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ABSTRACT

Autonomous navigation of an agent strongly relies on the capability of tracking multiple
moving objects using various on-board sensing technologies. In the thesis we first consider
a type of application arising when multiple objects are tracked using a microphone array
as a single on-board sensor system. Both objects and measurements state space in this
application arise as directional value represented either as a vector belonging to a unit
sphere or equivalently as an angle. The thesis presents a method for multiple moving objects
tracking on the unit sphere based on the von Mises distribution defined directly on this
space of interest, and probability hypothesis density filter based on random finite sets.

The state of objects in the agent’s surrounding are typically determined with their
position and orientation which evolve on a non-Euclidean geometry. The orientation of
such object can be described using a special orthogonal group, while full pose, including
translation vector and orientation information, can be given with a special Euclidean group
employing either their 2 or 3 dimensional counterparts. The thesis further proposes several
methods for estimating motion evolving on the special Euclidean group based on the
extended Kalman filter on Lie groups, and accounting for the statistics of concentrated
Gaussian distribution. It also describes approaches for performing full body human motion
estimation using marker position measurements or inertial measurement units, accounting
for the full kinematic chain of the body.

As an alternative to the extended Kalman filter on Lie groups, the thesis proposes the
estimation method relying on an information form for states evolving on matrix Lie groups.
A trivial example of suitable application is when the number of measurements is larger than
the size of the state space, while other examples include any filter constructed such that the
information form can be exploited in terms of computational complexity.

As an extension of the multiple moving objects tracking algorithm limited exclusively
to the space of a unit circle, the thesis proposes two methods suitable for applications when
states evolve on matrix Lie groups. The first one relies on joint integrated probabilistic data
association filter modified such that it can operate with variables on matrix Lie groups,
while the second one employs the probability hypothesis density filter on matrix Lie groups.
In the thesis we propose an approach to reduction of mixture of concentrated Gaussian
distributions, which is an essential part of the probability hypothesis density filter.

KEY WORDS: multiple moving objects tracking, Lie groups, directional statistics, concen-
trated Gaussian distribution, extended Kalman filter, extended information filter, random
finite sets, probability hypothesis density, joint integrated probabilistic data association
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SAZETAK

PRACENJE VISE GIBAJUCIH OBJEKATA ZASNOVANO NA SLUCAJNIM KONACNIM
SKUPOVIMA I LIEVIM GRUPAMA

Autonomna navigacija predstavlja radikalnu tehnologiju koja ¢e zasigurno izmijeniti ljudsko
drustvo transformirajuci navike i djelovanje ljudi i povecavaju¢i djelotvornost i sigurnost
izvrdenja razlicitih vrsta poslova. Ta je tehnologija zasnovana na sposobnostima percepcije
i predikcije inherentno nepredvidljivih dinamickih okruzenja, $to autonomnom objektu
omogucava dijeljenje radnoga prostora s drugim objektima. Tek posto razumije uzorke
ponasanja i karakteristike gibanja objekata oko sebe, autonomni sustav moze zapoceti
s autonomnom operacijom. Pracenje viSe gibajucih objekata u tome smislu predstavlja
fundamentalni problem. Naime, autonomni sustav akciju mora izvr$iti oslanjajuci se na
nesavr$ene senzorske podatke, a razina nesigurnosti tih podataka znacajno ovisi o tipu
dinamickog okruzenja pa tako u proizvodnim pogonima ona moze biti poprili¢cno mala,
dok primjerice u prometnom sustavu ili opéenito u urbanim okruzenjima ona moze biti
vrlo velika. Vjerojatnosni pristupi u podruéju autonomnih sustava i navigacije mobilnih
robota koriste se ve¢ dugi niz godina u svrhu percepcije i modeliranja prostora te lokalizacije
i upravljanja gibanjem mobilnih robota, ali se sve donedavno tome problemu pristupalo
s pretpostavkom da su sve razmatrane varijable takvih sustava Euklidske te da je njihova
statistika dobro opisana Gaussovom razdiobom. Istrazivanje prikazano u ovoj disertaciji
bavi se problemom pracenja vise gibajucih objekata u vjerojatnosnom smislu, tako $to je
gibanje pazljivo modelirano uzimajuci u obzir ne-Euklidsku geometriju prostora. Varijable
stanja sustava u ovome su radu opisane Lievim grupama koje se cesto pojavljuju u fizikalnim
znanostima i inZenjerstvu.

U nastavku je obrazloZen naslov disertacije. Problem pracenja vide gibajuc¢ih objekata
vazno je razmatrati drugacije od estimacije stanja jednoga objekta. Naime, osim potrebe za
vjerojatnosnim pristupom procjeni stanja sustava, u slu¢aju pracenja vise gibajucih objekata
potrebno je voditi racuna o njihovom promjenjivom broju tijekom vremena. Pretpostavka
ovoga rada jest da su podaci prikupljeni sa senzora obradeni u koraku predprocesiranja,
dok algoritam pracenja kao ulazne informacije koristi skup tockastih mjerenja. Elementi
skupa mjerenja stoga mogu odgovarati mjerenjima stvarnih ili laznih objekata, gdje lazni
objekti mogu biti uzrokovani ogranic¢enjima senzora ili algoritma predobrade. Dakle, osim
procesnog i mjernog $uma, algoritam pracenja vise gibajucih objekata mora voditi racuna i
0 pojavama kao §to su (i) nesigurnost uzroka mjerenja, (ii) nastajanje i nestajanje objekata,



(iii) lazna mjerenja, (iv) propustena mjerenja te (v) pridruzivanje mjerenja objektima. Naslov
disertacije nadalje sadrzi pojam sluc¢ajnih konacnih skupova koji su privukli znacajnu paznju
u podrucdju pracenja vise gibajucih objekata tijekom posljednjih 15-ak godina. Razlog je taj
$to su skup stanja objekata i skup mjerenja prirodno opisani kao slu¢ajni kona¢ni skupovi
umjesto da je svaki objekt opisan kao nezavisna varijabla.

Sljedeci vazan element disertacije razmatra moguc¢nost opisivanja prostora stanja sustava
koriste¢i ne-Euklidske varijable. Donedavno se u statistickim pristupima u inZenjerskim
aplikacijama u pravilu zanemarivala potencijalno ne-Euklidska geometrija prostora, dok se
u posljednje vrijeme sve viSe tehnika bavi statistickim pristupima koji omogucavaju da se
geometrija prostora uzima u obzir. Na taj je nacin moguce izbjeci teorijske i implementaci-
jske probleme koji se tipi¢no pojavljuju u primjenama u kojima se prostorna ogranicenja ne
uzimaju u obzir na odgovarajuci nacin. Najjednostavniji je primjer ne-Euklidskog prostora
stanja prostor jedini¢ne kruznice. Primjerice, takav se prostor javlja u primjenama u kojima
se koristi polje mikrofona. Kako bi se opisalo stanje sustava u statistickom smislu, moguce je
koristiti von Misesovu razdiobu koja je definirana izravno nad prostorom jedini¢ne kruznice
te je kao takva u mogu¢nosti uzeti u obzir globalnu geometriju ovog ne-Euklidskog pros-
tora. Zbog svojih karakteristika ta se razdioba moze koristiti u okviru Bayesovog filtra.
Medutim, ako se razmatra kompleksnija vrsta prostora stanja, kao $to je polozaj objekta u
2D ili 3D okruZenju, pridruzivanje nesigurnosti takvome stanju nije jednostavno provesti.
Iz toga se razloga Cesto koristi vektorski zapis stanja te pridruzivanje nesigurnosti oblika
Gaussove razdiobe. Ipak, umjesto toga moguce je koristiti pridruzivanje nesigurnosti stanju
prikazanom Lievom grupom. Takav pristup omogucava vecu fleksibilnost u opisu nesig-
urnosti sustava, nego kada se isto opisuje elipsoidalnim Gaussovim komponentama, dok
sam zapis u prostoru Lievih grupa pruza vecu robusnost algoritama te izbjegava pojavu
singulariteta. Nesigurnost je u ovome radu pridruzena stanju opisanom Lievim grupama
koristenjem koncentrirane Gaussove razdiobe (engl. concentrated Gaussian distribution -
CGD), gdje je srednja vrijednost y € G opisana elementom na grupi, a nesigurnost je opisana
matricom kovarijanci X pridruzenoj pomaku u tangencijalnom prostoru grupe. Slucajna
varijabla X koja je na taj nadin definirana zapisuje se kao X ~ G(y, X) te vrijedi

X=wpexpi(&),1&~N(0,2),

gdje je expy, preslikavanje iz tangencijalnog prostora grupe g, koji se ¢esto naziva Lievom
algebrom (odgovara Euklidskom prostoru), na Lievu grupu G.

Von Misesova razdioba uzima u obzir globalnu geometriju prostora, no zbog razlicitih
ogranicavajucih elemenata za kompleksnije tipove prostora to nije uvijek moguce. S druge
strane, pristupi zasnovani na CGD-u mogu barem lokalno uzeti u obzir geometriju prostora
te tako povecati tocnost i robusnost algoritama estimacije u kojima se susrece ne-Euklidska
geometrija. Primjer primjene analiziran u ovome radu pracenje je vecega broja gibajucih
objekata ¢ija stanja nisu Euklidske veli¢ine, ve¢ su opisana Lievim grupama.

Disertacija je podijeljena u sedam poglavlja. Prvo poglavlje prikazuje uvod u disertaciju.
Drugo i trece poglavlje daju opsiran pregled pozadine rada. Cetvrto poglavlje prikazuje
glavne rezultate disertacije. Peto poglavlje donosi zakljucak rada i pruza pregled moguceg
buduceg istrazivanja. U poglavljima Sest i sedam prikazan je popis objavljenih radova koji
¢ine disertaciju te doprinos autora disertacije svakome od njih. Na posljetku, nakon popisa



bibliografije prilozeni su radovi koji prikazuju rezultate disertacije. Disertacija je izradena
po skandinavskom modelu te je sacinjena od po Cetiri casopisna i konferencijska ¢lanka. U
nastavku su ukratko prikazani i opisani glavni doprinosi disertacije.

#1 Metoda pracenja vise gibajucih objekata na jedinicnoj sferi na temelju mjerenja smjera
zasnovana na von Misesovoj razdiobi i slucajnim konacnim skupovima.

Vecina algoritama pracenja vise gibaju¢ih objekata zasniva se na Bayesovom filtru, a s
obzirom na potrebu koristenja ne-Euklidskog stanja sustava, evaluacija Bayesove rekurzije
moze biti vrlo zahtjevna. U prvom je redu izazovno rijesiti Chapman-Kolmogorovu jed-
nadzbu Bayesove predikcije (konvolucijski integral) u zatvorenoj formi tako da rezultirajuca
razdioba ima isti oblik razdiobe kao i pocetna. Nadalje je potrebno integrirati informaciju
o mjerenju evaluirajuci Bayesovo pravilo i zadrzavajuci se u prostoru iste razdiobe. Von
Misesova razdioba je primjer u kojemu konvolucijski integral ne rezultira egzaktno novom
von Misesovom komponentom, ali rezultirajuca razdioba moze biti dobro opisana von Mis-
esovom razdiobom. S druge strane, korekcija rezultira izravno von Misesovom razdiobom
bez aproksimacija.

Disertacija se bavi problemom pracenja vi$e gibajucih objekata na prostoru jedini¢ne
kruznice primjenom filtra vjerojatnosti gustoce hipoteza koji predstavlja aproksimaciju
optimalnog Bayesova filtra definiranog koristenjem teorije slucajnih kona¢nih skupova. U
radu [Pub1] prikazan je izvod rekurzivnog filtra vjerojatnosti gustoce hipoteza koristenjem
mjesavine von Misesovih razdioba te je usporeden s filtrom vjerojatnosti gustoce hipoteza
zasnovanom na Gaussovoj razdiobi na simuliranom i stvarnom skupu podataka. Filtar
zasnovan na von Misesovoj razdiobi ostvario je smanjenje pogreske od 10, 5%, odnosno
2,8% s obzirom na mjeru optimalnog pridruzivanja uzoraka.

#2 Metoda pracenja objekta u prostoru specijalne euklidske grupe zasnovana na prosirenom
Kalmanovu filtru na Lievim grupama.

Lieve su grupe prirodan prostor stanja za opis polozaja i gibanja krutoga tijela. Polozaj
krutoga tijela, sto uklju¢uje njegovu poziciju i orijentaciju, moze se opisati koristenjem
specijalne Euklidske grupe SE(2) ili SE(3), ovisno o tome radi li se o 2D ili 3D prostoru.
Istrazivanja o razdiobama koje mogu opisati nesigurnosti izravno na specijalnoj Euklidskoj
grupi vrlo su intenzivna, medutim do sada nije pronaden nacin na koji se to moze ¢initi, a
da se pritom zadrze neka od svojstava razdiobe korisna za integraciju u Bayesov filtar. Iz
toga je razloga pristup estimaciji ovdje zasnovan na lokalnom pristupu koristenjem CGD-a
¢iji se parametri djelomi¢no oslanjaju na oba prostora — srednja je vrijednost definirana na
Lievoj grupi, dok je kovarijanca pridruzena tangencijalnom prostoru, tj. Lieovoj algebri.
Provedena istrazivanja u okviru disertacije zapocela su razmatranjem specijalne or-
togonalne grupe SO(2) uz koristenje modela konstantne akceleracije u okviru prosirenog
Kalmanova filtra na Lievim grupama (engl. extended Kalman filter on Lie groups - LG-EKF)
u svrhu pracenja govornika poljem mikrofona [Pub2]. Zaklju¢eno je da zbog komuta-
tivnosti grupe SO(2) njezina primjena rezultira istim odzivom kao i u slu¢aju koristenja
pretpostavke Euklidskog prostora uz prosireni Kalmanov filtar (engl. extended Kalman filter



- EKF) s dodanom heuristikom za zatvaranje prostora u tockama — i 7. Nadalje, razmatrano
je koristenje specijalne Euklidske grupe SE(2) uz pretpostavku svesmjernog gibanja, ko-
riStenjem modela konstantne brzine u okviru LG-EKF-a [Pub3]. Tim je pristupom moguce
inherentno uzeti u obzir spregnutost rotacije i translacije sadrzane u stanju opisanom
grupom SE(2). Osim toga, pridruzivanje nesigurnosti grupi SE(2) pruza vecu fleksibilnost,
nego $to je to slucaj s izravnim pridruzivanjem vektorskom zapisu. Tako, primjerice, osim
elipsoidalnih krivulja nesigurnosti ovakav opis omogucuje ostvarivanje kontura oblika ba-
nane. U radu je usporeden predlozeni filtar s nekoliko standardnih filtarskih pristupa iz cega
je vidljivo da filtar zasnovan na LG-EKF-u postiZe vecu to¢nost za slucaj svesmjernog gibanja
priblizno konstantne brzine. Konacno, u okviru rada razvijen je filtar za estimaciju stanja
zglobova cijeloga ¢ovjekova tijela zasnovan na LG-EKF-u koristeci grupe SO(2), SO(3) i
SE(3), a koji se oslanja na mjerenja pozicija markera [Pub4] i inercijalnih mjernih jedinica
[Pubs]. Za oba su slucaja izvedene jednadzbe rekurzije LG-EKF-a. Izvod jednadzbi za osv-
jezavanje stanja zglobova na temelju mjerenja akcelerometra prikazan je u prilogu [*Pubs].
Usporedba performansi predlozenoga algoritma s pristupom zasnovanim na Eulerovim
kutovima i EKF-u provedena je nad simuliranim i stvarnim podacima te se pokazalo da
predlozeni algoritam ostvaruje manju pogresku.

#3 Prosireni informacijski Kalmanov filtar za estimaciju stanja na matricnim Lievim gru-
pama.

Informacijski je filtar dualni filtar klasi¢cnom Kalmanovu filtru. On se oslanja na isti skup
pretpostavki kao i Kalmanov filtar, ali koristi druk¢iju parametrizaciju. Informacijski filtar
umjesto srednje vrijednosti i kovarijance koristi informacijsku matricu i informacijski
vektor. Najvaznija je prednost informacijskog filtra manja racunska slozenost u slucajevima
kada je broj mjerenja velik ili opcenito kada struktura estimacijskog problema moze biti
dobro iskoristena u takvoj alternativnoj parametrizaciji. Istodobna lokalizacija mobilnog
robota i kartiranje nepoznatog prostora (engl. simultaneous localization and mapping -
SLAM) primjer je primjene u kojoj informacijski oblik filtra moze biti dobro iskoristen.
Nadalje, SLAM je takoder primjer primjene gdje je vazno uzeti u obzir geometriju prostora u
svrhu povecanja to¢nosti izvodenja algoritama. Rjesenja SLAM-a donedavno su bila gotovo
iskljuc¢ivo zasnovana na filtarskim pristupima, to¢nije prosirenom informacijskome filtru
(engl. extended information filter - EIF). Najvaznije inacice filtara za koristenje u SLAM-u su
prosireni informacijski filtar s rijetkom strukturom (engl. sparse extended information filter
- SEIF) te egzaktno rijedak filter s odgodenim stanjem (engl. exactly sparse delayed state filter
- ESDSF).

PoloZaj mobilnog robota u SLAM-u naj¢e$ce je opisan elementom SE(3) pa je stoga u
novijim pristupima cest slu¢aj da algoritmi pokusavaju uzeti u obzir geometriju prostora.
Ipak, ti su pristupi zasnovani su na optimizacijskim metodama budu¢i da donedavno nisu
postojali filtarski pristupi koji bi mogli uzeti u obzir geometriju prostora stanja. Kao treci
doprinos ovoga rada predlozen je prosireni informacijski filtar na Lievim grupama (engl.
extended information filter on Lie groups - LG-EIF) [Pubé]. U radu je prikazana teorijska
podloga LG-EIF rekurzije i primjena predlozenog filtra za pracenje orijentacije krutoga
tijela kori$tenjem velikog broja senzora. Provedena je i usporedba s EIF-om zasnovanim na



Eulerovim kutovima te je analizirana racunska slozenost s obzirom na osvjezavanje stanja
filtra koriStenjem velikog broja senzora. Rezultati prikazuju da predlozeni filtar postize
bolju konzistentnost performansi i manju pogresku estimacije te da istovremeno zadrzava
manju ra¢unsku slozenost informacijskog oblika u slu¢aju vecega broja mjerenja.

#4 Metoda pracenja vise gibajucih objekata na Lievim grupama zasnovana na koncentri-
ranoj Gaussovoj razdiobi i slucajnim konacnim skupovima.

Potreba za zapisom sustava koriStenjem ne-Euklidskog prostora stanja uz pracenje gibajucih
objekata javlja se u (i) razlic¢itim tradicionalnim inzenjerskim disciplinama (sigurnost i
nadzor, kontrola zra¢nog prometa, pracenje svemirskih objekata i sl.) te u (ii) modernim
inzenjerskim poljima (autonomni sustavi i robotika). Ne-Euklidski prostor stanja javlja se
uvijek kada je stanje objekta predstavljeno polozajem u kojemu je ukljucena i informacija o
orijentaciji kao ne-Euklidskoj veli¢ini oslanjajui se primjerice na grupu SE(2) ili SE(3).

Prvi dio doprinosa koji je predlozen u ovome radu zasnovan je na filtru zdruzenog
integriranog vjerojatnosnog pridruzivanja podataka (engl. joint integrated probabilistic data
association - JIPDA) na matricnim Lievim grupama koji predstavlja specijalan slucaj algo-
ritma zasnovanog na slu¢ajnim kona¢nim skupovima [Puby]. Vjerojatnost svakog moguceg
dogadaja ne evaluira se izravno u prostoru Lieve grupe G, ve¢ u prostoru Lieve algebre
¢ pridruzene propagiranom stanju razmatranoga objekta. PredlozZeni je pristup testiran
koristenjem stvarnoga podatkovnog skupa prikupljenog u urbanom prometnom okruzenju
s viSesenzorskim sustavom stereo kamere i dvaju radara. Nesigurnosti senzora modelirane
su na Lievim grupama dok je stanje sustava prikazano grupom SE(2).

Drugi je dio doprinosa novi aproksimacijski filtar vjerojatnosti gustoce hipoteza za
pracenje vise gibajucih objekata na Lievim grupama (LG-PHD). Taj je filtar zasnovan na
statistickom modelu CGD-a te kao i svaki filtar vjerojatnosti gustoce hipoteza ima karakteris-
tiku da mu se eksponencijalno povecava broj komponenata kroz vrijeme. Broj komponenata
stoga se mora kontrolirati koriStenjem metoda smanjenja mjesavine komponenata. U okviru
disertacije predlozen je pristup smanjenju broja komponenata u mjesavini CGD-ova [Pub8].
U radu su analizirane mogu¢nosti odgovarajuce reparametrizacije komponenata CGD-a koja
omogucuje evaluaciju Kullback-Leiblerove udaljenosti te strategiju odabira i spajanja kom-
ponenata. Bududi da reparametrizacija dviju komponenata ukljucuje izbor tangencijalnog
prostora za reparametrizaciju, u radu je detaljnije analiziran upravo taj korak smanjenja
broja komponenata. Detaljan izvod LG-PHD-a prikazan je u dodatnom materijalu [*Pub8].

KLJUCNE RIJECI: pracenje vise gibajucih objekata, Lieve grupe, usmjerena statistika,
koncentrirana Gaussova razdioba, prosdireni Kalmanov filtar, prodireni informacijski fil-
tar, slu¢ajni konacni skupovi, filtar gustoce vjerojatnosti hipoteza, zdruzeno integrirano
vjerojatnosno pridruzivanje podataka
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Introduction

UTONOMOUS navigation relies on the ability to perceive and anticipate inherently
A unpredictable dynamic environments based on imperfect sensor data. The degree of
uncertainty significantly varies in different environments, and while in assembly lines it
may appear small, environments such as traffic systems or urban areas emerge being highly
unpredictable. The probabilistic approaches in the field of autonomous systems and mobile
robotics have already payed tribute to the uncertainty in perception and action [1], but until
recently they used to rely on the assumption that the considered variables are Euclidean
and the statistics of uncertainty is well described using Gaussian distribution. The research
conducted in this thesis deals with the task of multiple moving objects tracking performed
in a probabilistic manner, while the motion modeling is carefully performed relying on
non-Euclidean state description. In particular, the system variables are described by Lie
groups, which is a type of manifold often encountered in physical sciences and engineering.

1.1 MOTIVATION AND PROBLEM STATEMENT

1.1.1  Multiple moving objects tracking

Multiple objects tracking (MOT) is an essential problem in the field of autonomous systems
and mobile robotics. In any environment, where an autonomous system operates sharing
its workspace with humans or other subjects, it has to be able to perceive the environment,
recognize obstacles including static and moving objects, and anticipate their future behavior.
Finally, only when understanding the characteristics and motion patterns of objects in
the surrounding, and after being able to predict the future progress of those objects, an
autonomous system can continue reasoning about safe continuation of operation. An
illustration of an autonomous system operating in a dynamic environment is shown in
Fig. 1.1.

Let us continue now by decomposing the title of the thesis. The problem of multiple
objects tracking needs to be considered as opposed to the problem of a single object state
estimation. After set into a probabilistic framework, estimation of a state of a single object
deals with the problem of determining the best guess about the true object state following
the process and measurement models which are respectively affected by the process and
measurement noise. Determining the best guess about the true object state is as well the
main goal of a MOT application, while it aims at accurately determining the state of multiple
objects concurrently, being aware that the number of objects varies in time due to appearing
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Figure 1.1: An illustration of an autonomous system operating in a dynamic environment populated
with other moving objects.

and disappearing of objects. Furthermore, when referred to a standard MOT setting, it is
typically assumed that the set of measurements at each instance is preprocessed into a set of
points or detections. Some of the set members correspond to true objects, while some appear
as false alarms due to a limited sensor system used for data acquisition and/or an imperfect
preprocessing algorithm. To summarize, apart from process and measurement models
uncertainty, typical for general probabilistic estimation applications, in MOT applications one
has to contend with much more complex sources of uncertainty, such as (i) the measurement
origin uncertainty, (ii) births and deaths of objects, (iii) false alarm, (iv) missed detections,
and (v) data association [2].

Next, the title continues by denoting that the underlying MOT approach is based on
random finite sets (RFS). This concept gained a great deal of attention in the tracking com-
munity during the last 15 years [3] since it arises naturally from the reasoning that the set
of objects and set of measurements are described as random sets, rather than multiple
independent random variables. The RFS paradigm in MOT applications is developed upon
the theory of finite-set statistics (FISST) [4], and formal extension of conventional Bayesian
state estimation algorithms to general multiple objects—multiple sensors tracking.

1.1.2  Motion modelling on Lie groups

The field of probabilistic estimation has experienced a rapid upturn in the early 1960s with
the development of a Kalman filter (KF) [5]. Since the KF is originally designed for linear
Gaussian systems, during the next several decades research community mostly focused
on dealing with different types of non-linearities in the motion and measurement models,
while the variables were mostly assumed to be Euclidean. However, in the last few years,
the formalism exploiting the non-Euclidean (manifold) geometry of the state space was
extensively employed in a wide range of applications, due to theoretical and implementation
difficulties that may show up by treating a constrained problem naively employing classical
Euclidean space tools [6].

Probably the most trivial example of a non-Euclidean manifold is the unit circle. The
subject matter of the statistics considered when the observations arise on the sample space
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Figure 1.2: An illustration of the sound source tracking using microphone array and the list of several
possible representations of the space of unit circle.

of a circle is usually referred to as directional statistics [7]. An example where such problem
appears is the tracking by employing a microphone array. This is illustrated in Fig. 1.2,
where several different ways of representing the state of a circular variable are also provided.
In order to describe the state of such directional variable one can employ the von Mises
distribution (vM) which is defined directly on the unit circle [8], and captures the global
geometry of this space. Due to some useful properties, this distribution is applicable for
manipulation within a Bayesian probabilistic framework.

Lets further consider two more complex examples involving typical robotic platforms,
respectively operating in 2D and 3D environments. We firstly consider the example of a
mobile platform operating in 2D, where the associated state space can be considered using
the traditional position-orientation vector x = [t, t, 0] and the Gaussian uncertainty
associated to it. Unfortunately, it has been observed that already a simple differential drive
mobile robot exhibits more complex shape of uncertainty contours than the flexibility of
standard elliptical Gaussians supports. Alternatively, it is possible to exhibit more flexi-
ble uncertainty contours by associating uncertainty to the state described by the special
Euclidean group X € SE(2). In particular, the uncertainty can be associated to this state
through the pertaining tangent space with 3 degrees-of-freedom (dof), thus gaining more
flexibility and possibly boosting the performance of estimation algorithms [9].

Secondly, we consider the example of an areal vehicle operating in 3D, where traditionally
the state space is considered using the position-orientation vector x = [t, t, t, ¢ ¥ 0]" and
the Gaussian uncertainty associated to it. In this case, the pose and its associated uncertainty
can be alternatively described using the special Euclidean group X € SE(3) which is, in
contrast to the Euler-angle based representation, free of singularities and avoids the need
to enforce constraints when solving optimal estimation problems [10]. The uncertainty
can be considered in the pertaining tangent space and stored using the zero-mean 6 dof
perturbation vector with an associated covariance matrix. This approach to uncertainty
association is called the concentrated Gaussian distribution (CGD), and can be applied for
any member of a matrix Lie group. We emphasize that both SE(2) and SE(3) groups belong
to the family of matrix Lie groups.

A random variable X has a CGD of mean y € G and covariance matrix X, written
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Figure 1.3: Lie group representation of the state of a differential drive mobile robot considered in 2D
(X € SE(2), left, with accompanied uncertainty contours illustrated in grey for Gaussian
and black for CGD) and an aerial vehicle considered in 3D (X € SE(3), right).

X~G(u,2),if
X = pexp} (E) and &~ N(0,%) (1.1)

where exp(} performs mapping from the Euclidean space (tangent space of the Lie group
referred to as Lie algebra) to Lie group G. Other important examples of Lie groups of interest
are special orthogonal group SO(2) and SO(3), special unitary group SU(2), invertible
matrices, homographies, similarity transformations, etc [11]. The two previously discussed
examples involving differential drive mobile robot and an aerial vehicle are illustrated in
Fig. 1.3.

The vM captures the geometry of the unit circle in a global manner, but due to various
limiting factors such global approach may not be possible for an arbitrary manifold. On
the other hand, the approaches relying on CGD can at least locally account for the state
space geometry and thus boost the performance of estimation algorithms regarding both
ease and stability of implementation and the overall accuracy. This thesis questions if the
world in the surrounding of an autonomous system can be assumed to be Euclidean, and
develops approaches for dealing with eventually non-Euclidean nature of state space for
various types of objects, but also different measurements which arise on non-Euclidean
manifolds including microphone arrays, radar units or camera systems.

1.2 ORIGINAL CONTRIBUTIONS

Four original contributions of the thesis essentially revolve about probabilistic estimation
methods suitable for operating on variables arising on Lie groups rather than the Euclidean
space. The scientific contributions of this thesis resulting from the performed research are:

#1 Method for multiple moving objects tracking on the unit sphere based on the von
Mises distribution and the random finite sets.

#2 Method for moving object tracking in the space of the special Euclidean group based
on the extended Kalman filter on Lie groups.

#3 Extended information Kalman filter for state estimation on matrix Lie groups.
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#4 Method for multiple moving objects tracking on Lie Groups based on the concentrated
Gaussian distribution and the random finite sets.

A more detailed discussion on the scientific contributions of the thesis is given in Sec. 4.

1.3 OUTLINE OF THE THESIS

The thesis is organized into seven chapters. Among them, two chapters particularly provide
the background material of the thesis. After discussing the main results of the thesis and
providing some concluding remarks, contributing publications are included in the thesis.
Hereafter, we present the outline of the thesis with a short summary of the contents.

Ch 2 This chapter presents the general mathematical background and sets up the context
of the problem of probabilistic estimation on manifolds. The introductory part of the
chapter reveals the problematic of (i) computational potential of filtering methods in
forms of Kalman and information filters, and (ii) discusses the potential of global vs.
local approaches to accounting for the non-Euclidean geometry of considered vari-
ables. Afterwards, some basic background material including the Bayesian recursion,
extended Kalman and extended information filter is provided. Finally, the basics on
global circular statistics and local approach to estimation on Lie groups is presented.

Ch 3 This chapter comprises the methods for multiple moving objects tracking, by provid-
ing an extensive overview of both traditional and widely accepted methods, as well as
recent approaches. Afterwards, it provides some underlying ideas of the probabilis-
tic hypothesis density (PHD) filter and provides an approximation of this filter for
nonlinear systems based on the Gaussian mixture and the extended Kalman filter.
Since manipulation with mixtures of distributions represents an essential task in
many multiple objects tracking applications, here we provide a brief recapitulation
of techniques for component number reduction. Finally, we describe the optimal
subpattern assignment (OSPA) metric for evaluation of the multiple objects tracking
algorithms.

Ch 4 A description of the main scientific contributions of the thesis is given here.

Ch 5 This chapter brings the conclusions of the thesis and presents some ideas for future
work from the viewpoint of open theoretical questions, application perspective and
evaluation challenges.

Ch 6 Here we include the list of publications contributing the main results of the thesis.

Ch 7 This chapter gives a statement on the author’s contribution to each of the included
publications.

After the seven chapters follows the list of referenced bibliography. Finally, the publications
giving the main results of the thesis which were previously published in peer-reviewed
journals or in proceedings of international scientific conferences are included.



Probabilistic state estimation on manifolds

ROBABILISTIC state estimation has been widely accepted approach in a variety of
P engineering problems and scenarios in both traditional application domains including
tracking and surveillance, aerospace engineering, telecommunications and medicine, as
well as in some modern fields such as computer vision, speech recognition and many others.
Probabilistic approaches pay tribute to the uncertainty in perception, by relying on a key
idea of representing the uncertainty in an explicit manner using the calculus of probability
theory [1]. A long history of research in this field experienced appearance of many different
estimation methods, designed for different use-cases depending on the (i) (non)linearity of
system model, (ii) the characteristics of underlying statistics as well as (iii) the state space
geometry of the variables of an estimation interest that are possibly non-Euclidean.

2.1 INTRODUCTION

2.1.1 Probabilistic state estimation

The nature of applications of our interest cover such cases where the full or partial obser-
vations of the system occur sequentially at time instants k € N, while in the meantime the
system is assumed to follow some motion model. Hence we aim to consider estimation ap-
proaches which recursively apply (i) the prediction/propagation step relying on the assumed
motion/propagation model and (ii) the correction/update step employing measurements
once they become available. In this thesis, the processes will follow either continuous or
discrete motion models, while the update will usually be given with measurements at some
discrete time instant. The background idea of the overall random variable estimation of our
interest is called Bayesian since its implementation is grounded in the Bayes theorem [12].
This enables us to build-in some (i) prior knowledge on the value of the considered random
variable, (ii) the uncertain motion model which the variable is expected to follow, and (iii)
the uncertain measurement model which the sensor is expected to follow.

> KALMAN FILTERING. Probably the most important application of the Bayesian re-
cursion is the Kalman filter (KF), and majority of Bayesian approaches used nowadays
are somehow built upon the similar assumptions used in the KF’s original derivation. In
particular, the KF was presented in seminal works of Kalman [5], and Kalman and Bucy [13],
originally developed for linear systems described with Gaussian statistics and evolving on
Euclidean space. Although it was originally derived for a linear problem, the Kalman filter is
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habitually applied with impunity and considerable success to many nonlinear problems [14].
This extensions are introduced in [15] and are generally called the extended Kalman filter
(EKF). Over time, many other methods designed following the basic concepts of KF have
also appeared. Some prominent examples are iterative extended Kalman filter (IEKF) [16],
unscented Kalman filter (UKF) [17, 18, 19], cubature Kalman filter (CKF) [20, 21], quadrature
Kalman filter (QKF) [22, 23], and many others. Also, if the underlying distribution is not
Gaussian and if it is possibly multimodal then different approaches relying on particle
[24] and mixture filters [25, 26] need to be utilized. However, since the thesis focuses on
unimodal EKF-like approaches, we do not provide the exhaustive overview of other filtering
methods.

> INFORMATION FILTERING. From the viewpoint of processing complexity, another
important aspect of Bayesian filtering is the information filter (IF), which is the dual of the
KF. It is as well relying on the state representation by a Gaussian distribution [27] and is
the subject of the same assumptions underlying the KF. While the KF is represented by the
first two moments, i.e., mean and covariance, the IF relies on the canonical parametrization
consisting of an information matrix and information vector [28]. As well as KF, IF operates
cyclically in two steps: the prediction and update step. The main characteristics which
make significant difference between the two parameterizations lie in the complexity of
the prediction and update steps. The advantage of the IF lies in the update step when the
number of measurements is larger than the size of the state space, since in this case the
update step is additive. In contrast, when the opposite applies, the prediction step is additive
and computationally less complex for the KF. Hence, what is computationally complex in one
parameterization turns out to be simple in the other (and vice-versa) [1]. The most common
extension of the linear IF to non-linear systems is following similar linearization approach
as in the vein of EKF. The resulting filter is called the extended information filter (EIF) [27].
Respecting different applications and different types on non-linearity, various strategies
have been developed within the information form framework over time. This includes
sigma-point information filter [29], square-root information filter [30, 31, 32], unscented
information filter (UTF) [33], sparse extended information filter (SEIF) [34], exactly sparse
delayed-state filter (ESDSF) [35], etc.

2.1.2  Estimation on manifolds

Apart from the non-linearity of the motion and measurement models, for the overall
estimation performance it is important to account for the state space geometry and the
association of uncertainty when the underlying space is not Euclidean. This is motivated
by theoretical and implementation difficulties caused by treating a constrained problem
naively with Euclidean tools. Hence recently, many works have been dedicated to associating
uncertainty to, and estimating the state of, non-Euclidean systems.

> ESTIMATION OF CIRCULAR VARIABLES. Working with directional data, especially
under uncertainty, imposes a problem on how to represent them in a probabilistic frame-
work. This subject matter is usually referred to as directional statistics [7], since it mainly
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studies the observations which are unit vectors either in the plane where the sample space
will be a circle, or in the three dimensional space where the sample space will be a sphere.
The robotics community has already recognized the benefits of the directional distributions
applied for modeling directional data. Although the approaches which rely on wrapped
distributions were still recently successfully used in different applications [36, 37], the desire
for globally capturing the entire geometry of the state space influenced more intensive
employment of directional distributions. Some early applications of the vM distribution
defined on the unit circle [8] were presented in [38] where it was used for odometry eval-
uation in order to deal with the heading changes for topological model learning. Later,
in [39] authors proposed a solution for solving large-scale partially observable Markov
decision processes applying the same distribution. In [40, 41, 42, 43], the same distribution
was used in the context of a single speaker localization and tracking in order to model the
state and the microphone array measurements as a vM mixture and evaluated in the context
of Bayesian estimation framework. This distribution has also been successfully applied
for people trajectory shape analysis [44], radar processing [45], and a multitarget tracking
application [46].

The von Mises-Fisher distribution [47] is defined on a unit hypersphere, and hence vM
is also sometimes considered only as its special case. It was already utilized in applications
like single target tracking [48], as well as in multitarget tracking applications [49]. Another
distribution which can be considered as directional is a Bingham distribution used for de-
scribing the inference directly on the space of quaternions. It actually models variables with
180° symmetry, and was used in [50, 51, 52] and in [53] where, furthermore, a second-order
filter was derived which included also the rotational velocity. These approaches, advocating
the unit hypersphere as the appropriate filtering space, showed better performance of the
Bingham filter and the underlying global estimation approach with respect to the EKF.

From the engineering perspective, distributions defined directly over the entire space of
interest seem to be attractive since they are able to globally capture the state space geometry,
but unfortunately their practical applicability is often very limited. An important question
arises regarding the possibility of evaluating the pdf normalization constants in closed form.
This issue makes the Bayes prediction and correction hard to evaluate in the closed form as
well. However, the vM distribution contains some properties that could be easily exploited
within the Bayesian framework, which make it applicable for practical use. In this thesis we
analyze the directional multitarget application for 2D case, relying on the vM distribution,
which is hence more formally introduced in Sec. 2.4.1.

> ESTIMATION ON LIE GROUPS. Some of the most prominent examples of the non-
Euclidean geometries are the orientation and the pose of a rigid body mechanical systems.
Lie groups are natural ambient (state) spaces for description of such systems. The orientation
of a rigid body is often described using special orthogonal groups SO(2) or SO(3) as 2- and
3-dimensional counterparts. The pose is often represented with special Euclidean groups
SE(2) or SE(3), where again they represent 2— and 3-dimensional counterparts [54, 55].
Respecting the field of robotics, the SE groups have been used from the very early days,
while associating the uncertainty came into focus later [56]. The most often used concept
for associating the uncertainty to Lie groups is the concept of CGD, which assumes that the
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eigenvalues of covariance are small, hence almost all the mass of distribution is contained
around the mean value [57, 58].

From the application perspective, an early example of error propagation on the SE(3)
group with applications to manipulator kinematics was presented in [59]. Therein the
authors developed a closed-form solution for the convolution of the CGDs on SE(3). In [57]
the authors proposed a solution to Bayesian fusion on Lie groups by assuming conditional
independence of observations on the group, thus setting the fusion result as a product of
CGDs, and finding the single CGD parameters which are closest to the beginning product.
One of the first significant works which combines both, uncertainty propagation and fusion
on the group, was presented in [10], where authors exclusively deal with the SE(3) group. A
more general approach proposed for dealing with any matrix Lie groups in the vein of the
‘classical’ EKF was proposed in [60]. Therein authors derived a nonlinear continuous-discrete
extended Kalman filter on Lie groups (LG-EKF), meaning that the prediction step is presented
in the continuous domain, while the update step is discrete. In an earlier publication [61],
the authors presented a discrete version of the LG-EKF. Another approach to a nonlinear KF
on manifolds was presented in [62]. It iss designed to operate on a wider range of manifolds
than LG-EKF, and is following the ideas of the unscented transform and the UKF itself.

Some works have also addressed the uncertainty on the SE(2) group proposing new
distributions [52, 63], but these approaches still do not provide a closed-form Bayesian
recursion framework for both the prediction and update that can include non-linear models.
Additionally, in [64] authors use Gaussian process kernels for estimating the 6 dof motion
of an UAV, while in [65] authors study the appearance of multi-modal pdfs on SO and SE
groups and propose an approach relying on mixtures of projected Gaussians.

Another important group is a 3D similarity transform Sim(3) which represents an
extension of SE(3), but includes an additional parameter referred as scaling factor. Such
group may be appropriately employed in mono-vision SLAM tasks when the scale is not
known [66]. The quaternions have also been previously mentioned in the context of circular
variables, and it was also noted that the Bingham distribution can globally capture the
nature of this space. However, quaternions are also members of Lie groups and can be
represented in matrix form as they are isomorphic to the special unitary group SU(2)
[11]. Alongside circular variables and Lie groups which are in the focus of the thesis, there
also exist a variety of manifolds significant for the engineering community, and alongside
this idea several approaches for filtering on such manifolds were developed. This includes
Grassmann manifolds [67, 68], Riemannian Manifolds [69, 70], Stiefel manifolds [71], and
other specific types of manifolds [72, 73].

2.1.3  Application significance

> POSE ESTIMATION. Pose and ego-motion estimation represent some of the most
prominent examples of employment of manifold approaches. In [74] authors studied the
problem of registering local relative pose estimates to produce a global consistent trajectory
of a moving robot relying on probabilistic uncertainties associated to Lie groups. Authors
in [9] specifically study the uncertainty of a motion of a two-wheeled robot and discuss
the significance of associating the uncertainty to variables on the groups, rather than the
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Euclidean space. In [75] authors study error growth in position estimation from noisy
relative pose measurements by carefully accounting for the geometry of the SE(2) and
SE(3) groups. In [62] authors demonstrate the filter on a synthetic dataset addressing the
problem of trajectory estimation by posing the system state to reside on the manifold
combining Euclidean space with an SO(3) group, while in the end they also demonstrate
their approach on SLAM application relying on graph optimization.

In [76] authors perform fusion of optical flow and inertial measurements for robust
egomotion estimation modifying the UKF by following the similar approach as was proposed
by [62], and applying it for a legged robot application. The same application was developed
in [77], and the same estimation approach was used, although different sensor setup was
employed. Alongside the estimation algorithm, in [77] the authors proposed a careful
observability analysis by employing the concept of Lie derivatives [78]. In [79] authors use
only IMU and contact information for estimating the state of the leg of a humanoid robot
and use quaternion representation and an EKF implementation. In [60], the authors have
demonstrated the efficiency of the filter on a synthetic camera pose filtering problem by
forming the system state to reside on the direct product of an SO(3) group with a Euclidean
space vector representing sequentially camera orientation, object position, angular and
radial velocities. A problem of an estimation of a complex kinematic chain has also recently
been observed, and although several Euler angles-based solutions exists [80], an approach
employing Lie groups have recently been proposed [81].

A tracking task can be seen as an extension of a pose estimation problem in terms of
sources of uncertainty of a measurements. A pioneer work on tracking on manifolds was
presented in [82] where authors perform fleet tracking by modeling the target motion as
a particle describing the motion on SE(3) and employing the particle filtering approach.
Another particle filtering based approach applies a first-order autoregressive state dynamics
and use coordinate-invariant particle filter on the SE(3) group in a single-target visual
tracking application [83].

> ATTITUDE ESTIMATION. Attitude also represents an important manifold from the
estimation perspective. Although suitability of Euler angle-based representation was proven
in many practical application, the presence of singularities and non-orthogonality of compo-
nents caused these algorithms to experience different disadvantages. Hence, recent filtering
approaches relying on SO or quaternion-based setting managed to significantly outper-
form the traditional Euler angle-based approaches, and have become standard in different
application fields. In particular, in [84] author presented real-time estimation of a rigid
body orientation from measurements of acceleration, angular velocity and magnetic field
strength by using quaternions and is one of the first authors who carefully treats the inherent
properties of unit quaternions. Later, in [85] authors used a similar approach to attitude
estimation by employing the same sensor setup. In [86] the authors also built upon similar
ideas, and particularly derived the so-called manifold-constrained UKF. Recently, in [87]
the authors have proposed an invariant EKF applied for attitude estimation, where they
managed to systematically exploit the invariance properties to design stochastic filters on
SO(3). Although majority of approaches rely on local techniques, some approaches have
also tempted to globally account for the geometry of SO(3) group. Hence in [88] authors
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have used numerical parametric uncertainty techniques, noncommutative harmonic analy-
sis, and geometric numerical integration for obtaining the global uncertainty propagation
scheme for the attitude dynamics of a rigid body. In [89] author numerically solved the
Fokker-Planck equation on the SO(3) group via noncommutative harmonic analysis to
obtain computational tools to propagate a pdf over the attitude kinematics, and finally uses
it for attitude motion planning and estimation. The more in-depth survey of nonlinear
attitude estimation approaches is available in [90].

> MANIPULATOR KINEMATICS AND CONTROL. An early application of associating
the uncertainty to SE(3) group was presented in [91], and later in [56]. Therein, the constant
position motion model was assumed, and the uncertainty is assumed to be small. This
pioneering systematic methodology of propagating and fusing spatial uncertainties was
applied for actions in an assembly task. A more careful treatment of error propagation was
later presented in [59] where more general propagation model was used. While in [59] a
first-order error propagation on the SE(3) group was presented, the same authors have later
extended the approach to second-order error propagation [92].

There has also been several control applications where a manifold geometry was ex-
ploited. In [93, 94] authors used the SE(3) group representation for describing the state of
steerable needle which is in the focus of their control application. They particularly derived
the equations for parametrically propagating the uncertainty accounting for the geometry
of the SE(3) state space. Another approach relying on Lie group representation of highly
articulated robot and applied in invasive surgery was presented in [95]. The position and
orientation of every robot link evolves in SE(3), while authors used the EKF implementation
such that the state vector is defined using elements of Lie algebra representation.

> CALIBRATION. A popularity of quaternion based approaches has risen via time, and
many authors have tried to exploit the geometry of a quaternion state space by employing
the nonlinear propagation functions. However, in the update step majority of the approaches
relied on the post-normalization, and hence forced the mean to preserve the unit constraint.
Calibration is a ‘classic’ application of such quaternion based EKF or UKF approaches. In [96,
97] authors used a quaternion based EKF formulation which fuses different measurements
with inertial sensors and does not only estimate pose and velocity of an UAV, but also
estimates sensor biases, scale of the position measurement and self (inter-sensor) calibration.
Similarly, in [98] authors combined visual and inertial sensing for navigation, with an
emphasis on the ability to self-calibrate the camera-IMU transformation, but use UKF
filtering approach. In [99] authors developed a framework for fusion of different sensors
allowing for their self-calibration by relying on an IEKF implementation. Alterntively to
quaternion approaches, in [100] authors performed an extrinsic calibration between two
sensors mounted rigidly on a moving body by describing the 6 dof state using SE(3) group.
A more general approach to calibration in terms of state space geometry was proposed
in [101]. Therein authors use non-linear optimization on constraint graphs and combine
it with a principled way of handling non-Euclidean spaces (class of box-plus spaces as in
the vein of [62]) making it particularly easy to solve non-trivial multi-sensor calibration
problems. Their developed Matlab framework is available as open source toolkit.
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> SLAM. An early SLAM application accounting for the state space geometry was presented
in [102], where the state is given as a group element, while the estimation error is represented
locally by a differential location vector. The authors refer to this concept as the symmetries
and perturbations map (SPmap), while they use the EKF implementation. Another EKF-based
SLAM using the quaternion-based approach and accounting for the state space geometry
was presented in [103], and relies on the quaternion normalization in the update step. A
direct approach to visual EKF-based SLAM which uses the SE(3) representation is presented
in [104]. In [105] the authors preintegrated a large number of inertial measurement unit
measurements for visual-inertial navigation into a single relative motion constraint by
respecting the structure of the SO(3) group and defining the uncertainty thereof in the
pertaining tangent space.

A quite prominent example of an application where the need arises for computational
benefits of the IF and the geometric accuracy of Lie groups is SLAM. SLAM is of great practical
importance in many robotic and autonomous system applications since it represents a
problem of acquiring a map of an unknown environment, and simultaneously localizing
itself within the map. The earliest SLAM solutions were based on an EKF implementation
and in practice they could handle maps that contain a few hundred features, while in
many applications maps are orders of magnitude larger [34]. Therefore, the EIF is often
employed and widely accepted for SLAM [106]. The EIF based approaches reached its
zenith with sparsification techniques resulting withSEIF [34] and ESDSF [35]. However, the
localization component of SLAM conforms the pose estimation problem as arising on Lie
groups. Furthermore, the mapping part of SLAM consists of landmarks whose position, as
well, arises on SE(3). Therefore, some recent SLAM solutions approached the problem by
respecting the geometry of the state space [107, 108, 109], since significant cause of error in
such application was determined to stem from the state space geometry approximations.
However, these SLAM solutions, although able to account for the geometry of the state space,
exclusively rely on graph optimization [66, 110, 111], but still not on filtering approaches
(although filtering approaches have still recently been successfully used for plain odometry
applications [112, 113]).

2.1.4 Organization of the chapter

The rest of the chapter is organized as follows. The underlying background estimation
theory in the form of a Bayesian filtering is presented in Sec. 2.2. The traditional solution
to the Bayes filtering problem in the form of an extended Kalman filter and an extended
information filter, suitable for operation with Euclidean variables is given in Sec. 2.3. A basic
overview of the vM distribution is given in Sec. 2.4. The last section of this chapter provides
directions for evaluation of the LG-EKF including (i) mathematical preliminaries useful for
understanding the necessary mappings between the triplet including Lie group, Lie algebra
and Euclidean space, (ii) basics on the concept of CGD, and (iii) equations for the LG-EKF
Sec. 2.5.
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2.2 BAYESIAN FILTERING

The Bayesian filter has a recursive form and operates in two steps. Firstly, based on the
prior knowledge and motion model, the prediction can be performed. Secondly, once the
measurement becomes available, the update step is executed.

2.2.1  Model of the system

To define the filtering problem, we consider the evolution of the discrete system from time
instant k — 1 to k following the motion model given as

xk = f(Xk-1 Ugor) + Wier, keN, (2.1)

where f is a nonlinear function of the system state x and control actions u at time step
k —1, while w is process noise. The objective of estimation is to recursively estimate x; from
measurements given via another non-linear function

zi = h(x) +vi, keN, (2.2)

where h is possibly a nonlinear function in the system state and v is a measurement noise.

2.2.2  Statistical inference

From a Bayesian perspective, the estimation problem is to recursively calculate some degree
of belief in the state x at time instant k, i.e., xx, given the measurement data z; [24].

From the perspective of the pdf, we are striving to estimate the density p(xx | zix), i.e.,
the pdf of the state x; given the history of all measurements z;., often referred as posterior
at time instant k. This may be obtained recursively applying the prediction and update
steps. Assuming that the posterior p(x_; | z.x-1) is available, the prediction step particularly
involves calculating the prior pdf via the Chapman-Kolmogorov equation [24]

POl 2vir) = [ Pl %) (i | s}, (23)

where p(xy | xx_1) is the probabilistic model of the state evolution.
In the update step, once the measurement z; becomes available, it can be used to update
the prior via the Bayes rule

p(zi | xi) p(xk | zux1)
P(Zk |Z1:k—1)

where the pdf p(zx|xx) represents our likelihood function defined by the sensor model

) (2.4)

p(xx|zix) =

(2.2) and p(z | z1:-1) represents a normalization constant. For implementation purposes,
the three probability distributions are required; (i) the initial belief p(x,), (ii) the mea-
surement probability p(zx | xx), (iii) state transition probability p(x | xx_;). This recursive
propagation of the posterior density is only a conceptual solution, while in general it cannot
be determined analytically. However, solutions do exist in a restrictive set of cases which
will be briefly introduced in the thesis [24]. Furthermore, one should note that there is
nothing intrinsic in the Bayesian filter propagation and update steps that would limit this
concept to operating on Euclidean spaces only. This thesis shows several applications of
this concept in various non-Euclidean problems.
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2.2.3 Validation gate

The normalization constant p(zj | z.x_; ) results from applying the marginalization of the
state x; from the nominator of (2.4) as

plalzu) = [ plal0)p(el 2ut)ds. (25)

This probability can further be used for validation gate purposes, so as to reject highly
unlikely measurements/outliers. In particular, the validity of a measurement z; is directly
evaluated through (2.5) [114].

2.3 TRADITIONAL PROBABILISTIC STATE ESTIMATION

Since the concept of Kalman filtering represents an important aspect of this thesis, the EKF
is briefly presented in the sequel.

2.3.1 Extended Kalman filter

Let us assume that the system is given with motion (2.1) and measurement models (2.2), and
process and measurement noises are Gaussian given as wy ~ N (0, Qx), vk ~ N (0, Ry). We
also assume the system state and measurement Spaces are Euclidean, i.e., x; € R", z; € R™,
Vk € N.If the posterior at time instance k —1is a Gaussian distribution x;_; ~ N (gx_1, k1),
the predicted state xy;_; is given with parameters

i1 = f (P15 Uk-1) (2.6)
i = FeaZea Py + Qi

where F is state transition matrix defined to be the Jacobian
Fk_1 = - . (27)

Having the estimated prior X1 ~ N (fxk-1> Zkjk-1)> once having the measurement z
available, the updated state of the system is evaluated as

Kk = Zk|k—1Hz(szk\k71Hz + Rk)_l (2.8)

Ui = ik + Kie(zx = Hfhije-1)
Tk = (I - KeH) Zggp-t»

where H is measurement matrix defined to be the Jacobian

oh

Hy = — .
ox X=Hk|k-1

(2.9)
A complete and intuitive derivation of KF is available in [1].

When considering the validation gating, the validity of a measurement is determined
from its residual (or innovation) with the predicted observation, which results from (2.5)
producing a Gaussian distribution of the innovation as [106]

N(Zk - Hk[/lk|k—1> szk\k—le + Rk) . (2.10)
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Validation is computed by gating the normalized innovation squared (NIS; also commonly
known as the Mahalanobis distance) as

(2 = Hiprigeor) " (HiZier Hy + Rie) ™ (2 = Hicbhigior) < X5 » (2.11)

where y? is a chi-square pdf, and d is innovation dimension.

The above recursion results from the first-order Taylor series expansion of nonlinear
motion and measurement models, and although higher-order EKF [115] exist, its practical
usage is not nearly as often as first-order based approximation [27].

2.3.2  Extended Information filter

While KF relies on moment representation of Gaussian distributions using mean y and
covariance X parameters, the IF replaces them with canonical parameters called information
vector y and information matrix Y. The relation between the two set of parameters are
given as

Ne(p, Y) = N2 27, Nau(,Z) = N (Y, YT, (2.12)

where index m denotes the moment representation, while ¢ represents the canonical repre-
sentation. Since moment representation is considered ‘classical; in the rest of the thesis we
omit specifically using index m when referring to it.

Given the same assumptions as in the EKF case about motion and measurement models,
and if the posterior at time instance k — 1 is a Gaussian distribution given with canonical
parameters x_; ~ N.(yx_1, Y1), the predicted state Xk|k—1 18 calculated as

Pilk-1 = f( Yk__lly, Uk-1) (2.13)
Yigkr = (Fea Y\ Fioy + Qicn) ™
Yilk-1 = Yijk-1H4klk-1>

where F is state transition matrix defined as in the EKF case. Having the estimated prior
Xilk-1 ~ Ne(Yrje-1> Yije-1)> once having the measurement z; available, the updated state of
the system is calculated as

Vi = Yipeor + HE R (2 = h(pig-1) + Hicbiigion) (2.14)
Yi = Yo + Hy R H,

where H is measurement matrix defined as in the EKF case. Furthermore, if N measurements
are available at time step k through different measurement models /; and measurement
noise r, ~ N'(0, R; ), the updated information vector and matrix become

N
Yk = V-1 + Z H} R (zik = hi(pgpar) + Hik o) »
1;1 (2.15)
Yi = Yo + . HL Ry Hik.

i=1
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2.4 DIRECTIONAL ESTIMATION

2.4.1 Von Mises distribution

The vM distribution is a continuous parametric probability distribution defined on the unit
circle ', or equivalently on interval [0, 27), i.e. the 1-dimensional sphere with unit radius
and center at the origin. A unit random vector x is said to have a vM distribution vMF (u, k)
if its probability density function (pdf) is of the following form [8]

. — 1_ u— 2
p(xspx) = 2l0(x) exp (kcos(x —p)), x€S7, (2.16)

where 0 < x < 27, u € [0, 27) denotes the mean angle, x > 0 is the concentration parameter
and I, is the modified Bessel function of the first kind and of order zero [7]. The modified
Bessel function of the first kind and of order n € N is defined by the following expression

I,(x) = % /:ﬂexp(;c cos &) cos(né) dé. (2.17)

The vM distribution is often referred as the circular analogue of the normal distribution on
the real line: it is unimodal, symmetric around mean angle y, and the concentration param-
eter x is analogous to the inverse of the variance. Several examples of the vM distribution
are given in Fig. 2.1.

Figure 2.1: Examples of the vM distribution on the unit 1-sphere, with equal mean directions and
concentration parameters of 50 (red), 150 (green), and 500 (blue), which correspond
approximately to standard deviations of 8.2°, 4.7° and 2.6°, respectively [116].

2.5 ESTIMATION ON LIE GROUPS

2.5.1 Mathematical preliminaries

A Lie group G is a group which has the structure of a smooth manifold with the smooth
group operators of composition and inversion. Moreover, each point X € G has an associated
tangent space Tx(G), called the Lie algebra of G and denoted , which almost completely
captures a curved object like G [117]. The Lie algebra g, which is of the same dimension as G,
admits a binary operation [, -] called the Lie bracket, which reflects the non-commutative
content of the group operation, and we usually consider this space being placed at the
group identity. Furthermore, if the group G is a matrix Lie group, then G c R"*" and group
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Figure 2.2: An illustration of mappings within the triplet of Lie group G - Lie algebra g — Euclidean
space R? [121].

operations are simply matrix multiplication and inversion. Although not all Lie groups are
matrix groups, the majority of them has an equivalent matrix representation—especially
the ones considered in physical sciences [60]. Moreover, the theorem [118] says that every
Lie algebra is isomorphic to a matrix Lie algebra, thus we will simply say ‘Lie algebra’ rather
than ‘matrix Lie algebra.

The Lie algebra g c R"*" associated to a p-dimensional matrix Lie group G c R"*" is a
p-dimensional vector space defined by a basis consisting of p real matrices E,, r =1,..., p,
often referred to as generators [119]. In particular, a Lie algebra is an open neighbourhood
around 07 in the tangent space of G at the identity I". The matrix exponential exp and
matrix logarithm log,. establish a local diffeomorphism between G and g as

expg: g = G and log;:G — g. (2.18)

Furthermore, a natural relation exists between the p-dimensional Lie algebra g and the
Euclidean space R?, and is given through a linear isomorphism

[[]6:9 - RP and [-]¢:R? - g. (2.19)
For brevity, we will use the notation in the vein of [120]

expl(x) = exp([x]5) and logl(X) = [logg (X)X, (2:20)

where x € R? and X € G. An illustration of these concepts is given in Fig. 2.2.
Lie groups are generally non-commutative, i.e., XY # Y X. However, the non-commutativity
can be captured by the so-called adjoint representation of G on g [58]

Xexpa(y) = expi(Adg(X)y)X, (2.21)

which can be seen as a way of representing the elements of the group as a linear transforma-
tion of the group’s algebra. The adjoint representation of g, adg, is in fact the differential
of Adg at the identity. Another important result for working with Lie group elements is
the Baker-Campbell-Hausdorff (BCH) formula, which enables representing the product of
Lie group members as a sum in the Lie algebra. We will use the following BCH formulae
[122, 58]

logé (expgy(x) exps () = ¥ + oc(y)x + O(|[yII*)s (2.22)
logd (expg (x + ) expS(—x)) = Dg(x)y + O(|lyII*), (2.23)
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NP, %)

RP

Figure 2.3: An illustration of the CGD G(I¢, £). The mean value I resides on the group G ¢ GL(d;R)
while the covariance matrix ¥ belongs to GL(p;R). On the right we depict the corre-
sponding N'° Gaussian in R? with mean value 07 and covariance matrix ¥ [121].

oo Bpadg(y)”
n!

where g6 (y) = X7,
common groups used in engineering and physical sciences closed form expressions for

, B,, are Bernoulli numbers, and @g(x) = ¢g(x)~". For many
¢c(-) and @g(+) can be found [10, 58]; otherwise, a truncated series expansion is used.

2.5.2 Concentrated Gaussian distribution

Let us assume that a random variable X taking values in G has the probability distribution
with the probability density function (pdf) of the following form [59]

p(X:3) = Bexp (—%(logé(X))TZ_l 1ogg(x)) , (224)

where f3 is a normalizing constant such that (2.24) integrates to unity, and X is a positive
definite p x p matrix. Seemingly, in notation ¢ = log’(X) € R, density (2.24) has the
structure of a zero mean Gaussian with covariance matrix X. However, observe that the
normalizing constant B differs from (27)~?/2(det £)~Y/2 and, in the sense of R?, it is only
defined on an open neighborhood of the origin. Additionally, we will assume that all
eigenvalues of X are small, thus, almost all the mass of the distribution is concentrated in a
small neighborhood around the mean value, and such a distribution is called a CGD [59].
Furthermore, we say that a random variable X has a CGD of mean y € G and covariance
matrix X, written X ~ G (u, X), if M~'X has the CGD of mean I and covariance X [59], i.e.,
the density of G (y, X) is given by

1 Vo o— - Vo o—
p(X;u,2) = Bexp (—E(logG(y X))z log (4 1X)). (2.25)
Correspondingly, a random variable X can be seen as
X = pexpg (&) ,with X ~G(u,2). (2.26)

An illustration of the CGD is provided in Fig. 2.3.

2.5.3 Extended Kalman filter on Lie groups

For the general filtering approach on matrix Lie groups, the system is assumed to be modeled
as satisfying the following equation [61]

Xy = f(Xpo1, 0iar) = Xiqy expy (Qk—l + wk—l) > (2.27)
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where Xj € G is the state of the system at time k, G is a p-dimensional Lie group, w ~
N (0771, Q) is white Gaussian noise and 2 = Q(X) : G - R? is a non-linear 2 function.

The prediction step of the LG-EKF, based on the motion model (2.27), is governed by
the following formulae

Hijk-1 = Uk-1 €XPG (Qk—1) (2.28)
Sikar = FraZeaFl, + O (1) Qs P (1), (2.29)

where y € G and X € RP*? are predicted mean value and the covariance matrix, respectively,
hence the state remains G—distributed Xyjx_1 ~ G(pxjc-1> Zkjk—1)- The operator F, a matrix
Lie group equivalent to the Jacobian of f(X,n), and @ are given as follows

fk—l = AdG (expe (—.(A).k_l)) + dDG(f)k_l)Ck_l (2.30)
= (e

Og(a) =) (m 1] adg(v)™, a e RP (2.31)
m=0 .
0
Cry = B_EQ (Hk-1 expg (f))‘fzo : (2.32)

The discrete measurement model on the matrix Lie group is modelled as

Zi = h(Xy) expyy (my) (2.33)

where Z; € G', h : G —» G’ is a C! function and my ~ Na(07!, Ry) is white Gaussian noise.

The update step of the filter, based on the measurement model (2.33), strongly resembles
the standard EKF update procedure, relying on the Kalman gain Kj and innovation vector
v calculated as follows

Ki = S My (HaZiperMi + Rk)il
vi = Ki (logg (h(par1)"Z)) - (2.34)

The matrix H can be seen as the measurement matrix of the system, i.e., a matrix Lie group
equivalent to the Jacobian of h(X}), and is given as

0
Hy = FY: [logés (M (prg—r) ™ (pipe-s expgy (5)))]”:0 . (2.35)

Finally, having defined all the constituent elements, the update step is calculated via

Uk = pijk-1€xpg (Vi) (2.36)
Sk = Og(vi) (PP = KkHy) iee1 @ (vie) © (2.37)

As in the case of the prediction step, the state Xy,; ~ G(pk, Zx) remains G-distributed after
the correction as well. For a more formal derivation of the LG-EKE, the interested reader is
referred to [61] and [121].



Moving objects tracking based on random finite
sets

ULTIPLE objects tracking has a long history spanning over 50 years referring to
M the problem of jointly estimating the trajectories, e.g., position and orientation as
well as their respective velocities and accelerations, and the number of objects in the space,
relying on the observations from sensor data. Driven by aerospace applications in the 1960’s,
it finds its application in diverse traditional engineering disciplines such as intelligence,
surveillance and reconnaissance, radar/sonar applications, air traffic control, etc. During the
last decade, advances in MOT techniques along with sensing and computing technologies,
have opened up numerous research venues such as robotics and autonomous systems,
computer vision, biomedical research, agriculture and forestry, epidemiology and public
health, communications networks, oceanography, remote sensing, etc [123].

3.1 INTRODUCTION

From the viewpoint of the several sources of uncertainty appearances (described in Ch.1)
among whom each appears challenging itself, data association attracted probably the most
significant attention of the overall research community. The reasoning might lie in the fact
that all other sources of uncertainty can be considered as special cases of the data association
task. For example, one can contend with the recognition of births and deaths only once the
data association task figures out that the existing list of recognized objects does not match
the evolving observations well. Furthermore, false positive and false negative observations,
i.e., false alarms and missed detections, can also be considered only after the data association
task figures out that the list of existing objects does not overlap with the observations well.

Given the previous discussion, the MOT application can be considered as a task which
aims at tracking a random number of objects receiving a random number of measurements.
Among all the existing MOT approaches, the most popular are naive global nearest neighbor
approaches (GNN) [124], the joint probabilistic data association (JPDA) [125,126], the multiple
hypothesis tracking (MHT) [127, 128], and commonly referred to as RFS based multi-object
filters [129, 130]. Although recent developments in RFS have yielded a variety of tracking
methods that claim to avoid data association (often referred to as data association-free
approaches), it was proven that both MHT and JPDA can be derived within the RFS framework
[131], thus representing only special cases of RFS approaches. The research community often
intentionally follows the terminology which inherently abuses the true relation between data
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association based approaches and data association-free approaches, by referring to MHT and
JPDA as non-RFS. Herein we emphasize that although they were not intentionally developed
through the theory of RFS, the data association is still implicitly present in majority of
RFS-based filters, and hence the distinction between the traditional and RFS approaches is
obvious only from the viewpoint of the theoretical background.

The traditional data association-based approaches explicitly formulate and reason over
association hypotheses describing the correspondence of measurements and objects. In
contrary, the RFS-based approaches data association is implicitly present. As such, the RFS-
based algorithms, introduced by Mahler, have gained a great deal of attention in the tracking
community during the last 15 years. This paradigm is developed upon an engineering friendly
version of point process theory called finite-set statistics (FISST) [4, 132]. The summary
of motivations, concepts, techniques, and applications of FISST, and description on how
conventional single-sensor, single-object formal Bayesian modeling is carefully extended
to general data fusion problems, is given in the tutorial “Statistics101" [129]. Although
the background theory of FISST may appear involved, after years of research the optimal
multi-sensor-multi-object recursive Bayes filter was successfully used to derive principled
statistical approximations in the form of PHD filters [3, 133], cardinalized PHD (CPHD) filters
(134, 135], multi-Bernoulli (MB) filters [136], etc. The basic ideas of these approximations are
summarized in another tutorial by Mahler called “Statistics102" [137].

In the subsequent part of this introduction section, an overview of the traditional MOT
methods including (i) MHT and (ii) JPDAF, and the RFS-based methods including (i) PHD,
(ii) CPHD and (iii) MB, are provided.

3.1.1  Overview of traditional methods

> MHT. The underlying idea of the MHT algorithm is the hypothesis generation process
which considers different phenomenons of measurement origin uncertainty since (i) it is
unknown if a measurement is from an object or due to clutter, (ii) it is unknown which mea-
surement originates from which object, (iii) it is unknown if missed detection events have
occurred due to less than unity probability of detection [138]. Each possible combination of
the previous phenomenons generates a hypothesis, which can be limited by performing
gating. GNN in this context can be seen as MHT which keeps only the hypothesis with the
maximum total track score or the minimum total cost, while MHT uses a deferred decision
logic [124].

There exist two types of MHT algorithms, the hypothesis-oriented (HOMHT) [127, 139]
and the track-oriented (TOMHT) [140] algorithm. The original idea of MHT, presented in
[127], was the HOMHT, where a number of global hypotheses between consecutive scans were
kept, whereas the number of association hypotheses or tracks grew exponentially. Since this
issue was shown to be easily handled by TOMHT, these approaches were utilized significantly
more often than HOMHT. TOMHT can then be further divided into tree based [140, 141] and
non-tree based [142, 139] approaches. The HOMHT keeps a number of global hypotheses
between consecutive scans whereas tree based TOMHT only maintains a number of ‘target’
trees, each containing a number of tracks which are not compatible. In tree based TOMHT,
the best global hypothesis is formed from the existing set of tracks and the N-scan pruning
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[124] and track-score based pruning are used to limit the number of tracks from growing
exponentially [138]. An early efficient implementation of the tree based TOMHT algorithm
in which the N-best hypotheses are determined in polynomial time is presented in [143].
On the other hand, a number of different non-tree TOMHT variants were proposed [123],
but due to the intuitive interpretation and the clarity of the tree based TOMHT, the non-tree
methods never attracted such significant attention as tree based methods. Several different
varieties of the probabilistic MHT (PMHT), relying on soft a posteriori probability associations
were also developed, but they never attracted significant attention [144, 145, 146, 147]. and
since this is not in the focus of the thesis we do not consider them any further. A general
motivation for MHT, its basic principles and the alternative implementations in common
use are summarized in [128].

> JPDAF. The early research on probabilistic data association approaches was exclusively
focused on single object tracking applications, accounting for some basic phenomenons
related to the measurement origin uncertainty. The seminal paper by Yaakov Bar-Shalom and
Edison Tse [125] proposed the probabilistic data association PDA approach which grounded
the basis for the entire research on probabilistic MOT research. The PDA algorithm calculates
the association probabilities to the object being tracked for each validated measurement at
the current time. The joint probabilistic data association JPDA approach is a multi-object
extension of the PDA [126], relying on the assumption that the number of tracked objects is
known. The key feature of the JPDA is that it evaluates the conditional probabilities of the joint
association events, where each event represents one combination of measurements-to-object
associations. Typically the state estimation algorithm, which is carried out upon events
evaluation is calculation of marginal association probabilities. These marginal probabilities
are obtained from the joint probabilities by summing over all joint association events in
which the marginal event of interest (respecting each object separately) occurs [148]. The
state estimation equations are then decoupled among the objects and exactly the same as in
PDA. For this purpose, JPDA shows tendency that tracks of closely spaced objects become
overlapped due to the shared measurements across tracks, when this sharing lasts for
many frames or scans [148]. Alternatively, more realistic assumption accounts for possible
correlations between states of two objects after sharing some measurements, yielding a
covariance matrix with off-diagonal blocks which reflect the correlation between the state
estimation errors of the objects. This approach is called JPDA coupled filter (JPDAC). This
problem is well-known as a problem of track coalescence, and some improvements on
this topic are available in [149]. Over time, some approximations of JPDA designed for
circumventing the combinatorial complexity for large number of objects have also been
developed [150]. A tutorial on PDA and JPDA techniques is available in [148].

Musicki et al. managed to rederive PDA without an initial assumption of track exis-
tence which was an important relaxation of the original PDA assumptions, and called the
algorithm integrated probabilistic data association IPDA [151]. As such, this algorithm simul-
taneously provides expressions for both probability of track existence and data association.
Later, Musicki and Evans managed to extend the JPDA with the concept of object existence
probability for individual track [152] and called the algorithm joint integrated PDA (JIPDA).
This concept easily allows for track management in terms of false track discrimination or
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newly birth tracks confirmation. Recently, some directions for performance/computation
resources trade-off for JIPDA were discussed in [153].

The main difference in the overall ideas of MHT and JPDA is that MHT uses a Gaussian
posterior of the object states at the rear end of its sliding window, conditioned on the chosen
hypothesis up to that point in time while it ignores all other association hypotheses. JPDA
on the other hand relies on a soft decision since it averages over all the possibilities, which
is never totally correct but never totally wrong [148]. However, it is interesting to note that
although the RFS approaches have recently attracted a significant attention, some PDA-based
approaches are still the focus of ongoing research [154].

3.1.2  Overview of RFS-based methods

FISST enables formal extension of conventional single-sensor, single-object Bayesian proba-
bilistic modeling to general data fusion problems relying on the Bayesian convolution and
fusion defined over random sets, rather that random variables. Such definition of Bayesian
prediction and correction suited well with the nature of the multi-sensors—multi-object
detection and tracking problems. In particular, the concept of a random set is defined to
contain an uncertain number of random variables, i.e., each of the objects’ state is presented
as random variable, while the size of the set is presented with a random number. Hence, the
multi-object filtering algorithm tempts at estimating states of objects as well as the number
of objects existing in space. An intuitive interpretation of FISST-based MOT is given in [155].

One of the first significant RFS-based filters was developed by Mahler in 2003 [3], where
author proposes the filter which propagates a first-order statistical moment of a random set,
rather than the entire distribution, and called the approach PHD filter. Early PHD applications
were mostly relying on particle filtering approaches based on the work presented in [156],
and referred to as a generic particle PHD filter. Some interesting applications of such filter
are multisensor vehicle tracking presented in [157] and an exclusive vision-based application
presented in [158]. It is also worth mentioning that the estimation for the particle PHD filter
requires clustering of particles into groups, which involves additional processing, relying
on techniques such as the auxiliary particle PHD filter [159], or measurement driven particle
PHD filter [160]. A seminal work on a derivative of the PHD is presented in [133], where
authors present the closed form solution for the Bayesian recursion of the PHD filter under
the ‘linear Gaussian multitarget model’ assumption, and refer to it as Gaussian mixture
probability hypothesis density GM-PHD filter. Therein, the authors also provide directions
for the similar algorithms employed for nonlinear propagation and measurement models
following the ideas of EKF and UKF for general state estimation (as given in Sec. 2), referring
to the PHD alternatives as EK-PHD and UK-PHD, respectively. Further research related to the
GM-PHD was dealing with different topics related to this filter such as convergence analysis
[161] as well as other issues regarding initiating, propagating and terminating tracks [162]
that are not specifically referenced in the original GM-PHD paper [133].

In 2007 [134], a filter which propagates not only the PHD but also the entire probability
distribution on objects number was derived in closed form and called the cardinalized
probability hypothesis density (CPHD). Again, In the vein of the GM-PHD, under the assump-
tion of ‘linear Gaussian multitarget model, the Gaussian mixture cardinalized probability
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hypothesis density GM-CPHD filter was derived [163, 135], while it was first applied for a
ground moving object tracking application with jointly employing digital road maps for
road constraint [164].

At this time, large part of the research community have also dealt with the problems
of estimating or learning the parameters typical for MOT applications and usually used in
both traditional and RFSs approaches, such as unknown clutter intensity [165, 166, 167, 168],
object birth intensity [160], and detection profile [167]. Also, since both PHD and CPHD
have been originally developed such that the newly birth components were induced via
a mixture of components, it was significant to provide a relaxation of this assumption
supporting the uniform object birth model over the entire space of interest [169]. They have
also been extended to multiple models [170], extended objects [171, 172], multiple sensors,
superpositional measurements, distributed multi-object filtering, etc. [138].

Already at this early theoretical stages of development of RFS approaches, they have
attracted a significant attention in practical applications, such as information fusion in
automotive engineering [173]. A performance comparison of PHD and CPHD versus JIPDA
was presented in [174].

In addition to the PHD and CPHD filters, Mahler has proposed the multi-object multi-
Bernoulli (MeMBer) recursion as a tractable approximation to the Bayes multi-object recur-
sion under low clutter density scenarios [130], which approximately propagates the complete
multi-object posterior density rather than only the moments and cardinality distributions.
In particular, MeMBer propagates the parameters of a multi-Bernoulli RFS that approximates
the posterior multi-object RES. Since the original MeMBer overestimates the cardinality hence
generating bias in the number of objects, cardinality-balanced multi-object multi-Bernoulli
(CBMeMBer) filter was proposed by [136]. The first particle filtering implementation as well
as GM implementation for ‘linear Gaussian multitarget models’ were presented in [136]. A
robust version of an MB filter for adaptive learning of non-homogeneous clutter intensity and
detection probability while filtering was proposed in [175]. An early tutorial on Bernoulli
filters including the theory, implementation and applications is available in [176].

Afterwards, Vo and Vo [177] claim that the conjugacy is highly desirable in multi-object
inference, and hence introduce the conjugate priors for the standard multi-object likelihood
function, which are closed under RFS Bayes prediction (Chapman-Kolmogorov equation)
and correction (Bayes rule), and refer to the filter as generalized labeled multi-Bernoulli
GLMB filter. In particular, if starting with the proposed conjugate initial prior, then all
subsequent predicted and posterior distributions have the same form as the initial prior.
Some directions and details for efficient implementations were chronologically presented in
[178, 179, 180] and [181]. Although in this thesis we do not specifically consider the labeling
task, the general MOT algorithms can also involve labels joint to each tracked object. An
example which inherently accounts for this possibility is GLMB. It is also worth mentioning
that the research on MB filters was also significant from the viewpoint of the practical
applications, whereas one of the most advanced autonomous driving-related projects, i.e.,
autonomous driving at Ulm University, was relying on a GLMB filter implementation [182].

It is also important to mention also that many different SLAM approaches have been
developed upon the theory of RFS, including PHD-based [183, 184, 185, 186, 187, 188, 189] and
MB-based [190] SLAM approaches.
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3.1.3 Organization of the chapter

The rest of the chapter is organized as follows. The underlying description of the multi-object
Bayes filtering definition with an illustration of the set integral is given in Sec. 3.2. Section
3.3 provides the background of the PHD filter which was as well used in the thesis, and
provides the equations for the example of a finite mixture approximation of the PHD in
the form of GM-PHD. In Sec. 3.4 we deal with the problem of mixture component number
reduction, which appears due the the nature of the PHD correction step when the number
of components geometrically increases in each step of the filter. For this purpose several
topics such as (i) component distance measure, (ii) component picking strategy and (iii)
component merging equations are discussed. The last section (Sec. 3.5.1) represents the
overview of existing metrics suitable for a MOT applications.

3.2 RANDOM FINITE SETS BASED MULTI-OBJECT BAYES FILTER

In an MOT scenario, at time k-1 the scene might consist of Nj_; objects, X}H, e, Xﬁi"l‘l e Rn,
whose number is a subject to change due to births and deaths. In turn, the objects give rise
to My measurements, Zj, . .. ,Ziw" € R™, whose origin is unknown; some objects might not
have been detected while some measurements are false alarms. The multi-object approach of
[130] addresses this problem by modeling the states and measurements as RFS, which consist
of random variables where the set cardinality is also a random variable. More formally at
time k

Xe={X},....X "} e Fu

(3.1)
Zy={Z,....2" Y e Fa,

where Fx and Fz denote spaces of all finite subsets X’ and Z, respectively. The final goal of
the multi-object Bayes filtering [130] is to estimate the multi-object posterior probability
distribution p( X | Zx) via ‘classical’ Bayes filter form

P( Xk | Zikr) = /P(Xk|Xk—1)P(Xk—1|lek—1)8Xk—1
p(Zi | X) p(Xi | Zixr) (3:2)
S p( 2k X)) p( X | Z11)0 X

where Zyx = {Z,,..., Z;} is the history of all the measurements, p( X | Xi_;) is the multi-
object Markov transition density which is equivalent to the single state propagation pdf

p( X | Z1x) =

given in (2.3), p( 2k | Xx) is the multisource likelihood function equivalent to single source
measurement model pdf appearing in (2.4) and the integrals in (3.2) are set integrals as
defined by the multi-object calculus in [130]. Analytic solution to (3.2) is derived in [177, 178]
with generalization to general multi-object densities presented in [180]. However, often
utilized are principled approximations among which the PHD filter is an example.

3.3 PROBABILITY HYPOTHESIS DENSITY FILTER

The idea of the PHD filter is to propagate the intensity function Dy, i.e. the first order
statistical moment of the multi-object density, in lieu of the multi-object density p( X | Z1.x)
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itself. Although there is information loss due to this step, it is outweighed by the gain in

alleviating the computational intractability of the multi-object Bayes filter. Function Dy is

not a density function, but is uniquely characterized by the property that given a region S

of single-object space X the integral f; D(X)dX yields the expected number of objects in

S. Hence, the PHD filter reasons first on the level of group behavior and then attempts to

detect and track individual objects only as the quantity and quality of data permits [130].
To present the PHD filter, the following assumptions also need to be used [133, 130]

« Each object evolves and generates independent observations.

o Clutter is Poisson distributed with the corresponding intensity A, and independent
of object-originated measurements.

o The predicted multi-object p( X | Z1.4-1) in (3.2) is distributed according to the multi-
object Poisson distribution.

Under these assumptions, it can be shown that the posterior intensity can be propagated
in time via the PHD recursion, i.e., by evaluating two successive steps — prediction and
correction. The prediction is governed by the following equation [130]

Diape(X) = b (X) + fX Pk (O) P (X | $) Di(0)dC, (3.3)

where pi.yx (X {) is single-object Markov transition density, ps«(X) is the probability of
survival of existing objects given their previous state and by (X) is the object birth intensity.
In conjunction, the PHD correction is governed by

Di(X) = [1- ppis1(X)] Diae (X)+
Pois1(X) prir(Z | X) Dy (X) (3.4)
Zi€Zin Aze(Z) + D poxa(X) pra(Z| X)]

where Dy [f(X)] = [ f(X)Drap(X)dX, Az is clutter intensity with its spatial distri-
bution ¢(Z), px(Z]| X) is single-source likelihood function and pp x(X) is probability of
object detection given its current state. We also make further assumptions that do not
necessarily restrict the method just to such scenarios, but serve only for the purposes of
the clarity of presentation. For example, note that we have omitted spawning from existing
objects, thus (3.3) does not represent a general form of the PHD filter prediction, and we
shall also assume that pp x(X) = pp and psx(X) = ps are constant and independent of the
previous object state. We also assume that the spatial distribution of clutter ¢(Z) is uniform
over the whole measurement space Z, since no additional assumptions on the design of the
space is induced.

The PHD recursion does not admit closed-form solutions in general [130], however
sequential Monte Carlo (SMC) approximations [156] and the Gaussian multi-object model
approach based on Gaussian mixtures (GM) [133] render the aforementioned problem
soluble. In this thesis, in the vein of [133], we propose an MOT approach as in the vein of
[133] and hence for the completeness of the thesis we provide the equations for GM-PHD.
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3.3.1 Gaussian Mixture PHD filter

We now continue by providing equations of the PHD recursion. Under certain assumption
which is in the literature referred to as ‘linear Gaussian multi-target model’ [133], the
PHD recursion (3.3)-(3.4) admits a closed form solution. However, for the completeness
of presentation of the background material of the thesis here we consider an extension
to nonlinear object models in the vein of a single-object EKF filter denoted EK-PHD. In
particular, the ‘linear Gaussian multi-target model” assumes each object follows a motion
following the linear Gaussian dynamical model and the linear Gaussian measurement model
given as

f(xkp-1) = N (Feaaxe—1, Q1) (3.5)
h(zk|xk) =N(Hkxk,Rk), (3.6)

where F is a state transition matrix, while H is the observation matrix of a linear system.
However, we use a relaxed version appropriate for more general nonlinear model where

X = f (X1, W) (3.7)
zx = h(xk,vi) (3.8)

where f and h are nonlinear propagation and measurement functions, respectively, while
w and v are process and measurement noises.
Lets assume that the posterior intensity at time k is a GM of the form

Je-r )
Dia(X) = Y wi  NL(X), (3.9)
i1
where w;_| is the weight of the i-th component of the mixture joint to distribution N} | =
N (u;_»Z; ). Given this assumption, and after employing (3.3) and (3.7), the predicted
intensity Dyjx—1(X) is under linearization given as GM

],l{’ ]i\k—l
byi Afbi 5,i i
Dy (X) =D wP NPH(X) + ) Wi M (X)) (3.10)
i-1 i=1
where W;C’ﬁc—l = PsW,i(_l and ]]S(| i1 = Jx-1. The first sum of the term (3.10) brings in the newly

born components, while the second one describes the survived objects. A component N, k"| 1
represents the component resulting after applying the EKF prediction on N} . The predicted
number of objects can be calculated by taking the integral of (3.10) over the entire state
space X

S
]k|k—1

Tk
b,i N
Ny = Z;wk "4 2 w;|’k_1. (3.11)
i= i=

At this point we have finished the less complex prediction step, whereas now we shall
move on to the correction which appears to be slightly more involved. The key steps of the
prediction of EK-PHD filter are summarized in Alg. 1, where the function Prep(-) denotes
the EKF prediction.
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Algorithm 1: The prediction step of the EK-PHD filter
Require: {w]_, N}, (wl, NP YK ps

1 j < 0 (initialization)

N

fori:=1to ]k (# of newly born components) do
J § b,i
Whik- LWy s Ny < MO j<j+l
end for
for i := 1to Ji_; (# of components existing at k) do
Wi|k—1 < Ps Wlé—l > Ig\k—l < PrED(N));j«< j+1
end for
Jii—1 < j (# of predicted components)

N 22w K ow

Jijk—1
. 1
9: return {wk‘k 1,./\/'k‘k 1}

Assuming that the predicted intensity at time k is a GM of the form
Je+1k ' ‘
Dye-1(X) = ), Wikt Ny (X) 5 (3.12)
i-1
after employing (3.4), the corrected intensity Dy (X) is given as

Jk=1 ' Tt My

Di(X) = (1= pp) D Wi, N (X) + D0 2w N (X). (3.13)
i1 i=1 j=1

where

prl’;|k71q;;’j(Z)

;= (3.14)
k Tklk-1
Aze(Z)+pp E)5 " w Wik 1qu(Z)
0.(Z) = N(Zis h(ujgp > S) s (3.15)
S =M MY+ Ry, (3.16)

while k” =N ( ‘u,i’j , Z;{’j ) denotes the result of EKF-like update of i-th predicted component
with j-th measurement. Finally, the corrected number of objects can be calculated by taking
the integral of (3.13) over the entire state space X’

Jklk—1 Jrjk-1 My

Ny=(1-pp) Z Wit T 2. S w, (3.17)
i=1 j=1
The key steps of the correction of EK-PHD filter are summarized in Alg. 2, where the function
INNovV(+) denotes the EKF innovation evaluation, function CorrecT(-) represents the EKF
correction of mean and covariance, and REpucTION(-) represents the execution of mixture
reduction algorithm.

3.4 MIXTURE COMPONENT REDUCTION

During the recursion process of the PHD filter the number of components inevitably in-
creases; first due to inclusion of newly birthed, or in some applications spawned, components
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Algorithm 2: The correction step of the EK-PHD filter
i j
Require: {w;, .MV, }i5 9 {Z; e Zk}j.\ff,pD

1 for i :=1to Jyi— (non-detected components) do
W, < (1-pp) W]Z(|k71 ’Nlé <« Nk1|k71

end for

4

j < 0 (measurement designator)
forall Z, ¢ Z; do
j < j+1,s/ < 0 (per measurement intensity)
for i := 1to Jik— (detected components) do
| < i+ jJkka
[4;/(2)] < INNOV(./\/k’lk o2
10: wy < Po Wiy, 4, (2),87 < sT+wy
1 N}« CORRECT(NZ|k71,Z£)
12 end for

L *® N 2w R e

13 for i:=1to Jy_ (re-weighting) do

i+7 Jilk— i+ Jile— ,
14: w, e T (A ge(Z) + sT)
15: end for
16: end for

7: Jr< (j+ I)Ik‘k 1 (# of components existing at k)
18: {w,’;’R,NIj’R}{ « REDUCTION({Wk,Nl} )

19: return {w}%, /\/',é’R}i=1

and second due to the nature of the PHD correction step. Namely, correcting the predicted
mixture by multiple measurements results in a geometrical increase in the component
number, which can be seen from (3.13). Given that, component number reduction schemes
are necessary [133]. Since this procedure is executed practically at each iteration, it should be
computationally modest, but still keep a reasonable level of accuracy. Reduction procedures
basically require three ingredients: (i) a component distance measure, (ii) a component
picking algorithm and (iii) component merging equations.

3.4.1  Component distance measure

The distance measure is a key ingredient in the reduction scheme and although numerous
distance measures between distributions exist, motivated by to practical and theoretical
aspects we concentrate on those appropriate for finite mixtures. Statistically and information
theoretically motivated distance measure is the Kullback-Leibler (KL) distance, also known
as the Kullback-Leibler divergence or the relative entropy [191], and defined as

Dt [ pia)tog( 25 ).

It belongs to a wider class of distance measures called f-divergences or Ali-Silvey distances
[192]. Another statistical and information theoretical class of generalized distances are Rényi
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a-divergences [193] given by the following expression

1 o 1-a
—log [ p(x)"q(x)""dx

D (p9) = —

and parametrized by real parameter . In the limit « — 1, the Rényi a-divergence yield
the KL distance. Another well-established distance measure when « = 1/2 is called the
Bhattacharyya distance [194]. However, given the discussion presented in [195], we rely our
approaches on KL divergence and hence continue with further discussion on it.

3.4.2  Symmetrized Kullback-Leibler divergence

Furthermore, since the mixtures of distributions appearing in PHD are weighted, in order to
be used here, the measure needs to be customized for weighted (unnormalized) distributions,
and additionally symmetrized. Since scaled symmetrized Rényi a-divergences neglect the
respective weights of components, for the purpose we consider the scaled symmetrized KL
distance [195]. The distance measure between pdfs p and g, with their respective weights
w), and w,, is then given as [192]

1 w
[wyDx(p, q) + wyDxi(q, p)] + E(Wp - w,)log W—P : (3.18)
q

N | —

DsKL(pr, qu) =

> VON-MISES DISTRIBUTIONS. The equations for reducing the number of the compo-
nents in a mixture of von Mises distributions is presented in [195]. For the completeness of
the thesis we also provide the equations herein. Given two vMpdfs p(,, x,) and g(pg, x4),
the KL distance is given as

Io(xq)
Io(xp)

where A(x) = I;(x)/Io(x) with I,(x) as the the modified Bessel function of the first kind
and of order p.

Dxi(p» q) =log + A(p) (1ep = 10 COS(fp = thg))- (3.19)

> GAUSSIAN DISTRIBUTIONS. Given two Gaussian distribution pdfs, p(4,,2,) and
q(uq> Z,), the KL distance is evaluated as

1 z
Dia(pra) =  fir[(5) )~ Ko [+ () (20 (22} 20

12|
where tr(.) and | .| designate matrix trace and determinant, respectively, while K is the
mean vector dimension.

3.4.3 Component picking strategy

With having defined the appropriate distance measure between the distributions we can now
employ the component picking algorithm which will tell us how to screen the whole mixture
and which components to pick for merging. Here we will consider two component picking
strategies interesting from the practical viewpoint, i.e., (i) Exhaustive pairwise [196], and (ii)
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West’s [197] algorithms. The Exhaustive pairwise algorithm determines distances between
all components and merges the closes two, while West’s algorithm sorts the components
according to their respective weights, then finds and merges the component most similar to
the first one. The resulting component is then inserted back to the mixture with respect to
its weight and the procedure is repeated until the desired number of components is reached.

3.4.4 Component merging equations

> VON-MISES DISTRIBUTIONS. The merged vM component has the optimal parameters
in the KL sense obtained by following

wpA(k,) sin p, + wyA(x,) sin y,
wpA(Kp) oS hp + waA(Kg) OS g (3.21)
w* A (k") =wi A% (k) + 2w,waA(K,) AKg) cos(pp — phy)

p* = arctan

where w* = w; + wj, while w*, y* and «x* designate the parameters resulting from the
component merging procedure.

> GAUSSIAN DISTRIBUTIONS. Given several Gaussian distributions the component
merging equations follow as [196]

1
w*:Zw,-, ‘“*:W* Zwi[’li
1
2= D Wi [Zi+pi(p)"] - (u)" (3.22)

where w*, u* and £* designate the parameters resulting from the component merging.
Although (3.22) works for an arbitrary number of components, in our case we will always
merge just two components.

An example of the pseudocode of the merging algorithm using West’s picking strategy
and Gaussian distribution is given in Algorithm 3.

3.5 METRICS FOR EVALUATION

The metric for evaluating the MOT algorithm needs to account for various appearances in
contrary to the single-object estimation where it is typically adequate to involve only a miss
distances as the Euclidean or Mahalanobis distance. The MOT performance metric needs to
involve measures of effectiveness (MoEs) such as missing tracks, false tracks, state estimation
error (position, velocity, heading), track initiation delay, track overshoot, track label swaps,
cardinality estimation, and is alongside strongly scenario and operation dependent. The
problem of choosing MoEs is questionable from two viewpoints; (i) how to choose the
relevant MoEs since it is fairly arbitrary and far from clear and (ii) which choice is adequate
from the theoretical point of view, since MoEs can be correlated.

Since the performance evaluation approaches are strongly application dependent, it
is hard to establish an adequate generic MOT evaluation framework that will embrace all
the previously introduced MoEs. For this reason, here we focus our overview on popular
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Algorithm 3: Mixture reduction using West’s algorithm
Require: P = {w;, N}/,

1. (Order set P ascending by weights)
P{P:wi<wji<j ije{l,2,...,[P|}}

2: while |P| > N do

3 fori=2:|P|do

4 d(i) < D (wiNy, wiN;) calculate via (3.18)

5:  end for

6: j< argmind(i)

i€2,3,...,|P|
7: (Remove components 1 and j)

P <P~ {Wi’-/\[i}izl,j

8. w*,N* « calculate via (3.22)

9:  (Insert the merged component by weight)
P« Pu{w ,N*}

10: end while

1: return {wi,R,/\/},R}{ﬁl

approaches that tempt to provide the generic physically intuitive and information-theoretic
consistent metrics. These metrics are more suitable in cases where a ground truth data is
available, which is most often the case for experiments provided on synthetic data. The
alternative would include the algorithm-free metrics [198] that focus on different MoEs, but
unfortunately merely one-at-the-time. The application dependent metrics have also been
in the focus of recent research [199] (including CLEAR metrics [200], CLEAR MOT metrics
[201], MOTA/MOTP [199]), but since we look for more general metrics, such are application
dependent possibilities are not considered here.

One of the seminal works proposing the MOT performance metric is the Optimal Mass
Transfer (OMAT) metric [202]. It is based on the Wasserstein distance and resolves some
issues of the Hausdorff metric, such as the insensitivity to differences in the cardinality of
the estimator as an important performance measure. However, several weaknesses of OMAT,
such as its inability to operate with empty sets, have been addressed and resolved afterwards
in [203]. This new metric is called OSPA and has comprehended both the spatial distance
measure and the cardinality estimation. OSPA also provides a framework for penalizing the
appearance of multiple estimates for a single object. The problem at hand, where two sets are
collections of tracks and not collections of vectors is deeply addressed in [204], proposing
a metric called the ‘OSPA metric for track’ (OSPAT). This metric further accounts for the
distance violation related to the mislabelling, which is of vital significance in variety of MOT
applications. A work presented in [205] has gone further solving a few more issues resulting
in ‘OSPA for multiple tracks’ (OSPAMT). It aims at providing the framework such that the
resulting metric, which is the sum of spatial distance and label distance, does not violate
the triangle inequality. Furthermore, it discusses the redefinition of optimal assignment of
pairs of tracks between two sets that more directly addresses the MOT problem.
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3.5.1 Metric definition

Let us define a metric space (X', D), where function D : X x X - R, = [0, 00) is a metric
that satisfies the following three axioms forall X, Y, Z e &

1. Identity: D(X,Y) =0ifand onlyif X = Y.
2. Symmetry: D(X,Y) =D(Y, X).
3. Triangle inequality: D(X,Y) <D(X,Z)+D(Z,Y).

Upon that, the metric should be incorporating physical meaning and employing relevant
MoEs for MOT problem.

3.5.2  Optimal subpattern assignment

Let d°(x, y) = min(c, d(x, y)) be the distance between x, y ¢ W, W € R¥, cut off at ¢ > 0.
Let further II; be the set of permutations on {1,2,...,k} for any k € N = {1,2,...}. For
1 < p < oo and arbitrary subsets X = {x,...,x,} and Y = {y, ..., y,,} of W, where m < n,
m, n € N, define the following

Cc s 1 : S c %
Dy(X,Y) = (; (gﬁg;d (%> ya(iy )P + P (n = m))) (3.23)
and if m > n, D;(X, Y)=2 D;(Y, X). Furthermore, for p - oo

MiN ey, MaXicicy (X, V(i) fm=n

D (X,Y) 2 (3.24)

c ifm+n

The function D; is called the OSPA metric of order p and cut off c. It is interesting to mention
that OSPA satisfies the metric definition conditions, and a formal proof is given in [203].
OSPA is shown to eliminate some shortcomings of OMAT as follows:

o Consistency. The OSPA metric penalizes relative differences in cardinality by introduc-
ing an additive component on top of the average distance.

o Intuitive construction. The OSPA construction eliminates any element of arbitrariness
by providing an objective and intuitively reasonable criterion for the assignment,
while at the same time observing the metric axioms.

o Geometry dependence. For a given c and p, Dj, distance does not substantially depend
on the size of the ground truth pattern.

o Cardinality zero. The OSPA metric is defined between any two point patterns.

o Compatibility with mathematical theory. The OSPA generates the vague topology on
the space of finite point patterns on W, which is the standard topology used in point
process theory.
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The OSPA metric can be computed efficiently by using the Hungarian or Munkres methods
for optimal assignment, which is by theoretical complexity just as good as OMAT.

The combined localization and cardinality error represented by the OSPA metric conceals
the reason for the large distance, whence the metric may be split up into a localization and
cardinality error

1 m . »
D;,IOC(X’ Y) 2 (_ min Z d (xi) yn(i))p) (3.25)

n mell, -1

D;’Card(X, Y)= (%cp(n—m))p . (3.26)
Although this is not a metric on the space of finite subsets any more, it can be interpreted
as error measures due to localization only and cardinality only (penalized at maximal
distance).

For object tracking, however, we often require a metric on the space of finite sets of
tracks, where a track has been defined as a labeled temporal sequence. For such requirements
the OSPA metric does not provide the full support, hence its extensions have come to the
focus of consideration for the MOT research. This extensions need to be directed towards
incorporation of information about track continuity or switching of track labels. However,
since we do not consider the labeling problem specifically, we chose original OSPA as an
adequate metric for our applications of interest.



The main scientific contributions of the thesis

HE four original contributions of the thesis essentially revolve about probabilistic

methods in estimation and multiple moving objects tracking relying on the models of
uncertainty respecting the pertaining geometry of the system described using Lie groups.
The first and the last contributions of the thesis deal with the problem of multiple moving
objects tracking when the state arises on non-Euclidean manifold [Pubi, Pubz, Pub8]. The
second and third contributions deal with the problem of estimation in the space of the
special Euclidean group [Pub2, Pub3, Pub4, Pubs], the extended information filter tailored
for the geometry of matrix Lie groups [Pub6]. The discussion on contributions follows in
the sequel.

#1 Method for multiple moving objects tracking on the unit sphere based on the von Mises
distribution and the random finite sets

The state of the system can generally appear to be non-Euclidean which with all the usual
issues makes the MOT problem even more complex. In particular, most of the MOT ap-
proaches somehow rely on the Bayesian recursion and although there is nothing intrinsic
in this concept, it is a real challenge to develop a computationally tractable solution for
the non-Euclidean geometries. Firstly, it is challenging to solve the Chapman-Kolmogorov
equation (Bayesian prediction) in closed form, such that it results with the same type of
distribution as the beginning one. Secondly, given a distribution associated to a predicted
value and employing a measurement likelihood, it is challenging evaluate the Bayes rule
(Bayesian update) hopefully again obtaining the same type of distribution.

The vM is an example of directional distribution defined on the unit circle and as such
captures the geometry of the state space in a global manner. Given two vMs, the convolution
integral of Bayesian prediction does have an exact solution, but the result is not a vM
distribution. However, the resulting distribution can be well-approximated with another
vM based on circular moment matching. The update step on the other hand exhibits a vM
distribution without approximations.

The first contribution deals with the MOT task on the unit circle, based on the PHD
filter which represents an approximation of the optimal multi-object Bayes filter developed
upon the theory of RFS. We particularly derive a closed-form recursion of the PHD filter
yielding a finite vM mixture approximation (vM-PHD) [Pub1]. The vM-PHD is compared to
the GM-PHD on a synthetic dataset of 100 randomly generated multi-object scenarios and
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on the real-world PETS2009 dataset, and achieved respectively a decrease of 10.5% and 2.8%
in the OSPA metric.

#2 Method for moving object tracking in the space of the special Euclidean group based on
the extended Kalman filter on Lie groups

Lie groups are natural ambient spaces for description of the dynamics of rigid body me-
chanical systems. A common state space representation of a rigid body object pose is the
one using semi-direct product of the SO group for orientation and the Euclidean trans-
lation vector, yielding the 2D and 3D counterparts denoted SE(2) and SE(3). Although
development of a convenient distribution defined directly on an SE group represents a
significant research goal, so far there does not exist such solution suitable for employment
in the standard Bayesian framework. Hence, the global approach used for development of
the first contribution is not possible when the underlying state space is SE rather than the
simple unit circle. The CGD is a distribution with parameters which partially combine both
worlds, including a mean value defined on a Lie group and the uncertainty described with
the Gaussian variance in the Euclidean world arising as a tangent space at the mean value.

The research respecting this contribution begins with the consideration of special orthog-
onal group SO(2) and emulation of the constant acceleration model used within LG-EKF,
and was applied for the problem of speaker tracking with a microphone array [Pubz]. An
important concluding remark of [Pubz] is that application of SO(2) group within LG-EKF
yields the same result as heuristically wrapping the angular variable within the EKF frame-
work which is due to commutativity of this group. Next, we continued with the research
on pose estimation employing the SE(2) group and emulating the constant velocity model
used within LG-EKF suitable for tracking of an omnidirectional motion [Pub3]. By using
this modeling approach we inherently account for the nature of coupling between the
rotation and translation parts of SE group. In accordance, association of uncertainty to
an SE(2) group exhibits more flexibility, i.e., supports the banana shaped forms of un-
certainty contours, rather than only elliptical contours. When compared to the classical
constant velocity KF/EKF in a omnidirectional motion tracking application, the proposed
filter outperforms the classical approach for a wide range of acceleration change intensities.
Finally, we developed the constant acceleration model within LG-EKF framework for the
full body human motion estimation employing SO(2), SO(3) and SE(3) groups, by relying
on 3D marker position measurements in [Pub4] and inertial measurement units in [Pubs].
In both cases we provided derivation of the LG-EKF recursion for the articulated motion
estimation. Detailed derivation of accelerometer based update is given in supplementary
material [*Pubs]. We compared the performance of the proposed approaches with the Euler
angles-based EKF, and showed that these algorithms achieve better performance in both
simulations and real-world experiments.

#3 Extended information Kalman filter for state estimation on matrix Lie groups

The IF is the dual of the classical KF, and is the subject of the same assumptions underlying the
KF. Whereas the KF is represented by mean and covariance, the IF relies on the parametriza-
tion consisting of an information matrix and an information vector. Probably the simplest
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advantage of the IF is recognized in the update step when number of measurements is larger
than state space size, while the opposite applies for the KF.

Although IFs have been successfully applied in a number of applications facing large
number of measurements, features or demanding a decentralized filter form, a quite promi-
nent example of an application where the need arises for computational benefits of the
IF is SLAM. Additionally, in SLAM applications the need arises for the geometric accuracy
of Lie groups as well. The earliest SLAM solutions were based on the EKF, which turned
out being inadequate approach due to limitations in maps size, hence EIF soon became
widely accepted for SLAM and reached its zenith with SEIF and ESDSF. However, the pose in
SLAM usually conforms the variables arising on SE(3) groups, and therefore in some recent
solutions it was determined that the approximation in state space geometry represents a
significant cause of error, and the new approaches accounting for this geometry were devel-
oped. However, these SLAM solutions exclusively relied on graph optimization approaches
since no filtering approaches in the form of IF on Lie groups were available.

As a third contribution, the extended information filter on matrix Lie groups (LG-EIF)
is proposed [Pub6]. We provided the theoretical development of the LG-EIF recursion
equations and the applicability of the proposed approach is demonstrated on a rigid body
attitude tracking problem with multiple sensors. We particularly compared the proposed LG-
EIF to an EIF based on Euler angles, and analyzed its computational complexity regarding the
multisensor update with respect to the LG-EKF. The results showed that the proposed filter
achieves higher performance consistency and smaller error by tracking the state directly on
the Lie group and that it keeps smaller computational complexity of the information form
with respect to large number of measurements.

#4 Method for multiple moving objects tracking on Lie Groups based on the concentrated
Gaussian distribution and the random finite sets

While the first contribution deals with a global approach to MOT problem [Pubi] as a long-
term goal for nearly any non-Euclidean probabilistic application, many MOT applications
deal with objects and measurements whose state space is non-Euclidean and is often more
complex than a simple unit circle. Furthermore, both (i) diverse traditional engineering
disciplines (intelligence, surveillance, air traffic control, resident space objects tracking)
and (ii) some modern engineering fields (autonomous systems and robotics) deal with
the objects described with their pose including the orientation variables, which instantly
defines their non-Euclidean nature. Many of those applications can successfully rely on Lie
group representation of the tracked objects, particularly employing either SE group, and
the filtering approach presented as part of the second contribution. Now, when put into
MOT context several additional questions arises.

As the first part of this contribution we proposed to use a solution based on the JIPDA filter,
which was shown to be derived within the RFS framework (as part of the family of JPDA-like
approaches). Our MOT solution uses a modified JIPDA filter suitable for operation on matrix
Lie groups [Puby]. In particular, the probabilities of each event of the filter do not reason
over the space of the variable itself, but rather in the tangent Lie algebra space associated to
the predicted state of some considered object. Only after the innovation vector is determined,
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we use the addition operator, which on the group appears as matrix multiplication, and
hence update the considered object state. The proposed approach is tested using a real-world
dataset collected in urban traffic scenarios with the multisensor setup consisting of a radar
and a stereo camera mounted on top of a vehicle. The uncertainties of sensors were modeled
in polar coordinates on Lie Groups, while the states were represented with SE(2) groups.

As the second part of this contribution we proposed a mixture approximation of the
PHD filter tailored for matrix Lie groups, denoted LG-PHD. It is based on the mixture of
CGDs, and as any PHD filter, it inherently faces the problem of an ever increasing number
of mixture components. For this purpose, the growth of components must be controlled
by approximating the original mixture with the mixture of a reduced size. As part of the
thesis we propose a reduction approach for mixture of CGDs. This entails appropriate
reparametrization of CGD parameters to compute the KL divergence, and pick and merge
the CGD mixture components. Since reparametrization of two different components requires
choosing the appropriate tangent space, we also provide an extensive analysis on the choice
thereof. Detailed derivation of the LG-PHD is given in supplementary material [*Pub8]. We
compared the performance of LG-PHD filters relying on different choices of tangent space
using the OSPA metric.



Conclusions and future work

UTONOMOUS navigation represents a highly disruptive technology that will certainly
A change the way people live and behave, and transform the work practices raising the
efficiency and safety in different types of services. A problem of multiple moving objects
tracking has been the focus of different research studies for several decades and represents an
essential feature in the autonomous navigation task. Still, the ‘tracking research community’
in majority of applications approach this problem by neglecting the non-Euclidean state
space geometry of typically tracked objects, and usually assume the underlying statistics
follow a ‘classical’ Gaussian distribution.

5.1 THE MAIN CONCLUSIONS OF THE THESIS

This thesis considers the MOT task by emphasizing the problem of the geometry of the
state space associated to tracked objects and employed measurements, especially from the
viewpoint of uncertainty description. The problem of associating uncertainty to different
non-Euclidean geometries is herein considered in the twofold manner; first by using the
statistics which globally captures geometry, and second by using an uncertainty description
which locally accounts for it. However, the estimation approaches capable of accounting for
a global geometry of the non-Euclidean ambient space represent an ultimate goal.

One part of the thesis dealt with the MOT problem when the underlying state and mea-
surement space was a direction/a unit circle. This approach was based on the vM distribution
which is defined directly on the space of interest. Since given two vMs, the convolution
integral of Bayesian prediction can be approximated with another vM, and since Bayesian
update given two vMs results explicitly with another vM, we could proceed with develop-
ment of the MOT solution. The main challenge when applying this distribution in a MOT
application was to account for many additional statistical appearances that do not exist in an
estimation-only task. The thesis started by developing a method for directional MOT appli-
cation and derivation of a novel mixture approximation of the PHD filter tailored specifically
for the system on the unit circle (vM-PHD). The resulting filter required some principled
approximations to achieve closed-form and ensure numerical stability. The conclusion
respecting the optimal subpattern assignment metric is that globally accounting for the
circular geometry of the state space can significantly boost accuracy of MOT applications
arising on this type of manifold.

Although the global uncertainty description seems to be attractive, its practical applica-
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bility is often very limited. For this purpose, next part of the thesis dealt with the description
of dynamics of a rigid body mechanical system representing its pose with the special Eu-
clidean group (SE) and orientation with the special orthogonal group (SO). The uncertainty
was associated to these Lie groups relying on the concept of CGD, parametrized with the
mean value on the group and the Gaussian variance in the Euclidean space obtained as a
tangent space at the mean value. As part of this research we studied several models on Lie
groups employed in different applications, including alternatives to Euclidean space based
constant velocity and constant acceleration models but this time arising on Lie groups.

Before proceeding with different motion models, as probably the simplest Lie group
representative, we studied the SO(2) group by analyzing it in the context of the mathemati-
cally grounded framework of LG-EKF. We have shown that the similar result is obtained by
heuristically wrapping the EKF. This result did not seem unexpected given that SO(2) is
abelian, i.e., commutative, but gives an interesting theoretical perspective on estimation
and tracking with the heuristically modified EKF. On the other hand, it was shown that
employment of SE(2) group in the case when rotational dynamics exists can significantly
boost the quality of estimation. In particular, when both dynamics in translation and ro-
tation induce the system it is more appropriate to use a constant velocity model on SE(2)
than the EKF based constant velocity and turn rate model or the linear KF based constant
velocity model. As part of the thesis we further combined SE(3), SO(2) and SO(3) Lie
group representatives in a novel algorithms for the full body human motion estimation
based on (i) body worn marker position measurements and (ii) inertial measurement units.
The human joints were described with SO(2) or SO(3) groups depending on the number of
dofs, while the initial joint representing the connection of the body with the world reference
frame was represented with an SE(3). The motion was assumed to follow the constant
acceleration model within the LG-EKF framework. We evaluated the performance of the
proposed methods on both simulation and real-world motion capture data, comparing it
with the Euler angles-based EKF, and additionally with the commercial software Vicon IK
when dealing with marker measurements. It was shown that the LG-EKF-based solutions
improve estimation for highly dynamic motions and are not affected by gimbal lock.

Next, the thesis deals with the problem of estimation on matrix Lie groups when it may
be adequate to apply an information form. Given the advantages of the IF form and dealing
with filtering on Lie groups, a natural question on casting the LG-EKF in the information
form while keeping its additivity and computational advantages arises. We proposed a
new state estimation method which embedded the LG-EKF with an EIF form for non-linear
systems, thus endowing the filter with the information forms advantages, while keeping
the accuracy of the LG-EKF for stochastic inference. The filter was tested on the problem of
rigid body attitude tracking assuming a constant velocity model with multiple sensors. The
results have shown that the filter can accurately track the attitude and exhibits lower RMSE
with respect to the Euler angles based EIF, and keeps the computational advantages of the
update step with respect to the LG-EKF.

Finally, two solutions to the MOT problem for the system arising on Lie groups were
proposed in the thesis. The first one was based on the JIPDA filter, and modified such that
it is able to operate on Lie groups, hence reasoning about probabilities and the combined
innovation vector in the tangential Lie algebra space. The proposed MOT approach was
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tested in an advanced driver assistance system application on a real-world dataset collected
using a radar and a stereo camera mounted on top of a vehicle. The stereo camera estimated
relative displacement of the vehicle, using stereo visual odometry, generating measurements
as cluster centers of optical flow vectors not conforming to the estimated motion. The radar
directly reported its measurements to the filter, thus complementing the stereo camera
measurements. Both radar and stereo camera were modeled as polar sensors, while the
vehicle state resided on SE(2) group, thus enabling more reliable model of uncertainties
supporting the banana-shaped contours, in contrast to elliptical uncertainty contours given
by the ‘classical’ Gaussian distribution.

We have also developed the PHD filter tailored for the topology of Lie groups (LG-PHD),
and studied the problem of manipulating the size of the mixture of CGD components. For
this purpose, the reduction scheme for mixture of CGD components, including evaluation
of the KL divergence, as well as component picking and merging scheme are considered.

5.2 FURTHER RESEARCH DIRECTIONS

The thesis includes some theoretical results that could possibly be further applied in different
applications. One such example is the LG-EIF which represents an estimation framework that
could be applied for further development of filtering based SLAM approaches. In particular,
the filtering based SLAM solutions reached its zenith with appearances of sparsification
approaches applied over some original EIF implementations, resulting with sparse EIF and
exactly sparse delayed-state filters. Soon after, optimization based SLAM solutions prevailed
over the filtering based solutions since they dominated in performance over a wider range
of applications. The herein presented LG-EIF could represent a basis for development of a
new filter-based back-end for solving SLAM.

The thesis deals with the global estimation approach if it was possible to have a distribu-
tion closed under convolution and Bayes rule. Otherwise, it relies on the approximations
developed upon the concept of concentrated Gaussian distribution. Unfortunately, subtle
global distributions characterized with useful properties, such as an analytic solution to
the Chapman-Kolmogorov convolution integral or closed form under application of the
Bayes rule, are generally uncommon. For this purpose, further research direction in terms
of theoretical aspects may point towards development of some better approximations of Lie
group random variables rather then relying on the concept of CGD.

Considering the MOT applications, it is important to note that the question of an optimal
solution to a complex MOT system is still open, while the key goal of the ongoing research is to
develop near-optimal, scalable and numerically efficient algorithms. Furthermore, alongside
the traditional fields where MOT was applied, some new large-scale real-world problems such
as space objects tracking and giga-pixel video surveillance system, have come in the research
focus. These problems usually include thousands of tracked objects and appearance of some
additional issues that were neglected in this thesis, such as extended objects appearance,
multiple source measurements, coalescence problem, etc. Additionally, although MOT field
is experiencing a rapid development relying on a large scientific community working on new
algorithms, an interesting contribution to the community would be providing an exhaustive
comparison of different MOT approaches since the research in this area is limited.
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HE results presented in this thesis are based on the research carried out during the
T period of 2013 — 2017 in the Laboratory for autonomous systems and mobile robotics
(LAMOR) headed by Professor Ivan Petrovic, at the University of Zagreb, Faculty of Electrical
Engineering and Computing, Croatia, as a part of three research projects: including:

o [2013 — 2015] VISTA - Computer Vision Innovations for Safe Traffic (IPA2oo7/HR/
16IPO/001-040514) which was financially partially supported by the European Union
from the European Regional Development Fund.

o [2015 — 2016] FER-KIET - Advanced Technologies in Power Plants and Rail Vehicles
(RC.2.2.08-0015) which was as well financially supported by the European Union
from the European Regional Development Fund.

o [2016—-2017] cloudSLAM - Cooperative cloud based simultaneous localization and map-
ping in dynamic environments (25/15) which was funded by the Unity Through Knowl-
edge Fund (UKF).

A part of the thesis also includes the research carried out at the Adaptive systems laboratory
headed by Professor Dana Kuli¢, at the University of Waterloo, Canada, who was actively
participating as partner in the cloudSLAM project.

The thesis includes eight publications written in collaboration with co-authors of the
published papers. The author’s contribution to each paper consists of the text writing, the
software implementation, performing the required simulations and experiments, and results
analysis and presentation.

Pub1 In the paper entitled Von Mises Mixture PHD Filter the author proposed a novel
mixture approximation of the PHD filter tailored specifically for the topology of an
MOT system on the unit circle relying on the vM distribution, which arises whenever
the state and the sensor measurements are circular. The author has implemented the
newly proposed algorithm in Matlab and analyzed the performance of the proposed
filter comparing it with the GM-PHD on a synthetic dataset of 100 randomly generated
multi-object scenarios with respect to the optimal subpattern assignment metric.

Pub2 In the paper entitled On wrapping the Kalman filter and estimating with the SO(2)
group the author analyzes the LG-EKF for directional tracking of moving object in
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2D assuming the constant angular acceleration model on the Lie groups including
SO(2) (orientation) and Euclidean variables (velocity and acceleration). The author
particularly shows that LG-EKF filter derivation based on the mathematically grounded
framework of filtering on Lie groups (including SO(2) group) yields the same result
as heuristically wrapping the angular variables within the EKF framework. The author
has applied the proposed filter for a real-world speaker tracking with a microphone
array using the implementation under the Robotic Operating System (ROS), while the
accuracy was evaluated with ground truth data obtained by a motion capture system.

In the paper entitled Moving object tracking employing rigid body motion on matrix
Lie groups the author proposed a novel method for estimating rigid body motion by
modeling the object state using special Euclidean group SE(2) and employing the
LG-EKF constant velocity model. The performance of the filter is then analyzed using
Matlab implementation on a large number of synthetic trajectories and compared
with (i) the EKF constant velocity and turn rate model and (ii) the linear KF constant
velocity model.

In the paper entitled Full Body Human Motion Estimation on Lie Groups Using 3D
Marker Position Measurements, in collaboration with co-authors, the author proposed
a new algorithm for full body human motion estimation using 3D marker position
measurements. For this purpose, the LG-EKF is used for stochastic inference on SO(2),
SO(3) and SE(3) groups. The motion prediction follows the constant acceleration
model, while the update and observation equations are derived for positional mea-
surements, accounting for the kinematic chain. The performance of the filter was
evaluated in both simulation and on real-world motion capture data, comparing it
with the Euler angles based EKF.

In the paper entitled Human motion estimation on Lie groups using IMU measure-
ments, in collaboration with co-authors, the author proposed a new algorithm for full
body human motion estimation using inertial measurement units. The LG-EKF was
employed for an arbitrary chain configuration consisting of SO(2) or SO(3) joints.
The motion prediction follows the constant acceleration model, while the update was
derived for gyro and accelerometer measurements, accounting for influence of the
kinematic chain. The performance of the filter was evaluated in simulations and on
real-world data, comparing it with the Euler angles based EKF.

This material provides a detailed derivation of accelerometer update within the LG-EKF
framework employing an arbitrary kinematic chain, thus serving as a supplementary
material to [Pubs].

In the paper entitled Extended information filter on matrix Lie groups the author
proposed a new state estimation algorithm called the extended information filter on
Lie groups (LG-EIF) The paper presents the theoretical development of the LG-EIF
recursion equations and the applicability of the proposed approach is demonstrated
on a rigid body attitude tracking problem with multiple sensors, comparing the
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proposed LG-EIF to an EIF based on Euler angles, and analyzing its computational
complexity with respect to the LG-EKF.

In the paper entitled Radar and stereo vision fusion for multitarget tracking on the
special Euclidean group the author uses a combination of a radar and a stereo vision
system to perform the MOT task, by relying on the measurements and object states
described using Lie groups. The paper also presents the adaptation of the JIPDA filter
for MOT application on matrix Lie groups. The implementation in ROS was used for
testing the algorithm on a real-world dataset collected with the described multi-sensor
setup in urban traffic scenarios.

In the paper entitled Mixture Reduction on Matrix Lie Groups the author proposes
a mixture reduction approach for CGDs defined on matrix Lie groups. This entails
appropriate reparametrization of CGD parameters to compute the KL divergence, pick
and merge the mixture components. The author also describes an MOT filter, i.e., prob-
ability hypothesis density filter on matrix Lie groups (LG-PHD) with approximation
based on a finite mixture of CGDs, and uses it as a study example for the proposed
mixture reduction method.

This material provides a more detailed overview of derivation of LG-PHD, thus serving
as a supplementary material to [Pub8].
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Von Mises Mixture PHD Filter
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Abstract—This letter deals with the problem of tracking mul-
tiple targets on the unit circle, a problem that arises whenever
the state and the sensor measurements are circular, i.e. angular-
only, random variables. To tackle this problem, we propose a novel
mixture approximation of the probability hypothesis density filter
based on the von Mises distribution, thus constructing a method
that globally captures the non-Euclidean nature of the state and
the measurement space. We derive a closed-form recursion of the
filter and apply principled approximations where necessary. We
compared the performance of the proposed filter with the Gaussian
mixture probability hypothesis density filter on a synthetic dataset
of 100 randomly generated multitarget trajectory examples cor-
rupted with noise and clutter, and on the PETS2009 dataset. We
achieved respectively a decrease of 10.5% and 2.8% in the optimal
subpattern assignement metric (notably 16.9% and 10.8% in the
localization component).

Index Terms—Directional statistics, multitarget tracking, prob-
ability hypothesis density filter, von Mises distribution.

[. INTRODUCTION

ULTITARGET TRACKING (MTT) is a complex
problem in which, apart from single target tracking
issues like process and sensor noise, false alarms and imperfect
detection, we have to additionally contend with measurement
origin uncertainty, data association and target births and deaths
[1]. The data association-based seminal MTT algorithms such
as multiple hypothesis tracker (MHT) [2] and joint probabilistic
data association (JPDA) filter [3] approach the MTT problem
by considering explicit measurement-to-target association. In
contrast, the formulation based on random finite sets (RFSs)
does not demand explicit associations between measurements
and targets, but rather treats the collections of states and
measurements as RFSs where both the set elements and its
cardinality are random variables. This approach to MTT allows
the casting of foundation for the optimal multitarget Bayes filter
[4]. Within this concept various algorithms for multitarget and
multisensor tracking were developed, such as the probability
hypothesis density (PHD) [4]-[6], cardinalized PHD (CPHD)
[71, [8], and multi-Bernoulli filters [9]-[12].
In this letter, we propose a novel mixture approximation
of the PHD filter tailored specifically for the topology of a
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MTT system on a non-Euclidean geometry, namely the unit
circle. This problem arises whenever the state and the sensor
measurements are circular, i.e. angular-only, variables and
appear when tracking targets with omnidirectional cameras,
microphone arrays and similar omnidirectional sensors [13].
The filter is based on the von Mises (vM) distribution defined
on the unit circle itself, thus yielding a finite mixture approxi-
mation in the vein of [6] and can be theoretically applied to all
the RFS algorithms involving finite mixture implementations.
Previous works that performed estimation on the unit circle
described the state either with a single component [14]-[19]
or a finite mixture [20]-[23]. However, none of the previous
works approach the MTT problem based on the theory of RFS
directly on the unit circle.

II. THE MULTITARGET BAYES FILTER

In an MTT scenario, at time & — 1 the scene might consist
of ny_ targets, ¥x_1,1,.--,%p—1.n, . € X, whose number
is a subject to change due to births and deaths. In turn, the tar-
gets give rise to my, measurements, 2 1, . . . , Zk,m; < 2, whose
origin is unknown; some targets might not have been detected
while some measurements are false alarms. The multitarget ap-
proach of [9] addresses this problem by modeling the states
and measurements as RFSs, which consist of random variables
where the set cardinality is also a random variable. More for-
mally at time &

Xp ={op1, s Ten, } € F(X)

Zk = {Zk71,...,zk7,mk} 6.7:(2), (1)
where F(X') and F(.Z) denote spaces of all finite subsets X" and
Z, respectively. The final goal of the multitarget Bayes filtering

[9] is to estimate the multitarget posterior probability distribu-
tion p( Xy|Zx) via ‘classical’ Bayes filter form

P75 = [ G X (X125 )%

ko P2k Xp)p(Xy| Z5T)

where ZF = {Z;,...,Z;} is the history of all the measure-
ments, p(Xy|Xp_1) is the multitarget Markov transition den-
sity, p(Zy|Xy) is the multisource likelihood function and the
integrals in (2) are set integrals as defined by the multitarget
calculus in [9]. Analytic solution to (2) is derived in [24]-[26]
with generalization to general multiobject densities presented
in [27]. However, often utilized are principled approximations
among which the PHD filter is an example.

A. The Probability Hypothesis Density Filter

The idea of the PHD filter is to propagate the intensity func-
tion Dy, i.e. the first order statistical moment of the multitarget

1070-9908 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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density, in lieu of the multitarget density p(Xj|Z;.5) itself. Al-
though there is information loss due to this step, it is outweighed
by the gain in alleviating the computational intractability of the
multitarget Bayes filter. Function Dy, is not a density function,
but is uniquely characterized by the property that given a region
S of single-target space X’ the integral | s Di(x)dx yields the
expected number of targets in S. Hence, the PHD filter reasons
first on the level of group behavior and then attempts to detect
and track individual targets only as the quantity and quality of
data permits [9].

Given that, the PHD filter operates by evaluating two succes-
sive steps—prediction and correction. The PHD prediction is
governed by the following equation [9]

Dy —1(xx) = b(a,)
+/ P8k (@k—1)P(Tr|Te—1)Dr—1(2k—1)d2p_1, (3)
x

where p(ay|ay_1) is single-target Markov transition density,
ps.k(xr—1) is the probability of survival of existing objects
given their previous state and b(z) is the target birth intensity.

In the sequel we shall make assumptions that do not restrict
the proposed method just to such scenarios, but serve only for
the purposes of the clarity of presentation. For example, note
that we have omitted spawning from existing targets, thus (3)
does not represent a general form of the PHD filter prediction,
and we shall also assume that pg (vr_1) = ps is constant
and independent of the previous target state. In conjunction, the
PHD correction is governed by

Dy(zr) =1 - pp. k(fck)] Dyl -1(z)
pDk 2 )p(2k|2k) Dijp—1 (2k)
* nEZZ ) + D1 [pp.x(@x)p(zi]a)] @

where D] = [y J(@)Dyp—1(x)da, X, is clutter
intensity w1th 1ts spatlal distribution ¢(z), p(zglzy) is
single-source likelihood function and pp i(2x) = pp is
probability of object detection given its current state. In the
sequel we shall assume that the spatial distribution of clutter
¢(#) is uniform over the whole measurement space Z and that
pp.k(xr) = pp is constant and independent of the current
object state.

Recursions (3) and (4) are derived under the assumptions that
[6], [9]: (i) each object evolves and generates independent ob-
servations, (ii) clutter is Poisson distributed and independent of
object-originated measurements and (iii) the predicted multi-
target p(Xg|Z1.x—1) in (2) is distributed according to the mul-
titarget Poisson distribution. The PHD recursion does not admit
closed-form solutions in general [9], however sequential Monte
Carlo (SMC) approximations [5] and the linear Gaussian multi-
target model approach based on Gaussian mixtures (GM) render
the aforementioned problem soluble. In this letter, in the vein of
[6], we derive a closed-form solution for the vM -PHD filter.

III. THE VON MISES PHD FILTER

A. Von Mises Distribution

The vM distribution is a continuous parametric probability
distribution defined on the unit circle, or equivalently on interval
[0, 27), with pdf given by [28]

Mz —p) = 27‘('[](;(,"13) exp {k cos(z — )}, %)
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where 0 < x < 2m, 1 € [0, 27) denotes the mean angle, k > 0
is the concentration parameter and I is the modified Bessel
function of the first kind and of order zero [29]. The vM dis-
tribution is often referred as the circular analogue of the normal
distribution on the real line: it is unimodal, symmetric around
mean angle u, and the concentration parameter x is analogous
to the inverse of the variance.

B. Mathematical Preliminaries

As stated in Section II we are working with angular-only mea-
surement and are interested in estimating target directions in one
dimension, thus our state space X = [0, 27) and our measure-
ment space Z = [0, 2x).

Proposition 1: Given two vM densities, M, (z — p;) and
M, (2 — pj), the following relations hold:
(a) convolution formula [29]
27
Mo, (& — € — ) Mo, (€ — i) € ~ Mz (& — i), (6)
0

where fo=pi+pj, k=AY (A(ki)Alk;)) and A(z) =

I (2)/Io(z) with I, () as the the modlﬁed Bessel func-
tion of the first kmd and of order p. The integral in (6)
does have an exact solution, but the result is not a vM
distribution and would prevent obtaining a closed-form
filter. Therefore, the approximation (6) based on circular
moment matching is used, which has been shown to be
quite satisfactory [14], [15], [29].

(b) product formula

M, (l - :u‘i)Mﬂj (‘7’ - iu'j)
To(ki,;)
= . th A — Li" 5 7
271'[0(%,‘)[0(,%]') ’J( : ]) ( )
where
—sin(p; — py
M5 = pi + arctan ( R C(ES( A J))> ()
ki i — Hj

Kij = \/’i? + K5 + 2Rk cos(p; — puj)- ©9)

The scaling factor that multiplies the vM density in (7)
can be seen as the result of integrating the left-hand side
in z, thus similarly to (6) can be approximated as [13]

Iy (""m) (10)

27TIO (K;Z‘)I()(K,j)

The result can be seen as a vM ‘innovation’—similar be-

havior is also exhibited by the Gaussian distribution [6],

[30]. The approximation is only necessary for numerical

stability due to large concentration parameters and un-

like (6), it is not a prerequisite for analytical tractability.

We now turn to stating explicitly the required PHD filter

models.

Assumption 1: The single-target Markov transition density

and the single-source sensor likelihood functions are both de-
fined by vM densities

~ M (pi — )

plrglre—1) = Mg (2k — 21-1) (11)
plek|zr) = Mg (2 — 1), (12)
where kg and kg are concentration parameters modeling

process and measurement noise. The given transition density
essentially models a Brownian-type motion on the circle.
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Assumption 2: The birth intensity function is a von Mises
mixture of the form

Jo ke
R =D whMg (ay — ).
i=1

The number of the newly birthed targets is governed by a
Poisson distribution with the corresponding intensity Ap.

Assumption 3: The false alarm rate is governed by a Poisson
distribution with the corresponding intensity A., while the spa-
tial distribution of false alarms is considered to be uniform over
the whole measurement space Z, thus ¢(z) = 1/27.

(13)

C. The Von Mises Mixture PHD Filter Recursion

At his point we finally have all the necessary ingredients to
derive the proposed vM -PHD filter.

Proposition 2: Given the Assumptions 1-2 and that the pos-
terior intensity at time & — 1 is a vM mixture

Jr-1
Dy (wx1) Zwk M (@ —phoy) (1)
the predicted intensity Dy (@) is also a vM mixture
Jr -1
Dy 1(k)=bxe) +ps Y Wiy 1 Mz (2 — ph_1),
i=1

where &} | = A7 (A(rg)A(xE_,)). What basically hapéérslg
at the prediction stage is that the birth intensity function is added
to the k¥ — 1 posterior vM mixture, which is in the second sum-
mation predicted to time k.

The predicted number of objects can be calculated by taking
the integral of (15) over the whole state space X’

-]b,k Jk—l
i i
Nijg—1 = E wy, + ps E W1
o1 i=1

Proposition 3: Given the Assumptions 1-3 and that the pre-
dicted intensity at time k is a vM mixture

(16)

Jrik—1

Z wk\k 1M R 1( 'k

i=1

Dyj—1 (1) — Hig 1), (A7)

where Jyjx_1 = Jox + Jr—1, the posterior intensity at time k
is also a vM mixture of the following form

Dy (xx) = (1 — pp)Dyj—1 ()

Ik -1 Iz x

+ 0wy M (@x — i),

i=1 j=1

(18)

where J, ;. is the number of measurements and
i j i,J
Wiy wilo (k)

277]0(&};%71)]0(&2)

! (Azc(z) + ppDy—1 [p(zﬂm’“)}) B

0 _
wy” =

Pp

w?

Jrlk-1

and uz’j and /@Z’ are given by (8) and (9) with {p};' 1) zi} and
{Ii;'c‘k_l, 1} in lieu of { i, 15} and {;, k; }. The first summa-

wlis\kﬂlﬂ(”;;j)

Dk\kfl[p(zﬁxk)} = 2#[0(52)10(52%71)

(19)
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tion accounts for the undetected components, while the double
summation term accounts for the crossproduct of all the pre-
dicted components and the obtained measurements.

By taking the integral of (18) over the whole state space X’
we can calculate the posterior number of targets in the scene

Nk = (1 = pp)Nyjp—1

+PDZ/\C

ZLE€EZy

At this stage, as in the case of the GM-PHD filter [6], at the
end of each iteration we will have a vM mixture representing
the intensity function of the posterior multitarget distribution.
What remains is (i) to extract the estimated states of the tracked
targets and (ii) to handle the geometrically growing number of
components after each correction step (18) in order to keep the
computational tractability.

Dyji—1[p(zklzy)]
)+ 20 Dyj—1[p(zk )]

(20)

D. PHD Mixture Component Reduction and State Estimation

The component reduction needs to be computationally cheap
since it will be executed after each iteration step. In [31] we
have analyzed and compared reduction algorithms for the ex-
ponential family of distributions by using the vM distribution
as a study example. Although there were several more accurate
reduction techniques, the reduction based on West’s algorithm
[32] was computationally the least intensive.

For the distance measure in the present letter we use the sym-
metrized scaled Kullback-Leibler (KL) distance [33], which for
two vM weighted components, w; M; = w; M, (x — ;) and
wyM; = wjM,, (x — py), is given by
% [widkr (M, M)

1 w;

E(wi —wjy)log w—j’ 21
where dir (M;, M) is the ‘standard’ KL distance [34] be-
tween two vM densities [31]

Io(x;)
dgrp (M, M) =1
KL( J) gIO(l‘ii)

+ A(ri) (ki — — 1))

The West’s algorithm works on the principle of ordering the
mixture components according to their weights and then finds
the closest component to the first one according to the chosen
distance measure. Then, the closest pair of components is
merged and the resulting one is inserted back into the mixture

dokr, (w; M, w; M) =

+wdeL(Mj,Mi)] +

K; cos(p (22)

per its respective weight. The merged component M« (z: — p*)
has the following parameters optimal in the KL sense
tan it — w; A(k;) sin p; + w;j A(k;) sin p;
w; A(K;) cos pi + wjA(k;) cos p;
w* A?(k*) = wi A% (k;)
+ 210@111]‘14(1'61')14(1’63‘) COS(,LLL' — /,Lj), (23)

where w* = w; + w;. The procedure is repeated until the
desired, application dependent, number of components .J;" is
reached. For more details regarding the reduction algorithm and
component merging method please confer [31].

In [6] for the GM-PHD filter it was proposed to estimate the
states of the tracked targets by picking N components with
largest weights. We follow the same train of though except that
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Fig. 1. Matlab’s boxplot of cumulative OSPA over 100 multitarget trajectories.
On average the vM -PHD outperforms the GM-PHD by 10.5% in total OSPA
(left), out of which 16.9% in the localization component (middle), and 2.6% in
the cardinality component (right).

before the picking we reduce the PHD mixture with the West’s
algorithm to &Ny, where a > 1 is a scaling factor. Empirically
we have noticed that this lowers the chance of loosing peaks
belonging to tracked targets. Note that the mixture with a Vg
components is used only for target state estimation, while the
mixture with J;,' > aNj; components is utilized in the future
filtering steps. Furthermore, special attention was given to nu-
merical issues, since the function I(x) for x > 700 quickly
reaches the maximum value that can be stored in double preci-
sion floating point representation. Hence, we have implemented
numerically stable evaluations of the log(Iy(x))[35] and the
Bessel function ratio A(x)[36], while the inverse A~(x) was
numerically calculated [37].

IV. EXPERIMENTS

In order to validate and test the performance of the vM -PHD
filter, we have devised a multitarget simulation scenario with
angle-only measurements. The targets moved on the unit circle
with constant angular velocity of 1 deg/s to which zero-mean
Gaussian noise with standard deviation of 0.25 deg/s was se-
quentially added. Initial number of objects in the scene was set
to three, the probability of survival was 0.99, while the Poisson
rate of births was 0.05. Each object had 0.95 probability of being
detected by the sensor corrupted with zero-mean vM noise and a
concentration parameter corresponding to a standard deviation
of 1.5 deg [15]. False alarms were uniformly distributed with
a Poisson rate of 1.6 false alarms per scan. We generated 100
examples of such a multitarget scenario and compared the per-
formance of the vM -PHD with the GM-PHD filter (taking into
account the state circularity). The filters were also compared
on the PETS2009 dataset [38], [39] by tracking the azimuth of
the backprojected world coordinates. As a performance metric
we used the optimal subpattern asignement (OSPA) metric [40],
which was developed with the goal of being a consistent metric
for performance evaluation of multitarget filters.

In Fig. 1 we present performance comparison of the vM -PHD
and GM-PHD filter, where for each of the 100 trajectories a cu-
mulative OSPA was calculated and its statistics is depicted. The
vM -PHD noticably outperforms the GM-PHD filter in the local-
ization component of the OSPA (even with small measurement
noise), while in cardinality the difference is less pronounced. In
Fig. 2 localization and cardinality estimation are depicted for an
example of the vM -PHD where in total 7 targets were success-
fully tracked. A time instant from this example with correctly
estimated targets even when the number of false alarms (5) is
larger than the number of objects (4) is depicted in Fig. 3(a). A
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Fig. 2. Results for a scenario with 7 targets. In the upper figure black dashed
lines are true trajectories with black circles and squares as trajectory starting
and terminating points. Green circles are estimated states, while red pluses are
false alarms. In the lower figure the black and green lines represent the true and
the estimated number of objects. The Matlab source code and a supplementary
MP4 format movie clip are available at http://ieeexplore.ieee.org.
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Fig. 3. The vM mixture corrected PHDs (blue solid line) after reduction to 5
components for state extraction along with false alarms (red vertical lines), four
targets (black vertical lines) and four measurements (green vertical lines): (a) k

more rare example where false alarms were erroneously chosen
as target estimates due to closely spaced targets and several con-
secutive false alarms (around & = 20) is shown in Fig. 3(b). On
the PETS2009 dataset the total OSPA was reduced 2.8%, out of
which 10.8% in the localization, while cardinality component
was equal.

V. CONCLUSION

In this letter we have proposed a novel mixture approximation
of the PHD filter tailored specifically for multitarget tracking
system on the unit circle. We have achieved this by modeling
the state and measurements as circular random variables whose
uncertainty was described by the von Mises distribution. The
resulting filter required some principled approximations to
achieve closed-form and ensure numerical stability. Using the
OSPA metric we compared the performance of the vM-PHD to
the GM-PHD on 100 multitarget trajectories and the PETS2009
dataset, achieving respectively on average a decrease in the
OSPA metric by 10.5% and 2.8% (notably 16.9% and 10.8%
in the localization component). The vM-PHD has potential
applications in all the multitarget tracking scenarios working
with circular state and measurement representations.
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Abstract—This paper analyzes directional tracking in 2D with
the extended Kalman filter on Lie groups (LG-EKF). The study
stems from the problem of tracking objects moving in 2D
Euclidean space, with the observer measuring direction only,
thus rendering the measurement space and object position on
the circle—a non-Euclidean geometry. The problem is further
inconvenienced if we need to include higher-order dynamics in the
state space, like angular velocity which is a Euclidean variables.
The LG-EKF offers a solution to this issue by modeling the state
space as a Lie group or combination thereof, e.g., SO(2) or its
combinations with R™. In the present paper, we first derive the
LG-EKF on SO(2) and subsequently show that this derivation,
based on the mathematically grounded framework of filtering
on Lie groups, yields the same result as heuristically wrapping
the angular variable within the EKF framework. This result
applies only to the SO(2) and SO(2) x R" LG-EKFs and is not
intended to be extended to other Lie groups or combinations
thereof. In the end, we showcase the SO(2) x R?> LG-EKF, as
an example of a constant angular acceleration model, on the
problem of speaker tracking with a microphone array for which
real-world experiments are conducted and accuracy is evaluated
with ground truth data obtained by a motion capture system.

I. INTRODUCTION

In moving object tracking, it is not uncommon to work
with sensors that can provide only direction to the object in
question. The measurement and estimation state space have
a specific geometry of their own, which is different from the
geometry of the true trajectory space. The problem is challeng-
ing, because, although the motion of the object resides either
in 3D or 2D Euclidean space, corresponding measurements
reside either on the sphere or the circle, respectively. Namely,
if we are measuring and estimating only the direction to the
object in 2D, i.e., the azimuth, the state and measurements will
bear the non-Euclidean properties of angles. However, if we
are to extend the state space so that it includes both the angular
velocity and acceleration (which are Euclidean variables), so
that we can apply a higher-order dynamic motion model, we
are faced with constructing a ‘hybrid’ state space consisting
of both the non-Euclidean and Euclidean variables.

There exist Bayesian methods based on the principle of
assumed density filtering with directional distributions on
the circle, namely the von Mises distribution, the wrapped
Gaussian distribution and the Bingham distribution (which
actually models variables with 180° symmetry), that capture
intrinsically the non-Euclidean nature of angular random vari-
ables [1]-[6]. The benefit of these approaches is that they
take globally into account the geometry of the state space.
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For example, in the case of the von Mises distribution it has
been shown that the filter outperforms the naive Kalman filter,
which treats angles like regular Euclidean variables, and the
modified Kalman filter, which takes into account the nature
of angles by wrapping them on the circle [4], [7]. However,
extending the state space with additional variables of different
geometry, e.g., to analytically model the azimuth with the
von Mises distribution and the range or the angular velocity
with the Gaussian distribution and capture correctly the cross-
correlations, remains a challenge.

The SO(2) group is a set of orthogonal matrices with deter-
minant one, whose elements geometrically represent rotations.
This makes it an interesting candidate for estimation with
angular variables. Furthermore, a filter could be derived not
just for SO(2), but also for combinations of SO(2) with R.
This would enable us to create the aforementioned ‘hybrid’
state vector that would join both non-Euclidean and Euclidean
variables within the same filter and enable a seamless uti-
lization of higher-order system models with constant angular
velocity or acceleration. An extended Kalman filter on matrix
Lie groups was recently proposed in [8]. It provides us with a
mathematical framework for solving the ‘hybrid’ state space
problem. Indeed, the filter can be applied directly for any
state that is a combination of Lie groups, since a Cartesian
product of Lie groups is a Lie group [8]. However, it should
be noted that the LG-EKF is a local approach, in the sense that
it does not take globally the geometry of the state space into
account, but locally captures the geometry of state space via
exponential mapping. Another approach would be to model the
whole state space as a Euclidean vector within the ‘classical’
Kalman filter framework, and wrap the operations involving
angular variables. Indeed, this was performed in [4] to modify
the unscented Kalman filter for angular state estimation, in [9]
to take idiosyncrasies of directional statistics when using polar
or spherical coordinates in the cubature Kalman filter, and in
[7] to modify the Gaussian mixture probabilistic hypothesis
density filter for multitarget tracking on a circle.

In this paper we propose to analyze the LG-EKF for
directional tracking of moving objects in 2D. First, we look
into deriving the LG-EKF on the SO(2), which also serves
as a gentle introduction to the subject matter since the LG-
EKF introduces non-trivial notation. Second, we model the
directional moving object tracking in 2D as an estimation
problem on the Lie group composed of the direct product
SO(2) x R?, i.e., a group that represents the moving object



azimuth, angular velocity and angular acceleration. For the
motion model, we use the constant angular acceleration model.
In the end, we show that the SO(2) LG-EKEF filter derivation
based on the mathematically grounded framework of filtering
on Lie groups yields the same result as heuristically wrapping
the angular variables within the extended Kalman filter (EKF)
framework. Since for the case of R™ the LG-EKF evaluates
to EKF [8], this results also extends to SO(2) x R? LG-
EKF and an R3 EKF when wrapping the angular component.
Please note that this result applies only to the SO(2) filter
and is not intended to be extended to other Lie groups or
combinations thereof. Indeed, given that SO(2) is abelian,
i.e., commutative, the result does not seem unexpected, but
we assert that it gives interesting theoretical perspective on
estimation and tracking with the heuristically modified EKF.
Before we proceed with the filter derivation, we introduce
some necessary formal definitions and operators for working
with matrix Lie groups.

II. MATHEMATICAL BACKGROUND
A. Wrapping the Kalman filter

In this section we shall assume that wrapping operation
amounts to enforcing the angular variable to be in the [—, 7]
interval, and we designate this operation as follows

w™(x) = mod(z + 7, 27) — 7. (1)

Note that when computing the difference between two angular
variables, the wrapping effect of the circle should be taken into
account, e.g., the difference between 178° and —178° should
evaluate to 4°. This is also achieved by (1) when the difference
is given as the argument, i.e., difference between two angles
x and y is computed as W™ (x — y).

Let us assume the following system model

where xj is the system state, uj is the control input, ny
is process noise, and fi(-) is the non-linear system state
equation. In the EKF the idiosyncrasies of angular data appear
most prominently in the correction step when calculating the
innovation, which should be computed as

Th1k = fr(Tr, ur) + nu,

Thy1 = Tpyre + K W (2p — hr(Tpgn), 3)

where K} is the Kalman gain, z; is the measurement, and
hi(-) is the non-linear measurement equation.

To demonstrate this, let us take a simple example of
having an identity measurement equation, 3y = 358°,
zr, = 2° and K} = 0.5. If we would not wrap the innovation,
the updated state would yield a clearly incorrect result of
Tr4+1 = 180° inlieu of z;y; = 360°. For practical purposes,
after correction and prediction the system state can be checked
to the required interval by computing zx11 W™ (2g+1). In
the sequel when we refer to the modified Kalman filter, it
entails treating angular variables with the previously intro-
duced operation. Furthermore, we assume that the reader is
familiar with EKF equations, which we will not present or
derive explicitly in order to keep the brevity of the paper.

B. Lie Groups

A Lie group G is a group which is also a smooth manifold
and the group composition and inverse are smooth functions
on the manifold G. A manifold is an object that looks locally
like a piece of R™ and G is ‘smooth’ in the sense that is
has a tangent space, of the appropriate dimension, at each
point. Take for example the circle, a curve in R? which looks
locally (but not globally) like R'. For a matrix Lie group the
composition and inverse are simply matrix multiplication and
inversion, with the identity element I"*" [10].

A Lie Algebra g is an open neighborhood of 0™*™ in
the tangent space of G at the identity I"*"™. The matrix
exponential expg and matrix logarithm log establish a local
diffeomorphism between Lie groups and Lie algebras [8]

expg: 9 — G, logg:G —g. “4)

The Lie Algebra g associated to a p-dimensional matrix Lie
group G C R™™" is a p-dimensional vector space [10]. A
linear isomorphism between g and RP is given by

[lg: 9> R?, [JG: R =g )
Lie Groups are not necessarily commutative. The following

two operators capture this property
« the adjoint representation of G on RP

Adg : Adg(X)z = [X[z]4X 1] (6)
« the adjoint representation of RP on R?
adg : adg(2)y = [[2]8W)s — Wlslelels (D

where z,y € RP. In the sequel, these operators, the exponen-
tial and logarithmic mapping are given concrete form for the
pertinent Lie groups.

C. The SO(2) group

In this example our system state (azimuth of the tracked
object) is modeled as the group G = SO(2), i.e., as the rotation
matrix X = Ry,

.

The composition and inverse in SO(2) are simply evaluated
as X1 Xy = RiRy, X~ ! = RT. For this case the associated
Lie algebra which bridges X, € G and x;, = 0, € R! is
g = s0(2), and the following holds

A_ |0 =0

8= s o ©)
The link between SO(2) and s0(2) is given by the exponential

and logarithmic mapping
expg([0k]G) = R, : 50(2) — SO(2), (10)
logs(Re,.) = [0k]G : SO(2) — s0(2). (1)
Due to the commutativity of SO(2), the adjoint operators are
adg(0x) =0, Adg (expg ([0k]5)) = 1. (12)

These properties greatly simplify the LG-EKG formulae for
the SO(2) group which will become evident in the sequel.

cos 0,
sin 9k

—sin 91{| ) (8)

cos 0y,



D. The SO(2) x R? group

In this section we propose to model the system state as the
Cartesian product of groups G = SO(2) x R2. This is a slight
abuse of notation intended for clarity, since when talking about
R within the group or algebra, we are actually referring to the
group of algebra representation of R, for which the explicit
representation is given further in the paper. The moving object
state X, will represent the azimuth of the target as a rotation
matrix Ry, € SO(2), angular velocity as a real number wy, €
R, and angular acceleration also as a real number aj € R.
The system state X} can be symbolically represented as

Ry,
1 Wi Rk
X = 0 1 = | wg (13)
|:1 Oék:| (6% G
0 1

Note that composition and inverse on such a group is evaluated
as follows

RiRy RT
X1X2 = | w1 + wsq s X_l = —w (14)
a1 + as G —a/

The associated Lie algebra is g = s0(2) x R? which bridges
the state on the Lie group Xj € G with the vector x; =
[0 wi o]t € R3, and the following holds

N [9k]§0(2) [‘gk]go(z)
[zklc = [wrlR = Wk )
(o] ak
(15)
where [0]52) is given by (9), while
0 w 0 «
[wilp = [0 ok] and [og]p = [o ok} : (16)

The link between the group G and the associated algebra g is
defined by the exponential mapping

N CXPso(2) ([ek]§0(2)> Ry,
expg ([zxlg) = Wi = wk ]
a G A/ G
17
and logarithmic mapping
logso(z) (Bk) [0x]502)
logg (Xk) = Wk = Wi (18)
Qg g Qg p

Furthermore, since SO(2) and R are abelian and the Cartesian
product of abelian groups is abelian, the adjoint operators are
again trivial

= 093, Adg (expg ([4]d) = T°°.

adg(zr) (19)

III. THE EKF ON MATRIX LIE GROUPS

As in the case of classical Kalman filtering, we need to
begin by defining a motion model by which we will calculate
the prediction. For general filtering on matrix Lie groups, the
system model is defined by the following equation [§]

X1 = (X, u, i) = X expg ([ +mld) . 0)

where X, € G is the system state at time k, G is a
p-dimensional Lie Group, ny ~ Nge(0P*1 Qy) is white
Gaussian noise and €, = Q(Xj,ux) : G x RY — R is
the system state equation which describes how the model
acts on the state and control input in order to calculate the
displacement.

Note that the function of ), is to take the system state
which resides on G and the control input which resides on R",
calculate the displacement by applying the system model, and
then transfer the displacement to the vector space RP where
additive noise is added. This displacement is then transferred
to the associated Lie algebra by the [.]§ operator and then
exponentially mapped back to the Lie group to be added by
way of composition to the system state Xj. Given that, a
question arises how to implement a specific system model,
since in LG-EKF it operates through a displacement? That is,
how to construct O from Sz, ug)? The first step would be
to write the system equation as fi(z, ug) = xx + fk(:pk, ug)
which can then be practically ‘translated’ to appropriate Q.
Note that generality is not lost here since —z, can be included
within fk(a:k, uk),

The prediction step of the LG-EKF is governed by the
following formulae [8]

@2y
(22)

Hrt1)k = Mk €XDg ([Qk]é)
Pios1i = Fu o+ ©6(Q0)Qr®o(2%)7

where p1; € G is the estimated mean value of the system state
X}, P, € RP*P is the estimated covariance matrix, while other
terms are non-trivially calculated matrices

Fio = Ad (expg ([FJ5) ) + 26 Q)% 23)
o~ ()™
q)G(V) = Y adG(V)m7 Ve Rp7 (24)
mz::o (m+1)!
0
Gr = 5-Q (e expg ([€lg) s ur—1)) =g - (25)

Oe
The parameter ¢ € RP can be seen as a Lie algebraic error
which is approximated as being distributed according to a
classical Euclidean Gaussian distribution ¢ ~ Ng» (0P*1, Py).
It is interesting to note that the mean value uj resides on
the Lie group G, while the covariance matrix P} describes
uncertainty in RP. Although at first this appears peculiar, it
is a consequence of modeling the uncertainty of states on
Lie groups by the assumption of the concentrated Gaussian
distribution Xy, ~ G(uk, Pr). In essence, the state resides on
the group, but its uncertainty resides on the tangential vector
space. For a more formal introduction of this concept, please
confer [8].



The discrete measurement model on the matrix Lie Group
is given as follows

2p1 = M Xpt1) expg ([me1]) (26)

where z;11 € G, h: G — G/, and myy1 ~ Nra (071, Ry,)
is white Gaussian noise. Note that here a different group G’ is
used since the system state and measurements might belong to
different groups. Having the measurement model defined, we
can proceed now to the update step which will first constitute
the calculation of the Kalman gain

—1
K1 = PespMiis (Hes1 PepipMiy + Ri1)
(27)

where the measurement matrix 41 is calculated via

8 —
Hip1 = He [logar ()™ (28)

\Y

h (prr1ie expg ([€6))) ] 6 le=0
Furthermore, the innovation vector multiplied by Kalman gain
is computed as

Viey1 = K1 [logg (h(ﬂk+1|k)7lzk+1)]é, .29

Finally, the update of the system state and covariance matrix
can be evaluated as [8]

k41 = His1lk €XPg (Ve 41]G) (30)

Pey1 = @6(et1) (1P — Kjp1Hir1) Py @6 (Witr)”
(31

We can notice similarities between the LG-EKF and EKF
equations and, indeed, when G and G’ are Euclidean spaces the
LG-EKEF reduces to EKF [8]. Furthermore, due to the results
(12) and (19), matrices Fj and ®g(v) for both SO(2) and
SO(2) x R? evaluate to

O(v) =1, Frp=1+%. (32)

In the sequel we derive the LG-EKF for the groups which
we propose to utilize for tracking of moving objects with
angular measurements and show that in this special case the
LG-EKF reduces to the heuristically modified EKF.

A. LG-EKF on SO(2)

In this section we derive the LG-EKF filter for state esti-
mation on G = SO(2). For this group, mathematically dense
LG-EKF equations are simplified and serve well to intuitively
grasp the mechanics of the filter.

1) Prediction: Let us take two examples of system models.
In the first we assume a stationary process, i.e., in the
prediction the mean value will remain unchanged except for
the uncertainty that is added through the process noise (this is
similar to the von Mises filter [1])

ng ~ NRl (0,0'é).

This yields the LG-EKF system model Q(X}) = 0 with the
same process noise nj, which when inserted in (21) will

Tpq1)k = Tk + Nk, (33)

evaluate through the exponential as an identity matrix, thus
leaving the mean value unperturbed.

In order to compute the prediction of the covariance matrix
via (22), given the result in (32), we only need to determine
%) In this case the Lie algebraic error is ¢ € R! and due to
the system model the matrix %), evaluates to zero, thus leaving
Fi =1, and the prediction equations are

Pei1ik = Pr + Qk. (34)

As we can see, these are the same formulae that an EKF
prediction would yield with (33) as the system model.

As the second example, we take the non-linear system [4]
where the robot rotary joint angle was estimated

Hi411k = Mk,

(35)

where second and third term account for gravity and velocity,
while the final term is again one-dimensional white Gaussian
noise. This yields the following LG-EKF system model

Q(Xx) = ey sin([log(Xe)]§) + ca- (36)

Note that [log(X)]§ is necessary to bring the rotation matrix
with parameter 1, to a scalar angle in R'. The Lie algebraic
error is again ¢ € R! and given the system model (36) matrix

%), evaluates to
0 COS LU —sine
@ & < [ cos € _
le=0
—sin(u + €)
cos(pr + €) =0

- & sin M
0 .
= e (c1sin(ur +€) + 02)|6=0 = €1 COS [

Thy1k = Tk + cysin(xy) + c2 + ng,

—sin g | [cose
COS [k sin e

_ 0 ([eostie+9
Oe sin(py + €)

(37

This means that F;, = 1 + c; cos g, and that the LG-EKF
prediction equations are

fk+1) = i expg ([e1 sin([log(Xk)]) + c2]g)
Popipp = Pe(14+c cos g )* + Qp. (38)

We can see that the covariance prediction formula is identical
to the EKF covariance prediction.

More generally, to demonstrate the equivalence of the
modified EKF and SO(2) LG-EKF prediction steps we need
to show that Fj, = 1 4 %% is equal to

Fp = 8fk(xk7“k) 7

(39)
Oy, |zp=pr

where Fj, is the state transition matrix, i.e., the EKF system
state Jacobian of (2). By inspecting (37) we can notice that
for SO(2) the argument within 2 will always be the sum of
the mean value and the Lie algebraic error uy + €. This gives

0]
Fie =14 5-Qexpg ([ + €lG), un)je=o

9 -
=1+ @fk(ﬂk + € Uk)|e=0

0
=1+ oo (il + € ur) = (ur + €0)) =0

Ofmtew) _ Of(Gm)

; (40)
Oe le=0 afk [€k=pK



where variable substitution was performed in the last step:
&k — g + €,08; < Oe. In the end Fj, evaluates to the EKF
Jacobian F}, when the underlying group is SO(2).

2) Correction: Since we are measuring angles, we define
the measurement Lie group as G’ = SO(2) and the measure-
ment function h : SO(2) — SO(2)

M Xi41) = Rig1,  mus1 ~Nei(0,0%),  (41)

which is trivial since the measurement and state group are the
same, while the measurement noise is a one-dimensional white
Gaussian noise. As in the prediction step, the associated Lie
algebra is g’ = s0(2).

To compute the correction step, we need to evaluate (28)
for the LG-EKF on SO(2). The composition of the predicted
mean fi 1), and the Lie algebraic error yields

M 11jk €xPso(2) ([€lsoce))) =

[COS(MHM +€)  —sin(ppp, + 6)] ' (42)
sin(pigq1je +€)  coS(fpi1ik + €)

Since h(ukﬂ‘k)’l is the transpose of the corresponding
rotation matrix, by inserting these results in (28) we can
calculate the measurement matrix

a COS € —sine v
His1 = e ({logg <|:Siﬂ€ cose })L)

Given this results it is straightforward to see that Kalman
gain and covariance update equation of SO(2) LG-EKF are
equal to the EKF equations. The state correction equations
yield the same result, except that the LG-EKF takes wrapping
into account by composition of rotation matrices, while the
modified EKF computes everything in R! and would need to
wrap the corrected state with w”(-).

—1 (43)
|e=0

B. LG-EKF on SO(2) x R?

In this section we derive the LG-EKF filter for state estimation
on G = SO(2) x R2. Given the demonstrated equality of
the SO(2) LG-EKF and the modified EKF and that LG-EKF
reduces to EKF for Euclidean spaces, it is intuitive to expect
that this result would extend to groups derived by composing
SO(2) with Euclidean spaces. In the sequel we illustrate this
property by deriving a constant angular acceleration model for
tracking with angle-only measurements.

1) Prediction: Given the state representation, we can now
define the system model. For this purpose, we use the constant
angular acceleration model Q;, = Q(X}) : G — R?

Tw + %T2Oék

TOék s
0

QUXy) = g~ Nes(0,Q).  (44)

Note that the displacement due to motion is calculated first
in R? and then according to (21) transferred to Lie algebra
g, exponentially mapped to the group G and then by way of
composition added to the system state Xj.

In this case, the Lie algebraic error is € = [eg €, €,]T € R3,
hence the composition of the mean value pj and e yields
Ry R,
W + €y R
ap + €q

11, expg([elg) = (45)

G

with Ry R, has the same for as the matrix product in (42). By
applying the motion model (44) on this results we get

T(w+e,)+ %Tz(a +€a)
T(a+ €q)
0

To compute the prediction step for the covariance matrix, we
need to calculate matrix Fj. Since adjoint operators are trivial,
using (46) we calculate

Q(ur expg([€]G)) = (46)

1 7 171?
F,=14+%,=|0 1 T |. 47
00 1

We can see that the matrix Fj, evaluates to the well known
transition matrix of the classical EKF constant acceleration
motion model.

2) Correction: Since here we track moving objects by
measuring angles, we define the measurement Lie group G’ =
SO(2) and the measurement function h : SO(2) xR? — SO(2)

h(Xky1) = Riy1, (48)

which in this case simply extracts the rotation matrix Ry
from Xj1. Calculation of the matrix Hj is the same as in
(28), except that € is now a vector

M1 ~ Np1 (0, O’%)

)
Hi1 = 5-(€0)jezo = [1 0 0]. (49)

Oe
Again, the same result as we would expect for the EKF
measurement matrix.

IV. EXPERIMENTS

As a practical example of an application of the studied filter
we apply this on the problem of speaker tracking with a micro-
phone array and in the present paper we test the SO(2) x R?
LG-EKF on real-world data. For the sound acquisition we
used the ManyEars framework consisting of an 8-channel
USB sound card [11], while for obtaining measurements we
used the beamforming algorithm for speaker localization [12]
implemented under the Robot Operating Systems [13] within
the same framework. The maximum of the beamforming
energy was picked as the speaker measurement.

The experiments were conducted in a 120m? room with
parquet wooden flooring and one side covered with windows.
The speaker was simulated by a loudspeaker playing an
excerpt from Nature’s podcast Audiophile in English. The area
in which the loudspeaker moved was covered by a motion
capture system, which was used to generate ground truth data.
In order to handle outliers, we used validation gating; namely,
the innovation matrix Siy1 = Hk+1Pk+1‘k’HZ+1 + Ry41 was
calculated and we applied the standard y?—test

Ver1Si Vi < (50)
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Fig. 1: Performance of the LG-EKF on SO(2) x R? when tracking a moving
speaker. The solid black line is the ground truth as given by the motion capture
system, the green solid line is the estimated state of the speaker, while the
gray circles represent measurements, i.e. outputs of the beamformer. State
RMSE is given in the title of each of the subfigures.

where the threshold v was determined from the inverse Xf;
cumulative distribution at a significance level ¢ = 0.95 and
p degrees-of-freedom. Figure 1 shows the experiment results
and corroborates that the filter successfully manages to track
the moving speaker in spite of the number of outliers. Note
that the modified EKF would yield the same results, except
that in the case of the LG-EKF the system state was defined
on SO(2) x R? and the idiosyncrasies of angular data were
intrinsically taken care of.

V. CONCLUSION

In this paper we have studied directional moving object
tracking in 2D based on the extended Kalman filter on matrix
Lie groups. First, we have proposed to analyze this estimation

problem by modeling the state to reside on the SO(2) group.
Subsequently, we have shown that the SO(2) filter derivation

based on the mathematically grounded framework of filtering
on Lie groups yields evaluates to heuristically wrapping the
extended Kalman filter. We emphasize that this result applies
only to the SO(2) filter and is not intended to be extended
to other Lie groups or combinations thereof. Second, we have
derived the constant angular velocity SO(2) x R? filter, where
the system state consisted of azimuth, angular velocity and
angular acceleration. For this filter we showcased a real-world
experiment of a speaker tracking problem with a microphone
array by assessing the accuracy using the ground truth obtained
by a motion capture system.
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Abstract—In this paper we propose a novel method for
estimating rigid body motion by modeling the object state directly
in the space of the rigid body motion group SE(2). It has
been recently observed that a noisy manoeuvring object in
SE(2) exhibits banana-shaped probability density contours in
its pose. For this reason, we propose and investigate two state
space models for moving object tracking: (i) a direct product
SE(2) x R® and (ii) a direct product of the two rigid body
motion groups SE(2) x SE(2). The first term within these two
state space constructions describes the current pose of the rigid
body, while the second one employs its second order dynamics,
i.e.,, the velocities. By this, we gain the flexibility of tracking
omnidirectional motion in the vein of a constant velocity model,
but also accounting for the dynamics in the rotation component.
Since the SE(2) group is a matrix Lie group, we solve this
problem by using the extended Kalman filter on matrix Lie
groups and provide a detailed derivation of the proposed filters.
We analyze the performance of the filters on a large number of
synthetic trajectories and compare them with (i) the extended
Kalman filter based constant velocity and turn rate model and
(ii) the linear Kalman filter based constant velocity model. The
results show that the proposed filters outperform the other two
filters on a wide spectrum of types of motion.

1. INTRODUCTION

A wide area of robotics research has extensively focused on
the practical approaches of using different types of manifolds.
Besides performance, filters operating on manifolds can
provide other advantages as they avoid singularities when
representing state spaces with either redundant degrees of
freedom or constraint issues [1], [2]. Among the manifolds,
the homogeneous transformation matrices, also referred to as
the rigid body motion group SE(n), hold a special repute.
They have been used in a variety of applications, and have
risen to popularity firstly through manipulator robotics [3], [4]
and later through vision applications [5], [6]. Even though the
state description using the rigid body motion group, for both
the 2D and 3D case, has been a well known representation,
techniques for associating the uncertainty came into focus
later [7]. So far, the rigid body motion group with associated
uncertainty has been used in several robotics applications
such as SLAM [8], motion control [9], shape estimation [10],
pose estimation [11] and pose registration [12].

Among them, pose estimation represents one of the central
problems in robotics. Recently in [11] the authors discussed
the advantages of employing uncertainties on SE(2) (therein
called the exponential coordinates) with respect to Euclidean
spaces and have provided the means for working in the
exponential coordinates rather than representing the robot’s
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Fig. 1: An illustration of an omnidirectional mobile robot
manoeuvring in both translational and rotational components. The
banana shaped uncertainty contours, representing the positional
uncertainty in the next step, are formed by modeling the uncertainty
on the SE(2) group (blue), while the elliptical shaped contours appear
modeling the uncertainty in R? (gray).

position with Gaussians in Cartesian coordinates. This stems
from the fact that the uncertain robot motion, and consequently
its pose, usually exhibit banana-shaped probability density
contours rather than the elliptical ones [13], as illustrated in
Fig. 1. The classical Kalman filter is designed to operate
in the Cartesian space and as such does not provide a
framework for filtering directly on the SE(2) group. Recently,
some works have addressed the uncertainty on the SE(2)
group proposing new distributions [14], [15]. However, these
interesting approaches do not yet provide a closed-form
Bayesian recursion framework (involving both the prediction
and update) that can include higher order motion and non-
linear models.

An extended Kalman filter on matrix Lie groups (LG-EKF)
has been recently proposed in [16]. It provides an estimation
framework for filtering directly on matrix Lie groups, of which
the SE(2) group is a member. In accordance with the needs of
moving object state estimation problems, higher order motion
often needs to be exploited, as in the vein of the constant
velocity (CV) or acceleration motion models [17], but in the
space such as the rigid body motion group SE(2). In the
present paper we propose a method for moving object tracking
employing its second order motion directly on the SE(2) group
based on the discrete LG-EKF. For this purpose, we model the
state space either as a direct product of (i) a rigid body motion
group and a Euclidean vector or (ii) two rigid body motion
groups, i.e.,

(i) SE(2) x R® or (ii) SE(2) x SE(2) = SE(2)*. (1)

In both cases the first term tracks the pose of the object, while



the second one handles the velocities. In the end, we conduct
experimental validation of the proposed filters on synthetic
data and compare their performance with the CV and constant
turn rate and velocity (CTRV) motion models [18] used within
the classical extended Kalman filter (EKF) framework.

The rest of the paper is organized as follows. Section II gives
an insight into the motivation behind the present paper. Section
III provides the preliminaries including the basic definitions
and operators for working with matrix Lie groups, with
emphasis on the special euclidean group SE(2). The method
for exploiting higher order motion is presented in Section IV
and the proposed estimation strategies are investigated on a
synthetic dataset and compared with two Kalman filter based
methods. Finally, concluding remarks are drawn in Section V.

II. MOTIVATION

The choice of the state space and the approach to the
motion modelling present a significant focus of this paper.
The physical interpretation behind associating the uncertainty
with the SE(2) group has been analyzed in [11]. Therein,
the authors particularly study the shape of the uncertainty
by considering differential drive mobile robot motion. The
authors conclude that the SE(2) approach provides significant
flexibility in describing the position uncertainty, enabling one
to analytically work with banana-shaped uncertainty contours.
In this work, given the previous moving object tracking
discussion, we aim to track omnidirectional motion in order to
achieve high flexibility in motion modeling. This is motivated
by considering tracking in unknown dynamic environments
comprising of multiple unknown moving objects. For example,
a mobile robot building a map of an unknown environment
consisting of humans and other robots with various kinematics,
or a busy intersection with mixed traffic involving cars, trams,
motorcycles, bicycles and pedestrians.

By searching for the flexibility to control the velocities in
both x and y direction, as well as the rotational velocity, one
comes to formulation of the state space as SE(2) x R?. In this
case, the SE(2) term tracks the pose of a rigid body object
supporting the forming of banana-shaped uncertainty contours,
while the R? term describes velocities along the three axis in a
classical manner forming elliptical-only contours. Examples of
omnidirectional mechanical robot platforms implementations
which can be described by this state space construction are
the Palm Pilot Robot, Uranus, and Killough [19], which are
based on the Swedish 45°/90° wheels.

However, if we consider a robot construction that has
additional flexibility of controling the steering angle of one
or more wheels, it turns out that by sampling such kinematic
models the uncertainty in the space of velocities also has
banana-shaped contours. Given that, we further propose
to model the state space as SE(2)? group where now the
second term exploits the second order motion (velocities),
and supports the flexibility of forming the banana-shaped
uncertainty contours in the velocity space. Examples of
mechanical omnidirectional robot platforms capable of such
motion are the Nomad XR4000 and Hyperion [19]. Detailed

physical and kinematic interpretations of these models are,
however, out of the scope of this paper and are a subject for
future work.

III. PRELIMINARIES
A. Lie groups and Lie algebra

In this section, we provide notations and properties for
matrix Lie groups and the associated Lie algebras which will
be used for the filter including the SE(2) group in the state
space. For a more formal introduction of the used concepts,
the interested reader is directed to [20], where the author
provides a rigorous treatment of representing and propagating
uncertainty on matrix Lie groups.

The SE(2), specifically, is a matrix Lie group. A Lie
group is a group which has the structure of a smooth
manifold, i.e., it is sufficiently often differentiable [2], such
that group composition and inversion are smooth operations.
Furthermore, for a matrix Lie group G these operations are
simply matrix multiplication and inversion, with the identity
matrix ["*" being the identity element [20]. An interesting
property of Lie groups, basically curved objects, is that they
can be almost completely captured by a flat object, such as
the tangential space; and this leads us to an another important
concept—the Lie algebra g associated to a Lie group G.

Lie algebra g is an open neighborhood of 0™*" in
the tangent space of G at the identity I"*". The matrix
exponential expg and matrix logarithm logg establish a local
diffeomorphism between these two worlds, i.e., Lie groups
and Lie algebras

expg: 9 — G and log;:G —g. 2)

The Lie algebra g associated to a p-dimensional matrix Lie
group G C R™" is a p-dimensional vector space defined by
a basis consisting of p real matrices F;, ¢ = 1,..,p [9]. A
linear isomorphism between g and RP? is given by

[l&:9— R and []§:RP —g. 3)

Lie groups are not necessarily commutative and require the
use two operators to capture this property and thus, enable the
adjoint representation of (i) G on R? denoted as Adg and (ii)
RP on RP denoted as adg [20]. All the discussed operators
in the present section are presented later in the paper for the
proposed state space constructions.

B. Concentrated Gaussian Distribution

Another important concept in the LG-EKF framework is that
of the concentrated Gaussian distribution (CGD). In order to
define the CGD on matrix Lie groups, the considered group
needs to be a connected unimodular matrix Lie group [21],
which is the case for the majority of martix Lie groups used
in robotics.

Let the probability density function (pdf) of X, a state on
a p-dimensional matrix Lie group G, be defined as [22]

X) = e (3 oo ()" P~ oo ()5 )« @)



where [ is a normalizing constant chosen such that (4)
integrates to unity. In general 3 # (2m)~?/2|P|~/2 with | - |
being the matrix determinant and P a positive definite matrix.

Furthermore, let ¢ be defined as € = [logg(X)]¢. If we
now assume that the entire mass of probability is contained
inside G, then ¢ can be described by € ~ Ag»(0P%! P).
This represents the CGD on G around the identity [16].
Furthermore, it is a unique parametrization space where the
bijection between expg and logg exists. Now, the pdf of X
can be ‘translated’ over the G by using the left action of the
matrix Lie group

X = pexpg ([elg) » with X ~G(u, P), (5)

where G denotes the concentrated Gaussian distribution [16],
[22] with the mean p and the covariance matrix P. In other
words, the mean p of the state X resides on the p-dimensional
matrix Lie group G, while the associated uncertainty is
defined in the space of the Lie algebra g, i.e., by the linear
isomorphism the Euclidean vector space R”. By this, we have
introduced the distribution forming the base for the LG-EKF.

C. The SE(2) group
The motion group SE(2) describes the rigid body motion

in 2D and is formed as a semi-direct product of the plane
R? and the special orthogonal group SO(2) corresponding to
translational and rotational parts, respectively. It is defined as

SE(2) = {(01}11 f) € R¥3 | {R,t} € SO(2) x RQ} :
(6)

Now, we continue with providing the basic ingredients for
handling SE(2), giving the relations for operators from III-A,
needed for manipulation between the triplet (Lie group G, Lie
algebra g, Euclidean space RP).

For the Euclidean spaced vector x = [x y 6|, the most
often associated element of the Lie algebra se(2) is given as

]T

0 -0 «x
[®]sey = |0 0 y| €se(2). ()
0 0 0

Correspondingly, its inverse [-]g/E(Q) is trivial.
The exponential map for the SE(2) group is given as

[cos® —sinf t,
expgg(o)([2]G) = |sin® cosf t,| € SE(2) (8)
0 0 1
ty = % [zsinf + y(—1 + cos §)] )
1
ty = ) [z(1 — cosf) 4+ ysinb)] . (10)
For T = {R,t} € SE(2), the logarithmic map is
A
ogseen(T) = || e l2) an
SE(2)
6 = logso(2) () = atan2(Ra1, R11) (12)
0 sin § 1—cosf
v 2(1 — cosb) [cos@ -1 sin 0 (13)

The Adjoint operator Adg used for representing T € SE(2)
on R3 is given as

R Jt . 0 1
AdSE(g)(T) = |:01><2 1:| with J = |:_1 O:| . (14)

The adjoint operator adg for representing € R? on R? is
given by

—-0J J'v] ’ (1s)

adSE(?)(x) = [01><2 1

where v = [z y]T € R%

IV. RIGID BODY MOTION TRACKING
A. EKF on matrix Lie groups

For the general filtering approach on matrix Lie groups, the
system is assumed to be modeled as satisfying the following
equation [23]

Xiq1 = [(Xg,np) = X expg ([Qk + nk]é) . (16)

where X € G is the state of the system at time k, G is
a p-dimensional Lie group, np ~ Nge(0P*!, Qy) is white
Gaussian noise and 0 = Q(X) : G — R? is a non-linear
C? function.

The prediction step of the LG-EKF, based on the motion
model (16), is governed by the following formulae

a7)
(18)

HE+1|k = Mk €XPg ([Qk]é)
Pisapr = FePeFL + @6 (%) Qr®s ()™

where fi41, € G and Py, € RP*P are predicted mean
value and the covariance matrix, respectively, hence the state
remains G-distributed Xy 15 ~ G(ips1jks Prt1je). The
operator Jj, a matrix Lie group equivalent to the Jacobian
of f(Xk,nx), and ¢ are given as follows

-7:k = AdG (CXpG ([_Qk]e)) + q)G(Qk)(gk (19)
o (=
b (v) = ——adg(v)™, veRP (20)
mZ:O (m+1)!
0
G = —-Q (1 expg ([€]6)) = - 2D

Oe

The discrete measurement model on the matrix Lie group
is modelled as

Zp1 = M Xpq1) expg ([mes1ler) (22)

where Z,,1 € G/, h: G — G is a C! function and my 1 ~
Nga (071 Ry, 1) is white Gaussian noise.

The update step of the filter, based on the measurement
model (22), strongly resembles the standard EKF update
procedure, relying on the Kalman gain K4 and innovation
vector ;41 calculated as follows

—1
Kit1 = Py iy (i1 Py Mgy + Rigr)

Vi1 = Kipa ([bgc,/ (h(ﬂk+1|k)_1Zk+1)]é’) - (@3
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Fig. 2: Each of the subfigures represents an example of two compounding transformations for different levels of rotational uncertainty (given
in blue). The grey circles represent 50 sampled uncertain transformations by employing both translational and rotational uncertainties. This
particular situation appears when a robot moves from the current position to the next position associated with the next discrete moment in

time, with standard deviation of the rotation oy,.

The matrix Hj can be seen as the measurement matrix of the
system, i.e., a matrix Lie group equivalent to the Jacobian of
h(X%), and is given as

0 _
e [IOgG' (h(;uk+1\k) ! (24)

h (Mk+1|k €XPg (Mé)))]é le=0 °

Finally, having defined all the constituent elements, the update
step is calculated via

Hir1 =

HEk+1 = Hi+1|k €XPg ([vr+1]G) (25)

Pey1 = @6(vt1) (PP — K1 Hiy1) Prpan®o (i)™
(26)

As in the case of the prediction step, the state Xjpiq ~
G(ptk+1, Prr1) remains G—distributed after the correction as
well. For a more formal derivation of the LG-EKF, the
interested reader is referred to [16].

Since the employment of the SE(2) x R3 follows the similar,
but slightly simpler derivation, in the sequel we derive the
LG-EKEF filter for estimation on the state space modelled as
SE(2)2. This approach is in our case applied, but not limited,
to the problem of moving object tracking.

B. LG-EKF on SE(2)?

As mentioned previously, we model the state X to evolve
on the matrix Lie group G = SE(2)? which is symbolically
represented by

Ry t]

{0“2 1 T
X = |:Rw t1):| = (Td)G ; (27)

01><2 1

where T’ is the stationary component and 7;; brings the second
order dynamics. Note that the matrix Lie group composition
and inversion are simple matrix multiplication and inversion,
hence the previous symbolic representation can be used for all
the calculations dealing with operations on G.

The Lie algebra associated to the Lie group G is denoted
as g = s¢(2)2, thereby for = [a:p a:d]T € RS, where z, =

[.’I} Y B]T and x4 = [vx Uy w]T, the following holds

] _ ([wp]QE(2)> (28)
[$d}§\E(2) [md]é\E(Q) g.

s = [[”’"’]QE@

The exponential map for such defined G is

€XPgsE(2) ([%]QE@))

(29)
CXPsg(2) ([wd}g\E(Z))

expg([z]G) =
G
Now, we have all the necessary ingredients for deriving the
terms to be used within the LG-EKF. Several examples of the
uncertain transformations following the SE(2)? motion model
are shown in Fig. 2 (the SE(2) x R® model would exhibit
similar behaviour).

1) Prediction: We propose to model the motion (16) of the
system by

eR®,

1 (30)

Q(Xk) = [Tvg, Ty, Twp 000

T
— |7 T2 T2 6
Mk = [7”% SNy, 5Ny, Thg, Ty, Tn,, | €R.

With such a defined motion model, the system is corrupted
with white noise over three separated components, i.e., 1,
the noise in the local x direction, n, the noise in the local y
direction and n,, as the noise in the rotational component.
Given that, the intensity of the noise components acts as
acceleration over the associated axes in the system. If the
system state at the discrete time step k is described with
Xk ~ G(uk, Pr), the mean value and the covariance can be
propagated using (17) and (18).

The covariance propagation is more challenging, since it
requires the calculation of (21). For the Lie algebraic error
e2 [61 €y €0 €, €y, ew], we need to set the following

Q (px expg ([eg))
ATv,, + AT coswy v1 — AT sinwy, vo

ATwy, + AT sinwy, v1 + AT coswy, v2 (31)
B ATwy + ATe,
03>< 1
where
vy = [evz sin e, + €y, (cos €, — 1)} e’ 32)

Vg = [€v, (1 — cosey) + €, sine,] €,
Let Q i, Q2 and Q3 j denote the first three rows of the
vector (31), respectively (whereas the last three rows are trivial

Qu 1 = Q5.1 = Q1 = 0). Even though the multivariate limits

Ok 2.k : . o
"~ |e=o and ~|e—o appear involved, their derivation
e, e,
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Fig. 3: Examples of three different simulated trajectories, generated with the SE(2)? motion model, with different intensities of process noise
over rotational components, i.e., standard deviation in rotational component was o, = [0.01 0.1 1]°. The blue line corresponds to SE(2)2
filter, while the green line represents the CV model (SE(2) x R* and CTRV are omitted for clarity).

0 g ne . cose, — 1
= |e=o = AT coswy, “ — AT sinwy e le=o = AT coswy,
86% €w €w
0 cose, — 1 . sin e .
5% om0 = ATcoswk% — AT sinwy, “lez0 = —AT sinwy,
Uy w w
O 1 (€v, COS €, — €y, SN €L )EL — [€y, SiN €y + €, (COS €, — 1)]
3 = |e=o = AT cos 2
w . “w . (33)
. (e, siney + €, cosey)ew — [€y, (cos e, — 1) + €, sine,]
— AT sinw 5 le—o =0
6&)
0y . Qa1 0y
9 : ‘5:0 :ATSIIlwk, P : |6:0 :ATCOSWk, ’ |6:0 =0
€uy Gvy w
03 1, 03 1, Qs 1,
‘6:0:07 ‘5:0:0a |5:O:AT
O¢y, 0¢, Oe,,

Y

follow from patient algebraic manipulations. The resulting
terms are shown in (33). The matrix %} is finally then given
as

AT coswy —ATsinwg 0
023 ATsinw, ATcoswr 0
@ = 0 0 AT (34
03><3 03><3

The adjoint operators Adg and adg are formed block
diagonally as
AdG(X) = dlag (AdSE(Q) (T‘S)7 AdSE(Q) (Td)) s (35)
adg(x) = diag (adSE(Q)(ms)v adSE(Q)(wd)) :

The last needed ingredient is the process noise covariance
matrix Q). Assuming the constant acceleration over the
sampling period AT, we model the process noise as a discrete
white noise acceleration over the three components: 1, , n,,
and n,, . At this point, we can use the equation (18) for
predicting the covariance of the system.

2) Update: The predicted system state is described with
Xit1lk ~ G(Hr+1|k> Prs1)x) and now we proceed to updating
the state by incorporating the newly arrived measurement
Zi+1 € G'. In this case, we choose the measurements to arise
in the Euclidean space R?, measuring the current position of

the tracked object in 2D. This choice is application related
and is more discussed in the next section. For this reason and
since the Euclidean space is a trivial example of a matrix Lie
group, we introduce the representation of z = [xz yz]T € R?
in the form of a matrix Lie group Z € G’ C R3*? and Lie
algebra [2]p. € g/ C R3*3

z

o]

Please note there exists a trivial mapping between the members
of the triplet R?, g’ and G’, hence the formal inverses of the
terms from (36) are omitted here.

The measurement function is the map h : SE(2)? — R2
The element that specifically needs to be derived is the
measurement matrix Hy41, which in the vein of (33),
requires using partial derivatives and multivariate limits.
Again, we start with definition of the Lie algebraic error
[éx €y €9 €y, €u, ew]. The function to be partially
derived is given as

P 02><2

12><2 A
Z = |:01><2 1] and [z]g. = {lez (36)

€ =

Y
G

[ogg: (R(ttrr1ie) ™" (trs1ie expg ([€]6)))]

08 O 11|k P1 — Sin O 1% P2
Sin Oy 1k p1 + €08 Oy 1|k P2

(37



87‘[17k+1 sin €p . COS €9 — 1
——|e=0 = 08 Op 411k —sinOp 1k le=0 = €08 O 1)
Oey €9
1.k41 cos€g — . sin eg .
OH1 kot 1
—— " |e=0 = o8 Op 111k — sin g le—o = —sin by
Oey €

OH1 g+ (€x cos€eg — €, sin€p)eg — [, sineg + €, (cos ey — 1)]
—— " |e=0 = €08 O 1)k 5 (39)
Oeg €
. (ezsineg + €, coseg)eg — [ex(coseg — 1) + €, sin €g]
—sin 01k 3 le=0 =0
€0
OHa k41 OHa k41 OHa k1
— T g = sinf — T g = cosf —= T =0
Dy |€ 0 k+1|k » 8ey |€ 0 k+1|k > Deg ‘E 0

where
p1 = [exsinep + € (coseg — 1)] e, (38)
p1 = [ex(1 — coseg) + €, sin eg] 60_1 .
Let Hq x+1 and Ho 41 denote the two rows of expression
(37). In order to derive (24), we need to determine partial
derivatives and multivariate limits over all directions of the
Lie algebraic error vector, and the result is given in (39). The

final measurement matrix 1 amounts to

0 0 0 O
0 0 0 0f"

Again, the interested reader is directed to perform algebraic
manipulations when calculating the multivariate limits for
proving (40). Here we deal with rather simple and most
common measurement space, but as well as in some recent
works [24], the filter from Section IV-A enables us to
incorporate nonlinear measurements if needed.

Now we have all the means for updating the filter by
calculating the Kalman gain K4 and the innovation vector
Vi+1 (23), and finally correcting the mean g1 (25) and the
covariance matrix Py (26).

€08 0411k
Sl 9k+1|k

—sin 0k’+1\k

40
COS Gk_mk ( )

Hir1 =

C. Simulation

In order to test the performance of the proposed filters,
we have simulated trajectories of a maneuvering object in
2D, where the motion of the system was described by the
SE(2) x R? and SE(2)? models. Three examples of generated
trajectories with the SE(2)? model, with different levels of
rotational process noise, are given in Fig. 3. In order to test
performance of the proposed filters, we conducted statistical
comparison of SE(2) x R3 and SE(2)?, with two conventional
approaches, i.e., (i) the EKF based constant turn rate and
velocity and (ii) the KF based CV models.

The noise parameters that generated the trajectories were
set as follows: n,, ~ N(0,0.1%), n,, ~ N(0,0.1%),
ne ~ N(0,02), where o, took 30 equidistant values in
the interval [0, 3]. For each of these values of o, we have
generated 100 trajectories and compared the performance of
the four filters. The measurement noise was set to m, ~
N(0,0.5%) and m,, ~ N(0,0.5%). Special attention was given
to parametrization of process noise covariance matrices in
order to make the comparison as fair as possible. Statistical

evaluation of the root-mean-square-error (RMSE) in object’s
position is depicted in Fig. 4. It can be seen that the SE(2)?
and SE(2) x R? filters significantly outperform the other filters.
Specifically, when the rotation is not very dynamic, the KF
based CV filter follows the trajectories well, while with the
increase in o, its performance drops significantly. On the
contrary, when the rotation is not very dynamic, the EKF based
CTRYV filter struggles to follow the trajectories correctly, while
with the increase in o, its performance gets closer to the one
of the proposed filters.

Considering the varying dynamism in the rotation, we
assert that the SE(2) x R® and SE(2)? show very similar
behaviour, while significantly outperforming the other two
filters. Particularly, they present the best of the two worlds:
the CV and the CTRV behaviour. Here we present statistical
evaluation conducted on the trajectories generated by the
SE(2)? model, Results on the trajectories generated by the
SE(2) x R? model showed similar inter-performance, they are
omitted from the present paper. Furthermore, in simulations we
only measured the position, i.e., the measurement space was in
R?2, while measuring additionally the orientation, i.e., making
the measurement space SE(2), would only further highlight
the potential of the SE(2)? filter. Both of the presented
omnidirectional motion models are proven to be very flexible
and capable of capturing various types of motion that can
be encountered in, e.g., busy intersection consisting of cars,
trams, bicycles, motorcycles, and pedestrians or an unknown
environment that a robot enters for the first time consisting of
different robot platforms and humans.

V. CONCLUSION

In this paper we have proposed novel models for tracking
a moving object exploiting its motion on the rigid body
motion group SE(2). The proposed filtering approach relied
on the extended Kalman filter for matrix Lie groups, since
the rigid body motion group itself is a matrix Lie group.
Therefore, we have modeled the state space as either a direct
product of the of the SE(2) group and the R? vector, i.e.,
SE(2) x R?, or two SE(2) groups, i.e. SE(2) x SE(2), where
the first term described the current pose, while the second
term handled second order dynamics. We have analyzed the
performance of the proposed filters on a large number of
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Fig. 4:  Performance statistics obtained over 100 generated

trajectories for 30 different values of o,. We have compared the
proposed filter SE(2)? (blue) and SE(2) x R® (orange) with the
EKF based CTRV (green), KF based CV (red), and measurements
(black), where the solid lines corresponds to mean values, while
transparent areas correspond to one standard deviation (in both +/—
directions) of each of the associated RMSEs. We can notice that the
SE(2) x R® and SE(2)? filters, whose difference is barely noticable,
exhibit similar behaviour, outperforming the other two filters.

synthetic trajectories and compared them to (i) the EKF
based constant velocity and turn rate and (ii) the KF based
constant velocity models. The SE(2) x R3 and SE(2)? filters
showed similar performance on the synthetic dataset, and have
significantly outperformed other well-established approaches
for a wide range of intensities in the rotation component.

Even though the presented work was applied on a tracking
problem, we believe it can serve as a starting point for
further exploitation of estimation on matrix Lie groups and
its applications on different problems. The use of higher order
dynamics may be of special interest for the domain of robotics,
as well as for multi-target tracking applications. Furthermore,
these techniques could also find application in other rigid body
motion estimation problems requiring precise pose estimation
and higher-order motion.
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Full Body Human Motion Estimation on Lie Groups Using 3D Marker
Position Measurements
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Abstract— This paper proposes a new algorithm for full
body human motion estimation using 3D marker position
measurements. The joints are represented with Lie group
members, including special orthogonal groups SO(2) and
SO(3), and a special euclidean group SE(3). We employ the
Lie Group Extended Kalman Filter (LG-EKF) for stochastic
inference on groups, thus explicitly accounting for the
non-euclidean geometry of the state space, and provide the
derivation of the LG-EKF recursion for articulated motion
estimation. We evaluate the performance of the proposed
algorithm in both simulation and on real-world motion capture
data, comparing it with the Euler angles based EKF. The
results show that the proposed filter significantly outperforms
the Euler angles based EKEF, since it estimates human motion
more accurately and is not affected by gimbal lock.

I. INTRODUCTION

Human bodies have evolved to perform complex
manipulation and locomotion tasks. We are able to
accomplish very intricate movements, carry light and heavy
loads, achieve energy efficient locomotion at various speeds,
reject disturbances, and adapt to environment constraints.
Inspired by the human body, robotics researchers aim to
develop systems with similar capabilities. To design a
humanoid that can perform as well as a person, researchers
must first capture and analyze human motion. Accurate
pose estimation allows the design of controllers to simulate
human like movements on a robot through motion re-
targeting and imitation learning. In human-robot interaction
the participant’s pose must be known to guarantee safety
and to allow collaborative tasks. Finally, to improve the
performance of assistive devices in rehabilitation or to
enhance user’s capabilities with an exoskeleton, the system
must be able to reproduce human like movements [1].
Optical motion capture is a method to record the
movements from body worn markers observed by multiple
cameras. The 3D positions of the markers are extracted
from the images using the relative positions of the cameras
to each other and are analyzed to compute the pose.
Typically, a kinematic model of the participant is defined
based on anthropomorphic tables or by measurement
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and markers are assumed rigidly attached to the skeleton
links. Unfortunately, for a full body skeletal model, there
is no closed form solution for the inverse kinematics
(IK). Differentiating the positions of the attached markers
with respect to the joint angles and forming a Jacobian
matrix allows to iteratively solve for joint angles using the
pseudoinverse of the Jacobian. In singular configurations
the Jacobian is not invertible. It is possible to include a
non-zero damping constant in the least squares minimization
to maintain full rank; various damping factors have been
proposed [2].

The Jacobian inverse based methods do not account for
stochastic error in marker position measurements, are greatly
affected by outlier measurements, and are not capable of
predicting future poses. By treating the skeleton pose as a
state and 3D marker positions as measurements, recursive
stochastic estimators can be used to help reduce the effect
of stochastic marker position errors. Including the joint
positions, velocities, and accelerations in the motion model
of the filter helps to maintain correct pose estimate during
short term occlusions. Various stochastic filters have been
proposed for IK, such as the Smart Sampling Kalman Filter
[3] and the Unscented Kalman Filter [4]. The filtering
approach can even be used to perform estimation from
unlabeled markers [5]. Bonnet ef al. modelled not only
kinematics but also the dynamics of a human body within
an EKF to estimate the pose and dynamic parameters [6].

In the aforementioned methods the kinematic models are
rigid links connected with joints that may be rotational,
translational, or spherical. All of these formulations are
representations of transformations in the euclidean space.
However, human motion and many other types of motion
of interest in robotics do not occur in Euclidean space, but
rather arise on curved geometries often called manifolds. By
using the manifold representations, the overall performance
of wide variety of applications can be significantly improved
[7]-[9]. In particular, the attitude of an object can be
modelled as a special orthogonal group SO(n), n = 2,3,
while the pose can be modelled as a special euclidean
group SE(n), n = 2,3 [7]. Notably, both SO(n) and SE(n)
belong to a family of matrix Lie groups. Recently, several
theoretically rigorous approaches for filtering on manifolds
have been proposed. In [10] the authors proposed an EKF
able to perform estimation respecting the geometry of matrix
Lie groups. Alongside, the unscented transform-based [11]
and the particle-based [12] approaches have also attracted
significant attention.

The benefit of manifolds for human action recognition
has already been explored in the literature. In [13] the



authors exploited the manifold structure by relying on the
particle filter for learning purposes, while in [14] the authors
use different manifolds as priors for manifold learning.
Devanne et al. have used a spatio-temporal modeling of
trajectories in a Riemannian manifold for action recognition
purposes [15]. Recently, Brossette et al. have proposed the
posture generation problem that encompasses non-Euclidean
manifolds as well [16].

In this paper, we propose an algorithm for human motion
estimation on Lie groups, which uses 3D marker position
measurements. We explicitly account for the geometry of
the state space and apply Lie group EKF (LG-EKF) for
stochastic inference on Lie groups. We employ a constant
acceleration model [17] in the motion prediction step and
derive the update and observation equations for positional
measurements. We compare the performance of the proposed
approach with the Euler angles-based EKF, and show that the
proposed algorithm achieves significantly better performance
in both simulations and real-world experiments.

The paper is organized as follows. In Sec. II we present
the theoretical preliminaries addressing the association of
uncertainties to Lie groups, and provide the basic relations
needed for forward kinematics of articulated bodies with
groups. In Sec. III we derive the proposed estimation
approach. In Sec. IV we describe the Euler angle-based
approach, while in Sec. V we present the validation results.

II. MATHEMATICAL BACKGROUND

In this section we provide the mathematical background for
performing human motion estimation on matrix Lie groups.
We first discuss a human body modeling approach and the
corresponding state space construction, and after provide the
relations for manipulating the required Lie group members.

A. Construction of the state space

Before proceeding to filtering, we first construct the
state space for representing a human that models body
flexibility to a satisfactory level. Therefore we determine the
appropriate Lie Group representation for each joint based
on its mobility. For example, 1 DoF revolute joints are
represented with a special orthogonal group SO(2), while 3
DoF spherical joints are modelled with a special orthogonal
group SO(3). To localize the human in 6 DoF space, we use
a special euclidean group member SE(3) for connecting the
origin of the space with the base of the body, modeling both
translational and rotational motion. Finally, the state of the
system modelling a human is constructed by concatenating
Lie group members via a Cartesian product, starting with
SE(3), and extending with either SO(2) or SO(3) groups.
For example, a human leg can be constructed as

SE(3) x SO(3) x SO(2) x SO(2) x SO(2) . (D)

Here, the first term represents the 3D position and orientation
of the waist with respect to the reference frame, the second
term represents the hip as a spherical joint, the third describes
the knee, while the last two represent the two dimensional
ankle as shown in Fig. 1 (left).
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Fig. 1: Left: Lower body kinematic model joints represented by their
respective group members. Middle: Same lower body in prismatic
and revolute (Euler angle) joint representation. Right: Full body Lie
Group model with attached markers.

Fig. 2: An illustration of mappings within the triplet of Lie group
G, Lie algebra g and the Euclidean space RP.

B. Lie groups and Lie algebra

We now introduce the concept of Lie groups and Lie algebra
as prerequisites for estimation on Lie groups [18].
Generally, a Lie group G is a group which has the structure
of a smooth manifold. Group operators, composition and
inversion, are smooth operations, given simply as matrix
multiplication and inversion. Lie algebra g elements
represent a tangent space of a group at the identity element
[19]. In particular, a Lie algebra is an open neighborhood
around 07 in the tangent space of G at the identity I".
The matrix exponential expg and matrix logarithm logg
establish a local diffeomorphism between G and g as

expg: 9 — G and logg: G —g. 2

The Lie algebra g associated to a p-dimensional matrix Lie
group G C R™ " is a p-dimensional vector space defined by
a basis consisting of p real matrices F,, » = 1,..,p, often
referred to as generators [20]. A linear isomorphism between
g and RP? is given by

[1¢:9—RP and []Q:RF —g. (3)

An illustration of the above mappings is given in Fig. 2.

In addition, in Lie group based calculus we need two more
operators — adjoint representation of a Lie group, denoted
as Adg and Lie algebra adg. More detailed discussion on
adjoints and the used notation can be found in [18] and [10],
respectively.

C. Concentrated Gaussian distribution

To make use of EKF on Lie groups, the Gaussian error
distribution covariance must be established. Distribution on
the group tightly focused around the identity element X'



can be expressed on the Lie algebra [21] with probability
density function given as

p(X7) = Gexp oo (X P~ owg(X1)¢ )

where (3 is a normalizing constant and P is a positive definite
matrix. If € = [logg(XT)]¢ is tightly focused, it can be
described with a classical Gaussian € ~ Ng»(0P*! P). The
distribution of random variable X can be translated over
G by using the left action of the Lie group, and finally a
random variable X can be seen as

X = pexpg (eg) , with X ~ G(u, P), 4)

where G denotes the so called concentrated Gaussian

distribution (CGD) [21]. For a more formal introduction,

the interested reader is referred to [18].

D. Special orthogonal group SO(2)

The SO(2) group represents a rotation around a single axis:
SO(2) = {X CR¥?|XTX =1, det(X) =1} . (5

For a euclidean space vector consisting of an angle x = ¢,

the Lie algebra s0(2), is given as

0

¢

where (-)go() : R' — 50(2). Its inverse, (-)§5o) : 50(2) —

R, follows trivially from relation (6). The exponential for
SO(2), performing expsg (o) : 50(2) — SO(2), is given as

|

while the inverse operator, loggo(2) @ SO(2) — s0(2), can
be evaluated from (7). Due to the commutativity of SO(2),
the adjoint operators are given as

AdSO(Z) (X) =1and adso(g)(.’l,') =0.

TS0(2) = { _Oﬂ € 50(2). (6)

—sin¢
cos ¢

Cos ¢
sin ¢

(7

€XPso(2) (xé\O(Q)) = {

®)
These properties will greatly simplify the LG-EKF formulae.

E. Special orthogonal group SO(3)

The SO(3) group represents an orientation of a rigid body

in 3D space, and is defined as
SOB) = {X CR¥?|XTX =1,det(X)=1}. (9

For a euclidean joint space vector z = [¢ ¢o ¢3]T, the Lie
algebra so(3) is given as a skew symmetric matrix

0 —¢3 ¢
TSo(3) = ¢; q? 78251 € 50(3). (10)
— @2 1

where (1)gq5) : R® — 50(3). Its inverse, ()dq3) : 50(3) —
R3, follows trivially from (10). The exponential for SO(3),
performing mapping expgos) : §0(3) — SO(3), is given as

expso3) (T80(z)) = cos(|z|)I°+
rxt

|

(In

xéocs)

||

+ (1 = cos(|z])) 3 + sin(|)
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The logarithm, performing mapping logsgs) : SO(3) —

50(3), is given as

0

L
logso() (X) = 2sin(6) X=X
st. 14 2cos(f) = Tr(X) (12)
0#£0 —m<O<m
f=0 log(X)=0

The adjoints Adsg(sy and adsp(s) are respectively given as

Adso(g)(X) = X and adso(g)(x) = 1@0(3) . (13)

F. Special euclidean group SE(3)

The group SE(3) describes 6 DoF rigid body pose and is
formed as a semi-direct product of the euclidean space vector
R? and the special orthogonal group SO(3)!, corresponding
to translational and rotational parts, respectively. This group
is defined as

{

For a euclidean space vector representing the pose of a rigid
body consisting of a 3DoF position vector ¢ and a 3DoF
orientation vector ¢, where 2 = [t ¢|T, the Lie algebra se(3)
is

Rt
0 1

SE(3)

> CR¥™ | {R,t} € SO(3) x R?’} .

A ¢§o<3) ¢
‘T’.SE(3) = 0 0 € 59(3) . (14)
where (-)gg (3 : R® — se(3). Its inverse, ()dg (s @ 5¢(3) —
RS, follows trivially from (14). The exponential for SE(3),
performing mapping expgg sy : 5¢(3) — SE(3), is given as

C
exPse(s) (T5g(3) = [0 th} (15)
C = expso3) ($50(3))
sin(|@]) 3 sin([¢]), pp" | 1 —cos(|@]) A
= I 1-— 4+ o
ol LT T e T TR 2w

The logarithm, performing mapping loggg(s) : SE(3) —
se(3), is calculated by deconstructing X, and determining
¢ by using (12). Then, from (15) we can determine ¢.

In order to determine the adjoints for SE(3), we need to
deconstruct the state X € SE(3) and vector 2 € RS, Firstly,
we extract the rotation part C' and translation part ¢ from X,
and secondly, we split the translation part ¢ and orientation
part ¢ from x. Then, the adjoints Adsg(s) and adsg(s) are

)

We next present the new human motion estimation method
based on the LG-EKF.

t3o(3)
N
Ps0(3)

‘1590(3)
0

C tC
Adsg(3)(X) = [ C} , adsg(s) ()

IThe euclidean space can be formed only by employing direct product,
while other ways to concatenate Lie groups also exist, i.e., semi-direct
product, twisted product, etc.



III. HUMAN MOTION ESTIMATION ON LIE GROUPS

The LG-EKF performs motion prediction and measurement
update steps recursively, assuming a constant acceleration
model (CA) [17] for each joint.

A. Motion prediction step

The LG-EKF approach assumes the motion model of the
system can be described with the following equation

X1 = f(Xi,ni) = Xi expg ([Qk +"k]e) , (16)

where X, € G is the state of the system at time k&, G is a
p-dimensional Lie group, nj ~ Ng» (0%, Q) is zero mean
white Gaussian noise with covariance (), and flk =Q(Xy) :
G — RP? is a non-linear C? function.

For example, assuming a CA motion model and
considering a single SO(2) joint with associated angular
velocity and angular acceleration, the state would be given
by X € G=S50(2) x R! x R}, and

. 2 .. 2
. Tqy, + %Qk [ %"z
Q) = Téj ER® np=|Tne | €ER®, (17)
0 nj;

where ¢, ¢r and ¢ are the angle, angular velocity
and angular acceleration represented in tangential space,
respectively?>. The term ng represents the acceleration
increment during the k-th sampling period [17].

In general, the state of the system X is formed by using
direct (Cartesian) product between the group members,
i.e., by placing them block-diagonally. Then, after applying
expg or loge, the element will stay in the block diagonal
arrangement. The motion model Qk can be seen as
representing an addition to the current state, and for N
joints it is given as € = [QL Q2 ... ON]T. The motion
model and the process noise associated with the ¢-th joint,
ie., Q}C and n};, are elements of euclidean space R”, where
r = 3 X (# DoF) since position, velocity and acceleration
are included. Hence, for the associated group member
SO(2), SO(3) and SE(3), the coefficient is r = 3, r = 9
and r = 18.

We assume the posterior distribution at step & — 1
follows the concentrated Gaussian distribution assumption
G(tk—1,Px—1). The mean propagation of the LG-EKF is
then governed by

HEk+11k = Bk €XPg ([Qk}e) ) (18)
while the covariance prediction is governed by
P, = ]-'kPk]-'g + (I)G(Qk)Qk(I)(;(Qk)T . (19)

The operator Fj, represents a matrix Lie group equivalent to
the Jacobian of f(Xy,ny), and is calculated by

- ~
Fr = Adg (expG ([—Qk}G)) + () C,

5 X (20)

€y = &Q (11 expg (EG))|5:0 :

Euclidean space RP belongs to a family of Lie groups, while for

constructing G we employ its matrix representation obtained by matrix

embedding. It is also a subgroup of SE(n) where a pure translation is

employed [18].

% represents the linearisation term where the argument of
the motion model is the current state X with an incremental
perturbation additively added in each of the p directions.
Contrary to the conventional EKF, a linear additive process
noise injects the system as a function of the current state
of the system over the transformation ®¢(2)Q®c ()",
where ®¢ appears due to the displacement of the tangential
space during the prediction step, and is given as

Do)=Y Cu

2 (i + 1))

adg(v)', v € RP. 1)

B. Measurement update step

We next derive the update step by employing position
measurements of markers attached to a human body obtained
by a motion capture system. The markers are assumed to
be rigidly attached to a predetermined skeletal model. The
discrete measurement model on the matrix Lie group is
modelled as

Zy1 = M Xig1) expg ([my1]er) » (22)

where Zp.1 € G, h G — G is a C' function
and mpy1  ~ Nge(09% Rpyq) is zero-mean white
Gaussian noise with covariance Rjy;. The measurement
function, in our marker based approach, is given as
hMXp1) = diag{h(Xpi1)" 2(Xpi1)% o h( X)),
where M block-diagonally placed measurement components
correspond to M marker position measurements, and hence
the measurement space is given as G’ = R3M,

The update step of the filter strongly resembles the
standard EKF update procedure, relying on the Kalman gain
K41 and innovation vector vy calculated as

—1
K1 = PopipMisr (Mes1Prrie i + Risr)

Vpp1 = Kpq1 (Dogg/ (h(ﬂk+1\k>_1zk+1)];//) . (23)

The matrix Hjpy; can be seen as a matrix Lie group
equivalent to the Jacobian of h(Xj41), and is given as

Hit1 = % [IOgG’ (h(ﬂkﬂ‘k)_lhw;“'k))}<v;' le=0

wh§r§ A1 r) h(.u.kﬂ‘k expg (eé)), d§scribes .the
variation of markers’ positions for an infinitesimal motion
€. We now evaluate the part of Hjy; corresponding to the
i-th marker’s measurement Z; , ;. This relation is given as

) 0 -
k1 e (logc’ (h (K2, (Xksapr) 1

\2
LK aw))) g oy O
0 Vv
9 I . 0
=3¢ 1108e | {o KXk | 7
1 G’ |e=0

where ngi (Xk41)x) stands for the forward kinematics of
the 4-th marker for a given predicted state X} 15, while
K2 (Xiap) = K2 (Xps1)k expg (e¢)) corresponds to the



forward kinematics for the infinitesimally perturbed state
Xp41)k- Note that the term K2 (X 4qx)”" vanishes after
applying the partial derivatives over e. We now decompose
the kinematics term K9 (X q)5) into several parts as

K (Xig1p) = ’C?(Xk+1|k)XZ+1|k’C§f1(Xk+1|k) , (25)

where IC?(X k+1)k) Tepresents the transformation from the
base frame to joint j and KJT!'(Xj ;) represents the
transformation from joint j + 1 towards sensor <.

Let us now consider a part of the A}, term relating
the ¢-th measurement with the j-th joint, denoted as H,‘Cil
Furthermore, let us assume the j-th joint is represented with
an SE(3) term, hence covering the most general case, since
SO(2) and SO(3) are simplifications of SE(3). Then, by
exploiting results from [19], H,;?, can be expressed as

kt1
o 0
H;e,-]ﬁ-’; 0 J i+l 0
1 |~ K5 (X i) X 1 B LT (X e) ol
1

where E" represents the r-th generator of SE(3) group,
ie., r = 1,..,6 [21]. Each of the 6 generators represents
an infinitesimal motion in one of the directions of SE(3)
space, and Hz’il = [H;ii H;if‘] . Since marker position
measurements are only a function of the joint positions, the
part of the H 41 matrix relating measurements with velocity
and acceleration components is filled with zero values.

Finally, the measurement update step is calculated as

[r41 = Hirilk €XDg (Ve 41]e) (26)
Prey1 = O6(es1) (IP — Kiy1Hir1) Progr i ®Po(vir)” -

For a more formal derivation of the LG-EKF update, the
interested reader is referred to [10].

IV. EULER ANGLE BASED APPROACH

The proposed approach is compared to conventional EKF
applied to a standard kinematic model defined with revolute
and prismatic joints [22]. Three perpendicular revolute joints
(Euler angles) can be used to model human spherical joints
such as the shoulder and the hip. The transformation between
the world frame and the base of the body can be modelled
with three prismatic and three perpendicular revolute joints,
as shown in Fig. 1 (right). The state of the EKF is defined
as the position ¢, velocity ¢, and acceleration ¢ of the joints.
Assuming constant acceleration the linear motion model is

T2
e+1 = qr +Tq, + 7(11@

Gr+1 = qr + TGk 27
Gr+1 = G -

Treating the attached markers as end effectors, the

measurement Jacobian for the i-th marker, H;, is the
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velocity Jacobian in the base frame.

H' = [Jvt Jv2 .. Jv™] (28)
Juii = ZJ x (o' — o7) for revolute joint j 29)
2! for prismatic joint j

where joint j is centered at o’ and actuates about 2z’ axis and
o' is the end effector position. With the Jacobians defined
EKF can be set up to estimate the positions, velocities, and
accelerations of all the joints in the kinematic model based
on motion capture marker measurements.

V. VALIDATION RESULTS

We validate the proposed approach with three datasets.
First, in simulation, we demonstrate the benefits of LG-
EKF over EKF during highly dynamical movements whose
motion is better described on the group and show that unlike
EKF, LG-EKF is not affected by gimbal lock. Next, to
show the benefits of SO(3) representation, we evaluate the
performance of LG-EKF and EKF on real motion capture
data of arm boxing movement. Finally, we perform full
body estimation of a highly dynamic martial arts movement
sequence to verify the effectiveness of the SE(3) joint
connecting between world origin and the body base frame
and demonstrate the overall benefits of LG-EKF over EKF.

A. Simulation Validation

1) Dynamic Motion: To test the convergence and
estimation properties of LG-EKF, we simulate a human
arm composed of the shoulder, elbow, and wrist joints,
the state is an element of SO(3) x SO(2) x SO(3) group
respectively. Two simulated motion capture markers are
placed at the shoulder and elbow and 4 about the wrist.
The kinematic chain is visualized in Fig. 3 (middle). We
generate angular velocity on the group using a Fourier
series with 5 harmonics and coefficients from a uni-variate
distribution, the angular velocity is then propagated at
100 Hz according to the motion model defined in equation
16 with no additive noise. The simulated marker positions
are computed with forward kinematics and Gaussian noise
with standard deviation o4, = 1 mm is added to simulate
errors in 3D marker measurement. This creates a highly
dynamic motion as can be seen from the positions of the
four wrist markers in Fig. 4. The measurement noise was
set to 0.01 for both LG-EKF and EKF. No further tuning
was performed to improve estimation of either filter, the
initial covariances were set to identity and process noise for
all states was 0.01.

To compare the estimate with the ground truth, we use the
deviation from the identity matrix as the distance metric [23]

Dr = || = RIRy| (30)

where R. and R, are the estimated and ground truth
rotation matrices of each joint and |||, denotes the
Frobenius norm, which is funcionally equivalent to the
geodesic on SO(3) [23]. Figure 5 shows the comparison in
estimation of rotation matrices for each of the three joints
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Fig. 3: Left: 3D Arm model showing simulation marker placement.
Middle: Lie group-based arm model with attached markers for
dynamic motion simulation. Right: Euler angle-based arm model
for the CMU dataset (no wrist) with CMU markers attached.

z [m]

x [m]

Fig. 4: Trajectories of wrist markers attached to the simulated arm
model undergoing the generated highly dynamic motion over 2.55s.

between LG-EKF and EKF using this distance metric. On
average LG-EKF improves estimation over EKF by 20.9%.
The observed improvement is composed of gimbal lock
avoidance, described in the next section, and a better error
covariance representation on the manifold.

2) Gimbal Lock: Any set of Euler angles will lose a
degree of freedom when two of the rotation axes align [24],
implying that in that configuration the rotation about the
locked axis cannot be correctly estimated by EKF. Typically
the order of the joint axes is carefully selected to try and
avoid the lock, however in human motion estimation gimbal
lock often takes place at the shoulder joint due to its high
manoeuvrability. Unlike the Euler angle formulation, an
SO(3) representation of the spherical joint does not suffer
from gimbal lock and thus LG-EKF will accurately estimate
any 3D rotation.

To demonstrate the benefits of LG-EKF over EKF during
gimbal lock we simulate a single spherical joint at the
origin with three motion capture markers attached at offsets
of [0.3,0.1,0]T, [0.3,—0.1,0]T, and [0.3,0,0.1] for full
observability. To ensure continuation in position, velocity,
and acceleration we use a quintic polynomial to generate
a smooth trajectory, sampling at 200 Hz. First, the model
experiences a 1 second rotation about the world y axis with
initial position Orads and final positions 7 rads and zero
initial and final velocity and acceleration. Since the second
joint of the Euler model is aligned with the y axis this
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Mean error in SO(3) Shoulder, LG-EKF:0.12569 EKF:0.2345

1
s LGEKF
3 . EKF
Q0.5
0
0 0.5 1 1.5 2 2.5
time [s]
Mean error in SO(2) Elbow, LG-EKF:0.1182 EKF:0.12098
04 s LGEKF
. EKF
Q0.2
0
0 0.5 1 1.5 2 2.5
time [s]
Mean error in SO(3) Wrist, LG-EKF:0.23411 EKF:0.4396
2
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3 . EKF
Q 1
0.5
0
0 0.5 1 1.5 2 2.5

time [s]

Fig. 5: Rotation matrices error for each of the three joints in the
simulated lower body.

0.4| | = LGEKF
I, s EKF
! 0.2
00 02 04 06 0.8 1.2 1.4 1.6 1.8 2
time [s]

Fig. 6: LG-EKF and EKF estimation during gimbal lock. Both filters
accurately estimate the rotation about the y axis until 1 second.
After the rotation about y the Euler angle model is in gimbal lock
and thus EKF cannot accurately track the orientation until the lock
is escaped at 1.5 seconds. LG-EKF estimation is unaffected by
gimbal lock.

2
B: 1.5 e |LG-EKF
% 1| | == EKF
g
& 0.5
0 =
0 02 04 06 0.8 1.2 14 16 1.8 2

time [s]

Fig. 7: Trace of the LG-EKF and EKF position error covariance.
Both filters start with the same error covariance that quickly
converges to a low value. As the Euler angles approach the gimbal
lock the EKF position error covariance increases and continues to
grow until EKF escapes the lock. LG-EKF position error covariance
is unaffected.

effectively puts the Euler angle model into gimbal lock. Next,
the model experiences the same 1 s rotation in the now locked
world z axis. In order to focus only on the gimbal lock
problem, no noise was added to the marker measurements.
Measurement noise, process noise, and initial covariances
were set as described in Sec. V-A.1l.

Figures 6 and 7 show respectively the distance metric
described in (30) and the trace of the position error
covariance of both filters.
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Fig. 8: Position error covariance of LG-EKF and EKF for the
spherical shoulder joint (top) and hinge elbow joint (bottom) during
boxing motion estimation.

B. Real-world experiment - boxing arm

To evaluate the benefits of estimating real human motion
with the proposed method we compare the filters on a
highly dynamic boxing motion from the CMU Graphics Lab
Motion Capture Database [25]. The movement is captured
at 120Hz with a Vicon motion capture system using 12
cameras. Skeletal model of each participant is created with
the Vicon BodyBuilder software and markers are attached
at predetermined bony landmarks. We simplify the model
by ignoring finger joints and extra joints in the spine Vicon
software generates in post processing. In order to focus on
the performance of the SO(3) joint, only the motion of the
right arm is estimated. The kinematic chain consists of a
spherical joint at the shoulder and a hinge joint at the elbow.
Three motion capture markers are used, placed on the upper
arm, elbow, and forearm. Figure 3 shows the Euler angle and
Lie group models side by side.

To conduct a fair comparison the filters are initialized
with the same noise parameters; the initial error covariances,
process noise for all states, and observation noise are set to
identity, 0.01, and 0.01 respectively. Furthermore, both filters
are initialized with a good initial guess obtained from Vicon
inverse kinematics available as part of the CMU dataset.
We evaluate the performance of each filter by looking at
the error covariance as well as using the estimated state
to compute the forward kinematics and compare the actual
and predicted marker positions. Figure 8 shows the position
error covariances of the filters for the spherical shoulder
and revolute elbow joints. The shoulder movement is better
estimated on the SO(3) group and thus the error covariance is
significantly more uniform than its Euler angles counterpart.
Generally, the SO(2) is expected to behave identically as
wrapped R! [26]. Table I shows the RMSE between the
actual and estimated marker positions. LG-EKF has a better
representation of error covariance and avoids gimbal lock at
the SO(3) shoulder joint leading to a lower RMSE in the
upper arm and elbow markers. The better estimation at the
shoulder is propagated through the kinematic chain leading
to a lower RMSE in the forearm marker even though the
SO(2) joint behaves identically to a single Euler angle.
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TABLE I: Root mean squared error in cm between actual and
predicted marker positions for boxing arm motion. Where UPA,
ELB, and FRA are the upper arm, elbow, and forearm markers
respectively. On average LG-EKF improves estimation by 14%.

UPA | ELB | FRA
EKF 2.61 3.04 | 2.79
LG-EKF | 2.30 | 2.69 | 2.27

TABLE II: Root mean squared error in cm between actual and
predicted marker positions for markers attached to the waist of the
full body model. Where RF, LF, RB, and LB are the right and left,
front and back markers respectively. On average estimation on SE3
improves RMSE by 8.2%.

RF LF RB LB
EKF 1.76 | 191 | 1.57 | 1.61
LG-EKF | 1.66 | 1.70 | 1.42 | 1.46

C. Real-world experiment - full body

To enable localization of the actor in the world frame we
add SE(3) as the first element of LG-EKF’s state vector and
express the entire full body as a collection of SO(3) and
SO(2) elements presented in Fig. 1 (right). SE(3) element
connects the world frame to the base of the kinematic model.
Shoulders, hips, and neck joints are modelled as SO(3)
elements. Elbows, knees, and wrists are described using a
single SO(2) element and the ankles with two perpendicular
SO(2) elements. A total of 37 markers are attached to
the body following the Vicon motion capture manual [25].
To demonstrate the benefits of the SE(3) representation of
localization over a sequence of prismatic and revolute joints
and the overall improvement of LG-EKF we use a dynamic
full body martial arts movement sequence from the CMU
database. Both filters are initialized identically with the same
noise parameters as described in Sec. V-B and with a good
initial state from the Vicon IK.

Figure 9 compares the position error covariance of the
LG-EKF’s SE(3) element state and the EKF’s prismatic and
revolute joint states. As seen from the uniform covariance,
the fast full body rotations and translations are better
represented on the SE(3) group. This can also be observed
in the RMSE of the predicted and actual marker positions
of the 4 pelvis markers shown in Table II. As an extra
comparison we use the Vicon CMU IK results and their
more complex full-body model to run forward kinematics
and compare the RMSE of predicted and actual marker
positions. Table III provides RMSE for the rest of the
markers on the body including that of Vicon IK. Even
without tuning the noise parameters and initial covariances,
the stochastic filtering approaches significantly outperform
the Vicon IK method. Furthermore, the LG-EKF achieves a
much lower RMSE in almost all the markers over the EKF.
The lower error covariance and avoidance of gimbal lock
at the SE(3) joint provides a better estimation of the entire
skeleton position and orientation. The improvement in the
estimation at the base and each SO(3) joint is propagated
down the kinematic tree reducing the RMSE of the markers.



. 0.6 . EKF
9:/ 0.4 e .G EKF
g v
= 0.2
0
0 5 10 15 20 25
time [s]

Fig. 9: LG-EKF and EKF position error covariance of the
transformation of an SE(3) from world to base of the kinematic
model. Since the transformation is an SE(3) element LG-EKF is
able to accurately estimate it and its evolution over time. Prismatic
joints and Euler angles do not correctly represent SE(3) thus EKF
covariance increases during highly dynamic motion.

TABLE III: Root mean square error between predicted and actual
marker positions for full body motion capture. LG-EKF outperforms
both EKF and VICON IK for most of the markers. Refer to [25] for
marker placement and naming details. Note, VICON IK prioritizes
ankle markers to avoid unrealistic sliding at the feet.

R Arm RSHO RELB RUPA RFRM RWRA RWRB
VICON 6.33 4.57 5.17 4.64 7.01 6.91
EKF 2.89 3.04 2.82 2.87 243 2.39
LG-EKF 2.6 2.67 291 2.58 2.29 2.23
L Arm LSHO LELB LUPA LFRM LWRA LWRB
VICON 7.82 5.96 6.32 8.19 1111 10.74
EKF 2.98 4.51 3.95 2.77 422 2.32
LG-EKF 2.82 4.15 3.86 2.59 4.1 2.02
Torso and Head | CLAV T10 STRN  RFHD LFHD RBHD LBHD
VICON 6.09 2.98 222 12.85 13.07 10.65 10.59
EKF 1.74 1.55 1.72 1.3 1.18 1.5 1.49
LG-EKF 1.64 1.45 1.59 1.26 1.13 1.45 1.43
R Leg RTHI RKNE RSHN RANK RHEE RTOE  RMT5
VICON 3.99 4.78 427 0.4 1.47 2.54 1.81
EKF 2.06 242 2.34 1.15 1.18 0.94 1.06
LG-EKF 1.93 24 2.33 1.14 1.16 0.93 1.04
L Leg LTHI LKNE LSHN LANK LHEE LTOE LMTS
VICON 4.36 4.45 2.48 0.53 1.4 2.29 2.4
EKF 2.09 2.01 1.35 1.06 1.22 1 1.18
LG-EKF 2.07 1.98 1.34 1.04 1.21 1 1.16

VI. CONCLUSION

We proposed a novel algorithm for human motion estimation
based on body worn marker position measurements. The
human joints were described as Lie group members,
including special orthogonal groups SO(2) and SO(3), and
a special euclidean group SE(3). For stochastic inference
on Lie groups the LG-EKF was employed, thus explicitly
accounting for the non-euclidean geometry of the state
space. A constant acceleration motion model for human
motion estimation on the group was developed and the
Jacobian of the marker position measurements was derived.
The performance of the proposed method was evaluated
on both simulation and real-world motion capture data,
comparing it with the Euler angles-based EKF as well as
Vicon IK for full body estimation. We showed that LG-EKF
improves estimation for highly dynamic motions and is not
affected by gimbal lock.
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Abstract— This paper proposes a new algorithm for human
motion estimation using inertial measurement unit (IMU) mea-
surements. We model the joints by matrix Lie groups, namely
the special orthogonal groups SO(2) and SO(3), representing
rotations in 2D and 3D space, respectively. The state space is
defined by the Cartesian product of the rotation groups and
their velocities and accelerations, given a kinematic model of the
articulated body. In order to estimate the state, we propose the
Lie Group Extended Kalman Filter (LG-EKF), thus explicitly
accounting for the non-Euclidean geometry of the state space,
and we derive the LG-EKF recursion for articulated motion
estimation based on IMU measurements. The performance of
the proposed algorithm is compared to the EKF based on
Euler angle parametrization in both simulation and real-world
experiments. The results show that for motion near gimbal lock
regions, which is common for shoulder movement, the proposed
filter is a significant improvement over the Euler angles EKF.

I. INTRODUCTION

Human motion measurement is a key enabling technology in
many applications, including human motion analysis, reha-
bilitation, imitation learning and human-robot interaction [1].
A number of different sensing modalities have been proposed
for human motion measurement, including camera, magnetic
and wearable systems [1]. When line of sight between the
sensor and the human cannot be ensured, and when motion is
to be captured in large or outdoor spaces, wearable sensing,
based on inertial measurement units (IMUs) is preferred.

Many previous works focus on human pose estimation
using wearable IMUs. A simple approach is to integrate
the gyroscope to estimate the orientation of each limb,
however, due to gyroscope drift error accumulates over time
[2]. Stochastic filter methods are often used to combine
gyroscope and accelerometer signals to reduce drift and
allow for estimation of highly dynamic motions. Without
taking into account the kinematic model of the human body,
the orientation of each limb can be estimated separately
[3], [4] with the Kalman filter. In post processing kinematic
constraints can be incorporated and the joint angle estimated
via optimization [5].
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To retrieve the joint angles directly, human kinematic
constraints must be incorporated into the estimation. If
the kinematic model is available a priori, stochastic filter
methods can be used to directly estimate human pose from
IMU measurements. Modeling the human body as a set of
rigid links connected with hinge joints Lin and Kuli¢ [6]
and El-Gohary and McNames [7] used the Extended and the
Unscented Kalman filters to estimate arbitrary 3D leg and
arm motion respectively. Model based extended quaternion
Kalman filter was used by Szczesna to track a 3-segment
inverted pendulum motion [8]. Finally, having a model of the
motion in addition to the kinematic constraints can further
improve human pose estimation [2], [9].

In most of the aforementioned works the joints of the
kinematic model are described using Euler angles. While [8]
uses a quaternion joint representation, the approach cannot
represent different constraints for human joints with different
degrees of freedom (dof): 3 at the hip and shoulder, 2 in the
elbow and wrist, and a single dof at the knee. In our previ-
ous work [10] we showed that Lie group based kinematic
modeling can correctly represent the degrees of freedom
of the human body and that Lie group based extended
Kalman filter can significantly improve marker based pose
estimation. A number of other studies have also investigated
uncertainty modeling and representation on Lie groups. In
[11] representation and propagation of uncertainty on Lie
groups was studied in the context of manipulator kinematics
and camera trajectory estimation, and later in [12] the authors
studied the stochastic kinematic model of a differential drive
mobile robot on SE(2). Uncertainty association, propagation
and fusion on SE(3) was investigated in [13]. In [14] the
authors preintegrated a number of IMU measurements for
visual-inertial navigation by properly addressing the geome-
try of the rotation group and defining the uncertainty in the
pertaining tangent space. Finally, an extended Kalman filter
on Lie groups (LG-EKF) was proposed in [15], [16] and has
been further developed to an iterative version [17].

In this paper we propose a novel approach for human
motion estimation based solely on IMU measurements. To
the best of our knowledge, this work is the first to propose
the LG-EKF formulation for kinematic chain state estimation
using IMU measurements and derive the necessary measure-
ment Jacobians. The proposed filtering approach performs
stochastic inference of human motion by defining the state
space to reside on a Lie group, with each state element
corresponding to the kinematic model of the analysed human
body part. Then, the LG-EKF is derived, where the prediction
step is based on the constant acceleration model [18], while
the update step depends on the gyro and accelerometer mea-
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Fig. 1. Left: 3D Arm model showing simulation IMU placement. Middle:
Lie group-based arm model with attached IMU units for dynamic motion
simulation. Right: Euler angle-based arm model.

surements of the IMU units. We compare the performance
of the proposed algorithm with an EKF based on the Euler
angles parametrization both in simulation and real-world
experiments. The results show that the proposed approach
significantly improves performance and is not affected by
gimbal lock.

The rest of the paper is organised as follows. In Section II
we present the mathematical fundamentals addressing Lie
groups and associated uncertainties. In Section III we present
the novel LG-EKF, while in Section IV we briefly describe
the EKF based on Euler angles. Section V presents the
validation results and Section VI concludes the paper.

II. MATHEMATICAL BACKGROUND

In this section we provide the mathematical background for
human motion estimation on matrix Lie groups, based on the
human body modeling approach and the corresponding state
space construction first proposed in [19].

A. Construction of the state space

We construct the state space by using Lie group represen-
tatives for each joint of interest. As an example we consider
the model of a human arm illustrated in Fig. 1. An example
of group G representing the state space for this model is

shoulder elbow
— —
G =S0(3) x SO(2) x SO(2) . (1)

The first element in (1) describes the shoulder employing a
special orthogonal group SO(3) and providing 3 DoF mobil-
ity, while the second and third elements jointly model the 2
DoF motion of the flexion/extension and internal rotation of
the elbow joint, where each element of a special orthogonal
group SO(2) contributes a single DoF. Note that the choice
of the state space only incorporates system variables and not
the kinematic model geometry.

B. Lie groups and Lie algebra

A Lie group G is a group which also has the structure of
a smooth manifold. The group operators, composition and
inversion, are smooth operations. Each point X € G has
an associated tangent space T'x (G) [20]. This linear tangent
space is usually placed at the group identity, and is called the
Lie algebra of G, which we denote by g [21]. The Lie algebra

g, which is of the same dimension as G, admits a binary
operation [+, -] called the Lie bracket, which reflects the non-
commutative content of the group operation. Furthermore, if
the group G is a matrix Lie group, then G C R™*™ and group
operations are simply matrix multiplication and inversion.

The Lie algebra g C R™*" associated to a p-dimensional
matrix Lie group G C R™*™ is a p-dimensional vector
space defined by a basis consisting of p real matrices
E., r =1,...,p, often referred to as generators [22]. In
particular, a Lie algebra is an open neighbourhood around
0” in the tangent space of G at the identity I". The matrix
exponential exp¢ and matrix logarithm log establish a local
diffeomorphism between G and g as

expg:9—G and logg:G —g. 2)

Furthermore, a natural relation exists between the p-
dimensional Lie algebra g and the Euclidean space R?, and
is given through a linear isomorphism

[1{:9— R and []¢:RP —g. 3)
For brevity, we will use the following notation [17]
expg (2) = expg([z]g) and logg(X) = [logg(X)]§, )

where z € RP and X € G.

Since Lie groups are generally non-commutative, i.e.,
XY # Y X, we also need to employ the adjoint representa-
tions. The adjoint representation of G on g, Adg, can be seen
as as a way of representing the elements of the group as a
linear transformation of the group’s algebra, and in general,
it measures the failure of X € G to commute with elements
of G near the identity [23]. The adjoint representation of g,
adg, is in fact the differential of Adg at the identity element.
For a commutative group, the map ad evaluates to zero.

C. Concentrated Gaussian distribution

To make use of EKF on Lie groups, we need to establish
first a notion of a Gaussian distribution on Lie groups. A
distribution on a Lie group that is tightly focused, meaning
that almost all the mass of the distribution is concentrated
in a small neighborhood around the mean, can be expressed
in the Lie algebra [13], [24], and this concept is called a
concentrated Gaussian distribution.

Let X € G be a random variable following a concentrated
Gaussian distribution with mean x and covariance P as

X = pexpg(e), X ~G(p, P), )

where ¢ ~ Ng» (0P, P) is a zero-mean Gaussian distribution
with covariance P C RP*P defined in the Lie algebra, i.e.,
the Euclidean space RP. We can see form (5) that the mean
value p is defined on G, while the associated uncertainty
resides in R”. Roughly, this concept allows us to work with
the covariance directly in RP and use Euclidean tools, almost
as we would with a ‘classical’ Gaussian distribution [16].
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D. Special orthogonal groups SO(2) and SO(3)
The special orthogonal group SO(n) is the matrix group

SO(n) = {X CR™"|X"X =1,det(X) =1} . (6)

For n = 2,3 this group defines rotations in 2D and 3D,
respectively. The algebra so(n) comprises of n x n skew-
symmetric matrices. For Euclidean vectors z = ¢ and x =
[#1 ¢ ¢3]T, the algebras so(2) and s0(3) amount to

0 —¢ 0 —¢3 ¢
T50(2) = Lb 0 ] , Tom) = | 93 0 —=¢1|, (D
—¢2 1 0

where (-)5o,,) : R™ — so(n), while its inverse, (-)¢o,)
so(n) — R™, follows trivially from (7).

For SO(2), the exponential map yields the classical 2D
rotation matrix, while the logarithm evaluates to simple ex-
traction of ¢ into a skew-symmetric matrix form in (7). Since
SO(2) is commutative, its adjoint representations are trivial:
Adso(2) is a unit map and adso(z) is zero. The exponential
for SO(3), performing mapping expsos) : 50(3) — SO(3),
is given as

expSo ) («) = cos(|z[)I°+

za’ “390(3) ®)
+ (1 = cos(|z|)) — + sin(|z]|) .
|z[? |z
The logarithm, performing mapping logggs) : SO(3) —
50(3), is given as
0
1 X)=—(X-XT
OgSO(3)( ) 2&:111(6')( )
s.it. 1+2 COS(@) = Tr(X) 9)
0#£0 —m<f<m
=0 log(X)=0

The adjoints Adsp(sy and adso(z) are respectively given as

AdSO(3) (X) = X and adso(3) (I) = 9390(3) . (10)

In the sequel we present the new human motion estimation
method based on the LG-EKF using IMU measurements.

III. HUMAN MOTION ESTIMATION ON LIE GROUPS

Our goal is to estimate the pose of a kinematic chain
represented via Lie groups (as described in section II-A),
as well as its velocity and acceleration, using measurements
from rigidly attached inertial measurement units at each link.
To utilize LG-EKF for such state estimation, assuming a
constant acceleration model (CA) [25] for each joint, we
derive the necessary gyroscope and accelerometer measure-
ment models and their Jacobians.

A. Motion prediction step

We assume that the motion model of the system can be
described with the following equation [16]

Xir1 = F(Xi, 1) = Xp expl (Qk n nk> A

where X € G is the state of the system at time k, G is
a p-dimensional Lie group, ny ~ Ng»(0P*1,Qy) is zero
mean white Gaussian noise with covariance Qj, and Qk =
Q(X%) : G — RP is a non-linear C? function.

In our approach, similar to our previous work [19], we
assume the human motion to follow a constant acceleration
model and our state space G is then constructed to include
the positional, velocity and acceleration components block-
diagonally. Hence exponentials and logarithms will keep the
state in the block diagonal arrangement as well. The motion
model of a single joint ¢ is given as

i T2 g T2, i
o | Tt oy s P s
Q) = Taj, ER np = | Tnl | € R
i
0 ny,

(12)

where w} and af are the angular velocity and angular
acceleration represented in the Lie algebra!. The term n
represents the acceleration increment during the k-th sam-
pling period [25], d; represents the number of DoFs of the
t-th joint, and T is the sampling period.

Assuming that the posterior distribution at step k fol-
lows the concentrated Gaussian distribution G (g, Px), and
following the LG-EKF prediction step [19], the resulting
prediction can be approximated with a concentrated Gaussian
distribution G(f45,11|x, Pr+1|)- The mean propagation of the
LG-EKEF is:

i = e expl () (13)
while the covariance prediction is computed as
Piiajk = FePeFp + 06(Q)Qu®c ()T (14)

The operator F}, can be seen as a matrix Lie group equivalent
to the Jacobian of f(Xj,nk), and is calculated by

Fr = Adg (expé (—Qk)) + (%)L

L = %Q (b exDg (€)= -
The term %} represents the linearisation term where the
argument of the motion model is the mean of the current
state X, with an incremental perturbation additively added in
each of the p directions. Contrary to the conventional EKF, a
linear additive process noise affects the system as a function
of the current state of the system over the transformation
@G(Qk)Qk<I>G(Qk)T, where ®¢ appears due to the displace-
ment of the tangential space during the prediction step, and
is given by:

(15)

bov) =Y éﬁi;! ade(v)’, v e RP.

(16)

'Euclidean space RP,p € N is a matrix Lie group and in order to
construct G we employ its matrix representation obtained by simple matrix
embedding. The matrix representation of the Euclidean space is also a
subgroup of SE(n) where a pure translation is employed [26].
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B. Measurement update step

We next derive the update step by employing gyro and
accelerometer measurements of IMUs attached to a human
body. The discrete measurement model on the matrix Lie
group is modelled as:

Zt1 = h(Xit1) exper (mit1) a7

where Zp41 € G, h : G — G’ is a C! function, G’ is a
p/-dimensional Lie group and mgi1 ~ ANga(09% Riiq)
is zero-mean white Gaussian noise with covariance Ry .
The update step of the filter strongly resembles the standard
EKF update procedure, relying on the Kalman gain Ky
and innovation vector vy calculated as:

-1

K1 = PopipMis1r (Mes1Prop1eHig + Risr)

Vi1 = Kip110g8 (h(prsape) ™ Zrsa) -

The matrix Hypy1 can be seen as the matrix Lie group
equivalent of the Jacobian of h(X41), and is given as:

(18)

a — €
Hi1 = &log\é/ (h(lik+1|k) 1h’(’u’“”k))|€=0 ,

v.vhere At i) = h,(u;H”k. expe (6)), descr.ibes the varia-
tion of measurements for an infinitesimal motion €. We now
evaluate the matrix Hyy; based on gyro and accelerometer
measurements.

C. Gyro update

The measurement function of the gyro measurement is:

o
Z’C Wit 1]k »

where n is the number of joints preceding the gyro sensor s.
The term K% = K2 7(X k+1|k) is the rotational component
of the forward kinematics between the i-th joint and the
gyro sensor s, thus affecting its measurement [27]. The gyro
measurements are affected by position (through kinematics)
and velocity, hence the corresponding parts of 1 matrix
need to be evaluated.

By applying partial derivatives and evaluating the multi-
variate limits similarly to [28], the part of H 1 relating the
gyro measurement to the orientation of the [-th joint HZL
is:

h(Xkq1ik) (19)

1—1
o,lr s$,R T pl=t
Hyy = E :’C E5" 0, ch wk+1|k’

i=1

(20)

where IC?’R represents the rotation between the i-th and [-
th joint, 02 1k is the position of the I-th joint, while E""
represents the r-th generator of a Lie group representing
the [-th joint [24]. Each of the generators represents an
infinitesimal motion in one of the directions of a Lie group.

The part of Hy4; relating the gyro measurement to the
velocity of the [-th joint 7—[“,:11 is given as:

=Kt 1)

Hi
Since gyro measurement (19) is not a function of the joint
accelerations, the part of the Hjyi; matrix relating gyro

measurements to [-th joint acceleration components is filled
with zero values; ’Hgil —0.

D. Accelerometer update

The measurement function corresponding to the accelerom-
eter measurement is:

point acceleration

R R
S, LT s S,
WMXpqk) = Ko b + Kol'g

where the first term emerges due to dynamics of a body,
while the second term arises due to gravity. The superscript
R denotes that only the rotation part is embedded into an
SE(3) member, while the translation part is set to 0. The term
Dr+1)x TEpresents an acceleration of the sensor s represented
in the base frame and given in homogeneous coordinates,
while g is the gravity vector in homogeneous coordinates.
In order to evaluate P 1), we start from defining the IMU
position as:

gravity component

(22)

D1k = KJO (23)

where O = [0 0 0 1]T is the origin represented in homoge-
neous coordinates. The forward kinematics are:

’CS = Tl()911c+1\kT210i+1|k I 19k+1\k 24)

Each part of the forward kinematics K! ' = T/~ 19k )k

consists of the constant transformation 7} ! and the position
of the i-th joint G,i 1k In order to sequentially apply a
matrix multiplication inducing each joint state, we describe
joints as 4 x 4 transformation matrices (in terms of Lie
groups denoted as special euclidean group SE(3)). We now
evaluate the first two derivatives of sensor position pj |-
The velocity of the point p 1) evaluates to:
n
Proae = D (KDSp2,,K8) 0, (25)
i=1

where the summation iterates over n joints affecting sensor
s, while the term S,

e is given as:
d;
7 ,wW 1,7 i,r
Sk+1\k E :(wk+1|kE )7 (26)
r=1

which is a function of the number of degrees of freedom
d; of the i-th joint, and the superscript w denotes that the
velocity components are summed up. The acceleration of the
point py4 1, evaluates to:

centripetal force component I

n

Pre1k :Z (Z (KOSi’ﬂ\k’CJ)Squk

=1 j=1

g) O+ (27

centripetal force component 1T

Z(/Cos,gjlk Z (K‘Sk+1|kK§)>O+

=1 J=i+1
Z(ICO Mk/@)@
=1

joint acceleration component
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The acceleration py, 1|y consists of two components — the
centripetal force component and joint acceleration compo-
nent, which we emphasize in (27).

We now proceed to linearize and evaluate the part of Hy41
corresponding to the accelerometer measurement and joint /:

[H2+q _ oK

1 8Xllc+1\k

; s.R OPkt1)k
(Braape + 9) + K5 T e (28)

6Xk+1|k

In order to evaluate (28) we compute partial derivatives
of ICS’R and py41), With respect to position, velocity, and
acceleration of X} . The detailed derivation is provided
in the supplementary material [29].

Finally, having evaluated Hj1, the measurement update
step is calculated as [16]:

[h+1 = His1lk €XPE (Viy1) (29)
Prg1 = P6(it1) (I — Kip1Hpr1) P ®o (Vi)

IV. EULER ANGLE BASED APPROACH

The proposed approach is compared to a conventional EKF
applied to a standard kinematic model defined with revolute
and prismatic joints [30]. Three perpendicular revolute joints
(Euler angles) can be used to model human spherical joints
such as the shoulder and the hip. The state of the EKF is
defined as the position ¢, velocity ¢, and acceleration § of
the joints. Just as in the LG-EKF formulation we assume
constant acceleration of each joint.

It is also possible to model the kinematics using quater-
nions to represent the joint state. Since rotations are repre-
sented by unit quaternions, one approach when using EKF
is to normalize the state estimate after each iteration [8].
This normalization, while correctly propagating the error
covariance, no longer optimally performs the state update
step [31]. Similar to rotation matrices quaternions have a
tangent space and thus, it is possible to apply LG-EKF to a
quaternion based state representation using the SU(2) group,
in this case we expect similar results to our formulation.

V. VALIDATION RESULTS

We validate the proposed approach both in simulation and
with real human motion. First, in simulation, we demonstrate
the benefits of LG-EKF over EKF when using IMU measure-
ments during highly dynamical movements whose motion is
better described on the group and show that unlike EKF, LG-
EKEF is not affected by gimbal lock. Next, we evaluate the
performance of LG-EKF and EKF on real IMU data of a
dynamic figure eight arm movement sequence.

A. Simulation Validation

1) Dynamic Motion: To test the properties of LG-EKF,
we simulate a human shown in Fig. 1, modeled with (1).
Two IMUs are attached to the humerus and radius at offsets
of [0.10.10.3]T, and [0.10.10.4]T respectively.

It is possible to generate Brownian motion either on the
group or on Euler angles to exactly match the constant
acceleration with zero mean Gaussian noise assumption of
LG-EKF or EKF. Since large constant acceleration in one

Acceleration of SO(3) x SO(2) x SO(2)

4 T T T I
= 1
é 2 ay |
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Fig. 2. Performance of EKF and LG-EKF based on Brownian motion

on Lie Algebra. Since LG-EKF has an accurate motion model it correctly
tracks the arm movement. Once the angular accelerations on the Lie Algebra
become large, the constant Euler angle acceleration model of EKF does
not provide a good state prediction and EKF cannot maintain an accurate
estimate. vy denotes SO(3) with 3 dofs, while a2 and a3 correspond to
SO(2) joints with a single dof.

representation implies a quickly changing acceleration in the
other, we can expect the filter with the correct motion model
to significantly outperform the other in high acceleration
regions. Figure 2 shows the Brownian motion generated
on the group representation of the arm and the root mean
squared error (RMSE) in position estimation of the wrist
IMU for EKF and LG-EKF. It is clear that during high
constant accelerations on the group, Euler angle based EKF
cannot accurately track the motion.

However, it is unlikely that human motion will satisfy the
constant acceleration assumption. Thus, in order to compare
EKF and LG-EKF without being biased to a specific motion
representation we generate a dynamic trajectory in task space
and utilize inverse kinematics to recover joint angles of the
Euler angle model. Next we numerically differentiate the
trajectory to retrieve joint velocities and accelerations and
generate the IMU measurements using forward kinematics.
The task space trajectory is created by cubic splining of
points in the reachable workspace generated from a univari-
ate distribution. This setup creates a highly dynamic motion
as can be seen from the positions of the two IMUs shown in
Fig. 3. Simulated IMUs are sampled at 100 Hz and zero mean
Gaussian noise with standard deviations of 0.01 % and 0.13
is added to the gyroscope and accelerometer measurements
respectively. For both filters the initial covariances were set
to a diagonal matrix of a 10~3 denoting accurate knowledge
of the initial state. For the process noise, for each triplet
[¢ w a] or [¢ ¢ ], noise of standard deviation 7 is injected
into « and is propagated to w and ¢ by integration. Thus,
for each triplet the process noise covariance is GGT where
G = [%2 T 1]n. For the dynamic motion simulation 1 was
set to 102“—2‘]1 per iteration. The observation noise was set to
the true sensor noise values.

To compare the estimate with the ground truth, we use
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Fig. 3. 10 Second simulation trajectory of the IMUs attached to the
humerus and radial undergoing the generated highly dynamic motion.
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Fig. 4. Error between the actual and estimated rotations at the shoulder
and elbow joint for LG-EKF and EKF during task space generated dynamic
motion. Estimation of shoulder rotation is significantly improved using the
SO(3) model.

the deviation from the identity matrix as the distance metric
[32]:

Dr = ||I = RIRy| (30)

where R, and Ry, are the estimated and ground truth rotation
matrices of each joint and ||-||  denotes the Frobenius norm.

Figure 4 shows the comparison between the LG-EKF and
EKF using this distance metric for the shoulder and elbow
joints. The LG-EKF significantly outperforms the EKF filter,
which is due to LG-EKF’s ability to handle gimbal lock as
explained in the next section.

2) Gimbal Lock: Next we investigate the impact of gimbal
lock on the proposed approach. Any set of Euler angles will
lose a degree of freedom when two of the rotation axes
align [33], implying that in that configuration the rotation
about the locked axis cannot be correctly estimated by EKF.
Typically the order of the joint axes is carefully selected to
try and avoid the lock, however in human motion estimation,
gimbal lock often takes place at the shoulder joint due to its
high manoeuvrability. Unlike the Euler angle formulation, an

Fig. 5. Simulation model used for gimbal lock validation.

time [s]

Fig. 6. LG-EKF and EKF estimation during gimbal lock. Both filters
accurately estimate the rotation about the y axis until the system gets close
to the gimbal lock, which happens at 1 second. After the rotation about y the
Euler angle model is in gimbal lock and thus EKF cannot accurately track
the orientation until the lock is escaped at 1.5 seconds. Once Euler angles
escape the gimbal lock, EKF can regain an accurate estimate of the roll and
pitch orientation using the accelerometer’s gravity measurement. However,
any error in yaw during gimbal lock accumulates. LG-EKF estimation is
unaffected by gimbal lock.

SO(3) representation of the spherical joint does not suffer
from gimbal lock and thus LG-EKF will accurately estimate
any rotation.

To demonstrate the benefits of LG-EKF over EKF during
gimbal lock we simulate a single spherical joint at the
origin with a single IMU attached at an offset of 0.1
meters in x. The simulated model is shown in Fig. 5. A
quintic polynomial is used to generate a smooth trajectory,
sampling at 100 Hz. First, the model experiences a 1 second
rotation about the world y axis with initial position Orad and
final positions 7 rad and zero initial and final velocity and
acceleration. In the Euler angle model this motion aligns the
first and third revolute joint axes putting it into a singularity
and removing a degree of freedom (gimbal lock). Next, the
model experiences the same 1s rotation in the now locked
world z axis. In order to focus only on the gimbal lock
problem, no noise was added to the IMU measurements.
Measurement noise, process noise, and initial covariances
were set as described in Sec. V-A.l. Figure 6 shows the
distance metric described in (30).

When Euler angles enter gimbal lock, the Euler angle
based Jacobian is singular and thus the linearized system
is no longer observable. In this case EKF cannot accurately
estimate the states. By plotting the condition number of the
observability matrix Oy = [Hy, HxFy -- -] of the linearized
system we can visualize the ability of the filters to handle
gimbal lock (Fig. 7).

Furthermore we show that the Lie group motion model
is superior for process noise representation over the Euler
angle motion model. Consider a single SO(3) joint with an
IMU attached at some offset. Independent of the initial SO(3)
state, addition of zero mean, Gaussian process noise to the
state results in a consistent distribution of the end effector
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Fig. 7. Condition number of the observability matrix of the linearized

system at each iteration during gimbal lock. The condition number of EKF
increases rapidly from 0.75 seconds when the Euler angles are still 12°
away from gimbal lock. In this region EKF may incorrectly estimate large
state increments. LG-EKF retains observability during gimbal lock.
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Fig. 8. An IMU is attached to an SO(3) joint with an offset of (0.1,0.1,0.3)
in (x,y,z) axes. Zero mean Gaussian noise with standard deviation of
0.2 is added to the identity state and when the configuration is roted
by 5= radians. The Lie group representation (red and green) retains the
distribution properties through the rotation about the y axis. In the Euler
angle representation the distribution is significantly altered when the axes
are no longer perpendicular.

position. With the Euler Angle model, adding the same
process noise results in end effector position distribution that
is state dependent, as illustrated in Fig. 8. Thus near gimbal
lock Euler EKF requires higher process noise to capture the
variability in a highly maneuverable 3D joint such as the
shoulder while LG-EKF process noise will remain constant
and lower for the entire state space. Thus it should be easier
to tune LG-EKF for better performance over the entire state
space.

B. Real-world experiment

We validate the proposed approach by comparing the dis-
tance between actual and estimated wrist and elbow positions
during a dynamic figure eight human arm motion collected in
a motion capture studio. The motion capture studio utilizes
8 Motion Analysis cameras capturing at 200Hz. Our IMUs
are based on the MPU9250 sensor and were set to sample at
100Hz, they were calibrated [34] prior to data collection. The
kinematic model of the participant was generated based on
motion capture markers placed on the shoulder and medial
and lateral sides of the elbow and wrist. Three motion capture
markers were placed on each IMU to compute their offset
and rotation from the humerus and radius.

For the best performance of both filters it is imperative
to tune the initial covariance, observation noise, and process
noise parameters. In our experiment the initial pose of the
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Fig. 10. Distance between the actual and estimated wrist positions. With
each pass near gimbal lock, the Euler angle model EKF accumulates error
about world Z axis.

participant is known and thus we set the initial covariance to
103 along the diagonal. The observation noise parameters
are set to match those of the IMUs based on 30 seconds
of static data. We assumed discrete constant acceleration
process noise [25] of magnitude n as described in section
V-A.1 and used the Matlab optimization toolbox to find the
optimal process noise parameters for EKF and LG-EKF such
that the distance between the estimated and actual elbow and
wrist positions is minimized over 3 repetitions of the figure
eight motion. The optimal process noise parameters were
found to be ngxr = 389.1 and 7 gExkr = 264.8 for EKF
and LG-EKF respectively. The significantly lower optimal
process noise for the Lie group motion model shows that
human motion is better estimated on the group.

Figure 9 shows the estimated and actual wrist positions for
both EKF and LG-EKF. Figure 10 plots the distance between
actual and estimated wrist positions. Both filters begin with
equally accurate estimation. With each pass through the
corner of the figure 9 near gimbal lock, EKF accumulates
error about the world Z axis. Since LG-EKF is not affected
by gimbal lock its performance stays consistent throughout
the entire motion. Table I shows the RMSE and standard
deviation for elbow and wrist position estimation.

VI. CONCLUSION

We proposed a novel algorithm for human motion estimation
based on body worn IMU sensors. Based on the kinematics
of the human body, we formed the state as a Cartesian
product of Lie groups. In order to stochastically infer the
state of such a Lie group, we employed the LG-EKF, thus
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TABLE I

ROOT MEAN SQUARED ERROR OF ESTIMATED AND ACTUAL ELBOW AND
WRIST POSITIONS FOR THE TWO FILTERS. THE PROPOSED LG-EKF

IMPROVES THE POSITION ESTIMATE BY 30% OVER EKF.

Elbow RMSE [cm]
5.2 £ 2.6
74 + 3.6

Wrist RMSE [cm]
6.9 + 2.7
99 + 3.8

LG-EKF
EKF

explicitly accounting for the non-Euclidean geometry of the
state space. A constant acceleration motion model on the
group was developed for the LG-EKF prediction step and
the Jacobian of the IMU (gyroscope and accelerometer mea-
surements), was derived for the update step. The performance
of the proposed method was evaluated in both simulation and
real-world data, comparing it with the EKF based on Euler
angles. The proposed algorithm can estimate human motion
with lower end effector position RMSE than the EKF and
is not affected by gimbal lock. Future work will include
full body pose estimation based on wearable IMU sensors
and investigating using SE(3) joint types that can represent
transformation matrices to accommodate for translations in
3D space and handle the free flyer problem.
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Supplementary material to
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DERIVATION OF Hj41 GIVEN ACCELEROMETER MEASUREMENTS
The full state of the system X}, is of the form

X}, = blkdiag{0, wi, o }, -
0), = blkdiag{0}, ..., 01"},

wy, = blkdiag{w;, ..., w"},
oy, = blkdiag{a}, ...,a"},

where subscript k denotes time instant, ¢}, is position of the i-th joint, w is velocity of the i-th joint, o} is acceleration of
the i-th joint, and m is the number of joints of a body. Measurement Jacobian #_ relating the accelerometer measurement
and joint [ is given as

s,R apk+1\k

——— Pk + 9) + Kg X!

s,R
H§c+1:| — 8/C (1)

1 0X|

k+1]k k+1\k

where IC;’R stands for the rotational component of the forward kinematics between the ¢-th and j-th joints (alternatively
0 represents origin, and s denotes sensor), Py 1) represents an acceleration of the sensor s represented in the base frame
and given in homogeneous coordinates, while g is the gravity vector in homogeneous coordinates. The subscript k + 1|k
denotes prediction at time instant k£ + 1 given the measurement up to and including time instant k. In order to evaluate (1)
we need to compute partial derivatives of ICS’R and Py 1), With respect to position, velocity, and acceleration of the full
system state for joint [, ie., X .

A. Positional part
Here we consider the evaluation of H! 1 Wwith respect to position 92 ke We start by evaluating the partial derivative of
forward kinematics ICS’ with respect to the positional variable Gk 1k where r relates to the r-th generator, r = 1, .., d;,
with d; being the number of degrees of freedom of joint /. This evaluates to

oKyt

60 ETKS R (2)

_ LR
=K 0k+1|k

k+1)k

where E'7 represents the r-th generator of a Lie group representing the [-th joint. The evaluation of the partial derivative
of acceleration p 1), with respect to the positional variable Ok 1k evaluates to

Obrriln n i KOE”’CI Sk+1|kK:J k+1|k’C I<j
aeﬂ =Y /COSMI,C/CJE KiSy ke, j<i<ip |0+ 3)
K HWIC’E”ICZ, i<l

k+1|k i=1 \j=1 KOS
KO Bl KL KESIe KD, 1<

k+1]k
" n k+1\k k1] s
Z Z K7 Sk+1\k’Cl Ebr ’Cl Sk+1|k K, i<l<y O+

=L AT KD S, K Sk+1|k KB KL, <l
i ]COEIT]CI k+1\kl€1 , 1 <1 o
= K 5k+1\k’q EY K, i<l 7

This work has been supported from the Unity Through Knowledge Fund under the project Cooperative Cloud based Simultaneous Localization and
Mapping in Dynamic Environments (cloudSLAM) and by the Ministry of Science, Education and Sports of the Republic of Croatia under the grant Center
of Research Excellence for Data Science and Cooperative Systems (CoE ACROSS).

* Vladimir Joukov, Kevin Westermann and Dana Kuli¢ are with the University of Waterloo, Department of Electrical and Computer Engineering,
Adaptive Systems Laboratory, Canada. {vjoukov@uwaterloo.ca, kgwester@uwaterloo.ca, dkulic@uwaterloo.ca}

t Josip Cesi¢, Ivan Markovi¢ and Ivan Petrovié are with the University of Zagreb, Faculty of Electrical Engineering and Computing, Laboratory for
Autonomous Systems and Mobile Robotics, Croatia. {josip.cesic@fer.hr, ivan.markovic @fer.hr, ivan.petrovic@fer.hr}



where

d;

Siie =2 (T B ). 4)

r=1
which is a function of the number of degrees of freedom d; of the ¢-th joint, and the superscript w denotes that the velocity
components are summed up. The three parts in (3) arise from evaluating partial derivatives of the three components existing
in equation (27) of the original manuscript, i.e., the two centripetal components and the joint acceleration component.
Depending on the location within kinematic chain of the considered joint [, different terms need to be applied. However, this
is still a direct result of evaluating partial derivatives of (27) of the original manuscript. The complete positional component
can now be calculated as

oL o Ot 1)k
’“1“ = (Brrap +9) + KS’RiJ L &)
0k 01k

B. Velocity part

Since ICS’R is only a function of the joint position 950 ke the partial derivative of forward kinematics with respect to the
velocity component is

oKy

lr
8wk+1|k

—-0. (6)

We now evaluate the partial derivative of acceleration py 1), with respect to the velocity variable wi’ll‘ x> Which evaluates
to the following expression

aﬁkJF”k 0 l,r S | ot,w i : 0 cj,w i Loy -l
i = KB Y (Kisprykt) o+ 3 (Kosie, K ) Bhriclo + )
k+1|k i=l j=1

kOB i (khsisyrci)o + Z(K?S,i’fllklcf)El’TIClsO.

j=l+1 i=1

The four parts of this derivative arise from the two centripetal force components (two per each) given in equation (27) of
the original manuscript. The complete velocity component can now be calculated as

Hebr oKyt OPrt1|k
k1+1 ] = %(mmm + g) + ’CS’RT| . 3
awk+1\k 8wk+1|k

C. Acceleration part
Here, we evaluate the acceleration term. Since ICS’R is only function of the joint position 02, 1k the partial derivative of
forward kinematics with respect to the acceleration component is

oKy

l,r
aak+1\k

=0. )

The partial derivative of acceleration pj, 1, with respect to the r-th component of the acceleration of the [-th joint, O‘Zill e
evaluates as
1|k

lLr
aak+1\k

=KVE"KLO . (10)

This derivative arise from the joint acceleration component given in equation (27) of the original manuscript. The complete
acceleration component can now be calculated as

L,r
ao‘k+1\1c

a,l,’r S,R .
[Hk+1:| _ 9K, (# s,Rapk—O—lUc. RE

] Prr1pk +9) + Ko I
8ak+1\k

Finally, the full H;4; relating sensor measurement and the system variables associated to m joints is constructed as

l 0,1 w,l a,l
Hyr = [Hk-H Hil Hk-&-l} : (12)
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In this paper we propose a new state estimation algorithm called the extended information filter on
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complexity of the information form with respect to high number of measurements.
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1. Introduction

The information filter (IF) is the dual of the Kalman filter (KF)
relying on the state representation by a Gaussian distribution
(Maybeck, 1979), and hence is the subject of the same assump-
tions underlying the KF. Whereas the KF family of algorithms is
represented by the first two moments involving the mean and co-
variance, the IF relies on the canonical parametrization consist-
ing of an information matrix and information vector (Grocholsky,
Makarenko, & Durrant-Whyte, 2003). Both the KF and IF operate
cyclically in two steps: the prediction and update step. The advan-
tages of the IF lie in the update step, especially when the num-
ber of measurements is significantly larger than the size of the
state space, since this step is additive for the IF. For the KF, the
opposite applies; it is the prediction step which is additive and
computationally less complex. What is computationally complex
in one parametrization turns out to be simple in the other (and
vice-versa) (Thrun, Burgard, & Fox, 2006). Given this duality, the
IF has proven its mettle in a number of applications facing large
number of measurements, features or demanding a decentralized

* The material in this paper was not presented at any conference. This paper was
recommended for publication in revised form by Associate Editor Brett Ninness
under the direction of Editor Torsten Séderstrom.
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filter form. For example, if the system is linear and the state is mod-
eled as Gaussian, then multisensor fusion can be performed with
the decentralized KF proposed in Rao, Durrant-Whyte, and Sheen
(1993), which enables fusion of not only the measurements, but
also of the local independent KFs. Therein, the inverse covariance
form is utilized, thus resulting in additive fusion equations, which
can further be elegantly translated to the IF form as shown in Net-
tleton, Durrant-Whyte, and Sukkarieh (2003). In Zhang, Chai Soh,
and Chen (2005) an IF is presented for robust decentralized estima-
tion based on the robustness property of the H,, filter with respect
to noise statistics, whereas in Battistelli and Chisci (2016) stability
of consensus extended Kalman filter for distributed state estima-
tion was investigated. In Onel, Ersoy, and Delic (2009) collabora-
tive target tracking is developed for wireless sensor networks and
a mutual-information-based sensor selection is adopted for par-
ticipation in the IF form fusion process. In Fu, Ling, and Tian (2012)
the IF form is used in multitarget tracking sensor allocation based
on solving a constrained optimization problem. In Vercauteren and
Wang (2005) a sigma-point IF was used for decentralized target
tracking, in Campbell and Whitacre (2007) a square root form of
the same filter was used for cooperative tracking with unmanned
aerial vehicles, and in Liu, Worgotter, and Markeli¢ (2012); Wang,
Feng, and Tse (2014) square-root information filtering was further
explored with respect to numerical stability. The unscented IF was
presented in Lee (2008) for tracking of a re-entry vehicle enter-
ing into an atmosphere from space, and in Pakki, Chandra, and
Postlethwaite (2013) the square root cubature IF was proposed and
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demonstrated on the example of speed and rotor position estima-
tion of a two phase permanent magnet synchronous motor.
Another important aspect of estimation is the state space ge-
ometry, hence many works have been dedicated to dealing with
uncertainty and estimation techniques accounting for it. For ex-
ample, Lie groups are natural ambient (state) spaces for descrip-
tion of the dynamics of rigid body mechanical systems (Murray, Li,
& Sastry, 1994; Selig, 1996). Furthermore, error propagation on the
SE(3) group with applications to manipulator kinematics was pre-
sented in Wang and Chirikjian (2006a) by developing closed-form
solutions for the convolution of the concentrated Gaussian distri-
butions on SE(3). Furthermore, in Wolfe, Mashner, and Chirikjian
(2011) the authors propose a solution to Bayesian fusion on Lie
groups by assuming conditional independence of observations on
the group, thus setting the fusion result as a product of concen-
trated Gaussian distributions, and finding the single concentrated
Gaussian distribution parameters which are closest to the start-
ing product. Uncertainty association, propagation and fusion on
SE(3) was investigated in Barfoot and Furgale (2014) along with
sigma point method for uncertainty propagation through a non-
linear camera model. In Forster, Carlone, Dellaert, and Scaramuzza
(2015) the authors preintegrated a large number of inertial mea-
surement unit measurements for visual-inertial navigation into a
single relative motion constraint by respecting the structure of the
SO(3) group and defining the uncertainty thereof in the pertain-
ing tangent space. A state estimation method based on an observer
and a predictor cascade for invariant systems on Lie groups with
delayed measurements was proposed in Khosravian, Trumpf, Ma-
hony, and Hamel (2015). Recently, some works have also addressed
the uncertainty on the SE(2) group proposing new distributions
(Gilitschenski, Kurz, Julier, & Hanebeck, 2014; Kurz, Gilitschenski,
& Hanebeck, 2014); however, these approaches do not yet pro-
vide a closed-form Bayesian recursion framework (involving both
the prediction and update) that can include higher order motion
and non-linear models. A least squares optimization and nonlin-
ear KF on manifolds in the vein of the unscented KF was proposed
in Hertzberg, Wagner, Frese, and Schroder (2013) along with an
accompanying software library. Therein the authors demonstrate
the filter on a synthetic dataset addressing the problem of trajec-
tory estimation by posing the system state to reside on the man-
ifold R* x SO(3) x R3, i.e., the position, orientation and velocity.
In the end, the authors also demonstrate the approach on real-
world simultaneous localization and mapping (SLAM) data and
perform pose relation graph optimization. In the vein of the ex-
tended Kalman filter (EKF) a nonlinear continuous-discrete ex-
tended Kalman filter on Lie groups (LG-EKF) was proposed in
Bourmaud, Mégret, Arnaudon, and Giremus (2015). Therein, the
prediction step is presented in the continuous domain, while the
update step is discrete. The authors have demonstrated the effi-
ciency of the filter on a synthetic camera pose filtering problem by
forming the system state to reside on the SO(3) x R® group, i.e. the
camera orientation, position, angular and radial velocities. In an
earlier publication (Bourmaud, Mégret, Giremus, & Berthoumieu,
2013), the authors have presented a discrete version of the LG-
EKF, which servers as the inspiration for the filter proposed in the
present paper. In Cesi¢, Markovi¢, Cvisi¢, and Petrovi¢ (2016) we
have explored modeling of the pose of tracked objects on the SE(2)
group within the LG-EKF framework, and applied it on the problem
of multitarget tracking by fusing a radar sensor and stereo vision.
Given the advantages of the IF and filtering on Lie groups, a nat-
ural question arises; Can LG-EKF be cast in the information form
and will the corresponding information filter on Lie groups keep
the additivity and computational advantages of the update step?
A quite prominent example of an application where the need
arises for computational benefits of the IF and the geometric
accuracy of Lie groups is SLAM. SLAM is of great practical

importance in many robotic and autonomous system applications
and the earliest solutions were based on the EKF. However, EKF
in practice can handle maps that contain a few hundred features,
while in many applications maps are orders of magnitude larger
(Thrun et al., 2004). Therefore, the extended information filter
(EIF) is often employed and widely accepted for SLAM (Bailey,
Upcroft, & Durrant-Whyte, 2006), and has reached its zenith with
sparsification approaches resulting with sparse EIF (SEIF) (Thrun
et al., 2004) and exactly sparse delayed-state filter (ESDF) (Eustice,
Singh, & Leonard, 2006). However, the localization component of
SLAM conforms the pose estimation problem as arising on Lie
groups, i.e., describing the pose in the special euclidean group
SE(3) (Barfoot & Furgale, 2014). Furthermore, the mapping part
of SLAM consists of landmarks whose position, as well, arises
on SE(3). Therefore, some recent SLAM solutions approached the
problem by respecting the geometry of the state space (Kiimmerle
et al., 2011; Ros, Guerrero, Sappa, Ponsa, & Lopez, 2013), since
significant cause of error in such application was determined to
stem from the state space geometry approximations. However,
these SLAM solutions, although able to account for the geometry of
the state space, exclusively rely on graph optimization (Engel, Sch,
& Cremers, 2014; Mur-Artal, Montiel, & Tardos, 2015), but not on
filtering approaches. By using the herein proposed algorithm, one
can extend the SLAM filtering approaches, such as SEIF or ESDF,
and at the same time respect the geometry of the state space via
formulation on Lie groups.

The main contribution of this paper is a new state estimation
algorithm called the extended information filter on Lie groups
(LG-EIF), which exhibits the advantages of the IF with regard
to multisensor update and decentralization, while keeping the
accuracy of the LG-EKF for stochastic inference on Lie groups.
We present the theoretical development of the LG-EIF recursion
equations and the applicability of the proposed approach is
demonstrated on a rigid body attitude tracking problem with
multiple sensors. In the experiments we define the state space to
reside on the Cartesian product of the special orthogonal group
S0(3) and R?, with the first component representing the attitude
of the rigid body and the second component representing the
pertaining angular rates. Given that, the model of the system is
then set as a constant angular rate model acting on the state space
SO(3) x R>. Note that, just like the LG-EKF, the proposed filter
can be applied on any matrix Lie group or combination thereof. In
the end, we compare the proposed LG-EIF to an EIF based on Euler
angles, and we analyze the computational complexity of the LG-EIF
multisensor update with respect to the LG-EKF. The results show
that the proposed filter achieves higher performance consistency
and smaller error by tracking the state directly on the Lie group and
that it keeps smaller computational complexity of the information
form with respect to large number of measurements.

The rest of the paper is organized as follows. In Section 2 we
present the theoretical preliminaries addressing Lie groups and
uncertainty definition in the form of the concentrated Gaussian
distribution. In Section 3 we derive the proposed LG-EIF, while in
Section 4 we present the experimental results. In the end, Section 5
concludes the paper.

2. Preliminaries
2.1. Lie groups and Lie algebras

Generally, a Lie group is a group which has also the structure
of a differentiable manifold and the group operations (product and
inversion) are differentiable. In this paper we restrict our attention
to a special class of Lie groups, the matrix groups over the field
of reals, where the group operations are matrix multiplication and
inversion, with the identity matrix I¢ being the identity element
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Fig. 1. An illustration of mappings within the triplet of Lie group G - Lie algebra g
- Euclidean space RP.

of the group. These groups are frequently called, especially in the
engineering literature, matrix Lie groups. The name emphasizes
the fact that every matrix group is a Lie group, as well as the
differential geometric viewpoint that is regularly employed. A
matrix Lie group G can be characterized as a closed subgroup of
a general linear group GL(d; R), in the sense that: if (4,) is a
sequence of matrices in G and A, converges to a matrix A, with
respect to a norm on R?*? then A € GorA ¢ GL(d; R), i.e, Ais
not invertible (Hall, 2003). Ubiquitous examples of real matrix Lie
groups are the general linear group GL(d; R), special linear group
SL(d; R), orthogonal O(d) and special orthogonal SO(d) groups,
etc. For an introductory, but rigorous mathematical treatment of
matrix Lie groups, the interested reader is advised to confer (Hall,
2003).

To every Lie group G, there is an associated Lie algebra g—
a linear space (of the same dimension as G) endowed with a
binary operation [-, -] called the Lie bracket. From the differential
geometric point of view, it is an open neighborhood of the
origin in the tangent space of G at the identity element. A local
diffeomorphism between a Lie group (manifold) and associated
Lie algebra (tangent space) is established through the exponential
mapping exp : g — G and its inverse log : G — g called the
logarithm. This is a crucial mechanism for transfer of information
between the group and its algebra. In case of matrix Lie groups, the
exponential mapping is simply the matrix exponential

© 1
exp(X) = » —X",
n=0 "

and its inverse is of course the matrix logarithm defined for
all d x d matrices A satisfying ||[A — 19| < 1. Moreover, the
matrix exponential can even be used to characterize the matrix Lie
algebra—if G is a matrix Lie group, then its Lie algebra, denoted by
g, is the set of all matrices X such that exp(tX) € Gforallt € R
(Hall, 2003). Being a linear space, a (real) p-dimensional matrix Lie
algebra g is naturally related to the Euclidean space RP through
a linear isomorphism (-)¥ : g — RP and its inverse denoted by
()" : RP — g. An illustration of these concepts is given in Fig. 1
(Bourmaud et al., 2015).

The adjoint representation of a matrix Lie group G is the map
Ad : G — GL(g) defined by A — AdA, where AdA is a linear
invertible operator AdA : g — g given by

AdAX) = AXA™!,

Due to the natural isomorphism between g and RP, essentially
GL(g) = GL(p;R) and Ad is to be understood as a group
homomorphism. Therefore, there exists a unique linear map ad :
g — GL(g), called the adjoint representation of the Lie algebra g,
defined by X +— ad X, where ad X is a linear operator on g given by

adX(Y) = [X, Y] = XY — YX,

In fact, from the differential geometric point of view, ad is the
differential of Ad at the identity of G, and they are related through
the following Hall (2003)

Adexp(X) = exp(ad X),

X eg.

Y eg.

forall X e g. (1)

G(I4, %)

/\

I¢ oP

Ne(0P, %)

G RP

Fig. 2. An illustration of the concentrated Gaussian distribution (¢, X). The
mean value I resides on the group G C GL(d; R) while the covariance matrix X
belongs to GL(p; R). On the right we depict the truncated or compactly supported
corresponding & ¢ Gaussian in R with mean value 0? and covariance matrix X.

The action of both adjoints can be further transferred from g to R?
by the above isomorphism, and we denote them by Ad¥ and ad”,
respectively.

2.2. Concentrated Gaussian distribution

Let G be a connected unimodular real matrix group. Unimodular
means that its integration (Haar) measure ¢ is both left and right
translation invariant, i.e., { (A8) = ((8A) = ¢(&) forallA € G
and all Borel subsets & of G. Prominent examples like SO(3) and
SE(3) are unimodular matrix groups (Chirikjian & Kyatkin, 2000).
Let us assume that a random variable X taking values in G has the
probability distribution with the probability density function (pdf)
of the following form (Wang & Chirikjian, 2006b)

1 T
p(X; X) = Bexp (-5(10g(x)v) s log(X)v> ; (2)

where § is a normalizing constant such that (2) integrates to unity
(over G with respect to ¢), and X is a positive definite p x p
matrix. Seemingly, in notation ¢ = log(X)¥ € RP, density
(2) has the structure of a zero mean Gaussian with covariance
matrix ¥. However, observe that the normalizing constant 8
differs from (27)P/?(det £)~"/? and, in the sense of RP?, it is
only defined on an open neighborhood of the origin, which is
the image of the log" map. Random variables on G having the
probability distribution given by density (2) are therefore called
normally (or Gauss) distributed with mean I¢ and covariance X.
Additionally, we will assume that all eigenvalues of X are small,
thus, almost all the mass of the distribution is concentrated
in a small neighborhood around the mean value, and such a
distribution is called a concentrated Gaussian distribution (Wang
& Chirikjian, 2006b). Furthermore, we say that a random variable
X has a concentrated Gaussian distribution of mean M € G and
covariance matrix X, written X ~ ¢ (M, X), if M~!X has the
concentrated Gaussian distribution of mean I¢ and covariance ¥
(Wang & Chirikjian, 2006b), i.e., the density of ¢ (M, X) is given by

1 T
p(X: M, E):ﬂexp(—i(log(M’1X)v) PR 1og(M”X)V). (3)

An illustration of the concentrated Gaussian distribution is pro-
vided in Fig. 2.

It is well known that in the Euclidean setting multivariate
Gaussian distributions 4(m, X) form an exponential family
(Nielsen & Garcia, 2009) and in the canonical representation
source parameters (m, X) are replaced by the corresponding
natural parameters (y, Y) = (¥~ 'm, %2‘1), which also uniquely
determine the Gaussian distribution. Canonical representation has
many advantages, in particular, it is very useful for implementation
of the standard IF. In the present paper we pursue the same idea for
concentrated Gaussian distribution (M, X') defined on matrix Lie
groups. Using the BCH expansion (A.2) we have

1
log(M~'X) = —logM + log X — E[logX, logM] + - - -, (4)
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thus, according to (3), $(M, X)) is also completely determined by
the so called information vector-matrix pair (y, Y) given by

y=X"YlogM)" and Y=x"1 (5)

Given that, we have formed the basis for the derivation of the LG-
EIF.

3. The extended information filter on matrix Lie groups

Just as the standard KF, the LG-EIF recursion is divided in two
steps: prediction and update and in the sequel we derive the
equations of the proposed information form of the LG-EKF. First,
we start with the prediction step where the same logic applies as
in the case of the standard IF; namely, the computational burden
is increased since, in order to apply the motion model, we need
to convert the information vector to the mean. Second, the update
step of the filter is derived where the advantages of the information
form are kept, thus facilitating updates with multiple sensors or
opening the way for decentralization approaches.

3.1. Motion and measurement models

Let G be a matrix Lie group and X; € G denote a system state at
time step k > 0. We assume that the motion model of the system
(the state equation)is described by a non-linear twice continuously
differentiable function’ 2 : U D G — RP and the left action of
the current state as follows Bourmaud et al. (2015)

Xiy1 = Xeexp (2(X)" +n), k=0, (6)

where ng ~ Ngp (Opx1, Q) is Gaussian noise in RP. For example,
such models have appeared in Bourmaud et al. (2015), Cesi¢,
Joukov, Petrovi¢, and Kuli¢ (2016) and Cesi¢, Markovié et al. (2016)
modeling motion as constant velocity on SE(2) and constant
acceleration on SO(2), SO(3) and SE(3), respectively.

The discrete measurement model on the matrix Lie group is
modeled by a continuously differentiable functionh : U D G —
G’ and the group perturbation as Bourmaud et al. (2015)

Zis1 = h(Xi1) exp (reyq) » (7)

where i1 ~ MNga (09!, Rey1) is a Gaussian noise in R? and exp
denotes the exponential mapping on a g-dimensional matrix Lie
group G'.

3.2. LG-EIF prediction

We assume that the posterior distribution at time step k is given
by the concentrated Gaussian distribution § (M, X%), shortly . In
fact, we assume that G, is known through the canonical parameters
Yk, Yy), for which we aim to derive the filter recursions. Note that,
according to relation (5), Xy = Yk_1 and M = exp((Yk_lyk)A).

Following the idea proposed in Bourmaud et al. (2015), we first
consider the covariance propagation under the motion model. For
that purpose the Lie algebraic error, defined by ¢/} = log(M, X0,
is propagated under the motion model according to

A a1
eXP(5k+1|/<) = M1 Xit15

where M1k = My exp(§2(My)"). Therefore, the predicted state
error on G can be expressed as

exp(epyq) = exp (—2;') exp (g) exp (2(X)" + ny)

2 For the ease of differentiability requirement, we assume that £2 is defined on
U, which is an open subset of R9*? containing the group G.

where ' = §2(My)". Linearizing £2 in M and using the BCH
expansion (A.2), defined in Appendix A, one obtains the following
propagated Lie algebraic error

etk = Fik + (20 + O (ler, mil?) (8)

where O(|ey, ng|?) is short for O(|gg|?) + O(nkl?) + O(Jexnkl).
Operators Fi, the matrix Lie group equivalent to the Jacobian of the
nonlinearity of the motion model, and ¥ are given by the following
formulae:

Fie = Ad” (exp (—£2;)) + ¥ ()% (9)
_ = (_])m Vi m p
w(v)_ng)i(m—kl)!ad W™, veR?, (10)
9
G = -2 (Mcexp (7)) le=o- (11)

Operator ¥ is called the right Jacobian of G (Barfoot & Furgale,
2014), while %, denotes the linearization of the motion model
(6) at M. The above formulae can be found in Bourmaud et al.
(2015, 2013); however, without a detailed derivation, which we
provide for the reader’s convenience in Appendix A. Neglecting
the second-order terms in (8) and using the fact that E(g,) = O,
which is satisfied by the construction of the concentrated Gaussian
distribution (see (3)), the expectation of &y, becomes

E(ers1p) = FiE(er) = 0.

The predicted covariance matrix Y.k is the covariance matrix
of the predicted Lie algebraic error &1 and due to the linear
equation (8) it evaluates to

Yk = E [Sk—o—l\kSL_uk]
= A F + W (20QW ().

Applying the Woodbury’s matrix identity (Woodbury, 1950),
Yiq1k = 2,;:”,{ evaluates to

- - - -1 .
Ve =0 = Q' 7 (Vi+ 7O ') FIG
where Q = lI/kalI/kT, ¥, = W (£2y), and all inverse matrices are

assumed to exist. Finally, the predicted information vector yy1x =
Yit11(10g My 1))" amounts to

Ve = Yirrelog (exp(Yy 'y exp(20)) . (12)

Remark 1. Assuming that My and exp(£2;) are such that according
to the BCH expansion (A.2)

1
log(exp((Y, 'vi)™) exp(20))” ~ Yy + 2+ S e 247,

then the prediction formula (12) simplifies to

_ 1.
Y1k = Yk+uk(Yk W+ 2+ E[Y" Y, Qk]v>~ (13)

3.3. LG-EIF update

Let us define the innovation term as
-1 Vv
Zt1 = log (h (Mict1e) Zk-H)

Again, applying the BCH formula (A.2) and linearizing the nonlinear
terms at My41x, we obtain (Bourmaud et al., 2015)

Ziy1 = Hip1E1k + T + O (Ierklien]) (14)
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Fig. 3. An illustration of the LG-EIF update step. The predicted G4k on the group G is updated with N measurements 9;;; on group G'. First, the predicted mean value

Mic+1k is mapped to G’ via measurement function h(-) and innovations N,ffl are calculated in the tangent space R” of h(Mp41x)- Then, the innovations are mapped to the

tangent space RP of M.k, where the W corresponding to 1 is at the origin. The predicted distribution M. is updated with the mapped measurements ,Nkjr’i
resulting with a distribution displaced from the origin -, ; which needs to be reparametrized and mapped back to G as the finally updated G 1.

with

a
Hir1 = 3 [log (h(Mk+1|k)_l h (Mk+1\k exp (EA)))] |::O . (15)
Since (14) is linear in the Lie algebraic error gy, we assert
that the standard update equations of the IF (Thrun et al., 2006)
can be applied. From the previous section we know that ey
is distributed according to the truncated zero mean Gaussian
with covariance matrix Xy,q, which is assumed to be well
approximated by the Gaussian of the same parameters. Given that,
the updated Lie algebraic error ¢, ; will be Gaussian distributed
with natural parameters

- T p-1
YVik1 = HpaRigaZien,
Y1 = Yo + ﬂ;lL]Rk__&r%I&L
However, we have not completed the update step for the following

reasons. Namely, from the definition of ¢, the conditional
random variable Xii1jk+1 = Xk11{Z1, . . ., Zk+1} has the form

(16)

Xier11k+1 = M1 exp(eg/y), (17)

but, the mean value of ¢, ; now equals m,; = (Y1) 'Viiq
which in general differs from the zero vector, and (17) is not in
the form suitable for description by the concentrated Gaussian
distribution. To overcome that issue, the state reparametrization,
as proposed in Bourmaud et al. (2015), is performed. Let us define
&1 = & — My, then E(§ky 1) = 0 and using formula (A.3)
from Appendix A we obtain (up to O (|&41|%) terms)
Xir1jk+1 = M1 €Xp (m;?fl + 5I<A+1)

= Mi1iexp (m;[y) exp (¥ (my, )& -
Now defining Mis1 = Miy1kexp (my)y) and egpr = W (mp,,)
&k+1, we have Xy 1x4+1 in a more suitable form
Xir1jkr1 = Mg exp(eg, ), (18)
from which the posterior distribution can be plainly read off. By
definition

Sir1 = E [y ] = E[¥ M D% ()]
_ _ -1 _ T
= (m ) V)™ (mg,)
and therefore, the ﬁnally updated information matrix equals
Yirr = W(m,) k+1w(mk+1)_ (19)
Concerning the information vector, we find

Vier1 = Yiep1(10g M)
= Yip1 (log (exp((Yy 'y)™) exp(2,) exp(m ). (20)

Algorithm 1 The pseudocode of the LG-EIF
g’(ylﬁ Yk)v Q(X)v Qk

Require: §; =
Prediction
1: Evaluate £2y, 6, and Qk
2 Fi= Ad"(exp (- 27)) + ¥ (@)
3: Yk+1|/< = é,:l - @7]ﬂ(yl<+
7O 7T FIG
\
4 Yir1k = Vi1 log (exp ((Y,(_1yk) ) exp (.Q,ﬁ))

Require: Gy 1 = (Vir1ks Yertik), RX), Ritr
Update
: Evaluate # 4

5
6: Vi1 = Yirai + Hiy 1Rty Hoa
7 Vi = ]fkT+1RI<_+112k+l

_ _ -1 _
g my = (Yk+1) y¥+1
9 Vi1 =¥ (myy)” Y ¥ (i)
10: Y1 = Y1 (log (EXP ((Y/<_1yl<)A)

exp (27) e (1)) )

11: return Gy = %(J/kﬂ, Yk+1)

-1

The update step is illustratively summarized in Fig. 3. Note
that, in comparison to the standard EIF, we cannot calculate
the final information vector update in (20) by using just the
information form. However, this does not preclude an advantage
in computational complexity with respect to the LG-EKF (as shown
in Section 4). The pseudocode of the LG-EIF is given in Algorithm 1.

Remark 2. Recall that one of the main advantages of the IF lies in
the simultaneous update of multiple measurements in the same
time step. In case that N measurements are available at time step
k + 1 through different measurement models h; and measurement
noise r,i +1 ~ Mra(0, Ri41), the updated information vector and
matrix (prior to the reparametrization step) become

N
- _ T 1
Yir1 = § :ﬂi,k+1Ri,k+1zl,k+lv

i=1 (21)

Yitr = Y + 2 H 1 Ry Hokrn-
i=1

Remark 3. Difficulties that could be encountered in the filter
design are twofold. First, the evaluation of operators G, and
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Hy, which arise in the linearization of £2(-) and h(-), could be
mathematically involved. And second, exp(-), log(-), Ad(-), ad(-),
and ¥ (-) might not allow closed-form expressions for some Lie
groups. In that case, it is necessary to apply a truncated Taylor
series expansion. However, many Lie groups that are significant for
engineering applications allow for closed form expressions for the
majority of aforementioned maps.

4. Experiments

In this section we demonstrate the effectiveness and applica-
bility of the LG-EIF on the problem of rigid body attitude track-
ing in 3D. We pose the experiment as a multisensor estimation
problem of a state residing on the group G = SO(3) x R?, where
the first group, SO(3), represents the rigid body orientation in 3D,
while the second group, R3, represents pertaining angular rates.
This is a slight abuse of notation intended for clarity, since when
talking about R? in the framework of groups, we are actually re-
ferring to their matrix representation. R® can be thought of as a
three-dimensional matrix Lie group through the following identi-
fication

1 0 0 ¢
s 01 0 a .
R” > ((11, a, (13) = 0 0 1 as € GL(4, R), (22)
0 0 0 1

which transfers the addition of vectors, as the group operation
in R3, to the multiplication of matrices. Hence, G can be thought
of as a subgroup of GL(7; R), whose elements are block diagonal
matrices where the first 3 x 3 block belongs to SO(3), while the
second 4 x 4 block is of the form (22). In that setting G is a
unimodular matrix Lie group with the Haar measure being the
tensor product of the Haar measure on SO(3) and essentially the
Lebesgue measure on R>. Thus, the LG-EIF methodology developed
in previous sections is applicable on G.

4.1. Filtering on SO(3) x R3

Note that we designate the system state as X; € SO(3) x R3
which consists of the orientation component @, € SO(3) and the
angular rate component @;, € R>.

4.1.1. Prediction
We propose to model the motion (6) by a constant angular rate
motion model

QX)) =[T¢rx Thax Tdse 0 0 0]
T? T2 T2

M = |:2n1,k 7”2,k 7”3,k
where T is the discretization time. With such a defined motion
model, the system is corrupted with white noise over three
separated components, i.e., ny, the noise in local ¢; direction,
ny « the noise in local ¢, direction and ns the noise in local ¢3
direction. Given that, the components can be seen as resembling a
Wiener process over the associated axes.

The uncertainty propagation can be challenging, since it
requires the calculation of (11), which needs to be patiently
evaluated for each considered problem. However, for the Lie
algebraic error & = [e16; 6341 &, ég]T, and the motion model
given by (23), which extracts only the Euclidean part of the state,
we obtain

G = [OM T ’3} . (24)

T (23)
Tny Ty, Tngg| s

03x3 033

Now, we have all the ingredients for applying the motion model to
predict the state in an LG-EIF manner.

4.1.2. Update

The measurement function is the map h : SO(3) xR?> — SO(3),
and although we have N measurements we use the expression
(21) for the update, hence mapping dimensions correspond as if
having a single measurement. The element that specifically needs
to be derived is the measurement matrix #¢; 1, which in the vein of
(15) requires evaluating partial derivatives and multivariate limits.
With having the Lie algebraic error defined, the function to be
partially derived is

[log (hMi10)™'h (Mipaeexp (e°)))] = [e1 &2 &3] . (25)

The final measurement matrix, for this case, is obtained by taking
the partial derivatives of (25) with respect to the Lie algebraic error.
Finally, the measurement matrix evaluates to #;1 = [I5 O3x3].
Now, we have all the ingredients to update the filter in the LG-EIF
manner.

4.2. Evaluation

In order to demonstrate the performance of the proposed filter
we have simulated a rotating rigid body with the constant angular
rate model. First, the initial orientation of the rigid body in SO(3)
and initial angular rates are defined. Note that the angular rates
are defined in the RP isomorphic to the s0(3), i.e., the Euler axes
representation (see Appendix B). Then, under the assumption
of the constant angular rate model, random disturbances are
added via accelerations in the pertaining Euclidean space RP.
Measurements are generated by corrupting the true orientation of
the body in RP with white Gaussian noise, and then mapping the
result via the exponential map back to the SO(3).

In Fig. 4 we can see the result of LG-EIF and Euler angles EIF
comparison on 100 randomly generated trajectories measured
with N = 5 sensors for k = 100 steps. The initial state of the
system was set to [logXs]¥ = [01xg]", the standard deviation of
random accelerations over the three axes acting as disturbances
was 0, = 10°/s? and standard deviation of measurement noise
over the three axes ranged from o,, = 0.1° to 6, = 20°. The
estimated orientation of the LG-EIF is defined in SO(3), and in Fig. 4
we show the attitude error calculated as the cosine angle between
two rotation matrices

Depr = arccos (%(Tr[cbfcpe] — 1)) , (26)

where @; is the true orientation and @, is estimated orientation.
We can see from Fig. 4 that for measurement noise standard
deviation larger than 2° on average the LG-EIF achieves smaller
attitude root-mean-square-error (RMSE) and has significantly
smaller variation (not noticeable in the figure) in the results
compared to the Euler angles EIF. In Fig. 5 we show three examples
(with different measurement noise intensity) of time behavior
of the attitude estimation error for different filters, where the
smaller variation for LG-EIF can be noticed. Furthermore, it could
be argued that other filtering methods in lieu of EIF could be used
which can better handle nonlinearities. However, the EIF system
and measurement equations are linear in this case and we assert
that the main reason behind larger errors in EIF comes from the
suboptimal state space parametrization, rather than linearization
errors in state and measurement equations.

The main advantage of the IF form is the computational
efficiency of the update step with respect to a large number of
measurements. To verify that the same advantage holds also for
the Lie group EKF we have compared the execution time of the
LG-EKF and LG-EIF on 100 examples of 100 step long simulated
trajectories. Fig. 6 shows the execution time ratio of the LG-EKF and
LG-EIF. We can see that for a large number of sensors or features
this difference is prominent.
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Fig. 4. Comparison of attitude RMSE with respect to increase in measurement
noise standard deviation. The results represent the mean value of the RMSE and
one standard deviation of 100 MC runs. We can see that the LG-EIF exhibits smaller
error and has more consistent performance over various trajectories.
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Fig. 5. Three examples of time behavior of the attitude estimation error through
200 steps. The standard deviation for measurement noise was set to o,;, = 2.5°
(top), oy = 5° (middle), o;; = 10° (bottom). The attitude RMSE for each filter is
given in the subfigure titles.

5. Conclusion

In this paper we have proposed a new state estimation
algorithm on Lie groups. We have embedded the LG-EKF with an
EIF form for non-linear systems, thus endowing the filter with the
information forms advantages with regard to multisensor update
and decentralization, while keeping the accuracy of the LG-EKF for
stochastic inference on Lie groups. The theoretical development of
the LG-EIF recursion equations was presented and the applicability
of the proposed approach demonstrated on the problem of rigid
body attitude tracking with multiple sensors by setting the state
on the Lie group SO(3) x R3. The first component of the state

w
[e=}

no
[«=}

—_
[e=}

Il
10t 102 103

number of measurements

o

execution time ratio (LG-EKF / LG-EIF)

—_
[e=}
=)

Fig. 6. Comparison of LG-EKF and LG-EIF time execution with respect to
the number of measurements in the update step. We can see that after 100
measurements the difference becomes extremely prominent. The figure represents
mean value of the execution time ratio for 50 Monte Carlo runs.

represented the rigid body orientation in 3D, while the second
component represented the pertaining angular rates. The system
model was then set as a constant angular rate model acting on
the state space SO(3) x R3. The results have shown that the filter
can accurately track the rigid body attitude and that on average
it exhibits lower RMSE and more consistent performance than the
Euler angles based EIF. Furthermore, the information form of the
LG-EIF keeps the multisensor or decentralization computational
advantage of the update step with respect to the LG-EKF.
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Appendix A. Lie algebraic error prediction

Proposition 4 (Baker-Campbell-Hausdorff). Given a Lie algebra g,
forall a,b € g such that |a¥| and |bY| are sufficiently small, the
following identity holds (Hall, 2003):

1
log (exp (a) exp (b)) = a + f ¥ (exp(ad(a)) exp(t ad(b)))(b)dt,
0
(A1)
where ¥ (z) = zlogz/(z — 1).

This is an integral version of the famous Baker-Campbell-Hausdorff
(BCH) formula, which is better known in an expanded form

1
log (exp (a)exp (b)) =a+ b+ i[a, b]

1
+ E([a’ la, b]] + [b, [b,a]]) + - -- .
(A2)

Another useful identity used in the derivation of the predicted
Lie algebraic error is a first-order approximation relation between
additive and multiplicative perturbations on matrix Lie groups.
Namely, for every a,§ € g and |§Y| small, i.e., neglecting the
second-order terms in |8, it holds

exp(a + &) ~ exp(a) exp(¥ (a)d), (A.3)
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where ¥ (a) denotes the right Jacobian of the Lie group defined by
(9). The latter identity implies the approximation formula

log(exp(—a) exp(a + 8)) = ¥ (a)s. (A4)

Now we proceed with the derivation of the Lie algebraic error
prediction. In Section 3.2 we computed the exponential of the
predicted Lie algebraic error g1 at time step k

exp(egy 1) = exp (—2;) exp (&) exp (2(X)" +ny) ,
where we recall 2, = £2(My) and & is the Lie algebraic error at
time step k. Linearizing the map £2 at My we have

exp(epy 1) = exp (—£2;) exp (&) exp (2 + (Gie)" +1y)
(A5)

where

G = %Q (M exp (6")) le=o.

Using the BCH formula (A.2) by considering only the first four

members from the expansion and neglecting 9 (|}, n,f|2) terms,
we obtain

z, = log (exp (e} ) exp (2, + (k)" +1y))
1
=g, + 20 + (Ge)” +np + 5[s,ﬁ, 201
1
+ E[Q"A’ (20, & 11 (A6)
Inserting (A.6) into (A.5) one has

exp(ep 1) = exp (—%2) exp(zy),

thus, using the approximation identity (A.4), the following
expression holds

1
e = ¥(20 (e + (e +n + Sled 2]
1
+ Sl 120 5D).

Recognizing terms ¥ (£2x) (4kex)” and ¥ (§2,)n; in the prediction
formula (8), it remains to discuss terms

1 1
w(@0 (e + Slen, 201+ =120, 120 el1l). (A7)
Evaluating (A.7):
1 1
EkA + 7[8]<As ‘QI{A] + 7[91?5 [Qlé\v 8[;\]]
2 12
1 1 1
— |2 e+ Sl 201+ T2l 120611
1 1 1
+ o[ 20 e+ Ser. 201+ 120 120611
6 2 12
1 1
- silee [20 [ 20 o0 + 5 let, 20
1
+ e 2. s0]]]
+ P

leads to the expression
1
EkA + [_Qlé\v 8[?] + 5[_91?9 [_‘QkAs Slé\]]
1
+ g[—ﬂ,f, (=2, [=$2¢, & 1]
5
+ m[—QkA, (=2, [=92¢, [=2, & 1]

1
+ ﬁ[—ﬁﬁ, (=20, =2, =20, [=2¢, e T+ -

which can be finally recognized as an approximation of
exp(ad(—2]))e; = Ad(exp(—£2[))e},.

This finishes the derivation of the Lie algebraic error prediction.

Appendix B. The special orthogonal group SO(3)

The SO(3) group is a set of orthogonal matrices with determi-
nant one, whose elements geometrically represent rotations. Rota-
tions in 3D can also be represented with an Euler vector (also called
the axis-angle notation), where a vector ¢ = [¢; ¢, ¢3]” € R de-
notes a rotation about the unit vector ¢/|¢| by the angle |¢|. An
interesting notion is that the Lie algebra so(3) is given as the skew
symmetric matrix of the Euler vector

0 —¢3 ¢
"= ¢3 0 —¢1|es0(3), (B.1)
—¢2 P 0

where (-)" : R® — s0(3) and its inverse, (-) : s0(3) — R3, follow
trivially. The exponential map exp : so(3) — SO(3) is given as
Barfoot and Furgale (2014)

A 3 o' "
exp(¢”) = cos(|pDI” + (1 — COS(I¢|))W +sm(|¢|)m~ (B.2)
Furthermore, for an @ € SO(3), the matrix logarithm, performing
mapping log : SO(3) — so(3), is given as

y "o
— Y @—a"), ify+£0
2siny)" ). iy # (B.3)
0, ify =0,

log(®) =

where 1+ 2 cosy = Tr(®) and Tr( - ) designates the matrix trace.
The adjoint operators Ad and ad for SO(3) are respectively given
as

Ad(®)=® and ad(¢") = ¢". (B.4)

Given the above definitions, we have all the needed ingredients to
use the SO(3) group within the LG-EIF.

References

Bailey, T., Upcroft, B., & Durrant-Whyte, H. (2006). Validation gating for non-linear
non-Gaussian target tracking. In International conference on information fusion,
(pp. 1-6).

Barfoot, T. D., & Furgale, P. T. (2014). Associating uncertainty with three-
dimensional poses for use in estimation problems. IEEE Transactions on Robotics,
30(3), 679-693.

Battistelli, G., & Chisci, L. (2016). Stability of consensus extended Kalman filter for
distributed state estimation. Automatica, 68, 169-178.

Bourmaud, G., Mégret, R., Arnaudon, M., & Giremus, A. (2015). Continuous-discrete
extended Kalman filter on matrix Lie groups using concentrated Gaussian
distributions. Journal of Mathematical Imaging and Vision, 51(1), 209-228.

Bourmaud, G., Mégret, R., Giremus, A., & Berthoumieu, Y. (2013). Discrete extended
Kalman filter on Lie groups. In European signal processing conference, EUSIPCO,
(pp. 1-5).

Campbell, M. E., & Whitacre, W. W. (2007). Cooperative tracking using vision
measurements on SeaScan UAVs. IEEE Transactions on Control Systems
Technology, 15(4), 613-626.

Cesi¢, J., Joukov, V., Petrovi¢, I, & Kuli¢, D. (2016). Full body human motion
estimation on Lie groups using 3D marker position measurements. In [EEE-RAS
international conference on humanoid robots, Humanoids.

Cesic’,]., Markovié, I., Cvisié, L., & Petrovié, I. (2016). Radar and stereo vision fusion for
multitarget tracking on the special Euclidean group. Robotics and Autonomous
Systems,.

Chirikjian, G. S., & Kyatkin, A. B. (2000). Engineering applications of noncommutative
Harmonic analysis: With emphasis on rotation and motion groups. CRC Press.
Engel, ], Sch, T., & Cremers, D. (2014). LSD-SLAM: Direct monocular SLAM. In

European conference on computer vision, ECCV, (pp. 834-849).

Eustice, R. M,, Singh, H., & Leonard, J. J. (2006). Exactly sparse delayed-state filters
for view-based SLAM. IEEE Transactions on Robotics, 22(6), 1100-1114.

Forster, C., Carlone, L., Dellaert, F., & Scaramuzza, D. (2015). IMU preintegration
on manifold for efficient visual-inertial maximum-a-posteriori estimation.
In Robotics: Science and systems (p. 9).



234 J. Cesic et al. / Automatica 82 (2017) 226-234

Fu, Y., Ling, Q., & Tian, Z. (2012). Distributed sensor allocation for multi-target
tracking in wireless sensor networks. IEEE Transactions on Aerospace and
Electronic Systems, 48(4), 3538-3553.

Gilitschenski, 1., Kurz, G., Julier, SJ., & Hanebeck, U.D. (2014). A new probability
distribution for simultaneous representation of uncertain position and
orientation. In International conference on information fusion, FUSION, (p. 7).

Grocholsky, B., Makarenko, A., & Durrant-Whyte, H. (2003). Information-theoretic
coordinated control of multiple sensor platforms. In International conference on
robotics and automation, Vol. 1, (ICRA). (pp. 1521-1526). IEEE.

Hall, B. C. (2003). Lie groups, Lie algebras, and representations: An elementary
introduction. Springer-Verlag.

Hertzberg, C., Wagner, R, Frese, U., & Schroder, L. (2013). Integrating generic sensor
fusion algorithms with sound state representations through encapsulation of
manifolds. Information Fusion, 14(1), 57-77.

Khosravian, A., Trumpf, ]J., Mahony, R., & Hamel, T. (2015). State estimation
for invariant systems on Lie groups with delayed output measurements.
Automatica, 68, 254-265.

Kiimmerle, R., Grisetti, G., Rainer, K., Strasdat, H., Konolige, K., & Burgard, W.
(2011). g20: A general framework for graph optimization. In IEEE international
conference on robotics and automation, ICRA, (pp. 3607-3613).

Kurz, G., Gilitschenski, I., & Hanebeck, U.D. (2014). The partially wrapped normal
distribution for SE(2) estimation. In International conference on multisensor
fusion and information integration for intelligent systems, no. 2, (p. 8).

Lee, D.-]. (2008). Nonlinear estimation and multiple sensor fusion using unscented
information filtering. IEEE Signal Processing Letters, 15(2), 861-864.

Liu, G., Worgotter, F., & Markeli¢, 1. (2012). Square-root sigma-point information
filtering. IEEE Transactions on Automatic Control, 57(11), 2945-2950.

Maybeck, P. S. (1979). In A. Press (Ed.), Stochastic models, estimation and control.
Volume ..

Mur-Artal, R.,, Montiel, J. M. M., & Tardos, ]J. D. (2015). ORB-SLAM: a versatile
and accurate monocular slam system. IEEE Transactions on Robotics, 31(5),
1147-1163.

Murray, R. M,, Li, Z., & Sastry, S. S. (1994). A mathematical introduction to robotic
manipulation. Ann Arbor, MI: CRC.

Nettleton, E., Durrant-Whyte, H.F., & Sukkarieh, S. (2003). A robust architecture for
decentralised data fusion. In International conference on advanced robotics, ICAR.

Nielsen, F., & Garcia, V. (2009). Statistical exponential families: A digest with flash
cards. Computing Research Repository. arXiv:0911.4863.

Onel, T., Ersoy, C., & Delic, H. (2009). Information content-based sensor selection
and transmission power adjustment for collaborative target tracking. IEEE
Transactions on Mobile Computing, 8(8), 1103-1116.

Pakki, K., Chandra, B., & Postlethwaite, I. (2013). Square root cubature information
filter. IEEE Sensors Journal, 13(2), 750-758.

Rao, B. S. Y., Durrant-Whyte, H. F., & Sheen, J. A. (1993). A fully decentralized multi-
sensor system for tracking and surveillance. International Journal of Robotics
Research, 12(1), 20-44.

Ros, G., Guerrero, J., Sappa, A. D., Ponsa, D., & Lopez, A. M. (2013). VSLAM pose
initialization via Lie groups and Lie algebras optimization. In International
conference on robotics and automation, (ICRA). (pp. 5740-5747). IEEE.

Selig, J. M. (1996). Geometrical methods in robotics. New York: Springer-Verlag.

Thrun, S., Burgard, W., & Fox, D. (2006). Probabilistic robotics. The MIT Press.

Thrun, S., Liu, Y., Koller, D., Ng, A. Y., Ghahramani, Z., & Durrant-Whyte, H. (2004).
Simultaneous localization and mapping with sparse extended information
filters. International Journal of Robotics Research, 23(7-8), 693-716.

Vercauteren, T., & Wang, X. (2005). Decentralized sigma-point information filters
for target tracking in collaborative sensor networks. IEEE Transactions on Signal
Processing, 53(8), 2997-3009.

Wang, Y., & Chirikjian, G. S. (2006a). Error propagation on the Euclidean group with
applications to manipulator kinematics. IEEE Transactions on Robotics, 22(4),
591-602.

Wang, Y., & Chirikjian, G. (2006b). Error propagation on the Euclidean group with
applications to manipulator kinematics. IEEE Transactions on Robotics, 22(4),
591-602.

Wang, S., Feng, ], & Tse, C. K. (2014). A class of stable square-root nonlinear
information filters. IEEE Transactions on Automatic Control, 59(7), 1893-1898.

Wolfe, K. C., Mashner, M., & Chirikjian, G. S. (2011). Bayesian fusion on Lie groups.
Journal of Algebraic Statistics, 2(1), 75-97.

Woodbury, M. A. (1950). Inverting Modified Matrices, ser. Statistical Research Group
Memorandum Reports. Princeton, NJ: Princeton University, no. 42.

Zhang, Y., Chai Soh, Y. & Chen, W. (2005). Robust information filter for
decentralized estimation. Automatica, 41(12), 2141-2146.

Josip Cesic has received his B.Sc. and M.Sc. degrees (Magna
Cum Laude) in Electrical Engineering and Information
Technology from University of Zagreb Faculty of Electrical
Engineering and Computing (UNIZG-FER) in 2011 and
2013, respectively. He finished part of the master studies
at Chalmers University of Technology, Sweden. He is
employed as a research assistant at the Department of
Control and Computer Engineering at UNIZGG-FER since
= April 2013. During the undergraduate studies he received
Dean’s Award and Special Dean’s Award for achievements
on the first year of studies and the overall B.Sc. level,
respectively. During the graduate studies he received the Rector’s Award and
Special Rector’s Award for practical applications in the fields of robotics and control
systems, and was awarded with several scholarships. His main research interests
are in the areas of autonomous systems, mobile robotics, estimation theory and
sensor processing.

Ivan Markovic is an Assistant Professor at the University
of Zagreb Faculty of Electrical Engineering and Computing,
Croatia (UNIZG-FER). He received the M.Sc. and Ph.D.
degrees in Electrical Engineering from the UNIZG-FER in
2008 and 2014, respectively. During his undergraduate
and graduate studies he was awarded with the “INETEC”
award (2007), “Josip Loncar” faculty award (2008), and
with scholarship from the Croatian Ministry of Science and
Education for the best students (2003-2008). In 2014 for
his Ph.D. thesis he was awarded with the Silver Plaque
“Josip Loncar” faculty award for outstanding doctoral
dissertation and particularly successful scientific research. He is a member of the
Institute of Electrical and Electronics Engineers (IEEE). He was a visiting researcher
at INRIA Rennes-Bretagne Atlantique, Rennes, France, Lagadic group (Prof. Frangois
Chaumette). His research interests are mobile robotics, especially detection and
tracking of moving objects and speaker localization.

Mario Bukal received the M.S. degree in Applied Math-
ematics from the University of Zagreb in 2008 and the
Ph.D. in Applied Mathematics from the Vienna University
of Technology in 2012. From 2012 he is with the University
of Zagreb Faculty of Electrical Engineering and Computing,
where he is currently an Assistant Professor. His research
focus is in applied mathematics, in particular, mathemati-
cal and numerical analysis of higher-order diffusion equa-
tions, and homogenizations and dimension reduction in
nonlinear elasticity theory. His research interests also in-
clude information fusion with application to robotic sys-
tems.

Ivan Petrovi¢ (www.unizg.fer.hr/ivan.petrovic) is the
Head of the Laboratory for Autonomous Systems and
Mobile Robotics (http://lamor.fer.hr) and the Centre of
Research Excellence for Advance Cooperative Systems-
ACROSS (http://across.fer.unizg.hr). He has more than 30
years of professional experience in R&D of automatic
control theory and its applications. In the last fifteen
years his research is focused on the advanced control and
estimation techniques and their application in control and
navigation of autonomous mobile robots and vehicles. He
published about 50 journal papers and more than 180
conference papers. Results of his research effort have been implemented in several
industrial products. He is a member of IEEE, IFAC-Vice Chair of TC on Robotics and
FIRA-Executive committee. He is a member of the Croatian Academy of Engineering.



114 PUBLICATIONS

PUBLICATION 7

J. Cesié, 1. Markovié, I. Cvisi¢ and 1. Petrovi¢. Radar and stereo vision fusion for multitarget
tracking on the special Euclidean group. Robotics and autonomous systems, 83:338—348,
2016.



Robotics and Autonomous Systems 83 (2016) 338-348

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

Radar and stereo vision fusion for multitarget tracking on the special @ CrossMark
Euclidean group”

Josip Cesi¢*, Ivan Markovi, Igor Cvisi¢, Ivan Petrovié¢
University of Zagreb, Faculty of Electrical Engineering and Computing, Department of Control and Computer Engineering, Unska 3, 10000 Zagreb, Croatia

HIGHLIGHTS

Radar and stereo camera integration for tracking in ADAS.

Detection and tracking of moving objects by filtering on matrix Lie groups.

State space formed as a product of two special Euclidean groups.

Employed banana-shaped uncertainties typical for range-bearing sensors and vehicles in motion.
o JIPDA filter for multitarget tracking on matrix Lie groups.

ARTICLE INFO ABSTRACT
Article history: Reliable scene analysis, under varying conditions, is an essential task in nearly any assistance or
Available online 12 May 2016 autonomous system application, and advanced driver assistance systems (ADAS) are no exception.

ADAS commonly involve adaptive cruise control, collision avoidance, lane change assistance, traffic sign
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it has become clear that there does not exist such a sensing system
that could solely deliver full information required for adequate
quality of ADAS applications [2].

Given that, ADAS commonly rely on using complementary
sensing systems: vision, millimeter-wave radars, laser range finder
(LRF) or combinations thereof. Radar units are able to produce
accurate measurements of the relative speed and distance to the
objects. LRF have higher lateral resolution than the radars and,
besides accurate object distance, they can detect the occupancy
area of an object and provide detailed scene representation [3].
Regarding the robustness, radar units are more robust to rain, fog,
snow, and similar conditions that may cause inconveniences for
LRF; but, they produce significant amount of clutter as a drawback.
Vision-based sensing systems can also provide accurate lateral
measurements and wealth of other information from images,
thus provide an effective supplement to ranging-based sensor
road scene analysis. As an example, a stereo vision sensor can
provide target detection with high lateral resolution and less
certain range, while usually bringing enough information for
identification and classification of objects, whereas radar can
provide accurate measurements of range and relative speed.
Given the complementarity of radars and vision systems, this
combination is commonly used in research for ADAS applications.
For example, works based on a monocular camera use radar for
finding regions of interest in the image [4-7], process separately
image and radar data [8-10], use motion stereo to reconstruct
object boundaries [11,12], while [13,14] use directly stereo
cameras. Employing multiple sensors, and consequently exploiting
their different modalities, requires fusion of the sensing systems at
appropriate levels. Depending on the approach, fusion can roughly
take place at three levels: before objects detection (low level) [13,
14], at the objects’ detection level (fused list of objects) [12,10], or
at the state level (updating the states of objects in the list for each
sensor system) [9,8,15].

Since in ADAS applications sensors with very different charac-
teristics are used; e.g. radar with higher lateral uncertainty, but
precise range estimation, and stereo camera with low lateral un-
certainty but higher range imprecision, question arises on how
to faithfully model the uncertainty of the state, estimated asyn-
chronously with such sensors. Moreover, since in urban scenar-
ios targets can exhibit varying dynamic behavior, a flexible motion
model, capable of capturing the maneuvering diversity, should be
used.

In the present paper, which is a continuation of our previous
work presented in [16], we use a combination of a radar and
a stereo vision system to perform the target tracking task.
Our previous work focused on developing an appearance-based
detection approach, while this paper deals with the tracking part
of the DATMO procedure and uses a motion-based detection
technique. Given the previous discussion, our first contribution
is in modeling radar and stereo measurements arising in polar
coordinates as members of Lie Groups SO(2) x R!, and in
estimating the target state as the product of two special Euclidean
motion groups SE(2) x SE(2) = SE(2)2. This is performed within
the framework of the extended Kalman filter on Lie groups, which
we derive for the proposed system design. Furthermore, the target
motion model also resides on the same group product and as
such will yield the required model flexibility. This will not only
enable us to correctly model sensor uncertainties, but also to have
higher diversity in the uncertainty representation of the state
estimates. For example, besides the standard Gaussian elliptically
shaped uncertainty, proposed representation also supports the so
called banana-shaped uncertainties. The second contribution of the
paper is the adaptation of the joint integrated probabilistic data
association (JIPDA) filter for multitarget on the SE(2)2. To the best
of the author’s knowledge, this is the first use of a filtering on Lie
Groups for a multitarget tracking application.

The rest of the paper is organized as follows. Section 2 presents
related work and the present paper’s contributions. Section 3
presents mathematical background of the LG-EKF, while Section 4
derives the proposed asynchronous LG-EKF on SE(2)? with polar
measurements. The multitarget tracking with JIPDA filter on
SE(2)? is described in Sections 5 and 6 presents the real-world
experimental results. In the end, Section 7 concludes the paper.

2. Related work and progress beyond

Several distinct research fields relate to the study presented in
this paper. These include the state estimation on Lie groups, mul-
titarget tracking, stereo vision- and radar-based signal processing.
We focus our overview of related work in the pertinent fields by
considering results relevant to the present application.

To detect objects of interest, vision algorithms can resort
to (i) appearances at a single time step, and (ii) motion over
several frames [2]. In [17] authors employ detection procedure
based on appearances in the disparity space, where clustering
and extraction of moving objects are performed. The work in [18]
focuses on ego-motion estimation, while moving objects stem
from clustering the estimated motions in the filtered point cloud.
Scene flow, i.e., the motion in 3D from stereo sequences, was
used in [19,20], where adjacent points describing similar flow are
considered to belong to a single rigid object. In [21] objects are also
extracted from the scene flow, after which clustering is performed,
and the iterative closest point algorithm is used to determine the
vehicles’ pose. Approach in [22] combines depth and optical flow-
based clustering with an active learning-based method. In [23]
pedestrians were isolated from the stereo point cloud and their
pose estimated using a visibility-based 3D model, which is capable
of predicting occlusions and using them in the detection process.

Concerning radar and stereo vision integration, in [ 14] approach
based on fitting the model of a vehicle contour to both stereo depth
image and radar readings was presented. First, the algorithm fits
the contour from stereo depth information and finds the closest
point of the contour with respect to the vision sensor. Second, it
determines the closest point of the radar observation and fuses
radar’s and vision’s closest points. By translating the initially fitted
contour to the fused closest point, the resulting contour is obtained
and located. Another low level integration approach was presented
in [13]. In particular, the edge map of the stereo image is split into
layers corresponding to different target depths so that the layers
contain edge pixels of targets at different depth ranges. Hence, the
original multitarget segmentation task is decomposed into several
single target segmentation tasks on each depth-based layer, thus
lowering the computational costs of the segmentation.

In the present paper each sensor reports its detections
independently. To estimate the interim vehicle displacement, we
use our visual stereo odometry algorithm (named SOFT) presented
in [24]. Features not conforming to the computed displacement
are considered as moving objects and are grouped together to
yield measurements which are then fed to the tracking algorithm.
In that respect our approach would fall within the motion-based
detection approaches. The radar sensor complements detections
from the stereo camera, and reports to the tracking algorithm a list
of possible obstacle detections.

Irrespective of the used sensor setup, in traffic scenarios one
must address the problem of multitarget tracking. This entails
estimation (tracking) of each target’s state and dealing with
the problem of associating correct measurements to the tracked
targets in cluttered environments, i.e. solving the data association
problem. Commonly, for state estimation the Kalman filter and
its non-linear variants are used. However, in order to achieve
the proposed state uncertainty representation and motion model
flexibility, in the present paper we use the extended Kalman filter
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Fig. 1. The experimental platform mounted on top of a vehicle, consisting of a
stereo camera system and two radar units.

on Lie groups (LG-EKF) [25]. This way we can track targets with
the Kalman filter directly on the SE(2)2. Considering multitarget
tracking, a lot of attention has been devoted to tractable random
finite sets (RFS)-based approximations of the multitarget Bayes
filter: probability hypothesis density (PHD) [26-28], cardinalized
PHD [29,30], and multitarget multi-Bernoulli filters [31-34].
On the other hand, data association-based algorithms, such as
multiple hypothesis tracker (MHT) [35] and joint probabilistic data
association (JPDA) filter [36], approach the problem by considering
explicit measurement-to-target associations. In [37] the JPDA was
extended to include the probability of target existence in order to
alleviate the assumption of the constant and known number of
targets in the scene. The two approaches are not orthogonal; filters
very similar to the JIPDA and MHT can be derived from the RFS
theory [38,39].

Detection results often serve as inputs to the tracking algorithm
and the ADAS works most similar to the present paper are [8,
9]. In [8], the authors fuse the data from radar and image sensor
to estimate the position, direction and width of objects in front
of the vehicle. Therein, an ego-motion compensated tracking
approach is presented which combines radar observations with
the results of the contour-based image processing algorithm. The
filtering aspect relies on the unscented Kalman filter and the
constant turn rate and acceleration model. In [9] authors propose
asynchronous independent processing of radar and vision data and
use the interacting multiple model Kalman filter to cope with the
changing dynamics, associating the observations via probability
data association scheme. In particular, the combined motion
models are the constant velocity and constant acceleration models.

Since both the stereo camera and the radar work at different
frequencies, we use asynchronous filtering; in that respect our ap-
proach performs fusion at the state level. We propose to model
radar and stereo measurements in polar coordinates within the LG-
EKF scheme and we derive the required filter on the product of spe-
cial Euclidean groups, SE(2)%. We also provide an in-depth discus-
sion on the behavior of the state uncertainty when fusing measure-
ments from the used sensors. We believe that faithful uncertainty
representation is an important aspect of ADAS, especially when
safety applications are concerned. To handle varying dynamic be-
havior, our motion model will reside on SE(2)?, since it can capture
well a wide range of behavior [40]. To handle the multitarget sce-
nario, we propose to use the JIPDA filter, which, to the best of the
authors’ knowledge, is its first use within the Kalman filtering on
Lie groups. The proposed approach is validated in real-life exper-
iments, where the dataset was taken in urban scenarios with the
sensor setup mounted on a moving vehicle (Fig. 1).

3. Mathematical preliminaries

3.1. Lie groups, Lie algebra and the concentrated Gaussian distribu-
tion

In this section, we provide notations and properties for
matrix Lie groups and the associated Lie algebras which will be

used for the SE(2)? filter. Lie group G’ is a group which has
the structure of a smooth manifold (i.e. it is sufficiently often
differentiable [41]) such that group composition and inversion
are smooth operations. Furthermore, for a matrix Lie group G, of
which SE(2) is an example, these operations are simply matrix
multiplication and inversion, with the identity matrix I"*" being
the identity element [42].

Another important term is the Lie algebra g which is associated
to a Lie group G. It is an open neighborhood of 0"*" in the tangent
space of G at the identity I"*". The matrix exponential exp; and
matrix logarithm log establish a local diffeomorphism

expc:g— G and log;:G — g. (1)

The Lie algebra g associated to a p-dimensional matrix Lie group
G C R™"is a p-dimensional vector space defined by a basis
consisting of p real matrices E;,i = 1,...,p [43]. A linear
isomorphism between g and R? is given by

[1:g—> R and []¢:R’ —g. (2)

Lie groups are generally non-commutative and require the use of
two operators which enable the adjoint representation of (i) G on
RP denoted as Adg and (ii) R? on R? denoted as adg [42,44].

In order to define the concept of the concentrated Gaussian
distribution on Lie groups, necessary for introduction of the LG-
EKEF, the considered Lie group needs to be a connected unimodular
matrix Lie group [45], which is the case of the majority of Lie groups
used in robotics.

Let the pdf of X be defined as [46]

1 vl p—1 v
pX) = Bexp _5[10gG(X)]G P~ [logc(X)]¢ ) (3)
where B is a normalizing constant. Let ¢ be defined as ¢ £
[logg(X)1¢. Under the assumption that the entire mass of
probability is contained inside G, i.e., fRnxn\Gp(X) = 0,€ can

be described with € ~ Nge(0P*1, P). This concept is called
a concentrated Gaussian distribution (CGD) on G around the
identity [25]. Furthermore, it is a unique parametrization space
where the bijection between exp; and log; exists. Now, the
distribution of X can be translated over G by using left action of
the Lie group

X = pexpg ([elg), withX ~ G(u,P), (4)

where G denotes the CGD [46,25]. By this, we have introduced the
distribution forming the base for the LG-EKF.

3.2. The Special Euclidean group SE(2)

The group SE(2) describes rigid body motion in 2D and
is formed as a semi-direct product of the plane R?> and the
special orthogonal group SO(2) corresponding to translational and
rotational elements. It is defined as

SE(2) = {(0& i) e R¥3|{R, t} € SO(2) x RZ} ) (5)

Now, we continue with providing the basic ingredients for working
with SE(2), giving relations for operators presented in Section 3.1,
needed for manipulations within the triplet: Lie group G, Lie
algebra g, and Euclidean space RP.

For a Euclidean space vector x = [xy G]T, the most often
associated element of the Lie algebra se(2) is given as

A X

[X]SAE(z) _ [X]502) y | €se(2) (6)
01><2 0

[X]g\o(z) = [g _09] € 50(2). (7)
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Their inverses, [~]SVE 2) and [-]Svo(z), follow trivially from the relations
(6) and (7), respectively.
The exponential map for the SE(2) group is given as

t,
expso2) ([0ls02)
expsg) (K1) = | 0@ 07 1y | € SE(2) ®)
01><2 1
cosf® —sinf
eXPsor2) ([015002) = [sin@ 050 } €50(2) (9)
1
ty = 5[xsin9 + y(—1+ cos )] (10)
1
ty=§[x(1—c059)+ysin9]. (11)
For T = {R, t} € SE(2), the logarithmic map is
v A
logsg (o) (T) = I:@i| € 5e(2) (12)
SE(2)
9 = logso(z) (R) = atanZ(R21, R]]) (13)
0 i _
v— sin 6 1 _cos@ (14)
2(1 —cos@) |cos6 — 1 sin 6

The Adjoint operator Adg used for representing T € SE(2) on R? is
given as

AdSE(Z)m:[ofiz ﬂ with1=[_°1 5] (15)

while the adjoint operator adg for representing ¥ € R> on R is
given by

—0) ]"} , (16)

adsg2) (X) = |:01><2 1

where v = [xy]" € R Given the definitions above, we have all
the needed ingredients for using the SE(2) motion group within
the proposed approach.

4. Second order rigid body motion estimation

4.1. State space construction

As arigid body, vehicle’s state can be well described employing
the rigid body motion group. Furthermore, when considering
velocities of such an object, we can also represent these higher
order moments by using the same motion group. Following the
rigid body equivalent of the constant velocity motion model [47],
here we model the vehicle by constructing the state space G as
the Cartesian (direct) product of the two matrix Lie group SE(2)
members [40]

SE(2) x SE(2) = SE(2)%. (17)

The first SE(2) member is the position component, while the
second one contributes the velocity components. This can be
regarded as a white noise acceleration model [47] on the SE(2)
group. Considering vehicle tracking applications, in contrast to
other well established motion models—constant velocity, constant
turn rate and velocity, constant curvature and velocity [48,49]—
the SE(2)?> motion model provides more artificial flexibility.
This flexibility is manifested through including the holonomic
behavior over all three velocity components, i.e., the longitudinal,
lateral, and rotational velocities, which have Wiener process
characterization [47]. Such flexibility provides the ability to
describe motion of objects appearing in ADAS, e.g., vehicles,
motorcycles and pedestrians, and hence is appropriate for usage
in our particular DATMO focused application.

Matrix Lie group composition and inversion are simple matrix
multiplication and inversion, hence for all the calculations dealing
with operations on G, we can use the symbolic representation
constructed by placing the two SE(2) members of G block
diagonally. The Lie algebra associated to the Lie group G is denoted
as g = se(2) x se(2). The term [x]{ is also constructed by placing
both se(2) members on the main diagonal, and correspondingly the
exponential map on such G is as well formed block diagonally. For
more details on the construction and symbolical representation of
the groups of interest, please confer [40] where the state model
was first proposed.

4.2. Motion model and prediction

The motion model satisfies the following equation

Xier1 = f X, ) = Xy expg ([f}k + le]é) , (18)

where X; € G is the state of the system at time k, G is a p-
dimensional Lie group, n, ~ MNgr (0°*1, Q) is white Gaussian noise
and fzk = 22X G — RP is a non-linear G2 function. If
the posterior distribution at step k — 1 follows the concentrated
Gaussian distribution on matrix Lie Groups as §(uk—1, Px—1). The
predicted mean is given by [25]

Wks1)k = Mk €XPg ([Qk]é) . (19)
We model the motion (18) by [40]
2(X) = [Tvy, Tvy, T 000]" € RS, (20)

T2 T2 2 T .
e = o e My 5 Mo Tny, Tny, Tn,, | €R°.
With this model, the system is corrupted with white noise over
three components, i.e. n, is the noise in the local x direction, n, is
the noise in local y direction and n,, is the noise in the rotational
component.

Formula for propagating the covariance of €1k through the
general motion model (18) is given as in [25]

Piaik = FiPeF] + Do ($20) Qe ($20)], (21)

where the operator £, a matrix Lie group equivalent to the
Jacobian of f (X, ny), and &g, are evaluated as

Fi = Adg (expg (112 ) ) + Pe(20

= (_1)m m
P (v) = n;) madc(") ,VER? (22)
9 A
% = &Q (11k €xpg ([e]G))le:o .

The covariance propagation is challenging since it requires
calculation of (22). The final expression for %j is thus given as

Tcosw, —Tsinw, O
0°*3 Tsinwy Tcoswy O
% = 0 k 0 k T (23)
03><3 03><3

The complete derivation of ¢} is given in [40]. The adjoint operators
Adg and adg are also formed block diagonally.

The last needed ingredient is the process noise covariance ma-
trix Q. In the present paper, we perform sensor fusion in an asyn-
chronous manner with the arrival of each measurement. Hence, we
proceed by defining the process to follow continuous white noise
acceleration model (CWNA) over the three components discussed
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previously. In the sequel, we derive the discrete time process noise
by relating it to the continuous one [47]. Let gy, Gy and g, denote
the time-invariant continuous time process noise intensities re-
flecting power spectral density over all three components. Then,
the process noise covariance matrix Q evaluates to

_T3 T2 —
?qx 0 0 ?qx 0 0
T3 T? .

0 ?qy 0 0 ?qy 0

T3 . T? |
0 0 —qw 0 0 — (o
Q= 2 3 2 (24)
—x 0 0 Tqy 0 0
2 -
0 ?Z]y 0 0 Tq, 0
T2
| O 0 ?E]w 0 0 TGy |

At this point, we have defined all the necessary ingredients for the
asynchronous prediction step of the LG-EKEF filter.

4.3. Measurement model and correction

The discrete measurement model on the matrix Lie group is
defined as

Zipr = h(Xies1) expe (IMis1]?) (25)

where Z,,; € G,h : G — G isa ¢! function and my,; ~
Nea (091, Ri11) is white Gaussian noise.

The predicted system state is described with Xp i ~
G (Uk+1)k> Pe1ik) and now we proceed to updating the state by
incorporating the newly arrived measurement Z;,; € G'. In this
case, we propose the measurements to arise in the space of a Lie
group constructed as G = SO(2) x R!, measuring the current
position of the tracked object in 2D in polar coordinates. The radar
and the stereo camera, as well as many other widely spread on-
board sensing systems, perceive the surrounding from a single
point, and hence perform the measurement in polar coordinates.
Thus the uncertainty of such measurements, i.e. the measurement
likelihood, resembles banana-shaped contours rather than the
elliptical ones. In order to integrate such sensing modalities into
the LG-EKF, we now introduce necessary ingredients for the update
step of the filter.

The measurement function is mapping h : SE(2) x SE(2) —
SO(2) x R!.Itis given as

Yie+1 "
€XPso(z) | | arctan
Xk+1 S0(2)
A
2 2
€XPR1 ([\/ Xiet1 +yk+l:| 1)
R

The exponential and logarithm on R follows a mapping procedure
and is only a matter of representation. Hence we introduce
expy for implementation purposes only, to follow the matrix
representation of the procedure, hence each composition and
inversion follow matrix multiplication and inversion procedures,
even when working with Euclidean space. In particular, the
Euclidean space is a trivial example of a matrix Lie group, so the
representation of v € RP in the form of a Lie algebra [v]3, C
RPHDPHT and matrix Lie group expgp ([vlg,) C RPF*PHT s given
as

Ao 0P
[U]RP = |:01 xp

h(Xir1) = (26)

A ]PXP
8] and  expgp([vlgy) = |:0]><p 11)] . (27)

One should note that there exists a trivial mapping between the
members of the triplet v, [v]}, and expgs ([v]%,), hence the formal
inverses of the terms from (27) are omitted here.

Let us now define the following innovation term

= _ \%
Zipr = [loggr (h(pis1p) ™' Zir1) |
= Hipr€ese + M1 + O (llewenll®, Imierll?) (28)

which is linear in the lie algebraic error x4 1k ~ Ngp (0P*1, Prt1ik)-
Now, we can apply the classical update equations employing
the measurement model to update the Lie algebraic mean and
covariance, such that €, ; ~ Ngp(i4)yq, Py q). The update step
of the filter, based on the measurement model (25), strongly
resembles the standard EKF update procedure [48], relying on the
Kalman gain Kj, 1 and innovation vector vy, and is calculated as

-1
K1 = Pyt sy (ﬂk+1pk+l\l<=}€;z+1 + Rk+1)

» N (29)
Va1 = [loge (h(ttrs1p) ™ Zesr) | -
Hence the updated Lie algebraic error €, is given as
K = Ki+1Vk41 (30)

Py = (PP — Kip1Hie1) Pegajee

The matrix #¢, can be seen as the measurement matrix of the
system, i.e. a matrix Lie group equivalent to the Jacobian of h(X}),
and is given as

[loger (R(ttrs1p) ™" (Mieg1ie €XPg ([6]6)))]2‘620 -(31)

The final expression of the measurement matrix #, is given as
follows

Horr — a
k+1—a€

—ycosf + xsinf  xcos6 + ysinf

X2 +y2 X2 +y2 2x4
xcos6 + ysinf ycos@—xsin@oX : (32)
/x2 + y2 /X2 + y2
Note that the subscript indices determining the time step of the
filter have been omitted in the previous expression due to clarity,
ie. Okpik 2 0, Xkp1k = X and yyqqx 2 y. Detailed derivation of the
matrix #1 is given in the Appendix.

The update procedure is expected to deliver the concentrated
Gaussian distribution such that X = expg ([e]¢), with
expectation E[e] = 0P*!, However, since operating with generally
non-Euclidean spaces, we have E[e,, ;] = p,, # 07! which
is resolved by state reparametrization [25]. The mean and the
covariance are updated as

Hir1 =

ket = i1k €XPg ([ie1]e)
Pi1 = D6 (i )Py 1 P (i)

Asin the case of the prediction step, the state Xy 11 ~ $(tk+1, Prr1)
has remained §-distributed after correction. Now we have all the
means for updating the filter by calculating the Kalman gain K1
and the innovation vector vy (29), and finally correcting the
mean fi+1 and the covariance matrix Py,q (33).

Fig. 2 shows examples of LG-EKF filter state uncertainties
updated with three different sensors types. In all the examples
the filter prediction follows the SE(2)? motion model and yields
banana-shaped state uncertainties. In Fig. 2(a) we show an example
of updating the filter with a sensor having elliptical measurement
uncertainty; this resembles ‘classical’ Gaussian like uncertainty.
In Fig. 2(b) we depict update with a sensor that has larger
uncertainty in the bearing than in the range and the update of
the filter acts as ‘intersecting’ the two banana-shaped distributions.

(33)
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G(Zis1, Ris1)
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(a) Elliptical measurement uncertainty.

G(Zy1, Risr) G (i1 Pir

(b) Radar-like measurement uncertainty.
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Gt Prs1ip) ',

G(tes15 Prsr)
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(c) Stereo vision-like measurement
uncertainty.

Fig. 2. Examples of LG-EKF state uncertainties when updated with sensors having different measurement characteristics. The filter prediction in blue follows the SE(2)?
motion model, measurement is depicted in red, and the updated state is depicted in green. We can notice that the LG-EKF filter can capture a wide range of uncertainty
contours; from Gaussian elliptic uncertainties to banana-shaped uncertainties typical for range-bearing sensors and vehicles in motion with non-zero turn rate deviation.

This example resembles update performed with a radar unit.
Finally, Fig. 2(c) shows the example with sensor having larger
uncertainty in the range than in the bearing. Notice how the
prediction uncertainty skews to the right indicating that the
vehicle had higher probability of turning right than left. This
example resembles update performed with the stereo vision
sensor. From the above examples we can see how the filter can
handle diverse measurement uncertainties and efficiently fuse
them with the information from the prediction step. Having
finished with the single target filtering, what is left is to resolve
the LG-EKF tracking with multiple targets in the scene.

5. Joint integrated probabilistic data association

Assume that we are tracking multiple targets, {77, ..., T},
with the number of targets, t;, varying with time, i.e., targets can
appear and disappear from the sensors’ field-of-view. Let Z; denote
the set of all measurements at time step k

Zk={Z]]; 3j=1,...,m]<},

and Zyx = {Zi,...,Z} the history of all the measurements.
The vector Z, besides target originating measurements, also
contains clutter which is a Poisson distributed random variable.
The main issue at hand is how to appropriately assign the received
measurement set to the targets in track, and how to manage the
target appearance and disappearance.

The JIPDA [37] approaches this problem by estimating the
following a posteriori density for each 7;

PXis xi | Z1k) = pX | Xas Z10P (X | Z1k), (34)

i.e, the density of the target’s state X}, and its existence x, given all
the measurements up to and including k. Note that in the present
paper, X, is distributed according to § (i, P}) as in the case of (4).
For the probability of target existence, we adopt the Markov Chain
One model [37]

PO | Zik1) = PsP(Xir | Zik—1), (35)

where ps denotes the probability that target will continue to exist
at step k given that it existed at step k — 1.

In order to alleviate computational complexity, at each
scan tracks are separated into clusters which share selected
measurements. As a criteria for measurement-to-track validation,
the gating principle is used where based on the innovation
uncertainty (29) a gating volume is defined, and measurements
falling within are accepted as cluster members. For notation
clarity we will not differentiate measurements belonging to
the cluster from those outside of the clusters. The former will
participate in the data association operations, while the latter

will be treated as candidates for new tracks initialization. For
filtering on LG, validation gate is defined in the algebra where
measurements are associated to targets, and if multiple targets
share the same measurements they are formed into a cluster.
The ensuing formulae will pertain to a single cluster and all the
measurements and targets are assumed to belong to the cluster.

Upon availability of a set of new measurements Z, = {Z{( j=
1, ..., my}, the following set of hypotheses is built:

9,('7 = {Z’,; iscausedby 7}, j=1,...,m, and
9,:0 = {none of the measurements is caused by 7;}.

The total probability formula implies that the posterior density for
object 7; at scan k is given by [37]

X X | Z1x)

Mk . . . .
=0 | Z1a) D P4 10, X0 210, | i Z1a)
j=0

Mk i . .. .
=pO 1 2120 Y BP0/, Xi Zua),
j=0

(36)

where ,Bk'j = p(GkU | X,ﬁ, Z,.;) represent a posteriori data association
probabilities conditioned on object existence. Explicitly, B, is the
probability that measurement z, is caused by 7; and B° is the
probability that none of the measurements is caused by 7;. The
densities p(X} | 6", x}, Z1.x) represent ‘classically’ updated LG-
EKF (30) forj = 1, ..., my, while for j = 0 the density is just the
prediction calculated via (18) and (21). Parameters of the mixture
components are denoted by u}ﬂ’; and P,'j’[l, specifically, when j =
0,— _ i i0,— _ pi

0, fii1 = Mg and Py _'PI'(+1|I<'

In order to calculate B, we need to take into account
measurement-to-object associations events jointly across the set

of objects in the cluster. This means that hypothesis 6,:1 consists of
all feasible joint events & where each track is assigned zero or one
measurement and each measurement is allocated to zero or one
track; thus, they partition the hypothesis 6,’ and

PO xi 12 =" P2, j>1, (37)
Seekij
p@O° 2% =1-p@©), xi 1 2'%). (38)

Furthermore, probability that 7; exists and that no measurement
in the cluster is its detection, is given by [37]

0 i gk (A=POPOPGGLIZ™) o o
PO, xi 12 = e p (60 1 2. (39)
1_PDPGP(XI<|Z')
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To calculate P(§¢ | Z'*), for each joint event & we define:
set of targets allocated no measurement, Ty(&), and set of tracks
allocated one measurement, T;(&). Following [37,38] we obtain

P& | Zl:k) — Ck—l 1_[ a- PliJPéP(XIi | Zl:k—l))
i€Tp (&)

. PIPIP(XI |Zlik71) ey
[T Porepou (T (€, )

icT; (&)

(40)

where P; is the probability of 7; being detected, P(i; is the probability
that the correct measurement will be inside the validation gate of
Ti, T(8, 1) is the index of measurement allocated to 7; under joint
event &, pr(t (&, i)) denotes a priori clutter measurement density

atz; €D and C, !is the normalization constant calculated from the
fact that & are mutually exclusive and form an exhaustive set, i.e.,
> P& | 7%y = 1. The innovation is calculated by using results

from (29)

. . 1 e
p(T(€,1) = P*PL(V;((G’I)§ 0, Hict 1Pes 11 Hps 1 + Rir)- (41)
G

The innovation in (41) is normalized by P; in order to account for
the validation gating, i.e., since it is truncated to integrate to unity.
Finally, we have all the elements to determine the probability of
target existence

my . ) )
PO 12 = " p@ xi 12", (42)
j=0

and to calculate the data association probabilities
. p(eij’ Xi |lek) )
,3/3:1‘7](”(, j=0,...,m. (43)
PO 1279

Note that all the operations concerning a specific target 7,
described so far in the section, are carried out in the pertaining
algebra of LL;{_H“(, since, we are still at the update stage of the LG-
EKF. To calculate the final a posteriori state estimate the JIPDA logic
dictates reducing the mixture in (36) to a single density with the
following parameters [50,38]

mis =Y B (44)
j=0
my
i,— ij,— ij,— o B,—\T i,— i,— \T
Peri =D (Pl + i ) D — i i)™ (45)
Jj=0

As in the case of the LG-EKF update, E[¢,_ ;] = u;;; # 071 thus,
before mapping the updated state and covariance to G we have to
perform reparametrization [40]

[k = Hip 1y €XP ([ui’_ ]A)
k+1 k+1]k G k+11G (46)

PIi—H = qu(“;é;l)Pl?;lqu(“;;;l)T-
6. Experimental results

6.1. System overview

The experiments were carried out using two radar units and
a stereo camera system, mounted on a sensor platform on top of
a vehicle. The sensor platform was constructed so that the stereo
camera is placed in-between the two radar units as shown in Fig. 1.

In the present paper we used the Continental Short Range
Radar 209-2 units (measurement range of 50 m) configured to
operate in the cluster mode, at a rate of 15 Hz. The field of view

is 150° horizontally and 12° vertically, with the resolution in the
horizontal direction of 1°, while there is no discrimination of the
angle in vertical direction, and hence the radar cluster data can
be considered as 2D measurements. After each scanning cycle the
radar can deliver a cluster consisting of up to 128 detections. In
the prefiltering stage we dismissed all the cluster measurements
whose radar cross section, i.e., the measure of the reflective
strength, did not exceed —5 dBm.

The stereo images were recorded with the monochrome Point
Grey Bumblebee XB3 camera system. This system is a 3-sensor
multi-baseline stereo camera with 1.3 mega-pixel global shutter
sensors. The image resolution is 1280 x 960 pixels, with horizontal
field of view of 66°. The experiments were carried out at the
maximum frame rate of 16 Hz, and by using the largest, 24 cm
long baseline, since the expected target measurement range is up
to 50 m. The stereo image synchronization was executed internally,
while the experiment was recorded in the auto-exposure mode of
the camera.

Given that the sensors are closely spaced, mechanically aligned
using custom-made plates on the same rail, and since we perform
sensor fusion at the state level, the inter-sensor calibration was
done by measuring the mounting position displacements by hand.
Moreover, due to the coarse nature of radar measurements we
find the current rail-mounting sufficiently precise to assert that
differences in the orientation of the sensor coordinate frames
can be neglected for case of the present sensor setup. However,
for arbitrary radar and stereo vision setups a closer inspection
of the calibration problem might be required [7]. Furthermore,
special attention was taken to assure the clock synchronization,
since our approach relies on state estimation performed in an
asynchronous manner. Although both sensors work at close
frequencies, generally this might not be the case, and the approach
of asynchronous filtering is kept for the sake of generality. The
prediction step directly depends on the time period T, i.e., the time
passed between the two consecutive steps k and k + 1. Therefore,
a clock drift or large delay in data acquisition could significantly
affect the performance of the algorithm.

6.2. Stereo detection procedure

The main goal of the stereo image processing part of the
algorithm is to detect moving objects in the scene, while the
motion of the observer makes this task especially challenging.
However, this work focuses on the estimation procedure and
the fusion of two sensor modalities, hence the sole stereo based
detection of moving objects is only briefly described.

The first part of the algorithm works on the ego-motion
estimation, which results in transformation matrix between the
previous and the current camera frame. Regarding this issue,
we employed our SOFT algorithm [24], which has proven to be
very robust on the appearance of moving objects in the scene,
illumination changes, various specularities, sensor overexposure
etc. However, SOFT uses very sparse set of salient feature points,
which are not sufficient to reliably detect objects in the scene.
Therefore, we employ the corner detector from [51] for detection
of semi-dense set of feature points. Position and velocity of each
detected feature is estimated in 3D Euclidean space. Now we need
to determine the correspondences between features in the left
and the right image of the current and previous frame. For this
purpose we have used the optical flow procedure presented in [52],
and have computed the correspondences by using the stereo block
matching algorithm from [53].

Since the images are rectified, all the feature points from
the previous frame are projected into 3D world frame through
a standard pinhole camera model, and then are back-projected
into the current camera frame by compounding the position with
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the motion matrix obtained from the ego-motion algorithm. Such
transformed 3D points from the previous frame connected to
corresponding 3D points from the current frame form a vector
field, with each vector representing a motion of corresponding
3D point relative to the world frame. Since the measurement
uncertainties are highly anisotropic in 3D space, it is difficult to
accurately determine the motion intensity along the optical axis
direction. Hence, we project the vectors into the image plane
where the uncertainties are more evenly distributed, and apply
the threshold on the magnitude of motion of each point. The
remaining vectors are then connected into clusters by respecting
both translational and rotational parameters. Finally, we consider
each clusters corresponds to a moving object if at least 3 vectors
appear within it, and describe it with the centroid point of all the
corresponding points. The positions of the moving objects detected
with the stereo camera system are finally projected into the radar
plane and passed to the multitarget tracking algorithm presented
in Section 5.

The projection of raw detections of the stereo vision based
detection (red circles) and radar readings (green circles) onto the
image plane along with filter tracks (yellow circles) is shown in
Fig. 3. The images represent four snapshots of the experiment
which illustrates the drawbacks of using just a single sensing
technology. For example, in the top-most snapshot within Fig. 3 the
radar did not capture the two motorcycles, while the stereo camera
managed to detect their motion. The second snapshot gives an
example of a busy intersection, while the third snapshot shows an
example where the vehicle right in front of the ego-vehicle was not
detected by the stereo camera due to moving along the camera’s
optical axis whereas the radar provided consistent detections and
the vehicle was tracked by the filter. The final snapshot shows an
example where the radar did not detect a vehicle and a pedestrian,
while the stereo camera managed to consistently detect their
motion and respective filter tracks were obtained.

6.3. Real-world experiments

The experiments were conducted with the sensor platform
equipped vehicle driving through an urban environment. The
algorithm was tested in several highly dynamic scenarios,
involving cars, trams and pedestrians. The process noise intensities
for the asynchronous filter were set to gy = ¢, = 1 and
do = (2Z-)% The clutter size and the probability of detection

180
were set to ¢ 10 and P[,“d‘" = 0.7, respectively. The

radar unit likelihood was configured such that the measurement

uncertainty in the bearing component was mfjrr‘;dar ~ Np1(0, 2°%),

while the measurement uncertainty in the range component was
m,rcﬁdar ~ Ng1(0,0.25%). The clutter size related to the stereo
vision system was set to c**™° = 2, while the detection probability
was P = 0.75. The stereo vision likelihood was configured so
that the measurement uncertainty in the bearing component was

m 5 ~ Ngi1(0, 0.5°2), while the measurement uncertainty in

the range component was mj;';® ~ N1 (0, 1%). The JIPDA filter
gating probability was P = 0.9, and the survival probability was
ps = 0.95. We have implemented an approach where the tracks
are confirmed to be truly existing objects once the probability of
object existence exceeded the value ofp(x,i | Z1x) = 0.9. The
tracks were deleted once the probability of existence fell below
p(Xllc | Z]:k) =0.1.

The first experiment, lasting about 60 s, involved a scenario in
which the vehicle turned right and kept driving down an avenue.
The results of this experiment are shown in Fig. 4. In this example
it is important to note the very dense traffic on the left-hand
side of the vehicle during the turn, which represents a very busy
intersection (see the most bottom image in Fig. 3). However, due to

Fig. 3. Four snapshots of experiments illustrating detections of the stereo camera
(red circles) and radar readings (green circles), which serve as the input for the
tracking algorithm (yellow circles). The red lines depict optical flow vectors of
the detected motion. An accompanying video is available at https://youtu.be/Br-
qwez1L18. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

high radar clutter, it occasionally happened that the clutter caused
false tracks. Such an example can be seen on the right-hand image
of Fig. 4. Even though the algorithm manages to track the vehicles
on the road (in both directions), some objects, like the roadside
hedges next to the road and the pertaining radar clutter, have
caused the algorithm to detect them too as true targets. In this
experiment, after raw sensor data preprocessing, on average there
were 6.46 radar detections and 1.69 stereo camera detections per
frame which yielded 3560 filter initializations and 228 confirmed
tracks.

In the second experiment, lasting about 85 s, the vehicle
drove in one direction along a three lane avenue, performed
a u-turn (at the same busy intersection as in Fig. 4) and kept
driving forward. The results of this experiment are shown in
Fig. 5. The dataset was collected on a three lane road, where
the vehicle drove in the middle lane, and detected vehicles in
both the left and right lane. It can be noticed that again some
radar measurements have caused the algorithm to believe that
roadside objects corresponds to true targets. By analyzing the
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Fig. 4. The experimental scenario in which the platform vehicle turned right and
kept driving down an avenue. The left part shows the entire 2D projection of
the experiment where light and dark gray dots correspond to stereo and radar
measurements, blue lines correspond to existing moving objects in the surrounding,
and green line represents the ego motion of the vehicle (starting from (0, 0)). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

results we have noticed the occasional appearance of false positive
trajectories, i.e. the ones that correspond to roadside hedges. In this
experiment, after raw sensor data preprocessing, on average there
were 12.19 radar detections and 3.0 stereo camera detections per
frame which yielded 6935 filter initializations and 450 confirmed
tracks. It is also important to mention that we have conducted
the experiments during a foggy day, which presented challenging
conditions for the stereo image processing.

6.4. Discussion

The presented experimental results illustrate the ability of
the proposed approach to track moving objects in the context
of ADAS with sensing systems of different modalities, i.e., the
radar unit and the stereo camera system—a combination of
sensing technologies that has recently been adopted by many car
manufacturers. However, to the best of the authors’ knowledge,
none of the available datasets using these sensors contain ground
truth data, hence it is difficult to ensure a quantitative real-world
experimental evaluation of the proposed approach. Still, in our
previous work [40] we have performed an in-depth evaluation of

J. Cesic et al. / Robotics and Autonomous Systems 83 (2016) 338-348

filtering on Lie Groups in simulations, and proven the advantages of
using SE(2)? state space for tracking whenever the characteristics
of the system are such that the Euclidean space cannot fully
account for the geometry of the state space, while in this work
we have applied the mentioned results for multitarget tracking
in an ADAS application, and particularly for the sensors whose
measurements arise in polar coordinates. Hence, in the present
paper we omit an in-depth simulation based evaluation of the LG-
EKF procedure.

From the viewpoint of estimation, the advantages of the
proposed approach lie in the flexibility of modeling the sensors’
and the tracked object’s uncertainty and motion. This can
prove advantageous in projecting the object’s future motion and
uncertainty thereof for applications such as collision avoidance or
motion planning of autonomous vehicles. The detection procedure
of the stereo camera does not rely on a specific appearance of
objects and can detect arbitrary motion, including that of cars,
vans, motorcycles, and pedestrians as shown in Fig. 3. However,
therein lies also the disadvantage of being able to detect only
objects exhibiting relative motion with respect to the ego-motion.
Objects moving in parallel to the car with the exact same velocity,
thus in the image appearing as static, and objects moving along
the optical axis can be difficult to detect with the stereo camera.
This necessitates then the need for fusing data with other sensors,
such as the radar, which can then complement these situations and
yield better range measurements for objects further away from the
ego-vehicle.

Also, as mentioned in Section 2, the JIPDA filter in its basic
Kalman filter-like form represents a well-established approach
for multitarget tracking problems. By performing the presented
experiments, we have verified the approach of joining the
two fundamental multitarget tracking building blocks: the state
estimation and probabilistic data association scheme, both based
on the geometry of Lie Groups. Given the above, we believe this
work will not only serve as a DATMO reference, but also as a
guideline for using the LG-EKF in various ADAS aspects.

7. Conclusion

In this paper we have addressed the detection and tracking
problem, within the context of advanced driver assistance systems,
with a multisensor setup consisting of a radar unit and a stereo
camera. The stereo camera estimated relative displacement of the
vehicle, using stereo visual odometry, generating measurements
as cluster centers of optical flow vectors not conforming to the
estimated motion. The radar directly reported its measurements to
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Fig. 5. The experimental scenario in which the vehicle drove in direction, performed a u-turn, and kept driving forward. The upper part shows the entire 2D projection of
the experiment where light and dark gray dots correspond to stereo and radar measurements, blue lines correspond to existing moving objects in the environment, and
green line represents the ego motion of the vehicle starting from (0, 0). (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)
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the filter, thus complementing the stereo camera measurements.
Since the two sensors worked at different frequencies, sensor
measurements were fused using an asynchronous Kalman filter on
Lie groups.

This particular representation was proposed so as to most faith-
fully model the uncertainties of both the sensor measurements
and the vehicle’s state. Concretely, the radar and the stereo camera
were modeled as polar sensors, while the vehicle’s state resided on
the Lie group SE(2)2. This enabled us to reliably model the uncer-
tainties as having banana-shaped contours, when such a situation
arises, in contrast to elliptical uncertainty contours given by the
‘classical’ Gaussian distribution. To solve the multitarget tracking
problem we adapted the JIPDA filter to work with the Kalman filter
on Lie groups. In the end, the proposed filter performance was pre-
sented on a real-world dataset recorded in urban traffic scenarios.

Appendix. Derivation of #¢

As part of the update step we need to derive the matrix Hy.1
denoting the LG-EKF equivalent to the Kalman filter measurement
Jacobian. Before proceeding with explicit derivation, we define the
measurement function h(Xy,1) as

Yi+1
€XPso(2) arctan —
Xi+1 S0(2)

A
€XPp1 (I:\/ x§+1 +y£+1:| 1>
R

For this purpose we start with the definition of the Lie algebraic er-
ror € = [ € € €, €, €,]. We further provide the prerequisites
for deriving J¢. We firstly give the expression which is an argument
for evaluating #¢

hXier1) = (A1)

1
h(ﬂk+l|k)_lh (Mk+1|k expg ([é]é)) — [hc hz]

C

y N ye N
€XPso(a) [atanzﬂ} eXPso 2 [atanz%}
Xk+1 Iso(2) Xi+1 dso(2)
A A
expﬂy <|:\/ Xerr +yi+1j| 1) €XPpt <|:\/ Xty +y£:1i| 1)
R R
(A2)

where x; , ; and y;, ; denote variables extracted from the current
matrix Lie group system state Xy,;, compound with the Lie
algebraic error mapped via the exp;. These two variables are hence
given as

XE.H = Xiy1 + €0S O 1f — sinbyy g

. (A3)
Vi1 = Yier1 + sin O 1f + cos Oy18.
where the terms f and g follow terms
= [ecsineg + €,(—1 + cos€g)]e; !
f [ X 0 y( 0)] 2] (A.4)

g = [ex(1 — cos€y) + ¢, sinegle,

The function to be partially derived is obtained by taking the
logarithm on G’ as follows

|:10gc,<|:hg hz])]v _ [IOgsoa) (hg)]svoe) ) (A5)

¢ | [loga ()]

Let 7, ; and J¢Z, ; denote the two rows of (A.5). In order to derive
(31), we need to determine partial derivatives and multivariate
limits over all directions of the Lie algebraic error vector. This result
is given as

1 .
IHy s o = Yk COS O+ 11k + Xit-1jk SIN Gy 11k
0= 2 2
dex Xip1k T Vig1k
1 .
0 Hyeiq X+1]k COS Oxq1jk + Yi11k SIN Opq i
| —
0= 2 2
dey Xier 1k + Vipe
2 .
0 Hy 4 | Xk+1]k COS Orq1jk + Yi11k SIN Opeq i
O =
de 2 2
X Xip1ik T Vir1ik
2 .
dHp, o = Vi1l €OS Ok 1k — K1)k SIN O 11k (A.6)
0= .
de 2 2
4 X1k T Vv
1 2
OHr 0 OHir, 0
Te "7 Tae T
0 0
1 1 1
0Hq, 0Hq, 0Hq,
lo=0 lo=20 —1o=0
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2 2 2
H 1 _ Ay, _ dFHyy —0
ey "0 oo, "% The, 0T
Ux 'Uy w
The final measurement matrix # 1 is given as
1 1 1
FHy i o FHy 4 . Hy 1 o
AR I B B I (A7)
a’7'€k+1 | a‘7'€k+l | 3‘;l€k+l |
0 0 0
0ex dey, deg

Even though the term (A.5) appears involved, the relations (A.6) are
actually obtained by patient algebraic manipulations and hence the
detailed derivation is not shown here.
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Josip Cesi(’:, Member, IEEE, Ivan Markovié¢, Member, IEEE, and Ivan Petrovi¢, Member, IEEE

Abstract—Many physical systems evolved on matrix Lie groups
and mixture filtering designed for such manifolds represent an
inevitable tool for challenging estimation problems. However, mix-
ture filtering faces the issue of a constantly growing number of
components, hence requiring appropriate mixture reduction tech-
niques. In this letter, we propose a mixture reduction approach
for distributions on matrix Lie groups, called the concentrated
Gaussian distributions (CGDs). This entails appropriate reparam-
eterization of CGD parameters to compute the KL divergence,
pick and merge the mixture components. Furthermore, we also
introduce a multitarget tracking filter on Lie groups as a mixture
filtering study example for the proposed reduction method. In par-
ticular, we implemented the probability hypothesis density filter
on matrix Lie groups. We validate the filter performance using
the optimal subpattern assignment metric on a synthetic dataset
consisting of 100 randomly generated multitarget scenarios.

Index Terms—Estimation on matrix lie groups, mixture reduc-
tion, multitarget tracking, probability hypothesis density filter.

1. INTRODUCTION

ANY statistical and engineering problems require mod-
M eling of complex multimodal data, wherein mixture
distributions became an inevitable tool [1], [2], primarily in
traditional application domains like radar and sonar tracking
[3], and later in different modern fields such as computer vision
[4], speech recognition [5], or multimedia processing [6]. Ap-
proaches relying on mixture distributions often face the problem
of large or an ever increasing number of mixture components;
hence, the growth of components must be controlled by approx-
imating the original mixture with a mixture of a reduced size
[7]-[9]. For example, in the case of multitarget tracking ap-
plications, by employing conventional Gaussian mixture based
filters [10], [11], during the recursion process, the number of
components inevitably increases. This appears first due to ap-
pearance of newly birthed or spawned components, and second,
due to inclusion of multiple measurements, which results in a
geometrical increase in the number of components.
Another important aspect of estimation is the state space ge-
ometry; hence, many works have been dedicated to appropriate
uncertainty modeling and estimation techniques for a wide range
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of applications [12]-[15], motivated by theoretical and imple-
mentation difficulties caused by treating a constrained problem
naively with Euclidean tools. For example, Lie groups are nat-
ural ambient (state) spaces for description of the dynamics of
rigid body mechanical systems. In [16], it has been observed
that the distribution of the pose of a differential drive mobile
robot is not a Gaussian distribution in Cartesian coordinates,
but rather a distribution on the special Euclidean group SE(2).
Similarly, in [17], it was discussed the uncertainty association
with three-dimensional (3-D) pose employing the SE(3) group.
Furthermore, attitude estimation arises naturally on the SO(3)
group [15]. In [18], a feedback particle filter on matrix Lie
groups was proposed, while in [19], [20], the authors proposed
an extended Kalman filter on matrix Lie groups (LG-EKF),
building the theory upon the concentrated Gaussian distribution
(CGD) on matrix Lie groups [21].

In this letter, we address finite mixtures of distributions on
matrix Lie groups. We propose a novel approach to CGD mix-
ture reduction, which required finding solutions for computing
Kullback-Leibler divergence of CGD components and CGD
component merging. Furthermore, since previous methods re-
quire choosing the appropriate tangent space, we also provide
an extensive analysis on the choice thereof. As a study example,
we use the proposed reduction method in a multitarget tracking
scenario. We introduce the probability hypothesis density filter
(PHD) on matrix Lie groups with approximation based on a
finite mixture of CGDs.

II. MATHEMATICAL PRELIMINARIES

We now introduce theoretical preliminaries concerning Lie
groups; however, for a more rigorous introduction, the reader is
directed to [22]. A Lie group G is a group that has the structure
of a smooth manifold; moreover, a tangent space T’y (G) is asso-
ciated to X € G such that the tangent space placed at the group
identity, called Lie algebra g, is transferred by applying corre-
sponding action to X. In this letter, we are interested in matrix
Lie groups that are usually the ones considered in engineering
and physical sciences.

The Lie algebra g C R™*" associated to a p-dimensional ma-
trix Lie group G C R"*" is a p-dimensional vector space. The
matrix exponential expg and matrix logarithm logg establish a
local diffeomorphism between the two

expg:9—G and logs:G —g. (1)

Furthermore, a natural relation exists between g and the
Euclidean space R? given through a linear isomorphism

[l&:g—= R and []5:R? —g. (2)

For x € R? and X € G, we use the following notation [23]:

expg(z) = expg([z]g) and  logg(X) = [logg(X)]G- (3)

1070-9908 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Lie groups are generally noncommutative, i.e., XY # Y X.
However, the noncommutativity can be captured by the so-called
adjoint representation of G on g [24]

X expg(y) = expg(Adg(X)y) X 4)

which can be seen as a way of representing the elements of
the group as a linear transformation of the group’s algebra. The
adjoint representation of g, adg, is in fact the differential of
Adg at the identity. Another important result for working with
Lie group elements is the Baker—Campbell-Hausdorff (BCH)
formula, which enables representing the product of Lie group
members as a sum in the Lie algebra. We will use the following
BCH formulae [24], [25]:

logd;(expg () expg(y)) = ¥ + ea(w)z + O(lyll*)  (5)
Og(z)y + O(|lyll*) (6

where ¢g(y) =", o , B,, are Bernoulli numbers,
and ®g(r) = ¢g(z)~!. For many common groups used in en-
gineering and physical sciences, closed-form expressions for
G (+) and @g(-) can be found [17], [24]; otherwise, a truncated
series expansion is used.

logé (expg(z + y) expg(—x)) =
Zoo B, adg(y)"

A. Concentrated Gaussian Distribution

Herein, we introduce the concept of the concentrated Gaus-
sian distribution that is used to define random variables on matrix
Lie group. A random variable X € G has a CGD with the mean
w and covariance X, i.e., X ~ G(X; pu, X), if

X = expg(&)p ©)

where 1 € G,and § ~ N'(£;0,x1, X) is a zero-mean “classical”
Gaussian random variable with the covariance > C RP*? [17],
[20]. Note that in this way, we are directly defining the CGD
covariance in the pertaining Lie algebra g, while the mean is
defined on the group G.

Given that the previous definition (7) then induces a proba-
bility density function (pdf) of X over G as follows [17], [20]:

1 1
- /R T P (=il )a

1 -
— [ Bews (~gllogg(Xu HIE)ax @
G
where ||J:H2ii = 2%~ ! z. Therein, the change of coordinates § =
logd,(Xp~T), with the pertaining differentials dX = |®(¢)|d¢,

resulted with the CGD normalizing constant

B = 1/\/(27T)pI‘I’(logé(XM’l))Zq>(10gcv;(Xu’l))T\- 9

Note that this change of variables is valid if all eigenvalues
of X are small, i.e., almost all the mass of the distribution is
concentrated in a small neighborhood around the mean value
[20]. The pdf over X is now fully determined by (8) and (9).

III. CGD MIXTURE REDUCTION

With the theoretical preliminaries setup, we continue with
mixture reduction on matrix Lie groups. A finite mixture of our
present interest is given as the weighted sum of CGDs

]\“Y
szQ(X;MnEi) (10)
i=1
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where w; are component weights and N is the total number of
mixture components. An illustration of (10) is given in Fig. 1.
Component reduction procedures typically require three build-
ing blocks: (i) component distance measure, (ii) component
picking algorithm, and (iii) component merging. While vari-
ous solutions exist for “classical” Gaussian mixtures [7]-[9],
questions remain on how to approach the component number
reduction for CGD mixtures on matrix Lie groups. Therefore,
first, we focus on the fundamental question of how to measure
the distance between two CGD components.

A. Component Distance Measure

Our aim is to use a standard information-theoretic measure
between two CGD components, and we propose to use the
Kullback—Leibler (KL) divergence [26]. Let G; = G(X; u;, ;)
and G; = G(X; 15, X;) be two mixture components with p; (X)
and p; (X) as their respective pdfs. Since there is nothing intrin-
sic in the definition of KL divergence that requires the underly-
ing space to be Euclidean, by definition

Dk1(Gi, Gj) = /Gpi(X) log (Z (())?))dX

In order to evaluate the integral (11), we need to employ the
change of coordinates as in (8), but this time from the direction
of the group G, i.e., from X € G to ¢ € R”. Note that in (8) the
change evolved around the distribution mean j; however, since
in (11) generally j1; # puj, we cannot apply the same approach.
Hence, before evaluating (11), we first discuss how to change
the coordinates on the level of a single distribution.

Let G(X; u, X) be a CGD, and if we change the coordinates
using X = expg (&), i € G, where 1 # 1, we get

1=/Gﬁexpé(

CoC 1 7
[ mespis (=3l osg expa €I )de

Y

1 _
—5Ilogg (X2 Jax

(6) 1
2 [ et (~glRatn) ¢ -l )og
1
= [ neswd (<lle =l g )€ (2
where r; = logg(pp; '), n approximately evaluates to
(@)
n =Bl
= V(@m)r[3] - 1@ (logg (expg (§)mep ™))
~ ! (13)

V@m)Plea(r) Sea(r:)T]

and we obtain & ~ N (&; e, 6 (1) S (1))

Remark 1: Covariance of a CGD represents the uncertainty
relevant only to the tangent space of its own mean. In [24], the
authors studied how the covariance changes if looked at from
the perspective of a value that is different than the distribution
mean. They dubbed this procedure “distribution unfolding.” For
example, if we unfold G(X; i, 3) around an arbitrary p; € G,
using (5) and following [24], we get

& = logg (expg (&)pp; ')

~ logd (pu ') + o (logd (e 1))€ (14)
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Fig. 1.

By computing the expectation and covariance of (14), we obtain
a reparameterized distribution, & ~ N (&;r, ¥7), where

s)
(16)

re = logg (upy ")
52 = () Seg (1)

This pdf is equal to the one obtained through the change of
coordinates in (12). However, obtaining this result by using the
procedure of coordinates change through a pdf is important from
the perspective of KL divergence evaluation. An illustration of
unfolding a component j around y;, using (15) and (16), is given
in Fig. 1.

The KL divergence between two CGDs G; = G(u;, %;) and
G; = G(u;j,%;) can now be evaluated as

Dki(Gi,G;) = /Rp pi(§) log (i;ig)dﬁ = Dx (N, Nj)

pi(&) ~ N :N(f;%zf), i = 1039,(#2'#;1)
pi(§) ~ NG =N (&7, 57), 15 = logg (pip; ')

and 3¢ = g(r)Xpg(r). By employing the change of coordi-
nates, we can evaluate the KL divergence of two CGDs similarly
asin the case of “classical” Gaussian distributions, but with repa-
rameterized means and covariances. The KL divergence is then
equal to

a7

1 -l ‘Ef
D (NG, N;) = 5(tr(zj S¥) — K + logg SR
+ (ry = 1) () (g =)
where tr(.) and |.| designate matrix trace and determinant,

respectively, while K is the mean vector dimension. Finally,

for mixture components, it is necessary to use the scaled sym-

metrized KL divergence [27], which also takes component

weights into account

Da (wilVi, w;N;) = 5 ((w; = w;) logg — (19)
J

+ w; DgL(N;, Nj) + ijKL(A/j7~/\/i)>~

B. Component Picking Algorithm

Now that we know how to compute a distance measure be-
tween two CGD mixture components, we need to choose an
appropriate component picking algorithm that will tell us how
to screen the whole mixture and which components to pick
for merging. However, with CGD mixtures, there is also an-
other momentum. If we have N components in the mixture
with different weights, how should we approach the problem
of measuring distance, i.e., choosing y; for the change of co-
ordinates? Should all the distances be calculated with respect
to the mean of the component with the highest weight or the
lowest weight? Or should we “reparameterize” each component
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Ilustration of a finite mixture of CGDs (left) and the component merging procedure (right).

on a pairwise basis? In this letter, we study the following five
scenarios: (i/ii) all components are reparameterized about the
mean of the component with the highest/lowest weight, (iii) the
reparameterization about the identity element, and (iv/v) com-
ponents are reparameterized on a pairwise basis by choosing the
mean of the component pair with the higher/lower weight. For
analyzing the five scenarios, we use two common component
picking strategies; (i) Exhaustive pairwise [28] and (ii) West’s
[29] algorithms. The Exhaustive pairwise algorithm determines
distances between all components and merges the closest pair,
while West’s algorithm sorts the components according to their
respective weights, then finds and merges the component most
similar to the first one.

C. Merging the Components

A component-merging algorithm for Gaussian components
in R? was proposed in [28]

r* = EZwm, PIES EZ(U}?(EHrr,TZT)) — ()T

K3

where w* = >, w;, w; N (r;, ¥; ) represents the ith component,
and w* N (r*, ¥*) is the resulting component. Although merging
works for an arbitrary number of components, in our case, we
will always merge two.

However, the previous expressions are defined for Gaussians
in R?, and the question arises how to apply the same approach
for CGD mixtures? We propose to use the same principle as for
computing the KL divergence described in Section I1I-A, i.e., the
components to be merged need to be first reparameterized about
the tangent space of the same mean, since covariances are only
relevant with respect to their own mean. Once we compute the
resulting component, w* A (r*, ¥*), we need to map it back to
the group G. Given a lemma from [20] and following convention
(7), the procedure evaluates to

T

(20)

uo= expg(r*)ut, » = Adg @G(r*)E*(Adg CI)G(T*))

where Ady, = Adg(expg(r*)). We can notice that covariance
reparameterization was necessary to make it relevant from the
perspective of the tangent space of the newly computed p*. An
illustration of merging and reparameterization (20) of compo-
nent j with respect to y; is given in Fig. 1.

IV. StuDY EXAMPLE—PHD FILTER ON LIE GROUPS

Multitarget tracking (MTT) is a complex problem consisting
of many challenges, and PHD filter presents itself as one of
the solutions to MTT. The reason why PHD filter is interesting
for the present letter is because one of its implementations is
based on Gaussian mixtures (GM-PHD) [10]. Besides Gaus-
sians, other distributions can be used, and in our previous work
[30], we proposed a mixture approximation of the PHD filter
based on the von Mises distribution on the unit circle. In this
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letter, as a study example, we implement a PHD filter tailored
for Lie groups (LG-PHD), based on the mixture of CGDs and
the reduction schemes presented in the previous section. The
LG-PHD can be potentially applied in MTT scenarios where
the target state is modeled as a pose in SE(2) or SE(3).

The PHD filter propagates the intensity function Dj,_,, and
operates by evaluating two steps—prediction and update. By as-
suming Dj._; and birth intensity being Gaussian mixtures [10],
the GM-PHD prediction results with another Gaussian mixture
[10, Proposition 1]. Similarly, if Dj;_; and birth intensity are
given with CGD mixtures, the LG-PHD prediction results with
another CGD mixture, relying on the LG-EKF prediction ap-
plied to each mixture component [23].

The product of two Gaussians evaluates to a scaled Gaus-
sian; hence, the update step of GM-PHD can be calculated an-
alytically [10, Proposition 2]. In contrary, the product of two
CGDs, occurring in LG-PHD update, cannot be evaluated di-
rectly. Hence, we apply approximations following the same
train of thought as in LG-EKF prediction [23], where given
posterior p(Xy_1|Z1.x—1) and motion model p(Xj|Xx_1), it
approximates the joint distribution p(Xy, X;_1]/Z1.1-1), and
then marginalizes obtaining p(Xj|Z).x—1). Similarly, given
p(Xi|Z1.1-1) and likelihood p(Z|X}), we approximate the
joint distribution p(Xy, Z|Z1.x—1), and then marginalize ob-
taining p( X}, |Z; ). Final LG-PHD formulae are nearly identical
to GM-PHD, except for Jacobian matrices.

A. Experiments

In order to validate the performance of the proposed LG-
PHD filter, and compare different reduction approaches that
are applied after update steps, we devised appropriate Monte
Carlo simulation scenarios. We applied two component picking
strategies, namely West’s algorithm and the pairwise compo-
nent picking algorithm. For each, we applied the reparame-
terization approaches as discussed in Section III-B, including
the mapping to tangent space of (i) pairwise larger component
TL, (ii) pairwise smaller component g, (iii) identity element
T, (iv) largest component Typax, and (v) smallest component
Tamin (West’s algorithm always merges the smallest component;
hence, (ii) and (v) are the same). We generated 100 exam-
ples of an MTT scenario and compared the performance of
the approaches. The initial number of targets in the scene was
arandom integer Nyjy € [5, 7], while the probability of survival
was ps = 0.975 and birth rate was A, = 0.25. All measure-
ments were corrupted with white noise variance 02, = 0.5? m?
in distance and o, = 0.1 rad/s in orientation, while clutter was
governed by the Poisson distribution with intensity Az = 5. The
state X = (XP°, X*°!) € SE(2) x R? contains position and ve-
locity components. Here, we apply the constant velocity motion
model [31] given as

2L

0

TXvel
f(Xk1) = Xi—1 expg [ kl} ~

We derive the pertaining Jacobian

Fp = —% (logé (f(ukfl)f(exPé(s)“kfl)A)) L:o

I Tggy (T Adsg(a) (ui‘fl)ufh) Adsg2) (Hiosl)]
1

0

(22)
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Fig. 2. Example of a multitarget tracking scenario, involving 10 objects, out

of which 5 appeared at the beginning, and 5 more were born during the 100
steps long sequence (gray arrows—measurements including false alarms, black
arrows—estimated states, black circles—true object birth place, black square—
true object death place).

TABLE I
AVERAGE OSPA OVER 100 MULTITARGET SCENARIOS (BOLDED NUMBERS
REPRESENT THE SMALLEST ERROR)

Exhaustive pairwise West
T Ts Ta Tvax  Twin T Ts Ta Tvax
Dy 2445 2515 2764 2912 3.082 1910 1.924 2.060 2.125
Dy 2100 2.163 2419 2.558 2.695 1.415 1420 1.537 1.605
D. 0594 0.613 0.627 0.653 0.745 0.737 0.746 0.797 0.792

Bolded numbers represent the smallest error.

where 1 = (ph,, ') € SE(2) x R? is the mean value,
and T is discretization time. The probability of measurement
detection was pp = 0.975 and the measurements were arising
as SE(2); hence, h(X}) = X} and the measurement Jacobian
was Hj; = [1 0]. For illustration purposes, an example of a
multitarget scenario with tracking in total 10 targets on SE(2)
is given in Fig. 2 together with LG-PHD results.

As a performance metric, we used the optimal subpattern
assignment (OSPA) metric [32]. In Table I, we present the results
where for each of the 100 multitarget trajectories the cumulative
OSPA Dy, and its localization component Dy and cardinality
component D, were calculated.

For both Exhaustive pairwise and West’s picking strategies,
relying on mapping to the tangent space of pairwise larger com-
ponents T, generally outperformed the other approaches.

V. CONCLUSION

In this letter, we have studied the problem of mixture re-
duction on matrix Lie groups. We have particularly dealt with
the manipulation of CGD components to compute the KL di-
vergence, pick and merge the mixture components. As a study
example, we implemented the LG-PHD filter, a mixture approx-
imation of the PHD filter tailored for MTT with states evolving
on matrix Lie groups. Using the OSPA metric, we analyzed
the performance of the LG-PHD filter with respect to mixture
component number reduction.
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Supplementary material to
Mixture Reduction on Matrix Lie Groups

Josip Cesi¢, Ivan Markovi¢, and Ivan Petrovié,*

I. THE EXTENDED KALMAN FILTER ON LIE GROUPS

In the letter entitled Mixture Reduction on Matrix Lie Groups, we have used the definition of a concentrated Gaussian
distribution (CGD) [1] with mean p and covariance P similarly as is presented in [2]

X =expg(e)p, X ~G(u, P), (D

where € ~ Ngp (0P, P) is a zero-mean Gaussian distribution with covariance P C RP*P defined in the Lie algebra, i.e., the
Euclidean space RP.

When in comes to general Bayes filter, the estimation usually consists of the prediction step governed by the following
integral

P(Xp|Z1p—1) = /p(ch|ch—1)p(Xk—1|Z1:k—1)ka717 2

where p(Xx—1|Z1.k—1) is the posterior at k — 1 and p(Xy|X—1) is the transition density. The correction step is the solution
to the Bayes rule and the posterior at k is obtained as

P(Zk| X3 )p(Xk| Z1:—1)
[ p(Z| X1)p(Xk| Z1.4—1)d Xy

p(Xk|Z1:k) = ()
where p(Zi|X}) is the measurement likelihood.

The LG-EKF used in the letter follows the convention presented in [2], but without the iterated part, as used in [3]. By
assuming that the distributions in (2) follow the CGD assumption and the following motion model

X = expg(wi) f(Xk—1), wi ~ Nge (07, Qg), “4)

ie, p(Xi|Xk—1) = G(Xp; f(pr—1), Q) and p(Xp—1]Z1.k—1) = G(Xg—1; ttk—1, Pr—1), the prediction step in [2] was solved
by approximating the integrand in (2) with a joint distribution p(Xy, Xr—1|Z1.x—1) by way of Gauss-Newton minimization
in pp—1 and f(pr—1). The resulting covariance had the following form

_ [FxPer By + Qi FiPra ~ dlogg (f(pe—1)f (expg (s)pr—1)"")

F, = . 5)

P
Py Ff Pea |’ ds 0

To obtain p(X|Z1.x—1), the augmented CGD was marginalized yielding formula for the covariance prediction Pp_; =
FyPy_1F}l + Qg, while the mean is predicted applying the propagation function, hence Pije—1 = J(pr—-1)-
By assuming that the measurement likelihood followed the CGD assumption and the measurement model

Zk = eXp/G\(Uk)h(Xk), VE ~ N]Rp (Op, Rk), (6)

ie., p(Zk|Xk) = G(Zy; h(Xk), Ry), the correction step was solved in [2] by approximating the numerator in (3) up to a
proportion with a single CGD which yields parameters for p(Xy|Z;.,) by using an iterated Gauss-Newton method. This
is correct since the denominater in (3) assures proper scaling of the distribution and would cancel any scaling parameter.
However, in this letter we are not using the iterated version, but the extended one as in [3], hence the update step of the
LG-EKF has the following formulae

_ dlogg (Zh(expg(s)prjr-1)"")
ds
— T T -1
Ky = Pyjg—1Hy (Hp Pyjp—1 Hy + Ry)
mi = K log¢(Zeh(pe—1)"")
M = eXp/G\(mk),uk\kfl
Py = ®c(my)(I = Ky Hy) Prjo—1 P (my).

Hy, =

s=0

)
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II. THE CGD MIXTURE PHD FILTER ON LIE GROUPS

As elaborated in the letter, the prediction step of the Gaussian mixture PHD filter evaluates to solving (2) on a mixture
component basis. Therefore, if we are working with a CGD mixture, as in the case of the CGD mixture PHD filter on Lie
groups (LG-PHD), given the result from [2] we can assert that (5) can equally be applied to LG-PHD prediction. However,
the update step of the PHD filter requires direct evaluation of the product p(Zy| Xy )P(Xk|Z1.k—1), as well as the integral
thereof. We propose to follow the same train of thought as in [4] and evaluate first the joint distribution p(Zy, X|Z1.k-1),
which can be obtained by using the same procedure as for p(Xy, Xr—_1|Z1.x—1) in the prediction step given in previous
section. In other words, by augmenting p(Xp|Z1.,—1) with Zj, and linearizing in fz,;,—1 and h(fg|x—1), the joint distribution
will have the following parameters

p= [10g¥(Zkh(uk|k71)‘1) logZ(Xku;@_l)} (8)
p— [HePep—1Hy + Re HyPyra] _ [P Pro ©)
Pyjp—1 HY Pyjr—1 Py Py’

where Hj, is given in (7). Note that for the clarity we have denoted that both means belong to the same group G, which is,
however, not a requirement.

In [4] it was shown that under the CGD assumption a distribution with parameters as in (8) can be factorized to the
following product of two distributions

P(Zk, Xi|Z1:6—1) =N6(Zi; hpuir—1), Pr1)

. -~ _ _ (10)
NE(Xs expg (P Py’ IOgé(Zkh(.umk—l) 1))%%—17 Py — PLP; ' Pra).
If we insert for P;1, P12 and P»y corresponding values we obtain the following
expg (Pry P 1ogd (Zih(pagk—1) ") thije—1
= exp@ (Pojp—1Hy (HiPrjj—1Hi + Ri) ™" logd (Zih(paji—1) ")) k1
= expg (K 10g¢ (Zkh(irpe—1) ")) ikjk—1 = expg (1) tfr—1 (11)

Pyy — PLP Py = Py 1 — Py HY (Hy Pyjp—1 HyY + Ri)  Hy Py
= Ppjp—1 — K Hp Pyjp—1 = (1 — Ky Hy) Pjg—1-

By inspecting (10) and (11) we can notice that for the second factor (denoted by N¢Z) the covariance is defined in the
algebra of the prediction pi,—1, while we need it to be defined in the algebra associated to py, i.e., after the correction
step we expect to have X = expe(ek)uk, where E[ex] = 0 [5]. For this reason we need to additionally reparametrize the
covariance as follows

fr = expg (1) fhgg k-1 (12)
Py = ®(my) (1 = Ky Hi) Py P (my) ", (13)
thus (10) factorizes as follows:

P(Zky Xl Z1—1) = No(Zii h(pkji—1), HePrjo—1Hy + Rie)No (X bk, Pr)
= N6 (Zk; h(pjk—1), Sk)NG(X; pig, Pr) -

If group G would be Euclidean space then (14) would yield the same results as was obtained for the Gaussian mixture PHD [6].
In order to complete the update step of the PHD filter, we also need to compute the integral | 2 P(Z1 | Xi)p( Xk | Z1:—1)d Xk,
which similarly to the LG-EKF prediction step [3] yields Ng(Zx; h(pix—1), Sk). Note that in this supplementary material,
we have omitted discussion on the choice of the integration measure and for more formal elaboration the interested reader
is directed to [3]. Furthermore, note that with the previous reasoning we have also demonstrated how LG-EKF can bee seen
as a Bayes filter on Lie groups.

Now we have all the means for performing the two successive steps of the LG-PHD filter for the application described
in the letter. The pseudocode for the prediction step is given in Alg. 1, where the PREDG(+) function follows the equations
given for determining p(X|Z1.x,—1) as

o PREDG(:) - using Pyp—1 = FpPo_1F}} + Qp and pu—1 = f(pir—1).-

(14)



Algorithm 1 The prediction step of the LG-PHD filter

R e i i Jr—1 bi by
equire: {w;_,,G,_ }5" {wy", G L ps

1: § < 0 (initialization)

2: for i :=1to J? (# of newly born components) do

j i ad bi . .

3wy s w s G <G e+

4. end for
5: for i := 1 to Jip_1 (# of components existing at k — 1) do
6 w4 < Pswi_y i Gy & PREDG(GL_;) 5 j ¢ j+1
7: end for
8
9

: Jk|k_1 < j (# of predicted components)

; ; Jrjk—1
. 7 1
. return {wk|k717 gk_‘kfl}i:l

In the particular application presented in the letter, where we assume that the objects were following the constant velocity
SE(2) x R? motion model assumption [7], the motion model f(ux_1) and the Jacobian F' are given as

S (pk—1) = pr—1expg [T”(;l] , (15)

F= _% <10gé (f(ukl)f(expé(s)“kl)l)) s=0

d Tug,_ T(sV + v -1
-5 (logé (pkl expg [ (’; 1} (expe(s),uk,l expg [ ( 0 k 1)}) >>

s=0
d Top_ T(s + )] " _ _
=—ds<logé <Mk—1 expé{ 0 1} expé[ ( 0 1)] Hirty expg(s) ™
s=0
=~ 4 1og¥ ((expd  Ade () |51 s
dS G G 0
_ T(s% + vy, -t _
ukllexp€<AdG (Nk1)|: ( 0 F 1)D expe (s) 1))
s=0

~ _% <log2;/ <expe (@G(AdG (1x—1) {Tvg_l} > Adg (pk-1) |:—7;)3Vel:| ) expg(s)‘1>>

N _(i (%(Adc (-1 [Tvgl] ) Adg (pr-1) [Tosvel} - 8) ‘5_0

s=0

I Tosg(y) <T Adsg(z) (M%osl)vk1) Adse(a) (1h2y) (16)

where ;1 consists of positional and velocity part constructed by placing the SE(2) and R3 components block-
diagonally, such that px—1 = blkdiag(uh>,, )%, ), vk—1 = logg (u} ), and accordingly s = [sP* s*|T and Adg(n) =
blkdiag(Adsg () (1), Adgs (1*")). The parameter 7' represents the discretization time. To obtain the second-to-last step,

the following Baker-Campbell-Hausdorff formula was used

logg; (exp” (—z) exp” (2 + ) = @a(—x)y + O(lly[]*). (17)
The pseudocode for the update step is given in Alg. 2. The algorithm employs several outlying functions including:
e INNOVG/(+,-) - using ;7 = {logc, (Zih(u}ﬂkq)*l)}g, Syl = H;’Jp,i’ﬂc_lH,i’JT + Ry,
i ]
o ppwi 4. (Z) o . } o
o CORRECTR(-,) - using wy” = k‘kalk kl o where ¢ (Z) = N(Zj; by j,—1): i)
Aze(Z) +pp Y5 w14 (2)
e REPARAMG(-, ) - using (12) and (13),
o REDUCTIONG(-) - employing reduction schemes as described in the letter.

For the multitarget tracking application given in the letter, since the measurement arises as a SE(2) member, i.e., h(Xy) = Xi
and the measurement Jacobian Hj evaluates to Hy = [I 0].




Algorithm 2 The correction step of the LG-PHD filter

P i i Jrlk—1 7 M,
Require: {wy 1, Gypoitizh - {Z¢ € Ze}i2. po

_
_ O

_ -
W

—_ = = =

N =
S o

R i A U R o A e

: for i :=1to Jyx_1 (non-detected components) do

wy, = (1 =pp) Wiy 5 Gk < Ghjpa

. end for

J < 0 (measurement designator)
for all Z, € Z;, do
j < j3+1,8 < 0 (per measurement intensity)
for i := 1 to Jy 1 (detected components) do
Ui+ 7 Jgpk—1 .
[y Sy7] = InNover (G p, 0 Z7)
wk « pp wi‘kflj\/'(u,?]; 0,5,7), s s/ +wl,
N} ¢ CorrecTR(Gy )., ZY)
Gl + REPARAM(;(g]ilk_l,N,ii)
end for
for i := 1 to Jy,—1 (re-weighting) do
U};:_J Jr)k—1 - ’U);_‘—j -]k\kfl/()\ZC(Z) + Sj)
end for

: end for
o Jp = (J + 1) Jyp—1 (# of components existing at k)

. . R . .
w6y E,  Repueriong({w, Gi2y)

=1
i,R Ikt

iR
- return {w. ), G b

(1]
[2]

[3]
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—
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