|k) , (25)

where K0
j (Xk+1|k) represents the transformation from the

base frame to joint j and Kj+1
si (Xk+1|k) represents the

transformation from joint j + 1 towards sensor i.
Let us now consider a part of the Hi

k+1 term relating
the i-th measurement with the j-th joint, denoted as Hi,j

k+1.
Furthermore, let us assume the j-th joint is represented with
an SE(3) term, hence covering the most general case, since
SO(2) and SO(3) are simplifications of SE(3). Then, by
exploiting results from [19], Hi,j

k+1 can be expressed as

[
Hi,j,r

k+1

1

]
= K0

j (Xk+1|k)X
j
k+1|kE

rKj+1
si (Xk+1|k)

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ ,

where Er represents the r-th generator of SE(3) group,
i.e., r = 1, .., 6 [21]. Each of the 6 generators represents
an infinitesimal motion in one of the directions of SE(3)

space, and Hi,j
k+1 =

[
Hi,j,1

k+1 ... Hi,j,6
k+1

]
. Since marker position

measurements are only a function of the joint positions, the
part of the Hk+1 matrix relating measurements with velocity
and acceleration components is filled with zero values.

Finally, the measurement update step is calculated as

μk+1 = μk+1|k expG ([νk+1]
∧
G) (26)

Pk+1 = ΦG(νk+1) (Ip − Kk+1Hk+1) Pk+1|kΦG(νk+1)
T .

For a more formal derivation of the LG-EKF update, the
interested reader is referred to [10].

IV. EULER ANGLE BASED APPROACH

The proposed approach is compared to conventional EKF
applied to a standard kinematic model defined with revolute
and prismatic joints [22]. Three perpendicular revolute joints
(Euler angles) can be used to model human spherical joints
such as the shoulder and the hip. The transformation between
the world frame and the base of the body can be modelled
with three prismatic and three perpendicular revolute joints,
as shown in Fig. 1 (right). The state of the EKF is defined
as the position q, velocity q̇, and acceleration q̈ of the joints.
Assuming constant acceleration the linear motion model is

qk+1 = qk + T q̇k +
T 2

2
q̈k

q̇k+1 = q̇k + T q̈k (27)
q̈k+1 = q̈k .

Treating the attached markers as end effectors, the
measurement Jacobian for the i-th marker, Hi, is the

velocity Jacobian in the base frame.

Hi = [Jvi1Jvi2 . . . Jvin] (28)

Jvij =

{
zj × (oi − oj) for revolute joint j

zj for prismatic joint j
(29)

where joint j is centered at oj and actuates about zj axis and
oi is the end effector position. With the Jacobians defined
EKF can be set up to estimate the positions, velocities, and
accelerations of all the joints in the kinematic model based
on motion capture marker measurements.

V. VALIDATION RESULTS

We validate the proposed approach with three datasets.
First, in simulation, we demonstrate the benefits of LG-
EKF over EKF during highly dynamical movements whose
motion is better described on the group and show that unlike
EKF, LG-EKF is not affected by gimbal lock. Next, to
show the benefits of SO(3) representation, we evaluate the
performance of LG-EKF and EKF on real motion capture
data of arm boxing movement. Finally, we perform full
body estimation of a highly dynamic martial arts movement
sequence to verify the effectiveness of the SE(3) joint
connecting between world origin and the body base frame
and demonstrate the overall benefits of LG-EKF over EKF.

A. Simulation Validation

1) Dynamic Motion: To test the convergence and
estimation properties of LG-EKF, we simulate a human
arm composed of the shoulder, elbow, and wrist joints,
the state is an element of SO(3) × SO(2) × SO(3) group
respectively. Two simulated motion capture markers are
placed at the shoulder and elbow and 4 about the wrist.
The kinematic chain is visualized in Fig. 3 (middle). We
generate angular velocity on the group using a Fourier
series with 5 harmonics and coefficients from a uni-variate
distribution, the angular velocity is then propagated at
100 Hz according to the motion model defined in equation
16 with no additive noise. The simulated marker positions
are computed with forward kinematics and Gaussian noise
with standard deviation σdev = 1 mm is added to simulate
errors in 3D marker measurement. This creates a highly
dynamic motion as can be seen from the positions of the
four wrist markers in Fig. 4. The measurement noise was
set to 0.01 for both LG-EKF and EKF. No further tuning
was performed to improve estimation of either filter, the
initial covariances were set to identity and process noise for
all states was 0.01.

To compare the estimate with the ground truth, we use the
deviation from the identity matrix as the distance metric [23]

DF =
∥∥I − RT

eRgt

∥∥
F

(30)

where Re and Rgt are the estimated and ground truth
rotation matrices of each joint and ‖·‖F denotes the
Frobenius norm, which is funcionally equivalent to the
geodesic on SO(3) [23]. Figure 5 shows the comparison in
estimation of rotation matrices for each of the three joints
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Fig. 3: Left: 3D Arm model showing simulation marker placement.
Middle: Lie group-based arm model with attached markers for
dynamic motion simulation. Right: Euler angle-based arm model
for the CMU dataset (no wrist) with CMU markers attached.
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Fig. 4: Trajectories of wrist markers attached to the simulated arm
model undergoing the generated highly dynamic motion over 2.5 s.

between LG-EKF and EKF using this distance metric. On
average LG-EKF improves estimation over EKF by 20.9%.
The observed improvement is composed of gimbal lock
avoidance, described in the next section, and a better error
covariance representation on the manifold.

2) Gimbal Lock: Any set of Euler angles will lose a
degree of freedom when two of the rotation axes align [24],
implying that in that configuration the rotation about the
locked axis cannot be correctly estimated by EKF. Typically
the order of the joint axes is carefully selected to try and
avoid the lock, however in human motion estimation gimbal
lock often takes place at the shoulder joint due to its high
manoeuvrability. Unlike the Euler angle formulation, an
SO(3) representation of the spherical joint does not suffer
from gimbal lock and thus LG-EKF will accurately estimate
any 3D rotation.

To demonstrate the benefits of LG-EKF over EKF during
gimbal lock we simulate a single spherical joint at the
origin with three motion capture markers attached at offsets
of [0.3, 0.1, 0]T, [0.3, −0.1, 0]T, and [0.3, 0, 0.1]T for full
observability. To ensure continuation in position, velocity,
and acceleration we use a quintic polynomial to generate
a smooth trajectory, sampling at 200 Hz. First, the model
experiences a 1 second rotation about the world y axis with
initial position 0 rads and final positions π

2 rads and zero
initial and final velocity and acceleration. Since the second
joint of the Euler model is aligned with the y axis this
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Fig. 5: Rotation matrices error for each of the three joints in the
simulated lower body.
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Fig. 6: LG-EKF and EKF estimation during gimbal lock. Both filters
accurately estimate the rotation about the y axis until 1 second.
After the rotation about y the Euler angle model is in gimbal lock
and thus EKF cannot accurately track the orientation until the lock
is escaped at 1.5 seconds. LG-EKF estimation is unaffected by
gimbal lock.
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Fig. 7: Trace of the LG-EKF and EKF position error covariance.
Both filters start with the same error covariance that quickly
converges to a low value. As the Euler angles approach the gimbal
lock the EKF position error covariance increases and continues to
grow until EKF escapes the lock. LG-EKF position error covariance
is unaffected.

effectively puts the Euler angle model into gimbal lock. Next,
the model experiences the same 1 s rotation in the now locked
world z axis. In order to focus only on the gimbal lock
problem, no noise was added to the marker measurements.
Measurement noise, process noise, and initial covariances
were set as described in Sec. V-A.1.

Figures 6 and 7 show respectively the distance metric
described in (30) and the trace of the position error
covariance of both filters.
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Fig. 8: Position error covariance of LG-EKF and EKF for the
spherical shoulder joint (top) and hinge elbow joint (bottom) during
boxing motion estimation.

B. Real-world experiment - boxing arm

To evaluate the benefits of estimating real human motion
with the proposed method we compare the filters on a
highly dynamic boxing motion from the CMU Graphics Lab
Motion Capture Database [25]. The movement is captured
at 120 Hz with a Vicon motion capture system using 12
cameras. Skeletal model of each participant is created with
the Vicon BodyBuilder software and markers are attached
at predetermined bony landmarks. We simplify the model
by ignoring finger joints and extra joints in the spine Vicon
software generates in post processing. In order to focus on
the performance of the SO(3) joint, only the motion of the
right arm is estimated. The kinematic chain consists of a
spherical joint at the shoulder and a hinge joint at the elbow.
Three motion capture markers are used, placed on the upper
arm, elbow, and forearm. Figure 3 shows the Euler angle and
Lie group models side by side.

To conduct a fair comparison the filters are initialized
with the same noise parameters; the initial error covariances,
process noise for all states, and observation noise are set to
identity, 0.01, and 0.01 respectively. Furthermore, both filters
are initialized with a good initial guess obtained from Vicon
inverse kinematics available as part of the CMU dataset.
We evaluate the performance of each filter by looking at
the error covariance as well as using the estimated state
to compute the forward kinematics and compare the actual
and predicted marker positions. Figure 8 shows the position
error covariances of the filters for the spherical shoulder
and revolute elbow joints. The shoulder movement is better
estimated on the SO(3) group and thus the error covariance is
significantly more uniform than its Euler angles counterpart.
Generally, the SO(2) is expected to behave identically as
wrapped R1 [26]. Table I shows the RMSE between the
actual and estimated marker positions. LG-EKF has a better
representation of error covariance and avoids gimbal lock at
the SO(3) shoulder joint leading to a lower RMSE in the
upper arm and elbow markers. The better estimation at the
shoulder is propagated through the kinematic chain leading
to a lower RMSE in the forearm marker even though the
SO(2) joint behaves identically to a single Euler angle.

TABLE I: Root mean squared error in cm between actual and
predicted marker positions for boxing arm motion. Where UPA,
ELB, and FRA are the upper arm, elbow, and forearm markers
respectively. On average LG-EKF improves estimation by 14%.

UPA ELB FRA
EKF 2.61 3.04 2.79
LG-EKF 2.30 2.69 2.27

TABLE II: Root mean squared error in cm between actual and
predicted marker positions for markers attached to the waist of the
full body model. Where RF, LF, RB, and LB are the right and left,
front and back markers respectively. On average estimation on SE3
improves RMSE by 8.2%.

RF LF RB LB
EKF 1.76 1.91 1.57 1.61
LG-EKF 1.66 1.70 1.42 1.46

C. Real-world experiment - full body

To enable localization of the actor in the world frame we
add SE(3) as the first element of LG-EKF’s state vector and
express the entire full body as a collection of SO(3) and
SO(2) elements presented in Fig. 1 (right). SE(3) element
connects the world frame to the base of the kinematic model.
Shoulders, hips, and neck joints are modelled as SO(3)
elements. Elbows, knees, and wrists are described using a
single SO(2) element and the ankles with two perpendicular
SO(2) elements. A total of 37 markers are attached to
the body following the Vicon motion capture manual [25].
To demonstrate the benefits of the SE(3) representation of
localization over a sequence of prismatic and revolute joints
and the overall improvement of LG-EKF we use a dynamic
full body martial arts movement sequence from the CMU
database. Both filters are initialized identically with the same
noise parameters as described in Sec. V-B and with a good
initial state from the Vicon IK.

Figure 9 compares the position error covariance of the
LG-EKF’s SE(3) element state and the EKF’s prismatic and
revolute joint states. As seen from the uniform covariance,
the fast full body rotations and translations are better
represented on the SE(3) group. This can also be observed
in the RMSE of the predicted and actual marker positions
of the 4 pelvis markers shown in Table II. As an extra
comparison we use the Vicon CMU IK results and their
more complex full-body model to run forward kinematics
and compare the RMSE of predicted and actual marker
positions. Table III provides RMSE for the rest of the
markers on the body including that of Vicon IK. Even
without tuning the noise parameters and initial covariances,
the stochastic filtering approaches significantly outperform
the Vicon IK method. Furthermore, the LG-EKF achieves a
much lower RMSE in almost all the markers over the EKF.
The lower error covariance and avoidance of gimbal lock
at the SE(3) joint provides a better estimation of the entire
skeleton position and orientation. The improvement in the
estimation at the base and each SO(3) joint is propagated
down the kinematic tree reducing the RMSE of the markers.
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Fig. 9: LG-EKF and EKF position error covariance of the
transformation of an SE(3) from world to base of the kinematic
model. Since the transformation is an SE(3) element LG-EKF is
able to accurately estimate it and its evolution over time. Prismatic
joints and Euler angles do not correctly represent SE(3) thus EKF
covariance increases during highly dynamic motion.

TABLE III: Root mean square error between predicted and actual
marker positions for full body motion capture. LG-EKF outperforms
both EKF and VICON IK for most of the markers. Refer to [25] for
marker placement and naming details. Note, VICON IK prioritizes
ankle markers to avoid unrealistic sliding at the feet.

R Arm RSHO RELB RUPA RFRM RWRA RWRB
VICON 6.33 4.57 5.17 4.64 7.01 6.91
EKF 2.89 3.04 2.82 2.87 2.43 2.39
LG-EKF 2.6 2.67 2.91 2.58 2.29 2.23

L Arm LSHO LELB LUPA LFRM LWRA LWRB
VICON 7.82 5.96 6.32 8.19 11.11 10.74
EKF 2.98 4.51 3.95 2.77 4.22 2.32
LG-EKF 2.82 4.15 3.86 2.59 4.1 2.02

Torso and Head CLAV T10 STRN RFHD LFHD RBHD LBHD
VICON 6.09 2.98 2.22 12.85 13.07 10.65 10.59
EKF 1.74 1.55 1.72 1.3 1.18 1.5 1.49
LG-EKF 1.64 1.45 1.59 1.26 1.13 1.45 1.43

R Leg RTHI RKNE RSHN RANK RHEE RTOE RMT5
VICON 3.99 4.78 4.27 0.4 1.47 2.54 1.81
EKF 2.06 2.42 2.34 1.15 1.18 0.94 1.06
LG-EKF 1.93 2.4 2.33 1.14 1.16 0.93 1.04

L Leg LTHI LKNE LSHN LANK LHEE LTOE LMT5
VICON 4.36 4.45 2.48 0.53 1.4 2.29 2.4
EKF 2.09 2.01 1.35 1.06 1.22 1 1.18
LG-EKF 2.07 1.98 1.34 1.04 1.21 1 1.16

VI. CONCLUSION

We proposed a novel algorithm for human motion estimation
based on body worn marker position measurements. The
human joints were described as Lie group members,
including special orthogonal groups SO(2) and SO(3), and
a special euclidean group SE(3). For stochastic inference
on Lie groups the LG-EKF was employed, thus explicitly
accounting for the non-euclidean geometry of the state
space. A constant acceleration motion model for human
motion estimation on the group was developed and the
Jacobian of the marker position measurements was derived.
The performance of the proposed method was evaluated
on both simulation and real-world motion capture data,
comparing it with the Euler angles-based EKF as well as
Vicon IK for full body estimation. We showed that LG-EKF
improves estimation for highly dynamic motions and is not
affected by gimbal lock.
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[1] D. Kulić, G. Venture, K. Yamane, E. Demircan, I. Mizuuchi, and
K. Mombaur, “Anthropomorphic Movement Analysis and Synthesis
: A Survey of Methods and Applications,” IEEE Transactions on
Robotics, vol. 32, no. 4, pp. 776–795, 2016.

[2] T. Sugihara, “Solvability-unconcerned inverse kinematics by the
levenberg–marquardt method,” IEEE Transactions on Robotics,
vol. 27, no. 5, pp. 984–991, 2011.

[3] J. Steinbring, C. Mandery, N. Vahrenkamp, T. Asfour, and U. D.
Hanebeck, “High-accuracy real-time whole-body human motion
tracking based on constrained nonlinear kalman filtering,” arXiv
preprint arXiv:1511.04278, 2015.

[4] A. Aristidou and J. Lasenby, “Real-time marker prediction and cor
estimation in optical motion capture,” The Visual Computer, vol. 29,
no. 1, pp. 7–26, 2013.

[5] J. Steinbring, C. Mandery, F. Pfaff, F. Faion, T. Asfour, and U. D.
Hanebeck, “Real-Time Whole-Body Human Motion Tracking Based
on Unlabeled Markers,” in IEEE Int. Conf. on Multisensor Fusion and
Integration for Intell. Systems (MFI). IEEE, 2016, pp. 607–614.

[6] V. Bonnet, G. Daune, V. Joukov, R. Dumas, P. Fraisse, D. Kulić,
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Human motion estimation on Lie groups using IMU measurements

Vladimir Joukov∗, Josip Ćesić‡, Kevin Westermann∗, Ivan Marković‡, Dana Kulić∗ and Ivan Petrović‡

Abstract— This paper proposes a new algorithm for human
motion estimation using inertial measurement unit (IMU) mea-
surements. We model the joints by matrix Lie groups, namely
the special orthogonal groups SO(2) and SO(3), representing
rotations in 2D and 3D space, respectively. The state space is
defined by the Cartesian product of the rotation groups and
their velocities and accelerations, given a kinematic model of the
articulated body. In order to estimate the state, we propose the
Lie Group Extended Kalman Filter (LG-EKF), thus explicitly
accounting for the non-Euclidean geometry of the state space,
and we derive the LG-EKF recursion for articulated motion
estimation based on IMU measurements. The performance of
the proposed algorithm is compared to the EKF based on
Euler angle parametrization in both simulation and real-world
experiments. The results show that for motion near gimbal lock
regions, which is common for shoulder movement, the proposed
filter is a significant improvement over the Euler angles EKF.

I. INTRODUCTION

Human motion measurement is a key enabling technology in
many applications, including human motion analysis, reha-
bilitation, imitation learning and human-robot interaction [1].
A number of different sensing modalities have been proposed
for human motion measurement, including camera, magnetic
and wearable systems [1]. When line of sight between the
sensor and the human cannot be ensured, and when motion is
to be captured in large or outdoor spaces, wearable sensing,
based on inertial measurement units (IMUs) is preferred.

Many previous works focus on human pose estimation
using wearable IMUs. A simple approach is to integrate
the gyroscope to estimate the orientation of each limb,
however, due to gyroscope drift error accumulates over time
[2]. Stochastic filter methods are often used to combine
gyroscope and accelerometer signals to reduce drift and
allow for estimation of highly dynamic motions. Without
taking into account the kinematic model of the human body,
the orientation of each limb can be estimated separately
[3], [4] with the Kalman filter. In post processing kinematic
constraints can be incorporated and the joint angle estimated
via optimization [5].
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To retrieve the joint angles directly, human kinematic
constraints must be incorporated into the estimation. If
the kinematic model is available a priori, stochastic filter
methods can be used to directly estimate human pose from
IMU measurements. Modeling the human body as a set of
rigid links connected with hinge joints Lin and Kulić [6]
and El-Gohary and McNames [7] used the Extended and the
Unscented Kalman filters to estimate arbitrary 3D leg and
arm motion respectively. Model based extended quaternion
Kalman filter was used by Szczesna to track a 3-segment
inverted pendulum motion [8]. Finally, having a model of the
motion in addition to the kinematic constraints can further
improve human pose estimation [2], [9].

In most of the aforementioned works the joints of the
kinematic model are described using Euler angles. While [8]
uses a quaternion joint representation, the approach cannot
represent different constraints for human joints with different
degrees of freedom (dof): 3 at the hip and shoulder, 2 in the
elbow and wrist, and a single dof at the knee. In our previ-
ous work [10] we showed that Lie group based kinematic
modeling can correctly represent the degrees of freedom
of the human body and that Lie group based extended
Kalman filter can significantly improve marker based pose
estimation. A number of other studies have also investigated
uncertainty modeling and representation on Lie groups. In
[11] representation and propagation of uncertainty on Lie
groups was studied in the context of manipulator kinematics
and camera trajectory estimation, and later in [12] the authors
studied the stochastic kinematic model of a differential drive
mobile robot on SE(2). Uncertainty association, propagation
and fusion on SE(3) was investigated in [13]. In [14] the
authors preintegrated a number of IMU measurements for
visual-inertial navigation by properly addressing the geome-
try of the rotation group and defining the uncertainty in the
pertaining tangent space. Finally, an extended Kalman filter
on Lie groups (LG-EKF) was proposed in [15], [16] and has
been further developed to an iterative version [17].

In this paper we propose a novel approach for human
motion estimation based solely on IMU measurements. To
the best of our knowledge, this work is the first to propose
the LG-EKF formulation for kinematic chain state estimation
using IMU measurements and derive the necessary measure-
ment Jacobians. The proposed filtering approach performs
stochastic inference of human motion by defining the state
space to reside on a Lie group, with each state element
corresponding to the kinematic model of the analysed human
body part. Then, the LG-EKF is derived, where the prediction
step is based on the constant acceleration model [18], while
the update step depends on the gyro and accelerometer mea-
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Fig. 1. Left: 3D Arm model showing simulation IMU placement. Middle:
Lie group-based arm model with attached IMU units for dynamic motion
simulation. Right: Euler angle-based arm model.

surements of the IMU units. We compare the performance
of the proposed algorithm with an EKF based on the Euler
angles parametrization both in simulation and real-world
experiments. The results show that the proposed approach
significantly improves performance and is not affected by
gimbal lock.

The rest of the paper is organised as follows. In Section II
we present the mathematical fundamentals addressing Lie
groups and associated uncertainties. In Section III we present
the novel LG-EKF, while in Section IV we briefly describe
the EKF based on Euler angles. Section V presents the
validation results and Section VI concludes the paper.

II. MATHEMATICAL BACKGROUND

In this section we provide the mathematical background for
human motion estimation on matrix Lie groups, based on the
human body modeling approach and the corresponding state
space construction first proposed in [19].

A. Construction of the state space

We construct the state space by using Lie group represen-
tatives for each joint of interest. As an example we consider
the model of a human arm illustrated in Fig. 1. An example
of group G representing the state space for this model is

G =

shoulder︷ ︸︸ ︷
SO(3)×

elbow︷ ︸︸ ︷
SO(2)× SO(2) . (1)

The first element in (1) describes the shoulder employing a
special orthogonal group SO(3) and providing 3 DoF mobil-
ity, while the second and third elements jointly model the 2
DoF motion of the flexion/extension and internal rotation of
the elbow joint, where each element of a special orthogonal
group SO(2) contributes a single DoF. Note that the choice
of the state space only incorporates system variables and not
the kinematic model geometry.

B. Lie groups and Lie algebra

A Lie group G is a group which also has the structure of
a smooth manifold. The group operators, composition and
inversion, are smooth operations. Each point X ∈ G has
an associated tangent space TX(G) [20]. This linear tangent
space is usually placed at the group identity, and is called the
Lie algebra of G, which we denote by g [21]. The Lie algebra

g, which is of the same dimension as G, admits a binary
operation [·, ·] called the Lie bracket, which reflects the non-
commutative content of the group operation. Furthermore, if
the group G is a matrix Lie group, then G ⊂ Rn×n and group
operations are simply matrix multiplication and inversion.

The Lie algebra g ⊂ Rn×n associated to a p-dimensional
matrix Lie group G ⊂ Rn×n is a p-dimensional vector
space defined by a basis consisting of p real matrices
Er, r = 1, . . . , p, often referred to as generators [22]. In
particular, a Lie algebra is an open neighbourhood around
0p in the tangent space of G at the identity In. The matrix
exponential expG and matrix logarithm logG establish a local
diffeomorphism between G and g as

expG : g→ G and logG : G→ g. (2)

Furthermore, a natural relation exists between the p-
dimensional Lie algebra g and the Euclidean space Rp, and
is given through a linear isomorphism

[·]∨G : g→ Rp and [·]∧G : Rp → g. (3)

For brevity, we will use the following notation [17]

exp∧G(x) = expG([x]∧G) and log∨G(X) = [logG(X)]∨G , (4)

where x ∈ Rp and X ∈ G.
Since Lie groups are generally non-commutative, i.e.,

XY 6= Y X , we also need to employ the adjoint representa-
tions. The adjoint representation of G on g, AdG, can be seen
as as a way of representing the elements of the group as a
linear transformation of the group’s algebra, and in general,
it measures the failure of X ∈ G to commute with elements
of G near the identity [23]. The adjoint representation of g,
adG, is in fact the differential of AdG at the identity element.
For a commutative group, the map ad evaluates to zero.

C. Concentrated Gaussian distribution

To make use of EKF on Lie groups, we need to establish
first a notion of a Gaussian distribution on Lie groups. A
distribution on a Lie group that is tightly focused, meaning
that almost all the mass of the distribution is concentrated
in a small neighborhood around the mean, can be expressed
in the Lie algebra [13], [24], and this concept is called a
concentrated Gaussian distribution.

Let X ∈ G be a random variable following a concentrated
Gaussian distribution with mean µ and covariance P as

X = µ exp∧G(ε), X ∼ G(µ, P ), (5)

where ε ∼ NRp(0p, P ) is a zero-mean Gaussian distribution
with covariance P ⊂ Rp×p defined in the Lie algebra, i.e.,
the Euclidean space Rp. We can see form (5) that the mean
value µ is defined on G, while the associated uncertainty
resides in Rp. Roughly, this concept allows us to work with
the covariance directly in Rp and use Euclidean tools, almost
as we would with a ‘classical’ Gaussian distribution [16].
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D. Special orthogonal groups SO(2) and SO(3)

The special orthogonal group SO(n) is the matrix group

SO(n) =
{
X ⊂ Rn×n |XTX = I, det(X) = 1

}
. (6)

For n = 2, 3 this group defines rotations in 2D and 3D,
respectively. The algebra so(n) comprises of n × n skew-
symmetric matrices. For Euclidean vectors x = φ and x =
[φ1 φ2 φ3]T, the algebras so(2) and so(3) amount to

x∧SO(2) =

[
0 −φ
φ 0

]
, x∧SO(3) =

 0 −φ3 φ2
φ3 0 −φ1
−φ2 φ1 0

 , (7)

where (·)∧SO(n) : Rn → so(n), while its inverse, (·)∨SO(n) :
so(n)→ Rn, follows trivially from (7).

For SO(2), the exponential map yields the classical 2D
rotation matrix, while the logarithm evaluates to simple ex-
traction of φ into a skew-symmetric matrix form in (7). Since
SO(2) is commutative, its adjoint representations are trivial:
AdSO(2) is a unit map and adSO(2) is zero. The exponential
for SO(3), performing mapping expSO(3) : so(3) → SO(3),
is given as

exp∧SO(3)(x) = cos(|x|)I3+

+ (1− cos(|x|))xx
T

|x|2
+ sin(|x|)

x∧SO(3)

|x|
.

(8)

The logarithm, performing mapping logSO(3) : SO(3) →
so(3), is given as

logSO(3)(X) =
θ

2 sin(θ)
(X −XT)

s.t. 1 + 2 cos(θ) = Tr(X){
θ 6= 0 −π < θ < π

θ = 0 log(X) = 0
.

(9)

The adjoints AdSO(3) and adSO(3) are respectively given as

AdSO(3)(X) = X and adSO(3)(x) = x∧SO(3) . (10)

In the sequel we present the new human motion estimation
method based on the LG-EKF using IMU measurements.

III. HUMAN MOTION ESTIMATION ON LIE GROUPS

Our goal is to estimate the pose of a kinematic chain
represented via Lie groups (as described in section II-A),
as well as its velocity and acceleration, using measurements
from rigidly attached inertial measurement units at each link.
To utilize LG-EKF for such state estimation, assuming a
constant acceleration model (CA) [25] for each joint, we
derive the necessary gyroscope and accelerometer measure-
ment models and their Jacobians.

A. Motion prediction step

We assume that the motion model of the system can be
described with the following equation [16]

Xk+1 = f(Xk, nk) = Xk exp∧G
(

Ω̂k + nk

)
, (11)

where Xk ∈ G is the state of the system at time k, G is
a p-dimensional Lie group, nk ∼ NRp(0p×1, Qk) is zero
mean white Gaussian noise with covariance Qk, and Ω̂k =
Ω(Xk) : G→ Rp is a non-linear C2 function.

In our approach, similar to our previous work [19], we
assume the human motion to follow a constant acceleration
model and our state space G is then constructed to include
the positional, velocity and acceleration components block-
diagonally. Hence exponentials and logarithms will keep the
state in the block diagonal arrangement as well. The motion
model of a single joint i is given as

Ω̂ik =

Tωik + T2

2 α
i
k

Tαik
0

 ∈ R3di , nk =

T2

2 n
i
k

Tnik
nik

 ∈ R3di

(12)

where ωik and αik are the angular velocity and angular
acceleration represented in the Lie algebra1. The term nik
represents the acceleration increment during the k-th sam-
pling period [25], di represents the number of DoFs of the
i-th joint, and T is the sampling period.

Assuming that the posterior distribution at step k fol-
lows the concentrated Gaussian distribution G(µk, Pk), and
following the LG-EKF prediction step [19], the resulting
prediction can be approximated with a concentrated Gaussian
distribution G(µk+1|k, Pk+1|k). The mean propagation of the
LG-EKF is:

µk+1|k = µk exp∧G
(

Ω̂k

)
, (13)

while the covariance prediction is computed as

Pk+1|k = FkPkFT
k + ΦG(Ω̂k)QkΦG(Ω̂k)T . (14)

The operator Fk can be seen as a matrix Lie group equivalent
to the Jacobian of f(Xk, nk), and is calculated by

Fk = AdG
(

exp∧G
(
−Ω̂k

))
+ ΦG(Ω̂k)Lk

Lk =
∂

∂ε
Ω (µk exp∧G (ε))|ε=0 .

(15)

The term Lk represents the linearisation term where the
argument of the motion model is the mean of the current
state Xk with an incremental perturbation additively added in
each of the p directions. Contrary to the conventional EKF, a
linear additive process noise affects the system as a function
of the current state of the system over the transformation
ΦG(Ω̂k)QkΦG(Ω̂k)T, where ΦG appears due to the displace-
ment of the tangential space during the prediction step, and
is given by:

ΦG(v) =
∞∑
i=0

(−1)i

(i+ 1)!
adG(v)i , v ∈ Rp . (16)

1Euclidean space Rp, p ∈ N is a matrix Lie group and in order to
construct G we employ its matrix representation obtained by simple matrix
embedding. The matrix representation of the Euclidean space is also a
subgroup of SE(n) where a pure translation is employed [26].
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B. Measurement update step

We next derive the update step by employing gyro and
accelerometer measurements of IMUs attached to a human
body. The discrete measurement model on the matrix Lie
group is modelled as:

Zk+1 = h(Xk+1) exp∧G′ (mk+1) , (17)

where Zk+1 ∈ G′, h : G → G′ is a C1 function, G′ is a
p′-dimensional Lie group and mk+1 ∼ NRq (0q×1, Rk+1)
is zero-mean white Gaussian noise with covariance Rk+1.
The update step of the filter strongly resembles the standard
EKF update procedure, relying on the Kalman gain Kk+1

and innovation vector νk+1 calculated as:

Kk+1 = Pk+1|kHT
k+1

(
Hk+1Pk+1|kHT

k+1 +Rk+1

)−1
νk+1 = Kk+1 log∨G′

(
h(µk+1|k)−1Zk+1

)
. (18)

The matrix Hk+1 can be seen as the matrix Lie group
equivalent of the Jacobian of h(Xk+1), and is given as:

Hk+1 =
∂

∂ε
log∨G′

(
h(µk+1|k)−1h(µεk+1|k)

)
|ε=0

,

where h(µεk+1|k) = h(µk+1|k exp∧G (ε)), describes the varia-
tion of measurements for an infinitesimal motion ε. We now
evaluate the matrix Hk+1 based on gyro and accelerometer
measurements.

C. Gyro update

The measurement function of the gyro measurement is:

h(Xk+1|k) =
n∑
i=1

Ks,Ri ωik+1|k , (19)

where n is the number of joints preceding the gyro sensor s.
The term Ks,Ri = Ks,Ri (Xk+1|k) is the rotational component
of the forward kinematics between the i-th joint and the
gyro sensor s, thus affecting its measurement [27]. The gyro
measurements are affected by position (through kinematics)
and velocity, hence the corresponding parts of Hk+1 matrix
need to be evaluated.

By applying partial derivatives and evaluating the multi-
variate limits similarly to [28], the part of Hk+1 relating the
gyro measurement to the orientation of the l-th joint Hθ,lk+1

is:

Hθ,l,rk+1 =
l−1∑
i=1

Ks,Rl El,r
T

θl
−1

k+1|kK
l,R
i ωik+1|k , (20)

where Ki,Rl represents the rotation between the i-th and l-
th joint, θlk+1|k is the position of the l-th joint, while El,r

represents the r-th generator of a Lie group representing
the l-th joint [24]. Each of the generators represents an
infinitesimal motion in one of the directions of a Lie group.

The part of Hk+1 relating the gyro measurement to the
velocity of the l-th joint Hω,lk+1 is given as:

Hω,lk+1 = Ks,Rl . (21)

Since gyro measurement (19) is not a function of the joint
accelerations, the part of the Hk+1 matrix relating gyro

measurements to l-th joint acceleration components is filled
with zero values; Hα,lk+1 = 0.

D. Accelerometer update

The measurement function corresponding to the accelerom-
eter measurement is:

h(Xk+1|k) =

point acceleration︷ ︸︸ ︷
Ks,R0 p̈k+1|k +

gravity component︷ ︸︸ ︷
Ks,R0 g , (22)

where the first term emerges due to dynamics of a body,
while the second term arises due to gravity. The superscript
R denotes that only the rotation part is embedded into an
SE(3) member, while the translation part is set to 0. The term
p̈k+1|k represents an acceleration of the sensor s represented
in the base frame and given in homogeneous coordinates,
while g is the gravity vector in homogeneous coordinates.
In order to evaluate p̈k+1|k, we start from defining the IMU
position as:

pk+1|k = K0
sO (23)

where O = [0 0 0 1]T is the origin represented in homoge-
neous coordinates. The forward kinematics are:

K0
s = T 0

1 θ
1
k+1|kT

1
2 θ

2
k+1|k · · ·T

n−1
n θnk+1|k (24)

Each part of the forward kinematics Ki−1i = T i−1i θik+1|k
consists of the constant transformation T i−1i and the position
of the i-th joint θik+1|k. In order to sequentially apply a
matrix multiplication inducing each joint state, we describe
joints as 4 × 4 transformation matrices (in terms of Lie
groups denoted as special euclidean group SE(3)). We now
evaluate the first two derivatives of sensor position pk+1|k.
The velocity of the point pk+1|k evaluates to:

ṗk+1|k =
n∑
i=1

(
K0
iS

i,ω
k+1|kK

i
s

)
O , (25)

where the summation iterates over n joints affecting sensor
s, while the term Si,ωk+1|k is given as:

Si,ωk+1|k =

di∑
r=1

(
ωi,rk+1|kE

i,r
)
, (26)

which is a function of the number of degrees of freedom
di of the i-th joint, and the superscript ω denotes that the
velocity components are summed up. The acceleration of the
point pk+1|k evaluates to:

p̈k+1|k =

centripetal force component I︷ ︸︸ ︷
n∑
i=1

( i∑
j=1

(
K0
jS

j,ω
k+1|kK

j
i

)
Si,ωk+1|kK

i
s

)
O+ (27)

centripetal force component II︷ ︸︸ ︷
n∑
i=1

(
K0
iS

i,ω
k+1|k

n∑
j=i+1

(
KijS

j,ω
k+1|kK

j
s

))
O+

n∑
i=1

(
K0
iS

i,α
k+1|kK

i
s

)
O︸ ︷︷ ︸

joint acceleration component

.
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The acceleration p̈k+1|k consists of two components – the
centripetal force component and joint acceleration compo-
nent, which we emphasize in (27).

We now proceed to linearize and evaluate the part ofHk+1

corresponding to the accelerometer measurement and joint l:[
Hlk+1

1

]
=

∂Ks,R0

∂X l
k+1|k

(
p̈k+1|k + g

)
+Ks,R0

∂p̈k+1|k
∂X l

k+1|k
. (28)

In order to evaluate (28) we compute partial derivatives
of Ks,R0 and p̈k+1|k with respect to position, velocity, and
acceleration of X l

k+1|k. The detailed derivation is provided
in the supplementary material [29].

Finally, having evaluated Hk+1, the measurement update
step is calculated as [16]:

µk+1 = µk+1|k exp∧G (νk+1) (29)

Pk+1 = ΦG(νk+1) (I −Kk+1Hk+1)Pk+1|kΦG(νk+1)T .

IV. EULER ANGLE BASED APPROACH

The proposed approach is compared to a conventional EKF
applied to a standard kinematic model defined with revolute
and prismatic joints [30]. Three perpendicular revolute joints
(Euler angles) can be used to model human spherical joints
such as the shoulder and the hip. The state of the EKF is
defined as the position q, velocity q̇, and acceleration q̈ of
the joints. Just as in the LG-EKF formulation we assume
constant acceleration of each joint.

It is also possible to model the kinematics using quater-
nions to represent the joint state. Since rotations are repre-
sented by unit quaternions, one approach when using EKF
is to normalize the state estimate after each iteration [8].
This normalization, while correctly propagating the error
covariance, no longer optimally performs the state update
step [31]. Similar to rotation matrices quaternions have a
tangent space and thus, it is possible to apply LG-EKF to a
quaternion based state representation using the SU(2) group,
in this case we expect similar results to our formulation.

V. VALIDATION RESULTS

We validate the proposed approach both in simulation and
with real human motion. First, in simulation, we demonstrate
the benefits of LG-EKF over EKF when using IMU measure-
ments during highly dynamical movements whose motion is
better described on the group and show that unlike EKF, LG-
EKF is not affected by gimbal lock. Next, we evaluate the
performance of LG-EKF and EKF on real IMU data of a
dynamic figure eight arm movement sequence.

A. Simulation Validation

1) Dynamic Motion: To test the properties of LG-EKF,
we simulate a human shown in Fig. 1, modeled with (1).
Two IMUs are attached to the humerus and radius at offsets
of [0.1 0.1 0.3]T, and [0.1 0.1 0.4]T respectively.

It is possible to generate Brownian motion either on the
group or on Euler angles to exactly match the constant
acceleration with zero mean Gaussian noise assumption of
LG-EKF or EKF. Since large constant acceleration in one
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Fig. 2. Performance of EKF and LG-EKF based on Brownian motion
on Lie Algebra. Since LG-EKF has an accurate motion model it correctly
tracks the arm movement. Once the angular accelerations on the Lie Algebra
become large, the constant Euler angle acceleration model of EKF does
not provide a good state prediction and EKF cannot maintain an accurate
estimate. α1 denotes SO(3) with 3 dofs, while α2 and α3 correspond to
SO(2) joints with a single dof.

representation implies a quickly changing acceleration in the
other, we can expect the filter with the correct motion model
to significantly outperform the other in high acceleration
regions. Figure 2 shows the Brownian motion generated
on the group representation of the arm and the root mean
squared error (RMSE) in position estimation of the wrist
IMU for EKF and LG-EKF. It is clear that during high
constant accelerations on the group, Euler angle based EKF
cannot accurately track the motion.

However, it is unlikely that human motion will satisfy the
constant acceleration assumption. Thus, in order to compare
EKF and LG-EKF without being biased to a specific motion
representation we generate a dynamic trajectory in task space
and utilize inverse kinematics to recover joint angles of the
Euler angle model. Next we numerically differentiate the
trajectory to retrieve joint velocities and accelerations and
generate the IMU measurements using forward kinematics.
The task space trajectory is created by cubic splining of
points in the reachable workspace generated from a univari-
ate distribution. This setup creates a highly dynamic motion
as can be seen from the positions of the two IMUs shown in
Fig. 3. Simulated IMUs are sampled at 100 Hz and zero mean
Gaussian noise with standard deviations of 0.01 rad

s and 0.1m
s2

is added to the gyroscope and accelerometer measurements
respectively. For both filters the initial covariances were set
to a diagonal matrix of a 10−3 denoting accurate knowledge
of the initial state. For the process noise, for each triplet
[φ ω α] or [q q̇ q̈], noise of standard deviation η is injected
into α and is propagated to ω and φ by integration. Thus,
for each triplet the process noise covariance is GGT where
G = [T

2

2 T 1]η. For the dynamic motion simulation η was
set to 10 rad

s2 per iteration. The observation noise was set to
the true sensor noise values.

To compare the estimate with the ground truth, we use
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the deviation from the identity matrix as the distance metric
[32]:

DF =
∥∥I −RT

eRgt
∥∥
F

(30)

where Re and Rgt are the estimated and ground truth rotation
matrices of each joint and ‖·‖F denotes the Frobenius norm.

Figure 4 shows the comparison between the LG-EKF and
EKF using this distance metric for the shoulder and elbow
joints. The LG-EKF significantly outperforms the EKF filter,
which is due to LG-EKF’s ability to handle gimbal lock as
explained in the next section.

2) Gimbal Lock: Next we investigate the impact of gimbal
lock on the proposed approach. Any set of Euler angles will
lose a degree of freedom when two of the rotation axes
align [33], implying that in that configuration the rotation
about the locked axis cannot be correctly estimated by EKF.
Typically the order of the joint axes is carefully selected to
try and avoid the lock, however in human motion estimation,
gimbal lock often takes place at the shoulder joint due to its
high manoeuvrability. Unlike the Euler angle formulation, an

Fig. 5. Simulation model used for gimbal lock validation.
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Fig. 6. LG-EKF and EKF estimation during gimbal lock. Both filters
accurately estimate the rotation about the y axis until the system gets close
to the gimbal lock, which happens at 1 second. After the rotation about y the
Euler angle model is in gimbal lock and thus EKF cannot accurately track
the orientation until the lock is escaped at 1.5 seconds. Once Euler angles
escape the gimbal lock, EKF can regain an accurate estimate of the roll and
pitch orientation using the accelerometer’s gravity measurement. However,
any error in yaw during gimbal lock accumulates. LG-EKF estimation is
unaffected by gimbal lock.

SO(3) representation of the spherical joint does not suffer
from gimbal lock and thus LG-EKF will accurately estimate
any rotation.

To demonstrate the benefits of LG-EKF over EKF during
gimbal lock we simulate a single spherical joint at the
origin with a single IMU attached at an offset of 0.1
meters in x. The simulated model is shown in Fig. 5. A
quintic polynomial is used to generate a smooth trajectory,
sampling at 100 Hz. First, the model experiences a 1 second
rotation about the world y axis with initial position 0 rad and
final positions π

2 rad and zero initial and final velocity and
acceleration. In the Euler angle model this motion aligns the
first and third revolute joint axes putting it into a singularity
and removing a degree of freedom (gimbal lock). Next, the
model experiences the same 1 s rotation in the now locked
world z axis. In order to focus only on the gimbal lock
problem, no noise was added to the IMU measurements.
Measurement noise, process noise, and initial covariances
were set as described in Sec. V-A.1. Figure 6 shows the
distance metric described in (30).

When Euler angles enter gimbal lock, the Euler angle
based Jacobian is singular and thus the linearized system
is no longer observable. In this case EKF cannot accurately
estimate the states. By plotting the condition number of the
observability matrixOb = [Hk HkFk · · · ]T of the linearized
system we can visualize the ability of the filters to handle
gimbal lock (Fig. 7).

Furthermore we show that the Lie group motion model
is superior for process noise representation over the Euler
angle motion model. Consider a single SO(3) joint with an
IMU attached at some offset. Independent of the initial SO(3)
state, addition of zero mean, Gaussian process noise to the
state results in a consistent distribution of the end effector
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position. With the Euler Angle model, adding the same
process noise results in end effector position distribution that
is state dependent, as illustrated in Fig. 8. Thus near gimbal
lock Euler EKF requires higher process noise to capture the
variability in a highly maneuverable 3D joint such as the
shoulder while LG-EKF process noise will remain constant
and lower for the entire state space. Thus it should be easier
to tune LG-EKF for better performance over the entire state
space.

B. Real-world experiment

We validate the proposed approach by comparing the dis-
tance between actual and estimated wrist and elbow positions
during a dynamic figure eight human arm motion collected in
a motion capture studio. The motion capture studio utilizes
8 Motion Analysis cameras capturing at 200Hz. Our IMUs
are based on the MPU9250 sensor and were set to sample at
100Hz, they were calibrated [34] prior to data collection. The
kinematic model of the participant was generated based on
motion capture markers placed on the shoulder and medial
and lateral sides of the elbow and wrist. Three motion capture
markers were placed on each IMU to compute their offset
and rotation from the humerus and radius.

For the best performance of both filters it is imperative
to tune the initial covariance, observation noise, and process
noise parameters. In our experiment the initial pose of the
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Fig. 9. Actual and estimated 3d wrist position.

0 10 20 30 40 50 60 70
0.00

0.10

0.20

time [s]

D
is

ta
nc

e
[m

] LG-EKF
EKF

Fig. 10. Distance between the actual and estimated wrist positions. With
each pass near gimbal lock, the Euler angle model EKF accumulates error
about world Z axis.

participant is known and thus we set the initial covariance to
10−3 along the diagonal. The observation noise parameters
are set to match those of the IMUs based on 30 seconds
of static data. We assumed discrete constant acceleration
process noise [25] of magnitude η as described in section
V-A.1 and used the Matlab optimization toolbox to find the
optimal process noise parameters for EKF and LG-EKF such
that the distance between the estimated and actual elbow and
wrist positions is minimized over 3 repetitions of the figure
eight motion. The optimal process noise parameters were
found to be ηEKF = 389.1 and ηLG-EKF = 264.8 for EKF
and LG-EKF respectively. The significantly lower optimal
process noise for the Lie group motion model shows that
human motion is better estimated on the group.

Figure 9 shows the estimated and actual wrist positions for
both EKF and LG-EKF. Figure 10 plots the distance between
actual and estimated wrist positions. Both filters begin with
equally accurate estimation. With each pass through the
corner of the figure 9 near gimbal lock, EKF accumulates
error about the world Z axis. Since LG-EKF is not affected
by gimbal lock its performance stays consistent throughout
the entire motion. Table I shows the RMSE and standard
deviation for elbow and wrist position estimation.

VI. CONCLUSION

We proposed a novel algorithm for human motion estimation
based on body worn IMU sensors. Based on the kinematics
of the human body, we formed the state as a Cartesian
product of Lie groups. In order to stochastically infer the
state of such a Lie group, we employed the LG-EKF, thus
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TABLE I
ROOT MEAN SQUARED ERROR OF ESTIMATED AND ACTUAL ELBOW AND

WRIST POSITIONS FOR THE TWO FILTERS. THE PROPOSED LG-EKF
IMPROVES THE POSITION ESTIMATE BY 30% OVER EKF.

Elbow RMSE [cm] Wrist RMSE [cm]
LG-EKF 5.2 ± 2.6 6.9 ± 2.7

EKF 7.4 ± 3.6 9.9 ± 3.8

explicitly accounting for the non-Euclidean geometry of the
state space. A constant acceleration motion model on the
group was developed for the LG-EKF prediction step and
the Jacobian of the IMU (gyroscope and accelerometer mea-
surements), was derived for the update step. The performance
of the proposed method was evaluated in both simulation and
real-world data, comparing it with the EKF based on Euler
angles. The proposed algorithm can estimate human motion
with lower end effector position RMSE than the EKF and
is not affected by gimbal lock. Future work will include
full body pose estimation based on wearable IMU sensors
and investigating using SE(3) joint types that can represent
transformation matrices to accommodate for translations in
3D space and handle the free flyer problem.
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Vladimir Joukov∗, Josip Ćesić‡, Kevin Westermann∗, Ivan Marković‡, Dana Kulić∗ and Ivan Petrović‡

DERIVATION OF Hk+1 GIVEN ACCELEROMETER MEASUREMENTS

The full state of the system Xk is of the form

Xk = blkdiag{θk, ωk, αk}, .
θk = blkdiag{θ1k, ..., θmk },
ωk = blkdiag{ω1

k, ..., ω
m
k },

αk = blkdiag{α1
k, ..., α

m
k } ,

where subscript k denotes time instant, θik is position of the i-th joint, ωik is velocity of the i-th joint, αik is acceleration of
the i-th joint, and m is the number of joints of a body. Measurement Jacobian Hk+1 relating the accelerometer measurement
and joint l is given as

[
Hlk+1

1

]
=

∂Ks,R0

∂X l
k+1|k

(
p̈k+1|k + g

)
+Ks,R0

∂p̈k+1|k
∂X l

k+1|k
, (1)

where Ki,Rj stands for the rotational component of the forward kinematics between the i-th and j-th joints (alternatively
0 represents origin, and s denotes sensor), p̈k+1|k represents an acceleration of the sensor s represented in the base frame
and given in homogeneous coordinates, while g is the gravity vector in homogeneous coordinates. The subscript k + 1|k
denotes prediction at time instant k + 1 given the measurement up to and including time instant k. In order to evaluate (1)
we need to compute partial derivatives of Ks,R0 and p̈k+1|k with respect to position, velocity, and acceleration of the full
system state for joint l, i.e., X l

k+1|k.

A. Positional part

Here we consider the evaluation of Hlk+1 with respect to position θlk+1|k. We start by evaluating the partial derivative of
forward kinematics Ks,R0 with respect to the positional variable θl,rk+1|k, where r relates to the r-th generator, r = 1, .., dl,
with dl being the number of degrees of freedom of joint l. This evaluates to

∂Ks,R0

∂θl,rk+1|k
= Kl,R0 θl,rk+1|kE

rKs,Rl , (2)

where El,r represents the r-th generator of a Lie group representing the l-th joint. The evaluation of the partial derivative
of acceleration p̈k+1|k with respect to the positional variable θl,rk+1|k evaluates to

∂p̈k+1|k

∂θl,rk+1|k
=

n∑

i=1

(
i∑

j=1





K0
l E

l,r Klj Sj,ωk+1|k K
j
i S

i,ω
k+1|k Kis , l ≤ j

K0
j S

j,ω
k+1|k K

j
l E

l,r Kli Si,ωk+1|k Kis , j < l ≤ i
K0
j S

j,ω
k+1|k K

j
i S

i,ω
k+1|k Kil El,r Kls , i < l





)
O+ (3)

n∑

i=1

(
n∑

j=i+1





K0
l E

l,r Kli Si,ωk+1|k Kij S
j,ω
k+1|k Kjs , l ≤ i

K0
i S

i,ω
k+1|k Kil El,r Klj S

j,ω
k+1|k Kjs , i < l ≤ j

K0
i S

i,ω
k+1|k Kij S

j,ω
k+1|k K

j
l E

l,r Kls , j < l





)
O+

n∑

i=1

{
K0
l E

l,r Kli Si,αk+1|k Kis , l ≤ i
K0
i S

i,α
k+1|k Kil El,r Kls , i < l

}
O ,
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where

Si,ωk+1|k =

di∑

r=1

(
ωi,rk+1|kE

i,r
)
, (4)

which is a function of the number of degrees of freedom di of the i-th joint, and the superscript ω denotes that the velocity
components are summed up. The three parts in (3) arise from evaluating partial derivatives of the three components existing
in equation (27) of the original manuscript, i.e., the two centripetal components and the joint acceleration component.
Depending on the location within kinematic chain of the considered joint l, different terms need to be applied. However, this
is still a direct result of evaluating partial derivatives of (27) of the original manuscript. The complete positional component
can now be calculated as

[
Hθ,l,rk+1

1

]
=

∂Ks,R0

∂θl,rk+1|k

(
p̈k+1|k + g

)
+Ks,R0

∂p̈k+1|k

∂θl,rk+1|k
. (5)

B. Velocity part

Since Ks,R0 is only a function of the joint position θlk+1|k, the partial derivative of forward kinematics with respect to the
velocity component is

∂Ks,R0

∂ωl,rk+1|k
= 0 . (6)

We now evaluate the partial derivative of acceleration p̈k+1|k, with respect to the velocity variable ωl,rk+1|k, which evaluates
to the following expression

∂p̈k+1|k

∂ωl,rk+1|k
= K0

lE
l,r

n∑

i=l

(
KliSi,ωk+1|kKis

)
O +

l∑

j=1

(
K0
jS

j,ω
k+1|kK

j
l

)
El,rKlsO + (7)

K0
lE

l,r
n∑

j=l+1

(
KljSj,ωk+1|kKjs

)
O +

l−1∑

i=1

(
K0
iS

i,ω
k+1|kKil

)
El,rKlsO .

The four parts of this derivative arise from the two centripetal force components (two per each) given in equation (27) of
the original manuscript. The complete velocity component can now be calculated as

[
Hω,l,rk+1

1

]
=

∂Ks,R0

∂ωl,rk+1|k

(
p̈k+1|k + g

)
+Ks,R0

∂p̈k+1|k

∂ωl,rk+1|k
. (8)

C. Acceleration part

Here, we evaluate the acceleration term. Since Ks,R0 is only function of the joint position θlk+1|k, the partial derivative of
forward kinematics with respect to the acceleration component is

∂Ks,R0

∂αl,rk+1|k
= 0 . (9)

The partial derivative of acceleration p̈k+1|k with respect to the r-th component of the acceleration of the l-th joint, αl,rk+1|k,
evaluates as

∂p̈k+1|k

∂αl,rk+1|k
=K0

lE
l,rKlsO . (10)

This derivative arise from the joint acceleration component given in equation (27) of the original manuscript. The complete
acceleration component can now be calculated as

[
Hα,l,rk+1

1

]
=

∂Ks,R0

∂αl,rk+1|k

(
p̈k+1|k + g

)
+Ks,R0

∂p̈k+1|k

∂αl,rk+1|k
. (11)

Finally, the full Hk+1 relating sensor measurement and the system variables associated to m joints is constructed as

Hlk+1 =
[
Hθ,lk+1 Hω,lk+1 Hα,lk+1

]
. (12)
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a b s t r a c t

In this paper we propose a new state estimation algorithm called the extended information filter on
Lie groups. The proposed filter is inspired by the extended Kalman filter on Lie groups and exhibits
the advantages of the information filter with regard to multisensor update and decentralization, while
keeping the accuracy of stochastic inference on Lie groups. We present the theoretical development and
demonstrate its performance on multisensor rigid body attitude tracking by forming the state space on
the SO(3)×R3 group, where the first and second component represent the orientation and angular rates,
respectively. The performance of the filter is compared with respect to the accuracy of attitude tracking
with parametrization based on Euler angles and with respect to execution time of the extended Kalman
filter formulation on Lie groups. The results show that the filter achieves higher performance consistency
and smaller error by tracking the state directly on the Lie group and that it keeps smaller computational
complexity of the information form with respect to high number of measurements.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The information filter (IF) is the dual of the Kalman filter (KF)
relying on the state representation by a Gaussian distribution
(Maybeck, 1979), and hence is the subject of the same assump-
tions underlying the KF. Whereas the KF family of algorithms is
represented by the first two moments involving the mean and co-
variance, the IF relies on the canonical parametrization consist-
ing of an information matrix and information vector (Grocholsky,
Makarenko, & Durrant-Whyte, 2003). Both the KF and IF operate
cyclically in two steps: the prediction and update step. The advan-
tages of the IF lie in the update step, especially when the num-
ber of measurements is significantly larger than the size of the
state space, since this step is additive for the IF. For the KF, the
opposite applies; it is the prediction step which is additive and
computationally less complex. What is computationally complex
in one parametrization turns out to be simple in the other (and
vice-versa) (Thrun, Burgard, & Fox, 2006). Given this duality, the
IF has proven its mettle in a number of applications facing large
number of measurements, features or demanding a decentralized

✩ The material in this paper was not presented at any conference. This paper was
recommended for publication in revised form by Associate Editor Brett Ninness
under the direction of Editor Torsten Söderström.

E-mail addresses: josip.cesic@fer.hr (J. Ćesić), ivan.markovic@fer.hr
(I. Marković), mario.bukal@fer.hr (M. Bukal), ivan.petrovic@fer.hr (I. Petrović).
1 Fax: +3851 6129 795

filter form. For example, if the system is linear and the state ismod-
eled as Gaussian, then multisensor fusion can be performed with
the decentralized KF proposed in Rao, Durrant-Whyte, and Sheen
(1993), which enables fusion of not only the measurements, but
also of the local independent KFs. Therein, the inverse covariance
form is utilized, thus resulting in additive fusion equations, which
can further be elegantly translated to the IF form as shown in Net-
tleton, Durrant-Whyte, and Sukkarieh (2003). In Zhang, Chai Soh,
and Chen (2005) an IF is presented for robust decentralized estima-
tion based on the robustness property of theH∞ filter with respect
to noise statistics, whereas in Battistelli and Chisci (2016) stability
of consensus extended Kalman filter for distributed state estima-
tion was investigated. In Onel, Ersoy, and Delic (2009) collabora-
tive target tracking is developed for wireless sensor networks and
a mutual-information-based sensor selection is adopted for par-
ticipation in the IF form fusion process. In Fu, Ling, and Tian (2012)
the IF form is used in multitarget tracking sensor allocation based
on solving a constrained optimization problem. In Vercauteren and
Wang (2005) a sigma-point IF was used for decentralized target
tracking, in Campbell and Whitacre (2007) a square root form of
the same filter was used for cooperative tracking with unmanned
aerial vehicles, and in Liu, Wörgötter, and Markelić (2012); Wang,
Feng, and Tse (2014) square-root information filtering was further
explored with respect to numerical stability. The unscented IF was
presented in Lee (2008) for tracking of a re-entry vehicle enter-
ing into an atmosphere from space, and in Pakki, Chandra, and
Postlethwaite (2013) the square root cubature IFwas proposed and

http://dx.doi.org/10.1016/j.automatica.2017.04.056
0005-1098/© 2017 Elsevier Ltd. All rights reserved.
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demonstrated on the example of speed and rotor position estima-
tion of a two phase permanent magnet synchronous motor.

Another important aspect of estimation is the state space ge-
ometry, hence many works have been dedicated to dealing with
uncertainty and estimation techniques accounting for it. For ex-
ample, Lie groups are natural ambient (state) spaces for descrip-
tion of the dynamics of rigid body mechanical systems (Murray, Li,
& Sastry, 1994; Selig, 1996). Furthermore, error propagation on the
SE(3) groupwith applications tomanipulator kinematics was pre-
sented in Wang and Chirikjian (2006a) by developing closed-form
solutions for the convolution of the concentrated Gaussian distri-
butions on SE(3). Furthermore, in Wolfe, Mashner, and Chirikjian
(2011) the authors propose a solution to Bayesian fusion on Lie
groups by assuming conditional independence of observations on
the group, thus setting the fusion result as a product of concen-
trated Gaussian distributions, and finding the single concentrated
Gaussian distribution parameters which are closest to the start-
ing product. Uncertainty association, propagation and fusion on
SE(3) was investigated in Barfoot and Furgale (2014) along with
sigma point method for uncertainty propagation through a non-
linear camera model. In Forster, Carlone, Dellaert, and Scaramuzza
(2015) the authors preintegrated a large number of inertial mea-
surement unit measurements for visual-inertial navigation into a
single relative motion constraint by respecting the structure of the
SO(3) group and defining the uncertainty thereof in the pertain-
ing tangent space. A state estimationmethod based on an observer
and a predictor cascade for invariant systems on Lie groups with
delayed measurements was proposed in Khosravian, Trumpf, Ma-
hony, andHamel (2015). Recently, someworks have also addressed
the uncertainty on the SE(2) group proposing new distributions
(Gilitschenski, Kurz, Julier, & Hanebeck, 2014; Kurz, Gilitschenski,
& Hanebeck, 2014); however, these approaches do not yet pro-
vide a closed-form Bayesian recursion framework (involving both
the prediction and update) that can include higher order motion
and non-linear models. A least squares optimization and nonlin-
ear KF on manifolds in the vein of the unscented KF was proposed
in Hertzberg, Wagner, Frese, and Schröder (2013) along with an
accompanying software library. Therein the authors demonstrate
the filter on a synthetic dataset addressing the problem of trajec-
tory estimation by posing the system state to reside on the man-
ifold R3

× SO(3) × R3, i.e., the position, orientation and velocity.
In the end, the authors also demonstrate the approach on real-
world simultaneous localization and mapping (SLAM) data and
perform pose relation graph optimization. In the vein of the ex-
tended Kalman filter (EKF) a nonlinear continuous–discrete ex-
tended Kalman filter on Lie groups (LG-EKF) was proposed in
Bourmaud, Mégret, Arnaudon, and Giremus (2015). Therein, the
prediction step is presented in the continuous domain, while the
update step is discrete. The authors have demonstrated the effi-
ciency of the filter on a synthetic camera pose filtering problem by
forming the system state to reside on the SO(3)×R9 group, i.e. the
camera orientation, position, angular and radial velocities. In an
earlier publication (Bourmaud, Mégret, Giremus, & Berthoumieu,
2013), the authors have presented a discrete version of the LG-
EKF, which servers as the inspiration for the filter proposed in the
present paper. In Ćesić, Marković, Cvišić, and Petrović (2016) we
have exploredmodeling of the pose of tracked objects on the SE(2)
groupwithin the LG-EKF framework, and applied it on the problem
of multitarget tracking by fusing a radar sensor and stereo vision.
Given the advantages of the IF and filtering on Lie groups, a nat-
ural question arises; Can LG-EKF be cast in the information form
and will the corresponding information filter on Lie groups keep
the additivity and computational advantages of the update step?

A quite prominent example of an application where the need
arises for computational benefits of the IF and the geometric
accuracy of Lie groups is SLAM. SLAM is of great practical

importance in many robotic and autonomous system applications
and the earliest solutions were based on the EKF. However, EKF
in practice can handle maps that contain a few hundred features,
while in many applications maps are orders of magnitude larger
(Thrun et al., 2004). Therefore, the extended information filter
(EIF) is often employed and widely accepted for SLAM (Bailey,
Upcroft, & Durrant-Whyte, 2006), and has reached its zenith with
sparsification approaches resulting with sparse EIF (SEIF) (Thrun
et al., 2004) and exactly sparse delayed-state filter (ESDF) (Eustice,
Singh, & Leonard, 2006). However, the localization component of
SLAM conforms the pose estimation problem as arising on Lie
groups, i.e., describing the pose in the special euclidean group
SE(3) (Barfoot & Furgale, 2014). Furthermore, the mapping part
of SLAM consists of landmarks whose position, as well, arises
on SE(3). Therefore, some recent SLAM solutions approached the
problem by respecting the geometry of the state space (Kümmerle
et al., 2011; Ros, Guerrero, Sappa, Ponsa, & Lopez, 2013), since
significant cause of error in such application was determined to
stem from the state space geometry approximations. However,
these SLAM solutions, although able to account for the geometry of
the state space, exclusively rely on graph optimization (Engel, Sch,
& Cremers, 2014; Mur-Artal, Montiel, & Tardos, 2015), but not on
filtering approaches. By using the herein proposed algorithm, one
can extend the SLAM filtering approaches, such as SEIF or ESDF,
and at the same time respect the geometry of the state space via
formulation on Lie groups.

The main contribution of this paper is a new state estimation
algorithm called the extended information filter on Lie groups
(LG-EIF), which exhibits the advantages of the IF with regard
to multisensor update and decentralization, while keeping the
accuracy of the LG-EKF for stochastic inference on Lie groups.
We present the theoretical development of the LG-EIF recursion
equations and the applicability of the proposed approach is
demonstrated on a rigid body attitude tracking problem with
multiple sensors. In the experiments we define the state space to
reside on the Cartesian product of the special orthogonal group
SO(3) and R3, with the first component representing the attitude
of the rigid body and the second component representing the
pertaining angular rates. Given that, the model of the system is
then set as a constant angular rate model acting on the state space
SO(3) × R3. Note that, just like the LG-EKF, the proposed filter
can be applied on any matrix Lie group or combination thereof. In
the end, we compare the proposed LG-EIF to an EIF based on Euler
angles, andwe analyze the computational complexity of the LG-EIF
multisensor update with respect to the LG-EKF. The results show
that the proposed filter achieves higher performance consistency
and smaller error by tracking the state directly on the Lie group and
that it keeps smaller computational complexity of the information
form with respect to large number of measurements.

The rest of the paper is organized as follows. In Section 2 we
present the theoretical preliminaries addressing Lie groups and
uncertainty definition in the form of the concentrated Gaussian
distribution. In Section 3 we derive the proposed LG-EIF, while in
Section 4we present the experimental results. In the end, Section 5
concludes the paper.

2. Preliminaries

2.1. Lie groups and Lie algebras

Generally, a Lie group is a group which has also the structure
of a differentiable manifold and the group operations (product and
inversion) are differentiable. In this paper we restrict our attention
to a special class of Lie groups, the matrix groups over the field
of reals, where the group operations are matrix multiplication and
inversion, with the identity matrix Id being the identity element
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Fig. 1. An illustration of mappings within the triplet of Lie group G – Lie algebra g
– Euclidean space Rp .

of the group. These groups are frequently called, especially in the
engineering literature, matrix Lie groups. The name emphasizes
the fact that every matrix group is a Lie group, as well as the
differential geometric viewpoint that is regularly employed. A
matrix Lie group G can be characterized as a closed subgroup of
a general linear group GL(d;R), in the sense that: if (An) is a
sequence of matrices in G and An converges to a matrix A, with
respect to a norm on Rd×d, then A ∈ G or A ∉ GL(d;R), i.e., A is
not invertible (Hall, 2003). Ubiquitous examples of real matrix Lie
groups are the general linear group GL(d;R), special linear group
SL(d;R), orthogonal O(d) and special orthogonal SO(d) groups,
etc. For an introductory, but rigorous mathematical treatment of
matrix Lie groups, the interested reader is advised to confer (Hall,
2003).

To every Lie group G, there is an associated Lie algebra g—
a linear space (of the same dimension as G) endowed with a
binary operation [·, ·] called the Lie bracket. From the differential
geometric point of view, it is an open neighborhood of the
origin in the tangent space of G at the identity element. A local
diffeomorphism between a Lie group (manifold) and associated
Lie algebra (tangent space) is established through the exponential
mapping exp : g → G and its inverse log : G → g called the
logarithm. This is a crucial mechanism for transfer of information
between the group and its algebra. In case of matrix Lie groups, the
exponential mapping is simply the matrix exponential

exp(X) =

∞
n=0

1
n!

Xn,

and its inverse is of course the matrix logarithm defined for
all d × d matrices A satisfying ∥A − Id∥ < 1. Moreover, the
matrix exponential can even be used to characterize thematrix Lie
algebra—if G is a matrix Lie group, then its Lie algebra, denoted by
g, is the set of all matrices X such that exp(tX) ∈ G for all t ∈ R
(Hall, 2003). Being a linear space, a (real) p-dimensional matrix Lie
algebra g is naturally related to the Euclidean space Rp through
a linear isomorphism (·)∨ : g → Rp and its inverse denoted by
(·)∧ : Rp

→ g. An illustration of these concepts is given in Fig. 1
(Bourmaud et al., 2015).

The adjoint representation of a matrix Lie group G is the map
Ad : G → GL(g) defined by A → Ad A, where Ad A is a linear
invertible operator Ad A : g → g given by

Ad A(X) = AXA−1, X ∈ g.

Due to the natural isomorphism between g and Rp, essentially
GL(g) = GL(p;R) and Ad is to be understood as a group
homomorphism. Therefore, there exists a unique linear map ad :

g → GL(g), called the adjoint representation of the Lie algebra g,
defined by X → ad X , where ad X is a linear operator on g given by

ad X(Y ) = [X, Y ] = XY − YX, Y ∈ g.

In fact, from the differential geometric point of view, ad is the
differential of Ad at the identity of G, and they are related through
the following Hall (2003)

Ad exp(X) = exp(ad X), for all X ∈ g. (1)

Fig. 2. An illustration of the concentrated Gaussian distribution G(Id,Σ). The
mean value Id resides on the group G ⊂ GL(d;R) while the covariance matrix Σ
belongs to GL(p;R). On the right we depict the truncated or compactly supported
corresponding N c Gaussian in Rp with mean value 0p and covariance matrixΣ .

The action of both adjoints can be further transferred from g to Rp

by the above isomorphism, and we denote them by Ad∨ and ad∨,
respectively.

2.2. Concentrated Gaussian distribution

LetG be a connected unimodular realmatrix group. Unimodular
means that its integration (Haar) measure ζ is both left and right
translation invariant, i.e., ζ (AE) = ζ (EA) = ζ (E) for all A ∈ G
and all Borel subsets E of G. Prominent examples like SO(3) and
SE(3) are unimodular matrix groups (Chirikjian & Kyatkin, 2000).
Let us assume that a random variable X taking values in G has the
probability distribution with the probability density function (pdf)
of the following form (Wang & Chirikjian, 2006b)

p(X;Σ) = β exp


−
1
2
(log(X)∨)

T

Σ−1 log(X)∨

, (2)

where β is a normalizing constant such that (2) integrates to unity
(over G with respect to ζ ), and Σ is a positive definite p × p
matrix. Seemingly, in notation ε = log(X)∨ ∈ Rp, density
(2) has the structure of a zero mean Gaussian with covariance
matrix Σ . However, observe that the normalizing constant β
differs from (2π)−p/2(detΣ)−1/2 and, in the sense of Rp, it is
only defined on an open neighborhood of the origin, which is
the image of the log∨ map. Random variables on G having the
probability distribution given by density (2) are therefore called
normally (or Gauss) distributed with mean Id and covariance Σ .
Additionally, we will assume that all eigenvalues of Σ are small,
thus, almost all the mass of the distribution is concentrated
in a small neighborhood around the mean value, and such a
distribution is called a concentrated Gaussian distribution (Wang
& Chirikjian, 2006b). Furthermore, we say that a random variable
X has a concentrated Gaussian distribution of mean M ∈ G and
covariance matrix Σ , written X ∼ G (M,Σ), if M−1X has the
concentrated Gaussian distribution of mean Id and covariance Σ
(Wang & Chirikjian, 2006b), i.e., the density of G (M,Σ) is given by

p(X;M,Σ) = β exp

−

1
2
(log(M−1X)∨)

T

Σ−1 log(M−1X)∨

. (3)

An illustration of the concentrated Gaussian distribution is pro-
vided in Fig. 2.

It is well known that in the Euclidean setting multivariate
Gaussian distributions G(m,Σ) form an exponential family
(Nielsen & Garcia, 2009) and in the canonical representation
source parameters (m,Σ) are replaced by the corresponding
natural parameters (y, Y ) = (Σ−1m, 1

2Σ
−1), which also uniquely

determine the Gaussian distribution. Canonical representation has
many advantages, in particular, it is very useful for implementation
of the standard IF. In the present paperwe pursue the same idea for
concentrated Gaussian distribution G(M,Σ) defined onmatrix Lie
groups. Using the BCH expansion (A.2) we have

log(M−1X) = − logM + log X −
1
2
[log X, logM] + · · · , (4)
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thus, according to (3), G(M,Σ) is also completely determined by
the so called information vector–matrix pair (y, Y ) given by

y = Σ−1(logM)∨ and Y = Σ−1. (5)

Given that, we have formed the basis for the derivation of the LG-
EIF.

3. The extended information filter on matrix Lie groups

Just as the standard KF, the LG-EIF recursion is divided in two
steps: prediction and update and in the sequel we derive the
equations of the proposed information form of the LG-EKF. First,
we start with the prediction step where the same logic applies as
in the case of the standard IF; namely, the computational burden
is increased since, in order to apply the motion model, we need
to convert the information vector to the mean. Second, the update
step of the filter is derivedwhere the advantages of the information
form are kept, thus facilitating updates with multiple sensors or
opening the way for decentralization approaches.

3.1. Motion and measurement models

Let G be a matrix Lie group and Xk ∈ G denote a system state at
time step k ≥ 0. We assume that the motion model of the system
(the state equation) is describedby anon-linear twice continuously
differentiable function2 Ω : U ⊃ G → Rp and the left action of
the current state as follows Bourmaud et al. (2015)

Xk+1 = Xk exp

Ω(Xk)

∧
+ n∧

k


, k ≥ 0, (6)

where nk ∼ NRp

0p×1,Qk


is Gaussian noise in Rp. For example,

such models have appeared in Bourmaud et al. (2015), Ćesić,
Joukov, Petrović, and Kulić (2016) and Ćesić, Marković et al. (2016)
modeling motion as constant velocity on SE(2) and constant
acceleration on SO(2), SO(3) and SE(3), respectively.

The discrete measurement model on the matrix Lie group is
modeled by a continuously differentiable function h : U ⊃ G →

G′ and the group perturbation as Bourmaud et al. (2015)

Zk+1 = h(Xk+1) exp

r∧

k+1


, (7)

where rk+1 ∼ NRq

0q×1, Rk+1


is a Gaussian noise in Rq and exp

denotes the exponential mapping on a q-dimensional matrix Lie
group G′.

3.2. LG-EIF prediction

Weassume that the posterior distribution at time step k is given
by the concentrated Gaussian distributionG(Mk,Σk), shortlyGk. In
fact,we assume thatGk is known through the canonical parameters
(yk, Yk), for which we aim to derive the filter recursions. Note that,
according to relation (5),Σk = Y−1

k and Mk = exp((Y−1
k yk)∧).

Following the idea proposed in Bourmaud et al. (2015), we first
consider the covariance propagation under the motion model. For
that purpose the Lie algebraic error, defined by ε∧

k = log(M−1
k Xk),

is propagated under the motion model according to

exp

ε∧

k+1|k


= M−1

k+1|kXk+1,

where Mk+1|k = Mk exp(Ω(Mk)
∧). Therefore, the predicted state

error on G can be expressed as

exp

ε∧

k+1|k


= exp


−Ω∧

k


exp


ε∧

k


exp


Ω(Xk)

∧
+ n∧

k


,

2 For the ease of differentiability requirement, we assume that Ω is defined on
U, which is an open subset of Rd×d containing the group G.

where Ω∧

k = Ω(Mk)
∧. Linearizing Ω in Mk and using the BCH

expansion (A.2), defined in Appendix A, one obtains the following
propagated Lie algebraic error

εk+1|k = Fkεk + Ψ (Ωk)nk + O

|εk, nk|

2 , (8)

where O(|εk, nk|
2) is short for O(|εk|

2) + O(|nk|
2) + O(|εknk|).

OperatorsFk, thematrix Lie group equivalent to the Jacobian of the
nonlinearity of themotionmodel, andΨ are given by the following
formulae:

Fk = Ad∨

exp


−Ω∧

k


+ Ψ (Ωk)Ck, (9)

Ψ (v) =

∞
m=0

(−1)m

(m + 1)!
ad∨(v)m, v ∈ Rp, (10)

Ck =
∂

∂ε
Ω


Mk exp


ε∧


|ε=0. (11)

Operator Ψ is called the right Jacobian of G (Barfoot & Furgale,
2014), while Ck denotes the linearization of the motion model
(6) at Mk. The above formulae can be found in Bourmaud et al.
(2015, 2013); however, without a detailed derivation, which we
provide for the reader’s convenience in Appendix A. Neglecting
the second-order terms in (8) and using the fact that E(εk) = 0,
which is satisfied by the construction of the concentrated Gaussian
distribution (see (3)), the expectation of εk+1|k becomes

E(εk+1|k) = FkE(εk) = 0.

The predicted covariancematrixΣk+1|k is the covariancematrix
of the predicted Lie algebraic error εk+1|k and due to the linear
equation (8) it evaluates to

Σk+1|k = E

εk+1|kε

T
k+1|k


= FkΣkF

T
k + Ψ (Ωk)QkΨ (Ωk)

T.

Applying the Woodbury’s matrix identity (Woodbury, 1950),
Yk+1|k = Σ−1

k+1|k evaluates to

Yk+1|k = Q̃−1
k − Q̃−1

k Fk


Yk + F T

k Q̃
−1
k Fk

−1
F T

k Q̃
−1
k ,

where Q̃ = ΨkQkΨ
T
k , Ψk = Ψ (Ωk), and all inverse matrices are

assumed to exist. Finally, the predicted information vector yk+1|k =

Yk+1|k(logMk+1|k)
∨ amounts to

yk+1|k = Yk+1|k log

exp((Y−1

k yk)∧) exp(Ω∧

k )
∨
. (12)

Remark 1. Assuming thatMk and exp(Ω∧

k ) are such that according
to the BCH expansion (A.2)

log

exp((Y−1

k yk)∧) exp(Ω∧

k )
∨

≈ Y−1
k yk +Ωk +

1
2
[Y−1

k yk,Ωk]
∨,

then the prediction formula (12) simplifies to

yk+1|k = Yk+1|k


Y−1
k yk +Ωk +

1
2
[Y−1

k yk,Ωk]
∨


. (13)

3.3. LG-EIF update

Let us define the innovation term as

zk+1 = log

h

Mk+1|k

−1 Zk+1

∨

.

Again, applying the BCH formula (A.2) and linearizing the nonlinear
terms atMk+1|k, we obtain (Bourmaud et al., 2015)

zk+1 = Hk+1εk+1|k + rk+1 + O

|εk+1|krk+1|


, (14)
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Fig. 3. An illustration of the LG-EIF update step. The predicted Gk+1|k on the group G is updated with N measurements G′,i
k+1 on group G′ . First, the predicted mean value

Mk+1|k is mapped to G′ via measurement function h(·) and innovations N z,i
k+1 are calculated in the tangent space Rp′

of h(Mk+1|k). Then, the innovations are mapped to the
tangent space Rp of Mk+1|k , where the Nk+1|k corresponding to Gk+1|k is at the origin. The predicted distribution Nk+1|k is updated with the mapped measurements N −,i

k+1
resulting with a distribution displaced from the origin N −

k+1 which needs to be reparametrized and mapped back to G as the finally updated Gk+1 .

with

Hk+1 =
∂

∂ε


log


h(Mk+1|k)

−1 h

Mk+1|k exp


ε∧

∨
ε=0 . (15)

Since (14) is linear in the Lie algebraic error εk+1|k, we assert
that the standard update equations of the IF (Thrun et al., 2006)
can be applied. From the previous section we know that εk+1|k
is distributed according to the truncated zero mean Gaussian
with covariance matrix Σk+1|k, which is assumed to be well
approximated by the Gaussian of the same parameters. Given that,
the updated Lie algebraic error ε−

k+1 will be Gaussian distributed
with natural parameters

y−

k+1 = HT
k+1R

−1
k+1zk+1,

Y−

k+1 = Yk+1|k + HT
k+1R

−1
k+1Hk+1.

(16)

However, we have not completed the update step for the following
reasons. Namely, from the definition of ε−

k+1, the conditional
random variable Xk+1|k+1 := Xk+1|{Z1, . . . , Zk+1} has the form

Xk+1|k+1 = Mk+1|k exp(ε−∧

k+1), (17)

but, the mean value of ε−

k+1 now equals m−

k+1 = (Y−

k+1)
−1y−

k+1,
which in general differs from the zero vector, and (17) is not in
the form suitable for description by the concentrated Gaussian
distribution. To overcome that issue, the state reparametrization,
as proposed in Bourmaud et al. (2015), is performed. Let us define
ξk+1 = ε−

k+1 − m−

k+1, then E(ξk+1) = 0 and using formula (A.3)
from Appendix A we obtain (up to O(|ξk+1|

2) terms)

Xk+1|k+1 = Mk+1|k exp

m−∧

k+1 + ξ∧

k+1


= Mk+1|k exp


m−∧

k+1


exp


Ψ (m−

k+1)ξ
∧

k+1


.

Now defining Mk+1 = Mk+1|k exp

m−∧

k+1


and εk+1 = Ψ (m−

k+1)
ξk+1, we have Xk+1|k+1 in a more suitable form

Xk+1|k+1 = Mk+1 exp(ε∧

k+1), (18)

from which the posterior distribution can be plainly read off. By
definition

Σk+1 = E

εk+1ε

T
k+1


= E


Ψ (m−

k+1)ξk+1ξ
T
k+1Ψ (m

−

k+1)
T

= Ψ

m−

k+1


(Y−

k+1)
−1Ψ


m−

k+1

T
,

and therefore, the finally updated information matrix equals

Yk+1 = Ψ (m−

k+1)
−TY−

k+1Ψ (m
−

k+1)
−1. (19)

Concerning the information vector, we find

yk+1 = Yk+1(logMk+1)
∨

= Yk+1

log


exp((Y−1

k yk)∧) exp(Ω∧

k ) exp(m
−∧

k+1)
∨

. (20)

Algorithm 1 The pseudocode of the LG-EIF

Require: Gk = G

yk, Yk


,Ω(X), Qk

Prediction
1: EvaluateΩk, Ck and Q̃k

2: Fk = Ad∨


exp


−Ω∧

k


+ Ψ


Ωk


Ck

3: Yk+1|k = Q̃−1
k − Q̃−1

k Fk

Yk+

F T
k Q̃

−1
k Fk

−1
F T

k Q̃
−1
k

4: yk+1|k = Yk+1|k log

exp


Y−1
k yk

∧
exp


Ω∧

k

∨

Require: Gk+1|k = G

yk+1|k, Yk+1|k


, h(X), Rk+1

Update
5: Evaluate Hk+1

6: Y−

k+1 = Yk+1|k + HT
k+1R

−1
k+1Hk+1

7: y−

k+1 = HT
k+1R

−1
k+1zk+1

8: m−

k+1 =

Y−

k+1

−1y−

k+1

9: Yk+1 = Ψ

m−

k+1

−TY−

k+1Ψ

m−

k+1

−1

10: yk+1 = Yk+1


log


exp


Y−1
k yk

∧
exp


Ω∧

k


exp


m−∧

k+1

∨

11: return Gk+1 = G

yk+1, Yk+1


The update step is illustratively summarized in Fig. 3. Note
that, in comparison to the standard EIF, we cannot calculate
the final information vector update in (20) by using just the
information form. However, this does not preclude an advantage
in computational complexitywith respect to the LG-EKF (as shown
in Section 4). The pseudocode of the LG-EIF is given in Algorithm 1.

Remark 2. Recall that one of the main advantages of the IF lies in
the simultaneous update of multiple measurements in the same
time step. In case that N measurements are available at time step
k+1 through different measurement models hi andmeasurement
noise r ik+1 ∼ NRq(0, Ri,k+1), the updated information vector and
matrix (prior to the reparametrization step) become

y−

k+1 =

N
i=1

HT
i,k+1R

−1
i,k+1zi,k+1,

Y−

k+1 = Yk+1|k +

N
i=1

HT
i,k+1R

−1
i,k+1Hi,k+1.

(21)

Remark 3. Difficulties that could be encountered in the filter
design are twofold. First, the evaluation of operators Ck and
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Hk, which arise in the linearization of Ω(·) and h(·), could be
mathematically involved. And second, exp(·), log(·), Ad(·), ad(·),
and Ψ (·) might not allow closed-form expressions for some Lie
groups. In that case, it is necessary to apply a truncated Taylor
series expansion. However, many Lie groups that are significant for
engineering applications allow for closed form expressions for the
majority of aforementioned maps.

4. Experiments

In this section we demonstrate the effectiveness and applica-
bility of the LG-EIF on the problem of rigid body attitude track-
ing in 3D. We pose the experiment as a multisensor estimation
problem of a state residing on the group G = SO(3) × R3, where
the first group, SO(3), represents the rigid body orientation in 3D,
while the second group, R3, represents pertaining angular rates.
This is a slight abuse of notation intended for clarity, since when
talking about Rp in the framework of groups, we are actually re-
ferring to their matrix representation. R3 can be thought of as a
three-dimensional matrix Lie group through the following identi-
fication

R3
∋ (a1, a2, a3) →

1 0 0 a1
0 1 0 a2
0 0 1 a3
0 0 0 1

 ∈ GL(4;R), (22)

which transfers the addition of vectors, as the group operation
in R3, to the multiplication of matrices. Hence, G can be thought
of as a subgroup of GL(7;R), whose elements are block diagonal
matrices where the first 3 × 3 block belongs to SO(3), while the
second 4 × 4 block is of the form (22). In that setting G is a
unimodular matrix Lie group with the Haar measure being the
tensor product of the Haar measure on SO(3) and essentially the
Lebesguemeasure onR3. Thus, the LG-EIFmethodology developed
in previous sections is applicable on G.

4.1. Filtering on SO(3)× R3

Note that we designate the system state as Xk ∈ SO(3) × R3

which consists of the orientation component Φk ∈ SO(3) and the
angular rate component Φ̇k ∈ R3.

4.1.1. Prediction
We propose to model the motion (6) by a constant angular rate

motion model

Ω(Xk) =

T ˙φ1,k T ˙φ2,k T ˙φ3,k 0 0 0

T
nk =


T 2

2
n1,k

T 2

2
n2,k

T 2

2
n3,k Tn1,k Tn2,k Tn3,k

T

,
(23)

where T is the discretization time. With such a defined motion
model, the system is corrupted with white noise over three
separated components, i.e., n1,k the noise in local φ1 direction,
n2,k the noise in local φ2 direction and n3,k the noise in local φ3
direction. Given that, the components can be seen as resembling a
Wiener process over the associated axes.

The uncertainty propagation can be challenging, since it
requires the calculation of (11), which needs to be patiently
evaluated for each considered problem. However, for the Lie
algebraic error ε =


ε1 ε2 ε3 ε̇1 ε̇2 ε̇3

T, and the motion model
given by (23), which extracts only the Euclidean part of the state,
we obtain

Ck =


03×3 T · I3
03×3 03×3


. (24)

Now, we have all the ingredients for applying the motion model to
predict the state in an LG-EIF manner.

4.1.2. Update
Themeasurement function is themap h : SO(3)×R3

→ SO(3),
and although we have N measurements we use the expression
(21) for the update, hence mapping dimensions correspond as if
having a single measurement. The element that specifically needs
to be derived is themeasurementmatrixHk+1, which in the vein of
(15) requires evaluating partial derivatives andmultivariate limits.
With having the Lie algebraic error defined, the function to be
partially derived is
log


h(Mk+1|k)

−1h

Mk+1|k exp


ε∧

∨
=


ε1 ε2 ε3

T
. (25)

The final measurement matrix, for this case, is obtained by taking
the partial derivatives of (25)with respect to the Lie algebraic error.
Finally, the measurement matrix evaluates to Hk+1 = [I3 03×3].
Now, we have all the ingredients to update the filter in the LG-EIF
manner.

4.2. Evaluation

In order to demonstrate the performance of the proposed filter
we have simulated a rotating rigid body with the constant angular
rate model. First, the initial orientation of the rigid body in SO(3)
and initial angular rates are defined. Note that the angular rates
are defined in the Rp isomorphic to the so(3), i.e., the Euler axes
representation (see Appendix B). Then, under the assumption
of the constant angular rate model, random disturbances are
added via accelerations in the pertaining Euclidean space Rp.
Measurements are generated by corrupting the true orientation of
the body in Rp with white Gaussian noise, and then mapping the
result via the exponential map back to the SO(3).

In Fig. 4 we can see the result of LG-EIF and Euler angles EIF
comparison on 100 randomly generated trajectories measured
with N = 5 sensors for k = 100 steps. The initial state of the
system was set to [log X0]

∨
= [01×6]T, the standard deviation of

random accelerations over the three axes acting as disturbances
was σp = 10°/s2 and standard deviation of measurement noise
over the three axes ranged from σm = 0.1° to σm = 20°. The
estimated orientation of the LG-EIF is defined inSO(3), and in Fig. 4
we show the attitude error calculated as the cosine angle between
two rotation matrices

Φerr = arccos

1
2
(Tr[ΦT

t Φe] − 1)

, (26)

where Φt is the true orientation and Φe is estimated orientation.
We can see from Fig. 4 that for measurement noise standard
deviation larger than 2° on average the LG-EIF achieves smaller
attitude root-mean-square-error (RMSE) and has significantly
smaller variation (not noticeable in the figure) in the results
compared to the Euler angles EIF. In Fig. 5 we show three examples
(with different measurement noise intensity) of time behavior
of the attitude estimation error for different filters, where the
smaller variation for LG-EIF can be noticed. Furthermore, it could
be argued that other filtering methods in lieu of EIF could be used
which can better handle nonlinearities. However, the EIF system
and measurement equations are linear in this case and we assert
that the main reason behind larger errors in EIF comes from the
suboptimal state space parametrization, rather than linearization
errors in state and measurement equations.

The main advantage of the IF form is the computational
efficiency of the update step with respect to a large number of
measurements. To verify that the same advantage holds also for
the Lie group EKF we have compared the execution time of the
LG-EKF and LG-EIF on 100 examples of 100 step long simulated
trajectories. Fig. 6 shows the execution time ratio of the LG-EKF and
LG-EIF. We can see that for a large number of sensors or features
this difference is prominent.
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Fig. 4. Comparison of attitude RMSE with respect to increase in measurement
noise standard deviation. The results represent the mean value of the RMSE and
one standard deviation of 100 MC runs. We can see that the LG-EIF exhibits smaller
error and has more consistent performance over various trajectories.

Fig. 5. Three examples of time behavior of the attitude estimation error through
200 steps. The standard deviation for measurement noise was set to σm = 2.5°
(top), σm = 5° (middle), σm = 10° (bottom). The attitude RMSE for each filter is
given in the subfigure titles.

5. Conclusion

In this paper we have proposed a new state estimation
algorithm on Lie groups. We have embedded the LG-EKF with an
EIF form for non-linear systems, thus endowing the filter with the
information forms advantages with regard to multisensor update
and decentralization, while keeping the accuracy of the LG-EKF for
stochastic inference on Lie groups. The theoretical development of
the LG-EIF recursion equationswas presented and the applicability
of the proposed approach demonstrated on the problem of rigid
body attitude tracking with multiple sensors by setting the state
on the Lie group SO(3) × R3. The first component of the state

Fig. 6. Comparison of LG-EKF and LG-EIF time execution with respect to
the number of measurements in the update step. We can see that after 100
measurements the difference becomes extremely prominent. The figure represents
mean value of the execution time ratio for 50 Monte Carlo runs.

represented the rigid body orientation in 3D, while the second
component represented the pertaining angular rates. The system
model was then set as a constant angular rate model acting on
the state space SO(3)× R3. The results have shown that the filter
can accurately track the rigid body attitude and that on average
it exhibits lower RMSE and more consistent performance than the
Euler angles based EIF. Furthermore, the information form of the
LG-EIF keeps the multisensor or decentralization computational
advantage of the update step with respect to the LG-EKF.
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Appendix A. Lie algebraic error prediction

Proposition 4 (Baker–Campbell–Hausdorff). Given a Lie algebra g,
for all a, b ∈ g such that |a∨

| and |b∨
| are sufficiently small, the

following identity holds (Hall, 2003):

log (exp (a) exp (b)) = a +

 1

0
ψ(exp(ad(a)) exp(t ad(b)))(b)dt,

(A.1)

where ψ(z) = z log z/(z − 1).

This is an integral version of the famousBaker–Campbell–Hausdorff
(BCH) formula, which is better known in an expanded form

log (exp (a) exp (b)) = a + b +
1
2
[a, b]

+
1
12
([a, [a, b]] + [b, [b, a]])+ · · · .

(A.2)

Another useful identity used in the derivation of the predicted
Lie algebraic error is a first-order approximation relation between
additive and multiplicative perturbations on matrix Lie groups.
Namely, for every a, δ ∈ g and |δ∨

| small, i.e., neglecting the
second-order terms in |δ∨

|, it holds

exp(a + δ) ≈ exp(a) exp(Ψ (a)δ), (A.3)
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where Ψ (a) denotes the right Jacobian of the Lie group defined by
(9). The latter identity implies the approximation formula

log(exp(−a) exp(a + δ)) = Ψ (a)δ. (A.4)

Now we proceed with the derivation of the Lie algebraic error
prediction. In Section 3.2 we computed the exponential of the
predicted Lie algebraic error εk+1|k at time step k

exp(ε∧

k+1|k) = exp

−Ω∧

k


exp


ε∧

k


exp


Ω(Xk)

∧
+ n∧

k


,

where we recall Ωk = Ω(Mk) and εk is the Lie algebraic error at
time step k. Linearizing the mapΩ atMk we have

exp(ε∧

k+1|k) = exp

−Ω∧

k


exp


ε∧

k


exp


Ω∧

k + (Ckεk)
∧

+ n∧

k


,

(A.5)

where

Ck =
∂

∂ε
Ω


Mk exp


ε∧


|ε=0.

Using the BCH formula (A.2) by considering only the first four
members from the expansion and neglecting O(|ε∧

k , n
∧

k |
2) terms,

we obtain

z∧

k = log

exp


ε∧

k


exp


Ω∧

k + (Ckεk)
∧

+ n∧

k


= ε∧

k +Ω∧

k + (Ckεk)
∧

+ n∧

k +
1
2
[ε∧

k ,Ω
∧

k ]

+
1
12

[Ω∧

k , [Ω
∧

k , ε
∧

k ]]. (A.6)

Inserting (A.6) into (A.5) one has

exp(ε∧

k+1|k) = exp

−Ω∧

k


exp(z∧

k ),

thus, using the approximation identity (A.4), the following
expression holds
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Recognizing terms Ψ (Ωk)(Ckεk)
∧ and Ψ (Ωk)n∧

k in the prediction
formula (8), it remains to discuss terms
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Evaluating (A.7):
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leads to the expression
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which can be finally recognized as an approximation of

exp(ad(−Ω∧

k ))ε
∧

k = Ad(exp(−Ω∧

k ))ε
∧

k .

This finishes the derivation of the Lie algebraic error prediction.

Appendix B. The special orthogonal group SO(3)

The SO(3) group is a set of orthogonal matrices with determi-
nant one, whose elements geometrically represent rotations. Rota-
tions in 3D can also be representedwith an Euler vector (also called
the axis–angle notation), where a vector φ = [φ1 φ2 φ3]

T
∈ R3 de-

notes a rotation about the unit vector φ/|φ| by the angle |φ|. An
interesting notion is that the Lie algebra so(3) is given as the skew
symmetric matrix of the Euler vector

φ∧
=

 0 −φ3 φ2
φ3 0 −φ1

−φ2 φ1 0


∈ so(3), (B.1)

where (·)∧ : R3
→ so(3) and its inverse, (·)∨ : so(3) → R3, follow

trivially. The exponential map exp : so(3) → SO(3) is given as
Barfoot and Furgale (2014)

exp(φ∧) = cos(|φ|)I3 + (1 − cos(|φ|))
φφT

|φ|2
+ sin(|φ|)

φ∧

|φ|
. (B.2)

Furthermore, for an Φ ∈ SO(3), the matrix logarithm, performing
mapping log : SO(3) → so(3), is given as

log(Φ) =

 γ

2 sin(γ )
(Φ − ΦT ), if γ ≠ 0

0, if γ = 0,
(B.3)

where 1+ 2 cos γ = Tr(Φ) and Tr( · ) designates the matrix trace.
The adjoint operators Ad and ad for SO(3) are respectively given
as

Ad(Φ) = Φ and ad(φ∧) = φ∧. (B.4)

Given the above definitions, we have all the needed ingredients to
use the SO(3) group within the LG-EIF.
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a b s t r a c t

Reliable scene analysis, under varying conditions, is an essential task in nearly any assistance or
autonomous system application, and advanced driver assistance systems (ADAS) are no exception.
ADAS commonly involve adaptive cruise control, collision avoidance, lane change assistance, traffic sign
recognition, and parking assistance—with the ultimate goal of producing a fully autonomous vehicle.
The present paper addresses detection and tracking of moving objects within the context of ADAS. We
use a multisensor setup consisting of a radar and a stereo camera mounted on top of a vehicle. We
propose to model the sensors uncertainty in polar coordinates on Lie Groups and perform the objects
state filtering on Lie groups, specifically, on the product of two special Euclidean groups, i.e., SE(2)2. To this
end, we derive the designed filter within the framework of the extended Kalman filter on Lie groups. We
assert that the proposed approach results with more accurate uncertainty modeling, since used sensors
exhibit contrastingmeasurement uncertainty characteristics and the predicted targetmotions result with
banana-shapeduncertainty contours.Webelieve that accurate uncertaintymodeling is an importantADAS
topic, especially when safety applications are concerned. To solve the multitarget tracking problem, we
use the joint integrated probabilistic data association filter andpresent necessarymodifications in order to
use it on Lie groups. The proposed approach is tested on a real-world dataset collected with the described
multisensor setup in urban traffic scenarios.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Reliable comprehension of the surrounding environment,
under varying conditions, is an essential task in nearly any
assistance or autonomous system application. Since the advent

✩ This work has been supported by the Unity Through Knowledge Fund under the
project Cooperative Cloud based Simultaneous Localization and Mapping in Dynamic
Environments and the European Regional Development Fund under the project
Advanced Technologies in Power Plants and Rail Vehicles.
∗ Corresponding author.

E-mail addresses: josip.cesic@fer.hr (J. Ćesić), ivan.markovic@fer.hr
(I. Marković), igor.cvisic@fer.hr (I. Cvišić), ivan.petrovic@fer.hr (I. Petrović).

of autonomous vehicle research, scientific community has been
actively engaged in developing advanced driver assistance systems
(ADAS). ADAS commonly involve adaptive cruise control, collision
avoidance, lane change assistance, traffic sign recognition, and
parking assistance—with the final goal being a fully autonomous
vehicle. ADAS have been in the focus of research for a few decades,
intended to enhance the safety and reduce the possibility of a
human error as a cause of road accidents [1]. An essential task
in numerous ADAS applications is the detection and tracking of
moving objects (DATMO), since it allows the vehicle to be aware
of dynamic objects in its immanent surrounding and predict their
future behavior. Since the robustness of such an application under
varying environmental conditions represents a complex challenge,

http://dx.doi.org/10.1016/j.robot.2016.05.001
0921-8890/© 2016 Elsevier B.V. All rights reserved.
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it has become clear that there does not exist such a sensing system
that could solely deliver full information required for adequate
quality of ADAS applications [2].

Given that, ADAS commonly rely on using complementary
sensing systems: vision,millimeter-wave radars, laser range finder
(LRF) or combinations thereof. Radar units are able to produce
accurate measurements of the relative speed and distance to the
objects. LRF have higher lateral resolution than the radars and,
besides accurate object distance, they can detect the occupancy
area of an object and provide detailed scene representation [3].
Regarding the robustness, radar units are more robust to rain, fog,
snow, and similar conditions that may cause inconveniences for
LRF; but, they produce significant amount of clutter as a drawback.
Vision-based sensing systems can also provide accurate lateral
measurements and wealth of other information from images,
thus provide an effective supplement to ranging-based sensor
road scene analysis. As an example, a stereo vision sensor can
provide target detection with high lateral resolution and less
certain range, while usually bringing enough information for
identification and classification of objects, whereas radar can
provide accurate measurements of range and relative speed.
Given the complementarity of radars and vision systems, this
combination is commonly used in research for ADAS applications.
For example, works based on a monocular camera use radar for
finding regions of interest in the image [4–7], process separately
image and radar data [8–10], use motion stereo to reconstruct
object boundaries [11,12], while [13,14] use directly stereo
cameras. Employingmultiple sensors, and consequently exploiting
their differentmodalities, requires fusion of the sensing systems at
appropriate levels. Depending on the approach, fusion can roughly
take place at three levels: before objects detection (low level) [13,
14], at the objects’ detection level (fused list of objects) [12,10], or
at the state level (updating the states of objects in the list for each
sensor system) [9,8,15].

Since in ADAS applications sensors with very different charac-
teristics are used; e.g. radar with higher lateral uncertainty, but
precise range estimation, and stereo camera with low lateral un-
certainty but higher range imprecision, question arises on how
to faithfully model the uncertainty of the state, estimated asyn-
chronously with such sensors. Moreover, since in urban scenar-
ios targets can exhibit varying dynamic behavior, a flexible motion
model, capable of capturing the maneuvering diversity, should be
used.

In the present paper, which is a continuation of our previous
work presented in [16], we use a combination of a radar and
a stereo vision system to perform the target tracking task.
Our previous work focused on developing an appearance-based
detection approach, while this paper deals with the tracking part
of the DATMO procedure and uses a motion-based detection
technique. Given the previous discussion, our first contribution
is in modeling radar and stereo measurements arising in polar
coordinates as members of Lie Groups SO(2) × R1, and in
estimating the target state as the product of two special Euclidean
motion groups SE(2) × SE(2) = SE(2)2. This is performed within
the framework of the extended Kalman filter on Lie groups, which
we derive for the proposed system design. Furthermore, the target
motion model also resides on the same group product and as
such will yield the required model flexibility. This will not only
enable us to correctly model sensor uncertainties, but also to have
higher diversity in the uncertainty representation of the state
estimates. For example, besides the standard Gaussian elliptically
shaped uncertainty, proposed representation also supports the so
called banana-shaped uncertainties. The second contribution of the
paper is the adaptation of the joint integrated probabilistic data
association (JIPDA) filter for multitarget on the SE(2)2. To the best
of the author’s knowledge, this is the first use of a filtering on Lie
Groups for a multitarget tracking application.

The rest of the paper is organized as follows. Section 2 presents
related work and the present paper’s contributions. Section 3
presents mathematical background of the LG-EKF, while Section 4
derives the proposed asynchronous LG-EKF on SE(2)2 with polar
measurements. The multitarget tracking with JIPDA filter on
SE(2)2 is described in Sections 5 and 6 presents the real-world
experimental results. In the end, Section 7 concludes the paper.

2. Related work and progress beyond

Several distinct research fields relate to the study presented in
this paper. These include the state estimation on Lie groups, mul-
titarget tracking, stereo vision- and radar-based signal processing.
We focus our overview of related work in the pertinent fields by
considering results relevant to the present application.

To detect objects of interest, vision algorithms can resort
to (i) appearances at a single time step, and (ii) motion over
several frames [2]. In [17] authors employ detection procedure
based on appearances in the disparity space, where clustering
and extraction of moving objects are performed. The work in [18]
focuses on ego-motion estimation, while moving objects stem
from clustering the estimated motions in the filtered point cloud.
Scene flow, i.e., the motion in 3D from stereo sequences, was
used in [19,20], where adjacent points describing similar flow are
considered to belong to a single rigid object. In [21] objects are also
extracted from the scene flow, after which clustering is performed,
and the iterative closest point algorithm is used to determine the
vehicles’ pose. Approach in [22] combines depth and optical flow-
based clustering with an active learning-based method. In [23]
pedestrians were isolated from the stereo point cloud and their
pose estimated using a visibility-based 3Dmodel, which is capable
of predicting occlusions and using them in the detection process.

Concerning radar and stereo vision integration, in [14] approach
based on fitting themodel of a vehicle contour to both stereo depth
image and radar readings was presented. First, the algorithm fits
the contour from stereo depth information and finds the closest
point of the contour with respect to the vision sensor. Second, it
determines the closest point of the radar observation and fuses
radar’s and vision’s closest points. By translating the initially fitted
contour to the fused closest point, the resulting contour is obtained
and located. Another low level integration approachwas presented
in [13]. In particular, the edge map of the stereo image is split into
layers corresponding to different target depths so that the layers
contain edge pixels of targets at different depth ranges. Hence, the
original multitarget segmentation task is decomposed into several
single target segmentation tasks on each depth-based layer, thus
lowering the computational costs of the segmentation.

In the present paper each sensor reports its detections
independently. To estimate the interim vehicle displacement, we
use our visual stereo odometry algorithm (named SOFT) presented
in [24]. Features not conforming to the computed displacement
are considered as moving objects and are grouped together to
yield measurements which are then fed to the tracking algorithm.
In that respect our approach would fall within the motion-based
detection approaches. The radar sensor complements detections
from the stereo camera, and reports to the tracking algorithm a list
of possible obstacle detections.

Irrespective of the used sensor setup, in traffic scenarios one
must address the problem of multitarget tracking. This entails
estimation (tracking) of each target’s state and dealing with
the problem of associating correct measurements to the tracked
targets in cluttered environments, i.e. solving the data association
problem. Commonly, for state estimation the Kalman filter and
its non-linear variants are used. However, in order to achieve
the proposed state uncertainty representation and motion model
flexibility, in the present paper we use the extended Kalman filter
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Fig. 1. The experimental platform mounted on top of a vehicle, consisting of a
stereo camera system and two radar units.

on Lie groups (LG-EKF) [25]. This way we can track targets with
the Kalman filter directly on the SE(2)2. Considering multitarget
tracking, a lot of attention has been devoted to tractable random
finite sets (RFS)-based approximations of the multitarget Bayes
filter: probability hypothesis density (PHD) [26–28], cardinalized
PHD [29,30], and multitarget multi-Bernoulli filters [31–34].
On the other hand, data association-based algorithms, such as
multiple hypothesis tracker (MHT) [35] and joint probabilistic data
association (JPDA) filter [36], approach the problem by considering
explicit measurement-to-target associations. In [37] the JPDA was
extended to include the probability of target existence in order to
alleviate the assumption of the constant and known number of
targets in the scene. The two approaches are not orthogonal; filters
very similar to the JIPDA and MHT can be derived from the RFS
theory [38,39].

Detection results often serve as inputs to the tracking algorithm
and the ADAS works most similar to the present paper are [8,
9]. In [8], the authors fuse the data from radar and image sensor
to estimate the position, direction and width of objects in front
of the vehicle. Therein, an ego-motion compensated tracking
approach is presented which combines radar observations with
the results of the contour-based image processing algorithm. The
filtering aspect relies on the unscented Kalman filter and the
constant turn rate and acceleration model. In [9] authors propose
asynchronous independent processing of radar and vision data and
use the interacting multiple model Kalman filter to cope with the
changing dynamics, associating the observations via probability
data association scheme. In particular, the combined motion
models are the constant velocity and constant accelerationmodels.

Since both the stereo camera and the radar work at different
frequencies, we use asynchronous filtering; in that respect our ap-
proach performs fusion at the state level. We propose to model
radar and stereomeasurements in polar coordinateswithin the LG-
EKF scheme andwederive the required filter on the product of spe-
cial Euclidean groups, SE(2)2. We also provide an in-depth discus-
sion on the behavior of the state uncertaintywhen fusingmeasure-
ments from the used sensors. We believe that faithful uncertainty
representation is an important aspect of ADAS, especially when
safety applications are concerned. To handle varying dynamic be-
havior, ourmotionmodel will reside on SE(2)2, since it can capture
well a wide range of behavior [40]. To handle the multitarget sce-
nario, we propose to use the JIPDA filter, which, to the best of the
authors’ knowledge, is its first use within the Kalman filtering on
Lie groups. The proposed approach is validated in real-life exper-
iments, where the dataset was taken in urban scenarios with the
sensor setup mounted on a moving vehicle (Fig. 1).

3. Mathematical preliminaries

3.1. Lie groups, Lie algebra and the concentrated Gaussian distribu-
tion

In this section, we provide notations and properties for
matrix Lie groups and the associated Lie algebras which will be

used for the SE(2)2 filter. Lie group G′ is a group which has
the structure of a smooth manifold (i.e. it is sufficiently often
differentiable [41]) such that group composition and inversion
are smooth operations. Furthermore, for a matrix Lie group G, of
which SE(2) is an example, these operations are simply matrix
multiplication and inversion, with the identity matrix In×n being
the identity element [42].

Another important term is the Lie algebra gwhich is associated
to a Lie group G. It is an open neighborhood of 0n×n in the tangent
space of G at the identity In×n. The matrix exponential expG and
matrix logarithm logG establish a local diffeomorphism

expG : g → G and logG : G → g. (1)

The Lie algebra g associated to a p-dimensional matrix Lie group
G ⊂ Rn×n is a p-dimensional vector space defined by a basis
consisting of p real matrices Ei, i = 1, . . . , p [43]. A linear
isomorphism between g and Rp is given by

[·]
∨

G : g → Rp and [·]
∧

G : Rp
→ g. (2)

Lie groups are generally non-commutative and require the use of
two operators which enable the adjoint representation of (i) G on
Rp denoted as AdG and (ii) Rp on Rp denoted as adG [42,44].

In order to define the concept of the concentrated Gaussian
distribution on Lie groups, necessary for introduction of the LG-
EKF, the considered Lie group needs to be a connected unimodular
matrix Lie group [45],which is the case of themajority of Lie groups
used in robotics.

Let the pdf of X be defined as [46]

p(X) = β exp


−
1
2
[logG(X)]∨

T

G P−1
[logG(X)]∨G


, (3)

where β is a normalizing constant. Let ϵ be defined as ϵ ,
[logG(X)]∨G . Under the assumption that the entire mass of
probability is contained inside G, i.e.,


Rn×n\G p(X) = 0, ϵ can

be described with ϵ ∼ NRp(0p×1, P). This concept is called
a concentrated Gaussian distribution (CGD) on G around the
identity [25]. Furthermore, it is a unique parametrization space
where the bijection between expG and logG exists. Now, the
distribution of X can be translated over G by using left action of
the Lie group

X = µ expG

[ϵ]∧G


, with X ∼ G(µ, P), (4)

where G denotes the CGD [46,25]. By this, we have introduced the
distribution forming the base for the LG-EKF.

3.2. The Special Euclidean group SE(2)

The group SE(2) describes rigid body motion in 2D and
is formed as a semi-direct product of the plane R2 and the
special orthogonal group SO(2) corresponding to translational and
rotational elements. It is defined as

SE(2) =


R t

01×1 1


∈ R3×3

| {R, t} ∈ SO(2) × R2


. (5)

Now,we continuewith providing the basic ingredients forworking
with SE(2), giving relations for operators presented in Section 3.1,
needed for manipulations within the triplet: Lie group G, Lie
algebra g, and Euclidean space Rp.

For a Euclidean space vector x =

x y θ

T , the most often
associated element of the Lie algebra se(2) is given as

[x]∧SE(2) =

[x]∧SO(2)
x
y

01×2 0

 ∈ se(2) (6)

[x]∧SO(2) =


0 −θ
θ 0


∈ so(2). (7)
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Their inverses, [·]∨SE(2) and [·]
∨

SO(2), follow trivially from the relations
(6) and (7), respectively.

The exponential map for the SE(2) group is given as

expSE(2)([x]
∧

SE(2)) =

expSO(2)([θ ]
∧

SO(2))
tx
ty

01×2 1

 ∈ SE(2) (8)

expSO(2)([θ ]
∧

SO(2)) =


cos θ − sin θ
sin θ cos θ


∈ SO(2) (9)

tx =
1
θ
[x sin θ + y(−1 + cos θ)] (10)

ty =
1
θ
[x(1 − cos θ) + y sin θ ] . (11)

For T = {R, t} ∈ SE(2), the logarithmic map is

logSE(2)(T ) =


v
θ

∧

SE(2)
∈ se(2) (12)

θ = logSO(2)(R) = atan2(R21, R11) (13)

v =
θ

2(1 − cos θ)


sin θ 1 − cos θ

cos θ − 1 sin θ


t . (14)

The Adjoint operator AdG used for representing T ∈ SE(2) on R3 is
given as

AdSE(2)(T ) =


R Jt

01×2 1


with J =


0 1

−1 0


, (15)

while the adjoint operator adG for representing x ∈ R3 on R3 is
given by

adSE(2)(x) =


−θ J Jv
01×2 1


, (16)

where v = [x y]T ∈ R2. Given the definitions above, we have all
the needed ingredients for using the SE(2) motion group within
the proposed approach.

4. Second order rigid body motion estimation

4.1. State space construction

As a rigid body, vehicle’s state can be well described employing
the rigid body motion group. Furthermore, when considering
velocities of such an object, we can also represent these higher
order moments by using the same motion group. Following the
rigid body equivalent of the constant velocity motion model [47],
here we model the vehicle by constructing the state space G as
the Cartesian (direct) product of the two matrix Lie group SE(2)
members [40]

SE(2) × SE(2) = SE(2)2. (17)

The first SE(2) member is the position component, while the
second one contributes the velocity components. This can be
regarded as a white noise acceleration model [47] on the SE(2)
group. Considering vehicle tracking applications, in contrast to
other well establishedmotionmodels—constant velocity, constant
turn rate and velocity, constant curvature and velocity [48,49]—
the SE(2)2 motion model provides more artificial flexibility.
This flexibility is manifested through including the holonomic
behavior over all three velocity components, i.e., the longitudinal,
lateral, and rotational velocities, which have Wiener process
characterization [47]. Such flexibility provides the ability to
describe motion of objects appearing in ADAS, e.g., vehicles,
motorcycles and pedestrians, and hence is appropriate for usage
in our particular DATMO focused application.

Matrix Lie group composition and inversion are simple matrix
multiplication and inversion, hence for all the calculations dealing
with operations on G, we can use the symbolic representation
constructed by placing the two SE(2) members of G block
diagonally. The Lie algebra associated to the Lie group G is denoted
as g = se(2) × se(2). The term [x]∧G is also constructed by placing
both se(2)members on themain diagonal, and correspondingly the
exponential map on such G is as well formed block diagonally. For
more details on the construction and symbolical representation of
the groups of interest, please confer [40] where the state model
was first proposed.

4.2. Motion model and prediction

The motion model satisfies the following equation

Xk+1 = f (Xk, nk) = Xk expG


[Ω̂k + nk]

∧

G


, (18)

where Xk ∈ G is the state of the system at time k,G is a p-
dimensional Lie group, nk ∼ NRp(0p×1,Qk) is white Gaussian noise
and Ω̂k = Ω(Xk) : G → Rp is a non-linear C2 function. If
the posterior distribution at step k − 1 follows the concentrated
Gaussian distribution on matrix Lie Groups as G(µk−1, Pk−1). The
predicted mean is given by [25]

µk+1|k = µk expG


[Ω̂k]

∧

G


. (19)

We model the motion (18) by [40]

Ω(Xk) =

Tvxk Tvyk Tωk 0 0 0

T
∈ R6, (20)

nk =


T 2

2
nxk

T 2

2
nyk

T 2

2
nωk Tnxk Tnyk Tnωk

T
∈ R6.

With this model, the system is corrupted with white noise over
three components, i.e. nx is the noise in the local x direction, ny is
the noise in local y direction and nw is the noise in the rotational
component.

Formula for propagating the covariance of ϵk+1|k through the
general motion model (18) is given as in [25]

Pk+1|k = FkPkF T
k + ΦG(Ω̂k)QkΦG(Ω̂k)

T , (21)

where the operator Fk, a matrix Lie group equivalent to the
Jacobian of f (Xk, nk), and ΦG, are evaluated as

Fk = AdG


expG


[−Ω̂k]

∧

G


+ ΦG(Ω̂k)Ck

ΦG(v) =

∞
m=0

(−1)m

(m + 1)!
adG(v)m, v ∈ Rp

Ck =
∂

∂ϵ
Ω

µk expG


[ϵ]∧G


|ϵ=0 .

(22)

The covariance propagation is challenging since it requires
calculation of (22). The final expression for Ck is thus given as

Ck =

03×3
T cosωk −T sinωk 0
T sinωk T cosωk 0

0 0 T
03×3 03×3

 . (23)

The complete derivation ofCk is given in [40]. The adjoint operators
AdG and adG are also formed block diagonally.

The last needed ingredient is the process noise covariance ma-
trix Qk. In the present paper, we perform sensor fusion in an asyn-
chronousmannerwith the arrival of eachmeasurement. Hence,we
proceed by defining the process to follow continuous white noise
acceleration model (CWNA) over the three components discussed
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previously. In the sequel, we derive the discrete time process noise
by relating it to the continuous one [47]. Let q̃x, q̃y and q̃ω denote
the time-invariant continuous time process noise intensities re-
flecting power spectral density over all three components. Then,
the process noise covariance matrix Q evaluates to

Q =



T 3

3
q̃x 0 0

T 2

2
q̃x 0 0

0
T 3

3
q̃y 0 0

T 2

2
q̃y 0

0 0
T 3

3
q̃ω 0 0

T 2

2
q̃ω

T 2

2
q̃x 0 0 T q̃x 0 0

0
T 2

2
q̃y 0 0 T q̃y 0

0 0
T 2

2
q̃ω 0 0 T q̃ω


. (24)

At this point, we have defined all the necessary ingredients for the
asynchronous prediction step of the LG-EKF filter.

4.3. Measurement model and correction

The discrete measurement model on the matrix Lie group is
defined as

Zk+1 = h(Xk+1) expG′


[mk+1]

∧

G′


, (25)

where Zk+1 ∈ G′, h : G → G′ is a C1 function and mk+1 ∼

NRq(0q×1, Rk+1) is white Gaussian noise.
The predicted system state is described with Xk+1|k ∼

G(µk+1|k, Pk+1|k) and now we proceed to updating the state by
incorporating the newly arrived measurement Zk+1 ∈ G′. In this
case, we propose the measurements to arise in the space of a Lie
group constructed as G′

= SO(2) × R1, measuring the current
position of the tracked object in 2D in polar coordinates. The radar
and the stereo camera, as well as many other widely spread on-
board sensing systems, perceive the surrounding from a single
point, and hence perform the measurement in polar coordinates.
Thus the uncertainty of such measurements, i.e. the measurement
likelihood, resembles banana-shaped contours rather than the
elliptical ones. In order to integrate such sensing modalities into
the LG-EKF,wenow introduce necessary ingredients for the update
step of the filter.

The measurement function is mapping h : SE(2) × SE(2) →

SO(2) × R1. It is given as

h(Xk+1) =


expSO(2)


arctan

yk+1

xk+1

∧

SO(2)



expR1


x2k+1 + y2k+1

∧

R1


 . (26)

The exponential and logarithm onRp follows amapping procedure
and is only a matter of representation. Hence we introduce
expR for implementation purposes only, to follow the matrix
representation of the procedure, hence each composition and
inversion follow matrix multiplication and inversion procedures,
even when working with Euclidean space. In particular, the
Euclidean space is a trivial example of a matrix Lie group, so the
representation of v ∈ Rp in the form of a Lie algebra [v]

∧

Rp ⊂

Rp+1×p+1 and matrix Lie group expRp([v]
∧

Rp) ⊂ Rp+1×p+1 is given
as

[v]
∧

Rp =


0p×p v

01×p 0


and expRp([v]

∧

Rp) =


Ip×p v

01×p 1


. (27)

One should note that there exists a trivial mapping between the
members of the triplet v, [v]

∧

Rp and expRp([v]
∧

Rp), hence the formal
inverses of the terms from (27) are omitted here.

Let us now define the following innovation term

Z̃k+1 =

logG′


h(µk+1|k)

−1Zk+1
∨

G′

= Hk+1ϵk+1|k + mk+1 + O

∥ϵk+1|k∥

2, ∥mk+1∥
2 (28)

which is linear in the lie algebraic error ϵk+1|k ∼ NRp(0p×1, Pk+1|k).
Now, we can apply the classical update equations employing
the measurement model to update the Lie algebraic mean and
covariance, such that ϵ−

k+1 ∼ NRp(µ−

k+1, P
−

k+1). The update step
of the filter, based on the measurement model (25), strongly
resembles the standard EKF update procedure [48], relying on the
Kalman gain Kk+1 and innovation vector νk+1, and is calculated as

Kk+1 = Pk+1|kH
T
k+1


Hk+1Pk+1|kH

T
k+1 + Rk+1

−1

νk+1 =

logG′


h(µk+1|k)

−1Zk+1
∨

G′ .
(29)

Hence the updated Lie algebraic error ϵ−

k+1 is given as

µ−

k+1 = Kk+1νk+1

P−

k+1 =

Ip×p

− Kk+1Hk+1

Pk+1|k.

(30)

The matrix Hk can be seen as the measurement matrix of the
system, i.e. a matrix Lie group equivalent to the Jacobian of h(Xk),
and is given as

Hk+1 =
∂

∂ϵ


logG′


h(µk+1|k)

−1h

µk+1|k expG


[ϵ]∧G

∨
G|ϵ=0 . (31)

The final expression of the measurement matrix Hk+1 is given as
follows

Hk+1 =


−y cos θ + x sin θ

x2 + y2
x cos θ + y sin θ

x2 + y2
x cos θ + y sin θ

x2 + y2
y cos θ − x sin θ

x2 + y2

02×4

 . (32)

Note that the subscript indices determining the time step of the
filter have been omitted in the previous expression due to clarity,
i.e. θk+1|k , θ, xk+1|k , x and yk+1|k , y. Detailed derivation of the
matrix Hk+1 is given in the Appendix.

The update procedure is expected to deliver the concentrated
Gaussian distribution such that X = µ expG


[ϵ]∧G


, with

expectation E[ϵ] = 0p×1. However, since operating with generally
non-Euclidean spaces, we have E[ϵ−

k+1] = µ−

k+1 ≠ 0p×1 which
is resolved by state reparametrization [25]. The mean and the
covariance are updated as

µk+1 = µk+1|k expG

[µ−

k+1]
∧

G


Pk+1 = ΦG(µ

−

k+1)P
−

k+1ΦG(µ
−

k+1)
T .

(33)

As in the case of the prediction step, the stateXk+1 ∼ G(µk+1, Pk+1)
has remained G-distributed after correction. Now we have all the
means for updating the filter by calculating the Kalman gain Kk+1
and the innovation vector νk+1 (29), and finally correcting the
mean µk+1 and the covariance matrix Pk+1 (33).

Fig. 2 shows examples of LG-EKF filter state uncertainties
updated with three different sensors types. In all the examples
the filter prediction follows the SE(2)2 motion model and yields
banana-shaped state uncertainties. In Fig. 2(a)we show an example
of updating the filter with a sensor having elliptical measurement
uncertainty; this resembles ‘classical’ Gaussian like uncertainty.
In Fig. 2(b) we depict update with a sensor that has larger
uncertainty in the bearing than in the range and the update of
the filter acts as ‘intersecting’ the two banana-shaped distributions.
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(a) Elliptical measurement uncertainty. (b) Radar-like measurement uncertainty. (c) Stereo vision-like measurement
uncertainty.

Fig. 2. Examples of LG-EKF state uncertainties when updated with sensors having different measurement characteristics. The filter prediction in blue follows the SE(2)2
motion model, measurement is depicted in red, and the updated state is depicted in green. We can notice that the LG-EKF filter can capture a wide range of uncertainty
contours; from Gaussian elliptic uncertainties to banana-shaped uncertainties typical for range-bearing sensors and vehicles in motion with non-zero turn rate deviation.

This example resembles update performed with a radar unit.
Finally, Fig. 2(c) shows the example with sensor having larger
uncertainty in the range than in the bearing. Notice how the
prediction uncertainty skews to the right indicating that the
vehicle had higher probability of turning right than left. This
example resembles update performed with the stereo vision
sensor. From the above examples we can see how the filter can
handle diverse measurement uncertainties and efficiently fuse
them with the information from the prediction step. Having
finished with the single target filtering, what is left is to resolve
the LG-EKF tracking with multiple targets in the scene.

5. Joint integrated probabilistic data association

Assume that we are tracking multiple targets, {T1, . . . , Ttk},
with the number of targets, tk, varying with time, i.e., targets can
appear and disappear from the sensors’ field-of-view. Let Zk denote
the set of all measurements at time step k

Zk = {Z j
k : j = 1, . . . ,mk},

and Z1:k = {Z1, . . . , Zk} the history of all the measurements.
The vector Zk, besides target originating measurements, also
contains clutter which is a Poisson distributed random variable.
The main issue at hand is how to appropriately assign the received
measurement set to the targets in track, and how to manage the
target appearance and disappearance.

The JIPDA [37] approaches this problem by estimating the
following a posteriori density for each Ti

p(X i
k, χ

i
k | Z1:k) = p(X i

k | χ i
k, Z1:k)p(χ

i
k | Z1:k), (34)

i.e, the density of the target’s state X i
k and its existence χ i

k given all
the measurements up to and including k. Note that in the present
paper, X i

k is distributed according to G(µi
k, P

i
k) as in the case of (4).

For the probability of target existence, we adopt the Markov Chain
One model [37]

p(χ i
k | Z1:k−1) = pSp(χ i

k−1 | Z1:k−1), (35)

where pS denotes the probability that target will continue to exist
at step k given that it existed at step k − 1.

In order to alleviate computational complexity, at each
scan tracks are separated into clusters which share selected
measurements. As a criteria for measurement-to-track validation,
the gating principle is used where based on the innovation
uncertainty (29) a gating volume is defined, and measurements
falling within are accepted as cluster members. For notation
clarity we will not differentiate measurements belonging to
the cluster from those outside of the clusters. The former will
participate in the data association operations, while the latter

will be treated as candidates for new tracks initialization. For
filtering on LG, validation gate is defined in the algebra where
measurements are associated to targets, and if multiple targets
share the same measurements they are formed into a cluster.
The ensuing formulae will pertain to a single cluster and all the
measurements and targets are assumed to belong to the cluster.

Upon availability of a set of new measurements Zk = {Z j
k : j =

1, . . . ,mk}, the following set of hypotheses is built:

θ
ij
k = {Z j

k is caused by Ti}, j = 1, . . . ,mk, and

θ i0
k = {none of the measurements is caused by Ti}.

The total probability formula implies that the posterior density for
object Ti at scan k is given by [37]

p(X i
k, χ

i
k | Z1:k)

= p(χ i
k | Z1:k)

mk
j=0

p(X i
k | θ

ij
k , χ i

k, Z1:k)p(θ
ij
k | χ i

k, Z1:k)

= p(χ i
k | Z1:k)

mk
j=0

β
ij
k p(X

i
k | θ

ij
k , χ i

k, Z1:k), (36)

where β
ij
k = p(θ ij

k | χ i
k, Z1:k) represent a posteriori data association

probabilities conditioned on object existence. Explicitly, β ij
k is the

probability that measurement z jk is caused by Ti and β i0
k is the

probability that none of the measurements is caused by Ti. The
densities p(X i

k | θ
ij
k , χ i

k, Z1:k) represent ‘classically’ updated LG-
EKF (30) for j = 1, . . . ,mk, while for j = 0 the density is just the
prediction calculated via (18) and (21). Parameters of the mixture
components are denoted by µ

ij,−
k+1 and P ij,−

k+1, specifically, when j =

0, µi0,−
k+1 = µi

k+1|k and P i0,−
k+1 = P i

k+1|k.
In order to calculate β

ij
k we need to take into account

measurement-to-object associations events jointly across the set
of objects in the cluster. This means that hypothesis θ

ij
k consists of

all feasible joint events E where each track is assigned zero or one
measurement and each measurement is allocated to zero or one
track; thus, they partition the hypothesis θ

ij
k and

p(θ ij
k , χ i

k | Z1:k) =


E∈θ

ij
k

P(E | Z1:k), j > 1, (37)

p(θ i0
k | Z1:k) = 1 − p(θ ij

k , χ i
k | Z1:k). (38)

Furthermore, probability that Ti exists and that no measurement
in the cluster is its detection, is given by [37]

p(θ i0
k , χ i

k | Z1:k) =
(1 − P i

DP
i
G)p(χ

i
k | Z1:k)

1 − P i
DP

i
Gp(χ

i
k | Z1:k)

p(θ i0
k | Z1:k). (39)
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To calculate P(E | Z1:k), for each joint event E we define:
set of targets allocated no measurement, T0(E), and set of tracks
allocated one measurement, T1(E). Following [37,38] we obtain

P(E | Z1:k) = C−1
k


i∈T0(E)

(1 − P i
DP

i
GP(χ i

k | Z1:k−1))

·


i∈T1(E)

P i
DP

i
GP(χ i

k | Z1:k−1)
pik(τ (E, i))
ρk(τ (E, i))

, (40)

where P i
d is the probability ofTi being detected, P i

G is the probability
that the correct measurement will be inside the validation gate of
Ti, τ (E, i) is the index of measurement allocated to Ti under joint
event E, ρk(τ (E, i)) denotes a priori clutter measurement density
at zτ(E,i)

k , and C−1
k is the normalization constant calculated from the

fact that E are mutually exclusive and form an exhaustive set, i.e.,
E P(E | Z1:k) = 1. The innovation is calculated by using results

from (29)

pik(τ (E, i)) =
1
PG

pik(ν
τ(E,i)
k ; 0, Hk+1Pk+1|kH

T
k+1 + Rk+1). (41)

The innovation in (41) is normalized by PG in order to account for
the validation gating, i.e., since it is truncated to integrate to unity.
Finally, we have all the elements to determine the probability of
target existence

p(χ i
k | Z1:k) =

mk
j=0

p(θ ij
k , χ i

k | Z1:k), (42)

and to calculate the data association probabilities

β
ij
k =

p(θ ij
k , χ i

k | Z1:k)

p(χ i
k | Z1:k)

, j = 0, . . . ,mk. (43)

Note that all the operations concerning a specific target Ti,
described so far in the section, are carried out in the pertaining
algebra of µi

k+1|k, since, we are still at the update stage of the LG-
EKF. To calculate the final a posteriori state estimate the JIPDA logic
dictates reducing the mixture in (36) to a single density with the
following parameters [50,38]

µ
i,−
k+1 =

mk
j=0

β
ij
k µ

ij,−
k+1, (44)

P i,−
k+1 =

mk
j=0

(P ij,−
k+1 + µ

ij,−
k+1(µ

ij,−
k+1)

T) − µ
i,−
k+1(µ

i,−
k+1)

T. (45)

As in the case of the LG-EKF update, E[ϵ−

k+1] = µ
i,−
k+1 ≠ 0p×1; thus,

before mapping the updated state and covariance to G we have to
perform reparametrization [40]

µi
k+1 = µi

k+1|k expG


[µ

i,−
k+1]

∧

G


P i
k+1 = ΦG(µ

i,−
k+1)P

i,−
k+1ΦG(µ

i,−
k+1)

T.

(46)

6. Experimental results

6.1. System overview

The experiments were carried out using two radar units and
a stereo camera system, mounted on a sensor platform on top of
a vehicle. The sensor platform was constructed so that the stereo
camera is placed in-between the two radar units as shown in Fig. 1.

In the present paper we used the Continental Short Range
Radar 209–2 units (measurement range of 50 m) configured to
operate in the cluster mode, at a rate of 15 Hz. The field of view

is 150° horizontally and 12° vertically, with the resolution in the
horizontal direction of 1°, while there is no discrimination of the
angle in vertical direction, and hence the radar cluster data can
be considered as 2D measurements. After each scanning cycle the
radar can deliver a cluster consisting of up to 128 detections. In
the prefiltering stage we dismissed all the cluster measurements
whose radar cross section, i.e., the measure of the reflective
strength, did not exceed −5 dBm.

The stereo images were recorded with the monochrome Point
Grey Bumblebee XB3 camera system. This system is a 3-sensor
multi-baseline stereo camera with 1.3 mega-pixel global shutter
sensors. The image resolution is 1280×960 pixels, with horizontal
field of view of 66°. The experiments were carried out at the
maximum frame rate of 16 Hz, and by using the largest, 24 cm
long baseline, since the expected target measurement range is up
to 50m. The stereo image synchronizationwas executed internally,
while the experiment was recorded in the auto-exposure mode of
the camera.

Given that the sensors are closely spaced, mechanically aligned
using custom-made plates on the same rail, and since we perform
sensor fusion at the state level, the inter-sensor calibration was
done by measuring the mounting position displacements by hand.
Moreover, due to the coarse nature of radar measurements we
find the current rail-mounting sufficiently precise to assert that
differences in the orientation of the sensor coordinate frames
can be neglected for case of the present sensor setup. However,
for arbitrary radar and stereo vision setups a closer inspection
of the calibration problem might be required [7]. Furthermore,
special attention was taken to assure the clock synchronization,
since our approach relies on state estimation performed in an
asynchronous manner. Although both sensors work at close
frequencies, generally this might not be the case, and the approach
of asynchronous filtering is kept for the sake of generality. The
prediction step directly depends on the time period T , i.e., the time
passed between the two consecutive steps k and k + 1. Therefore,
a clock drift or large delay in data acquisition could significantly
affect the performance of the algorithm.

6.2. Stereo detection procedure

The main goal of the stereo image processing part of the
algorithm is to detect moving objects in the scene, while the
motion of the observer makes this task especially challenging.
However, this work focuses on the estimation procedure and
the fusion of two sensor modalities, hence the sole stereo based
detection of moving objects is only briefly described.

The first part of the algorithm works on the ego-motion
estimation, which results in transformation matrix between the
previous and the current camera frame. Regarding this issue,
we employed our SOFT algorithm [24], which has proven to be
very robust on the appearance of moving objects in the scene,
illumination changes, various specularities, sensor overexposure
etc. However, SOFT uses very sparse set of salient feature points,
which are not sufficient to reliably detect objects in the scene.
Therefore, we employ the corner detector from [51] for detection
of semi-dense set of feature points. Position and velocity of each
detected feature is estimated in 3D Euclidean space. Now we need
to determine the correspondences between features in the left
and the right image of the current and previous frame. For this
purposewehave used the optical flowprocedure presented in [52],
and have computed the correspondences by using the stereo block
matching algorithm from [53].

Since the images are rectified, all the feature points from
the previous frame are projected into 3D world frame through
a standard pinhole camera model, and then are back-projected
into the current camera frame by compounding the position with
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the motion matrix obtained from the ego-motion algorithm. Such
transformed 3D points from the previous frame connected to
corresponding 3D points from the current frame form a vector
field, with each vector representing a motion of corresponding
3D point relative to the world frame. Since the measurement
uncertainties are highly anisotropic in 3D space, it is difficult to
accurately determine the motion intensity along the optical axis
direction. Hence, we project the vectors into the image plane
where the uncertainties are more evenly distributed, and apply
the threshold on the magnitude of motion of each point. The
remaining vectors are then connected into clusters by respecting
both translational and rotational parameters. Finally, we consider
each clusters corresponds to a moving object if at least 3 vectors
appear within it, and describe it with the centroid point of all the
corresponding points. The positions of themoving objects detected
with the stereo camera system are finally projected into the radar
plane and passed to the multitarget tracking algorithm presented
in Section 5.

The projection of raw detections of the stereo vision based
detection (red circles) and radar readings (green circles) onto the
image plane along with filter tracks (yellow circles) is shown in
Fig. 3. The images represent four snapshots of the experiment
which illustrates the drawbacks of using just a single sensing
technology. For example, in the top-most snapshotwithin Fig. 3 the
radar did not capture the twomotorcycles, while the stereo camera
managed to detect their motion. The second snapshot gives an
example of a busy intersection, while the third snapshot shows an
examplewhere the vehicle right in front of the ego-vehiclewas not
detected by the stereo camera due to moving along the camera’s
optical axis whereas the radar provided consistent detections and
the vehicle was tracked by the filter. The final snapshot shows an
example where the radar did not detect a vehicle and a pedestrian,
while the stereo camera managed to consistently detect their
motion and respective filter tracks were obtained.

6.3. Real-world experiments

The experiments were conducted with the sensor platform
equipped vehicle driving through an urban environment. The
algorithm was tested in several highly dynamic scenarios,
involving cars, trams and pedestrians. The process noise intensities
for the asynchronous filter were set to q̃x = q̃y = 1 and
q̃ω = (2 π

180 )
2. The clutter size and the probability of detection

were set to cradar = 10 and P radar
D = 0.7, respectively. The

radar unit likelihood was configured such that the measurement
uncertainty in the bearing component wasmφ,radar

k+1 ∼ NR1(0, 2°2),
while the measurement uncertainty in the range component was
mr,radar

k+1 ∼ NR1(0, 0.252). The clutter size related to the stereo
vision systemwas set to cstereo = 2, while the detection probability
was P stereo

D = 0.75. The stereo vision likelihood was configured so
that the measurement uncertainty in the bearing component was
mφ,stereo

k+1 ∼ NR1(0, 0.5°2), while the measurement uncertainty in
the range component was mr,stereo

k+1 ∼ NR1(0, 12). The JIPDA filter
gating probability was PG = 0.9, and the survival probability was
pS = 0.95. We have implemented an approach where the tracks
are confirmed to be truly existing objects once the probability of
object existence exceeded the value of p(χ i

k | Z1:k) = 0.9. The
tracks were deleted once the probability of existence fell below
p(χ i

k | Z1:k) = 0.1.
The first experiment, lasting about 60 s, involved a scenario in

which the vehicle turned right and kept driving down an avenue.
The results of this experiment are shown in Fig. 4. In this example
it is important to note the very dense traffic on the left-hand
side of the vehicle during the turn, which represents a very busy
intersection (see themost bottom image in Fig. 3). However, due to

Fig. 3. Four snapshots of experiments illustrating detections of the stereo camera
(red circles) and radar readings (green circles), which serve as the input for the
tracking algorithm (yellow circles). The red lines depict optical flow vectors of
the detected motion. An accompanying video is available at https://youtu.be/Br-
qwez1L18. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

high radar clutter, it occasionally happened that the clutter caused
false tracks. Such an example can be seen on the right-hand image
of Fig. 4. Even though the algorithm manages to track the vehicles
on the road (in both directions), some objects, like the roadside
hedges next to the road and the pertaining radar clutter, have
caused the algorithm to detect them too as true targets. In this
experiment, after raw sensor data preprocessing, on average there
were 6.46 radar detections and 1.69 stereo camera detections per
frame which yielded 3560 filter initializations and 228 confirmed
tracks.

In the second experiment, lasting about 85 s, the vehicle
drove in one direction along a three lane avenue, performed
a u-turn (at the same busy intersection as in Fig. 4) and kept
driving forward. The results of this experiment are shown in
Fig. 5. The dataset was collected on a three lane road, where
the vehicle drove in the middle lane, and detected vehicles in
both the left and right lane. It can be noticed that again some
radar measurements have caused the algorithm to believe that
roadside objects corresponds to true targets. By analyzing the
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Fig. 4. The experimental scenario in which the platform vehicle turned right and
kept driving down an avenue. The left part shows the entire 2D projection of
the experiment where light and dark gray dots correspond to stereo and radar
measurements, blue lines correspond to existingmoving objects in the surrounding,
and green line represents the ego motion of the vehicle (starting from (0, 0)). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

results we have noticed the occasional appearance of false positive
trajectories, i.e. the ones that correspond to roadside hedges. In this
experiment, after raw sensor data preprocessing, on average there
were 12.19 radar detections and 3.0 stereo camera detections per
frame which yielded 6935 filter initializations and 450 confirmed
tracks. It is also important to mention that we have conducted
the experiments during a foggy day, which presented challenging
conditions for the stereo image processing.

6.4. Discussion

The presented experimental results illustrate the ability of
the proposed approach to track moving objects in the context
of ADAS with sensing systems of different modalities, i.e., the
radar unit and the stereo camera system—a combination of
sensing technologies that has recently been adopted by many car
manufacturers. However, to the best of the authors’ knowledge,
none of the available datasets using these sensors contain ground
truth data, hence it is difficult to ensure a quantitative real-world
experimental evaluation of the proposed approach. Still, in our
previous work [40] we have performed an in-depth evaluation of

filtering on LieGroups in simulations, andproven the advantages of
using SE(2)2 state space for tracking whenever the characteristics
of the system are such that the Euclidean space cannot fully
account for the geometry of the state space, while in this work
we have applied the mentioned results for multitarget tracking
in an ADAS application, and particularly for the sensors whose
measurements arise in polar coordinates. Hence, in the present
paper we omit an in-depth simulation based evaluation of the LG-
EKF procedure.

From the viewpoint of estimation, the advantages of the
proposed approach lie in the flexibility of modeling the sensors’
and the tracked object’s uncertainty and motion. This can
prove advantageous in projecting the object’s future motion and
uncertainty thereof for applications such as collision avoidance or
motion planning of autonomous vehicles. The detection procedure
of the stereo camera does not rely on a specific appearance of
objects and can detect arbitrary motion, including that of cars,
vans, motorcycles, and pedestrians as shown in Fig. 3. However,
therein lies also the disadvantage of being able to detect only
objects exhibiting relative motion with respect to the ego-motion.
Objects moving in parallel to the car with the exact same velocity,
thus in the image appearing as static, and objects moving along
the optical axis can be difficult to detect with the stereo camera.
This necessitates then the need for fusing data with other sensors,
such as the radar, which can then complement these situations and
yield better rangemeasurements for objects further away from the
ego-vehicle.

Also, as mentioned in Section 2, the JIPDA filter in its basic
Kalman filter-like form represents a well-established approach
for multitarget tracking problems. By performing the presented
experiments, we have verified the approach of joining the
two fundamental multitarget tracking building blocks: the state
estimation and probabilistic data association scheme, both based
on the geometry of Lie Groups. Given the above, we believe this
work will not only serve as a DATMO reference, but also as a
guideline for using the LG-EKF in various ADAS aspects.

7. Conclusion

In this paper we have addressed the detection and tracking
problem,within the context of advanced driver assistance systems,
with a multisensor setup consisting of a radar unit and a stereo
camera. The stereo camera estimated relative displacement of the
vehicle, using stereo visual odometry, generating measurements
as cluster centers of optical flow vectors not conforming to the
estimatedmotion. The radar directly reported itsmeasurements to

Fig. 5. The experimental scenario in which the vehicle drove in direction, performed a u-turn, and kept driving forward. The upper part shows the entire 2D projection of
the experiment where light and dark gray dots correspond to stereo and radar measurements, blue lines correspond to existing moving objects in the environment, and
green line represents the ego motion of the vehicle starting from (0, 0). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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the filter, thus complementing the stereo camera measurements.
Since the two sensors worked at different frequencies, sensor
measurements were fused using an asynchronous Kalman filter on
Lie groups.

This particular representationwas proposed so as tomost faith-
fully model the uncertainties of both the sensor measurements
and the vehicle’s state. Concretely, the radar and the stereo camera
weremodeled as polar sensors, while the vehicle’s state resided on
the Lie group SE(2)2. This enabled us to reliably model the uncer-
tainties as having banana-shaped contours, when such a situation
arises, in contrast to elliptical uncertainty contours given by the
‘classical’ Gaussian distribution. To solve the multitarget tracking
problemwe adapted the JIPDA filter to workwith the Kalman filter
on Lie groups. In the end, the proposed filter performancewas pre-
sented on a real-world dataset recorded in urban traffic scenarios.

Appendix. Derivation of H

As part of the update step we need to derive the matrix Hk+1
denoting the LG-EKF equivalent to the Kalman filter measurement
Jacobian. Before proceeding with explicit derivation, we define the
measurement function h(Xk+1) as

h(Xk+1) =


expSO(2)


arctan

yk+1

xk+1

∧

SO(2)



expR1


x2k+1 + y2k+1

∧

R1


 . (A.1)

For this purposewe start with the definition of the Lie algebraic er-
ror ϵ =


ϵx ϵy ϵθ ϵvx ϵvy ϵω


. We further provide the prerequisites

for derivingH .We firstly give the expressionwhich is an argument
for evaluating H
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(A.2)

where xϵ
k+1 and yϵ

k+1 denote variables extracted from the current
matrix Lie group system state Xk+1, compound with the Lie
algebraic errormapped via the expG. These two variables are hence
given as

xϵ
k+1 = xk+1 + cos θk+1f − sin θk+1g
yϵ
k+1 = yk+1 + sin θk+1f + cos θk+1g.

(A.3)

where the terms f and g follow terms

f = [ϵx sin ϵθ + ϵy(−1 + cos ϵθ )]ϵ
−1
θ

g = [ϵx(1 − cos ϵθ ) + ϵy sin ϵθ ]ϵ
−1
θ .

(A.4)

The function to be partially derived is obtained by taking the
logarithm on G′ as follows
logG′
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Let H1
k+1 and H2

k+1 denote the two rows of (A.5). In order to derive
(31), we need to determine partial derivatives and multivariate
limits over all directions of the Lie algebraic error vector. This result
is given as
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The final measurement matrix Hk+1 is given as

Hk+1 =
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Even though the term (A.5) appears involved, the relations (A.6) are
actually obtained bypatient algebraicmanipulations andhence the
detailed derivation is not shown here.
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Mixture Reduction on Matrix Lie Groups
Josip Ćesić, Member, IEEE, Ivan Marković, Member, IEEE, and Ivan Petrović, Member, IEEE

Abstract—Many physical systems evolved on matrix Lie groups
and mixture filtering designed for such manifolds represent an
inevitable tool for challenging estimation problems. However, mix-
ture filtering faces the issue of a constantly growing number of
components, hence requiring appropriate mixture reduction tech-
niques. In this letter, we propose a mixture reduction approach
for distributions on matrix Lie groups, called the concentrated
Gaussian distributions (CGDs). This entails appropriate reparam-
eterization of CGD parameters to compute the KL divergence,
pick and merge the mixture components. Furthermore, we also
introduce a multitarget tracking filter on Lie groups as a mixture
filtering study example for the proposed reduction method. In par-
ticular, we implemented the probability hypothesis density filter
on matrix Lie groups. We validate the filter performance using
the optimal subpattern assignment metric on a synthetic dataset
consisting of 100 randomly generated multitarget scenarios.

Index Terms—Estimation on matrix lie groups, mixture reduc-
tion, multitarget tracking, probability hypothesis density filter.

I. INTRODUCTION

MANY statistical and engineering problems require mod-
eling of complex multimodal data, wherein mixture

distributions became an inevitable tool [1], [2], primarily in
traditional application domains like radar and sonar tracking
[3], and later in different modern fields such as computer vision
[4], speech recognition [5], or multimedia processing [6]. Ap-
proaches relying on mixture distributions often face the problem
of large or an ever increasing number of mixture components;
hence, the growth of components must be controlled by approx-
imating the original mixture with a mixture of a reduced size
[7]–[9]. For example, in the case of multitarget tracking ap-
plications, by employing conventional Gaussian mixture based
filters [10], [11], during the recursion process, the number of
components inevitably increases. This appears first due to ap-
pearance of newly birthed or spawned components, and second,
due to inclusion of multiple measurements, which results in a
geometrical increase in the number of components.

Another important aspect of estimation is the state space ge-
ometry; hence, many works have been dedicated to appropriate
uncertainty modeling and estimation techniques for a wide range
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of applications [12]–[15], motivated by theoretical and imple-
mentation difficulties caused by treating a constrained problem
naively with Euclidean tools. For example, Lie groups are nat-
ural ambient (state) spaces for description of the dynamics of
rigid body mechanical systems. In [16], it has been observed
that the distribution of the pose of a differential drive mobile
robot is not a Gaussian distribution in Cartesian coordinates,
but rather a distribution on the special Euclidean group SE(2).
Similarly, in [17], it was discussed the uncertainty association
with three-dimensional (3-D) pose employing the SE(3) group.
Furthermore, attitude estimation arises naturally on the SO(3)
group [15]. In [18], a feedback particle filter on matrix Lie
groups was proposed, while in [19], [20], the authors proposed
an extended Kalman filter on matrix Lie groups (LG-EKF),
building the theory upon the concentrated Gaussian distribution
(CGD) on matrix Lie groups [21].

In this letter, we address finite mixtures of distributions on
matrix Lie groups. We propose a novel approach to CGD mix-
ture reduction, which required finding solutions for computing
Kullback–Leibler divergence of CGD components and CGD
component merging. Furthermore, since previous methods re-
quire choosing the appropriate tangent space, we also provide
an extensive analysis on the choice thereof. As a study example,
we use the proposed reduction method in a multitarget tracking
scenario. We introduce the probability hypothesis density filter
(PHD) on matrix Lie groups with approximation based on a
finite mixture of CGDs.

II. MATHEMATICAL PRELIMINARIES

We now introduce theoretical preliminaries concerning Lie
groups; however, for a more rigorous introduction, the reader is
directed to [22]. A Lie group G is a group that has the structure
of a smooth manifold; moreover, a tangent space TX (G) is asso-
ciated to X ∈ G such that the tangent space placed at the group
identity, called Lie algebra g, is transferred by applying corre-
sponding action to X . In this letter, we are interested in matrix
Lie groups that are usually the ones considered in engineering
and physical sciences.

The Lie algebra g ⊂ Rn×n associated to a p-dimensional ma-
trix Lie group G ⊂ Rn×n is a p-dimensional vector space. The
matrix exponential expG and matrix logarithm logG establish a
local diffeomorphism between the two

expG : g → G and logG : G → g. (1)

Furthermore, a natural relation exists between g and the
Euclidean space Rp given through a linear isomorphism

[·]∨G : g → Rp and [·]∧G : Rp → g. (2)

For x ∈ Rp and X ∈ G, we use the following notation [23]:

exp∧
G(x) = expG([x]∧G) and log∨

G(X) = [logG(X)]∨G . (3)

1070-9908 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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Lie groups are generally noncommutative, i.e., XY �= Y X .
However, the noncommutativity can be captured by the so-called
adjoint representation of G on g [24]

X exp∧
G(y) = exp∧

G(AdG(X)y)X (4)

which can be seen as a way of representing the elements of
the group as a linear transformation of the group’s algebra. The
adjoint representation of g, adG, is in fact the differential of
AdG at the identity. Another important result for working with
Lie group elements is the Baker–Campbell–Hausdorff (BCH)
formula, which enables representing the product of Lie group
members as a sum in the Lie algebra. We will use the following
BCH formulae [24], [25]:

log∨
G(exp∧

G(x) exp∧
G(y)) = y + ϕG(y)x + O(||y||2) (5)

log∨
G(exp∧

G(x + y) exp∧
G(−x)) = ΦG(x)y + O(||y||2) (6)

where ϕG(y) =
∑∞

n=0
Bn adG(y )n

n ! , Bn are Bernoulli numbers,
and ΦG(x) = ϕG(x)−1 . For many common groups used in en-
gineering and physical sciences, closed-form expressions for
ϕG(·) and ΦG(·) can be found [17], [24]; otherwise, a truncated
series expansion is used.

A. Concentrated Gaussian Distribution

Herein, we introduce the concept of the concentrated Gaus-
sian distribution that is used to define random variables on matrix
Lie group. A random variable X ∈ G has a CGD with the mean
μ and covariance Σ, i.e., X ∼ G(X;μ,Σ), if

X = exp∧
G(ξ)μ (7)

where μ ∈ G, and ξ ∼ N (ξ;0p×1 ,Σ) is a zero-mean “classical”
Gaussian random variable with the covariance Σ ⊂ Rp×p [17],
[20]. Note that in this way, we are directly defining the CGD
covariance in the pertaining Lie algebra g, while the mean is
defined on the group G.

Given that the previous definition (7) then induces a proba-
bility density function (pdf) of X over G as follows [17], [20]:

1 =

∫

Rp

1√
(2π)p |Σ|

exp∧
G

(
− 1

2
||ξ||2Σ

)
dξ

=

∫

G
β exp∧

G

(
−1

2
|| log∨

G(Xμ−1)||2Σ
)

dX (8)

where ||x||2Σ = xTΣ−1x. Therein, the change of coordinates ξ =
log∨

G(Xμ−1), with the pertaining differentials dX = |Φ(ξ)|dξ,
resulted with the CGD normalizing constant

β = 1/
√

(2π)p |Φ(log∨
G(Xμ−1))ΣΦ(log∨

G(Xμ−1))T|. (9)

Note that this change of variables is valid if all eigenvalues
of Σ are small, i.e., almost all the mass of the distribution is
concentrated in a small neighborhood around the mean value
[20]. The pdf over X is now fully determined by (8) and (9).

III. CGD MIXTURE REDUCTION

With the theoretical preliminaries setup, we continue with
mixture reduction on matrix Lie groups. A finite mixture of our
present interest is given as the weighted sum of CGDs

N∑

i=1

wiG(X;μi,Σi) (10)

where wi are component weights and N is the total number of
mixture components. An illustration of (10) is given in Fig. 1.
Component reduction procedures typically require three build-
ing blocks: (i) component distance measure, (ii) component
picking algorithm, and (iii) component merging. While vari-
ous solutions exist for “classical” Gaussian mixtures [7]–[9],
questions remain on how to approach the component number
reduction for CGD mixtures on matrix Lie groups. Therefore,
first, we focus on the fundamental question of how to measure
the distance between two CGD components.

A. Component Distance Measure

Our aim is to use a standard information-theoretic measure
between two CGD components, and we propose to use the
Kullback–Leibler (KL) divergence [26]. Let Gi = G(X;μi,Σi)
and Gj = G(X;μj ,Σj ) be two mixture components with pi(X)
and pj (X) as their respective pdfs. Since there is nothing intrin-
sic in the definition of KL divergence that requires the underly-
ing space to be Euclidean, by definition

DKL(Gi ,Gj ) =

∫

G
pi(X) log

(
pi(X)

pj (X)

)
dX . (11)

In order to evaluate the integral (11), we need to employ the
change of coordinates as in (8), but this time from the direction
of the group G, i.e., from X ∈ G to ξ ∈ Rp . Note that in (8) the
change evolved around the distribution mean μ; however, since
in (11) generally μi �= μj , we cannot apply the same approach.
Hence, before evaluating (11), we first discuss how to change
the coordinates on the level of a single distribution.

Let G(X;μ,Σ) be a CGD, and if we change the coordinates
using X = exp∧

G(ξ)μt , μt ∈ G, where μt �= μ, we get

1 =

∫

G
β exp∧

G

(
−1

2
|| log∨

G(Xμ−1)||2Σ
)

dX

CoC≈
∫

Rp

η exp∧
G

(
−1

2
|| log∨

G(exp∧
G(ξ)μtμ

−1)||2Σ
)

dξ

(6)≈
∫

Rp

η exp∧
G

(
−1

2
||ΦG(rt)(ξ − rt)||2Σ

)
dξ

=

∫

Rp

η exp∧
G

(
−1

2
||ξ − rt ||2ϕG(rt )ΣϕT

G(rt )

)
dξ (12)

where rt = log∧
G(μμ−1

t ), η approximately evaluates to

η = β|Φ(ξ)| =
|Φ(ξ)|√

(2π)p |Σ| · |Φ(log∨
G(exp∧

G(ξ)μtμ−1))|

≈ 1√
(2π)p |ϕG(rt)ΣϕG(rt)T|

(13)

and we obtain ξ ∼ N (ξ; rt , ϕG(rt)ΣϕT
G(rt)).

Remark 1: Covariance of a CGD represents the uncertainty
relevant only to the tangent space of its own mean. In [24], the
authors studied how the covariance changes if looked at from
the perspective of a value that is different than the distribution
mean. They dubbed this procedure “distribution unfolding.” For
example, if we unfold G(X;μ,Σ) around an arbitrary μt ∈ G,
using (5) and following [24], we get

ξt = log∨
G

(
exp∧

G(ξ)μμ−1
t

)

≈ log∨
G

(
μμ−1

t

)
+ ϕG

(
log∨

G(μμ−1
t )

)
ξ . (14)
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Fig. 1. Illustration of a finite mixture of CGDs (left) and the component merging procedure (right).

By computing the expectation and covariance of (14), we obtain
a reparameterized distribution, ξt ∼ N (ξt ; rt ,Σ

ϕ ), where

rt = log∨
G

(
μμ−1

t

)
(15)

Σϕ = ϕG(rt)ΣϕT
G (rt). (16)

This pdf is equal to the one obtained through the change of
coordinates in (12). However, obtaining this result by using the
procedure of coordinates change through a pdf is important from
the perspective of KL divergence evaluation. An illustration of
unfolding a component j around μi , using (15) and (16), is given
in Fig. 1.

The KL divergence between two CGDs Gi = G(μi,Σi) and
Gj = G(μj ,Σj ) can now be evaluated as

DKL(Gi ,Gj ) ≈
∫

Rp

pi(ξ) log

(
pi(ξ)

pj (ξ)

)
dξ = DKL(Ni ,Nj )

pi(ξ) ∼ Ni = N (ξ; ri ,Σ
ϕ
i ) , ri = log∧

G(μiμ
−1
t )

pj (ξ) ∼ Nj = N (ξ; rj ,Σ
ϕ
j ) , rj = log∧

G(μjμ
−1
t ) (17)

and Σϕ = ϕG(r)ΣϕT
G(r). By employing the change of coordi-

nates, we can evaluate the KL divergence of two CGDs similarly
as in the case of “classical” Gaussian distributions, but with repa-
rameterized means and covariances. The KL divergence is then
equal to

DKL(Ni ,Nj ) =
1

2

(
tr
(
Σϕ

j
−1

Σϕ
i

)
− K + logR

|Σϕ
j |

|Σϕ
i | (18)

+ (rj − ri)
T(Σϕ

j )−1(rj − ri)
)

where tr( . ) and | . | designate matrix trace and determinant,
respectively, while K is the mean vector dimension. Finally,
for mixture components, it is necessary to use the scaled sym-
metrized KL divergence [27], which also takes component
weights into account

DsKL(wiNi , wjNj ) =
1

2

(
(wi − wj ) logR

wi

wj
(19)

+ wiDKL(Ni ,Nj ) + wjDKL(Nj ,Ni)
)
.

B. Component Picking Algorithm

Now that we know how to compute a distance measure be-
tween two CGD mixture components, we need to choose an
appropriate component picking algorithm that will tell us how
to screen the whole mixture and which components to pick
for merging. However, with CGD mixtures, there is also an-
other momentum. If we have N components in the mixture
with different weights, how should we approach the problem
of measuring distance, i.e., choosing μt for the change of co-
ordinates? Should all the distances be calculated with respect
to the mean of the component with the highest weight or the
lowest weight? Or should we “reparameterize” each component

on a pairwise basis? In this letter, we study the following five
scenarios: (i/ii) all components are reparameterized about the
mean of the component with the highest/lowest weight, (iii) the
reparameterization about the identity element, and (iv/v) com-
ponents are reparameterized on a pairwise basis by choosing the
mean of the component pair with the higher/lower weight. For
analyzing the five scenarios, we use two common component
picking strategies; (i) Exhaustive pairwise [28] and (ii) West’s
[29] algorithms. The Exhaustive pairwise algorithm determines
distances between all components and merges the closest pair,
while West’s algorithm sorts the components according to their
respective weights, then finds and merges the component most
similar to the first one.

C. Merging the Components

A component-merging algorithm for Gaussian components
in Rp was proposed in [28]

r∗ =
1

w∗
∑

i

wiri , Σ∗ =
1

w∗
∑

i

(
wi

(
Σi + rir

T
i

))
− r∗(r∗)T

where w∗ =
∑

i wi , wiN (ri,Σi) represents the ith component,
and w∗N (r∗,Σ∗) is the resulting component. Although merging
works for an arbitrary number of components, in our case, we
will always merge two.

However, the previous expressions are defined for Gaussians
in Rp , and the question arises how to apply the same approach
for CGD mixtures? We propose to use the same principle as for
computing the KL divergence described in Section III-A, i.e., the
components to be merged need to be first reparameterized about
the tangent space of the same mean, since covariances are only
relevant with respect to their own mean. Once we compute the
resulting component, w∗N (r∗,Σ∗), we need to map it back to
the group G. Given a lemma from [20] and following convention
(7), the procedure evaluates to

μ∗ = exp∧
G(r∗)μt, ΣΦ∗

= Adr ∗
G ΦG(r∗)Σ∗( Adr ∗

G ΦG(r∗)
)T

(20)

where Adr ∗
G = AdG(exp∧

G(r∗)). We can notice that covariance
reparameterization was necessary to make it relevant from the
perspective of the tangent space of the newly computed μ∗. An
illustration of merging and reparameterization (20) of compo-
nent j with respect to μi is given in Fig. 1.

IV. STUDY EXAMPLE—PHD FILTER ON LIE GROUPS

Multitarget tracking (MTT) is a complex problem consisting
of many challenges, and PHD filter presents itself as one of
the solutions to MTT. The reason why PHD filter is interesting
for the present letter is because one of its implementations is
based on Gaussian mixtures (GM-PHD) [10]. Besides Gaus-
sians, other distributions can be used, and in our previous work
[30], we proposed a mixture approximation of the PHD filter
based on the von Mises distribution on the unit circle. In this
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letter, as a study example, we implement a PHD filter tailored
for Lie groups (LG-PHD), based on the mixture of CGDs and
the reduction schemes presented in the previous section. The
LG-PHD can be potentially applied in MTT scenarios where
the target state is modeled as a pose in SE(2) or SE(3).

The PHD filter propagates the intensity function Dk−1 , and
operates by evaluating two steps—prediction and update. By as-
suming Dk−1 and birth intensity being Gaussian mixtures [10],
the GM-PHD prediction results with another Gaussian mixture
[10, Proposition 1]. Similarly, if Dk−1 and birth intensity are
given with CGD mixtures, the LG-PHD prediction results with
another CGD mixture, relying on the LG-EKF prediction ap-
plied to each mixture component [23].

The product of two Gaussians evaluates to a scaled Gaus-
sian; hence, the update step of GM-PHD can be calculated an-
alytically [10, Proposition 2]. In contrary, the product of two
CGDs, occurring in LG-PHD update, cannot be evaluated di-
rectly. Hence, we apply approximations following the same
train of thought as in LG-EKF prediction [23], where given
posterior p(Xk−1 |Z1:k−1) and motion model p(Xk |Xk−1), it
approximates the joint distribution p(Xk,Xk−1 |Z1:k−1), and
then marginalizes obtaining p(Xk |Z1:k−1). Similarly, given
p(Xk |Z1:k−1) and likelihood p(Zk |Xk ), we approximate the
joint distribution p(Xk,Zk |Z1:k−1), and then marginalize ob-
taining p(Xk |Zk ). Final LG-PHD formulae are nearly identical
to GM-PHD, except for Jacobian matrices.

A. Experiments

In order to validate the performance of the proposed LG-
PHD filter, and compare different reduction approaches that
are applied after update steps, we devised appropriate Monte
Carlo simulation scenarios. We applied two component picking
strategies, namely West’s algorithm and the pairwise compo-
nent picking algorithm. For each, we applied the reparame-
terization approaches as discussed in Section III-B, including
the mapping to tangent space of (i) pairwise larger component
TL, (ii) pairwise smaller component TS, (iii) identity element
TId, (iv) largest component TMax, and (v) smallest component
TMin (West’s algorithm always merges the smallest component;
hence, (ii) and (v) are the same). We generated 100 exam-
ples of an MTT scenario and compared the performance of
the approaches. The initial number of targets in the scene was
a random integer N0|0 ∈ [5, 7], while the probability of survival
was pS = 0.975 and birth rate was λb = 0.25. All measure-
ments were corrupted with white noise variance σ2

xy = 0.52 m2

in distance and σφ = 0.1 rad/s in orientation, while clutter was
governed by the Poisson distribution with intensity λZ = 5. The
state X = (Xpos,Xvel) ∈ SE(2) × R3 contains position and ve-
locity components. Here, we apply the constant velocity motion
model [31] given as

f(Xk−1) = Xk−1 exp∧
G

[
TXvel

k−1

0

]
. (21)

We derive the pertaining Jacobian

Fk−1 = − d
ds

(
log∨

G

(
f(μk−1)f(exp∧

G(s)μk−1)
−1

))∣∣∣
s=0

=

[
I TΦSE(2)

(
T AdSE(2)

(
μpos

k−1

)
μvel

k−1

)
AdSE(2)

(
μpos

k−1

)

0 I

]

(22)

Fig. 2. Example of a multitarget tracking scenario, involving 10 objects, out
of which 5 appeared at the beginning, and 5 more were born during the 100
steps long sequence (gray arrows—measurements including false alarms, black
arrows—estimated states, black circles—true object birth place, black square—
true object death place).

TABLE I
AVERAGE OSPA OVER 100 MULTITARGET SCENARIOS (BOLDED NUMBERS

REPRESENT THE SMALLEST ERROR)

Exhaustive pairwise West

TL TS TId TMax TMin TL TS TId TMax

Dt 2.445 2.515 2.764 2.912 3.082 1.910 1.924 2.060 2.125
Dd 2.100 2.163 2.419 2.558 2.695 1.415 1.420 1.537 1.605
Dc 0.594 0.613 0.627 0.653 0.745 0.737 0.746 0.797 0.792

Bolded numbers represent the smallest error.

where μk−1 = (μpos
k−1 , μ

vel
k−1) ∈ SE(2) × R3 is the mean value,

and T is discretization time. The probability of measurement
detection was pD = 0.975 and the measurements were arising
as SE(2); hence, h(Xk ) = Xpos

k and the measurement Jacobian
was Hk = [ I 0 ]. For illustration purposes, an example of a
multitarget scenario with tracking in total 10 targets on SE(2)
is given in Fig. 2 together with LG-PHD results.

As a performance metric, we used the optimal subpattern
assignment (OSPA) metric [32]. In Table I, we present the results
where for each of the 100 multitarget trajectories the cumulative
OSPA Dt, and its localization component Dd and cardinality
component Dc were calculated.

For both Exhaustive pairwise and West’s picking strategies,
relying on mapping to the tangent space of pairwise larger com-
ponents TL generally outperformed the other approaches.

V. CONCLUSION

In this letter, we have studied the problem of mixture re-
duction on matrix Lie groups. We have particularly dealt with
the manipulation of CGD components to compute the KL di-
vergence, pick and merge the mixture components. As a study
example, we implemented the LG-PHD filter, a mixture approx-
imation of the PHD filter tailored for MTT with states evolving
on matrix Lie groups. Using the OSPA metric, we analyzed
the performance of the LG-PHD filter with respect to mixture
component number reduction.
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Supplementary material to
Mixture Reduction on Matrix Lie Groups

Josip Ćesić, Ivan Marković, and Ivan Petrović,∗

I. THE EXTENDED KALMAN FILTER ON LIE GROUPS

In the letter entitled Mixture Reduction on Matrix Lie Groups, we have used the definition of a concentrated Gaussian
distribution (CGD) [1] with mean µ and covariance P similarly as is presented in [2]

X = exp∧G(ε)µ, X ∼ G(µ, P ), (1)

where ε ∼ NRp(0p, P ) is a zero-mean Gaussian distribution with covariance P ⊂ Rp×p defined in the Lie algebra, i.e., the
Euclidean space Rp.

When in comes to general Bayes filter, the estimation usually consists of the prediction step governed by the following
integral

P (Xk|Z1:k−1) =

∫
p(Xk|Xk−1)p(Xk−1|Z1:k−1)dXk−1, (2)

where p(Xk−1|Z1:k−1) is the posterior at k−1 and p(Xk|Xk−1) is the transition density. The correction step is the solution
to the Bayes rule and the posterior at k is obtained as

p(Xk|Z1:k) =
p(Zk|Xk)p(Xk|Z1:k−1)∫
p(Zk|Xk)p(Xk|Z1:k−1)dXk

, (3)

where p(Zk|Xk) is the measurement likelihood.
The LG-EKF used in the letter follows the convention presented in [2], but without the iterated part, as used in [3]. By

assuming that the distributions in (2) follow the CGD assumption and the following motion model

Xk = exp∧G(wk)f(Xk−1), wk ∼ NRp(0p, Qk), (4)

i.e., p(Xk|Xk−1) = G(Xk; f(µk−1), Qk) and p(Xk−1|Z1:k−1) = G(Xk−1;µk−1, Pk−1), the prediction step in [2] was solved
by approximating the integrand in (2) with a joint distribution p(Xk, Xk−1|Z1:k−1) by way of Gauss-Newton minimization
in µk−1 and f(µk−1). The resulting covariance had the following form

P =

[
FkPk−1FT

k +Qk FkPk−1
Pk−1FT

k Pk−1

]
, Fk = − d log∨G(f(µk−1)f(exp∧G(s)µk−1)−1)

ds

∣∣∣∣
s=0

. (5)

To obtain p(Xk|Z1:k−1), the augmented CGD was marginalized yielding formula for the covariance prediction Pk|k−1 =
FkPk−1FT

k +Qk, while the mean is predicted applying the propagation function, hence µk|k−1 = f(µk−1).
By assuming that the measurement likelihood followed the CGD assumption and the measurement model

Zk = exp∧G(vk)h(Xk), vk ∼ NRp(0p, Rk), (6)

i.e., p(Zk|Xk) = G(Zk;h(Xk), Rk), the correction step was solved in [2] by approximating the numerator in (3) up to a
proportion with a single CGD which yields parameters for p(Xk|Z1:k) by using an iterated Gauss-Newton method. This
is correct since the denominater in (3) assures proper scaling of the distribution and would cancel any scaling parameter.
However, in this letter we are not using the iterated version, but the extended one as in [3], hence the update step of the
LG-EKF has the following formulae

Hk = − d log∨G(Zkh(exp∧G(s)µk|k−1)−1)

ds

∣∣∣∣
s=0

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)−1

mk = K log∨G(Zkh(µk|k−1)−1)

µk = exp∧G(mk)µk|k−1
Pk = ΦG(mk)(I−KkHk)Pk|k−1ΦG(mk).

(7)

∗Authors are with the University of Zagreb, Faculty of Electrical Engineering and Computing, Department of Control and Computer Engineering, Unska
3, 10000 Zagreb, Croatia. E-mail: {name.surname@fer.hr}



II. THE CGD MIXTURE PHD FILTER ON LIE GROUPS

As elaborated in the letter, the prediction step of the Gaussian mixture PHD filter evaluates to solving (2) on a mixture
component basis. Therefore, if we are working with a CGD mixture, as in the case of the CGD mixture PHD filter on Lie
groups (LG-PHD), given the result from [2] we can assert that (5) can equally be applied to LG-PHD prediction. However,
the update step of the PHD filter requires direct evaluation of the product p(Zk|Xk)P (Xk|Z1:k−1), as well as the integral
thereof. We propose to follow the same train of thought as in [4] and evaluate first the joint distribution p(Zk, Xk|Z1:k−1),
which can be obtained by using the same procedure as for p(Xk, Xk−1|Z1:k−1) in the prediction step given in previous
section. In other words, by augmenting p(Xk|Z1:k−1) with Zk and linearizing in µk|k−1 and h(µk|k−1), the joint distribution
will have the following parameters

µ =
[
log∨G(Zkh(µk|k−1)−1) log∨G(Xkµ

−1
k|k−1)

]
(8)

P =

[
HkPk|k−1HT

k +Rk HkPk|k−1
Pk|k−1HT

k Pk|k−1

]
=

[
P11 P12

P21 P22

]
, (9)

where Hk is given in (7). Note that for the clarity we have denoted that both means belong to the same group G, which is,
however, not a requirement.

In [4] it was shown that under the CGD assumption a distribution with parameters as in (8) can be factorized to the
following product of two distributions

p(Zk, Xk|Z1:k−1) =NG(Zk;h(µk|k−1), P11)

N ∗G(Xk; exp∧G(PT
12P

−1
11 log∨G(Zkh(µk|k−1)−1))µk|k−1, P22 − PT

12P
−1
11 P12).

(10)

If we insert for P11, P12 and P22 corresponding values we obtain the following

exp∧G(PT
12P

−1
11 log∨G(Zkh(µk|k−1)−1))µk|k−1

= exp∧G(Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)−1 log∨G(Zkh(µk|k−1)−1))µk|k−1

= exp∧G(Kk log∨G(Zkh(µk|k−1)−1))µk|k−1 = exp∧G(mk)µk|k−1

P22 − PT
12P

−1
11 P12 = Pk|k−1 − Pk|k−1H

T
k (HkPk|k−1H

T
k +Rk)−1HkPk|k−1

= Pk|k−1 −KkHkPk|k−1 = (I−KkHk)Pk|k−1.

(11)

By inspecting (10) and (11) we can notice that for the second factor (denoted by N ∗G ) the covariance is defined in the
algebra of the prediction µk|k−1, while we need it to be defined in the algebra associated to µk, i.e., after the correction
step we expect to have Xk = exp∧G(εk)µk, where E[εk] = 0 [5]. For this reason we need to additionally reparametrize the
covariance as follows

µk = exp∧G(mk)µk|k−1 (12)

Pk = ΦG(mk)(I−KkHk)Pk|k−1ΦG(mk)T, (13)

thus (10) factorizes as follows:

p(Zk, Xk|Z1:k−1) = NG(Zk;h(µk|k−1), HkPk|k−1H
T
k +Rk)NG(Xk;µk, Pk)

= NG(Zk;h(µk|k−1), Sk)NG(Xk;µk, Pk) .
(14)

If group G would be Euclidean space then (14) would yield the same results as was obtained for the Gaussian mixture PHD [6].
In order to complete the update step of the PHD filter, we also need to compute the integral

∫
X p(Zk |Xk)p(Xk |Z1:k−1)dXk,

which similarly to the LG-EKF prediction step [3] yields NG(Zk;h(µk|k−1), Sk). Note that in this supplementary material,
we have omitted discussion on the choice of the integration measure and for more formal elaboration the interested reader
is directed to [3]. Furthermore, note that with the previous reasoning we have also demonstrated how LG-EKF can bee seen
as a Bayes filter on Lie groups.

Now we have all the means for performing the two successive steps of the LG-PHD filter for the application described
in the letter. The pseudocode for the prediction step is given in Alg. 1, where the PREDG(·) function follows the equations
given for determining p(Xk|Z1:k−1) as
• PREDG(·) - using Pk|k−1 = FkPk−1FT

k +Qk and µk|k−1 = f(µk−1).



Algorithm 1 The prediction step of the LG-PHD filter

Require: {wi
k−1,Gik−1}

Jk−1

i=1 , {wb,i
k ,Gb,ik }

Jb
k

i=1, pS

1: j ← 0 (initialization)
2: for i := 1 to Jb

k (# of newly born components) do
3: wj

k|k−1 ← wb,i
k ; Gjk|k−1 ← G

b,i
k ; j ← j + 1

4: end for
5: for i := 1 to Jk−1 (# of components existing at k − 1) do
6: wj

k|k−1 ← pS w
b
k−1 ; Gjk|k−1 ← PREDG(Gik−1) ; j ← j + 1

7: end for
8: Jk|k−1 ← j (# of predicted components)
9: return {wi

k|k−1,Gik|k−1}
Jk|k−1

i=1

In the particular application presented in the letter, where we assume that the objects were following the constant velocity
SE(2)× R3 motion model assumption [7], the motion model f(µk−1) and the Jacobian F are given as

f(µk−1) = µk−1 exp∧G

[
Tvk−1

0

]
, (15)

F = − d

ds

(
log∨G

(
f(µk−1)f(exp∧G(s)µk−1)−1

))∣∣∣∣
s=0

= − d

ds

(
log∨G

(
µk−1 exp∧G

[
Tvk−1

0

](
exp∧G(s)µk−1 exp∧G

[
T (svel + vk−1)

0

])−1)
)∣∣∣∣∣

s=0

= − d

ds

(
log∨G

(
µk−1 exp∧G

[
Tvk−1

0

]
exp∧G

[
T (svel + vk−1)

0

]−1
µ−1k−1 exp∧G(s)−1

))∣∣∣∣∣
s=0

= − d

ds

(
log∨G

(
exp∧G

(
AdG

(
µk−1

) [Tvk−1
0

])
µk−1

µ−1k−1 exp∧G

(
AdG

(
µk−1

) [T (svel + vk−1)
0

])−1
exp∧G(s)−1

))∣∣∣∣∣
s=0

≈ − d

ds

(
log∨G

(
exp∧G

(
ΦG

(
AdG

(
µk−1

) [Tvk−1
0

])
AdG

(
µk−1

) [−Tsvel

0

])
exp∧G(s)−1

))∣∣∣∣∣
s=0

≈ − d

ds

(
ΦG

(
AdG

(
µk−1

) [Tvk−1
0

])
AdG

(
µk−1

) [−Tsvel

0

]
− s
)∣∣∣∣∣

s=0

=


 I TΦSE(2)

(
T AdSE(2)

(
µpos
k−1
)
vk−1

)
AdSE(2)

(
µpos
k−1
)

0 I


 , (16)

where µk−1 consists of positional and velocity part constructed by placing the SE(2) and R3 components block-
diagonally, such that µk−1 = blkdiag(µpos

k−1, µ
vel
k−1), vk−1 = log∨R(µvel

k−1), and accordingly s = [spos svel]T and AdG(µ) =
blkdiag(AdSE(2)(µ

pos),AdR3(µvel)). The parameter T represents the discretization time. To obtain the second-to-last step,
the following Baker-Campbell-Hausdorff formula was used

log∨G(exp∧(−x) exp∧(x+ y)) = ΦG(−x)y +O(||y||2). (17)

The pseudocode for the update step is given in Alg. 2. The algorithm employs several outlying functions including:

• INNOVG′(·, ·) - using νi,jk =
[
logG′

(
Zj
kh(µi

k|k−1)−1
)]∨

G′
, Si,j

k = Hi,j
k P i,j

k|k−1H
i,jT

k +Rk,

• CORRECTR(·, ·) - using wi,j
k =

pDw
i
k|k−1q

i,j
k (Z)

λZc(Z) + pD
∑Jk|k−1

l=1 wl
k|k−1q

l,j
k (Z)

, where qi,jk (Z) = N (Zj
k;h(µi

k|k−1), Si,j
k ),

• REPARAMG(·, ·) - using (12) and (13),
• REDUCTIONG(·) - employing reduction schemes as described in the letter.

For the multitarget tracking application given in the letter, since the measurement arises as a SE(2) member, i.e., h(Xk) = Xk

and the measurement Jacobian Hk evaluates to Hk =
[
I 0

]
.



Algorithm 2 The correction step of the LG-PHD filter

Require: {wi
k|k−1,Gik|k−1}

Jk|k−1

i=1 , {Zj
k ∈ Zk}Mk

j=1, pD

1: for i := 1 to Jk|k−1 (non-detected components) do
2: wi

k ← (1− pD)wi
k|k−1 ; Gik ← Gik|k−1

3: end for
4: j ← 0 (measurement designator)
5: for all Zk ∈ Zk do
6: j ← j + 1 , sj ← 0 (per measurement intensity)
7: for i := 1 to Jk|k−1 (detected components) do
8: l← i+ j Jk|k−1
9: [νi,jk ,Si,jk ]← INNOVG′(Gik|k−1, Z

j
k)

10: wl
k ← pD w

i
k|k−1N (νi,jk ;0,Si,jk ), sj ← sj + wl

k

11: N l−
k ← CORRECTR(Gik|k−1, Z

j
k)

12: Glk ← REPARAMG(Gik|k−1,N l−
k )

13: end for
14: for i := 1 to Jk|k−1 (re–weighting) do
15: w

i+j Jk|k−1

k ← w
i+j Jk|k−1

k /(λZc(Z) + sj)
16: end for
17: end for
18: Jk ← (j + 1)Jk|k−1 (# of components existing at k)

19: {wi,R
k ,Gi,Rk }

JR
k

i=1 ← REDUCTIONG({wi
k,Gik}Jk

i=1)

20: return {wi,R
k+1,G

i,R
k+1}

JR
k+1

i=1
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