
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Electric Power Systems Research 80 (2010) 514–527

Contents lists available at ScienceDirect

Electric Power Systems Research

journa l homepage: www.e lsev ier .com/ locate /epsr

Sliding mode based load-frequency control in power systems

K. Vrdoljak ∗, N. Perić, I. Petrović
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a b s t r a c t

The paper presents a new discrete-time sliding mode controller for load-frequency control (LFC) in control
areas (CAs) of a power system. As it uses full-state feedback it can be applied for LFC not only in CAs
with thermal power plants but also in CAs with hydro power plants, in spite of their non-minimum
phase behaviors. To enable full-state feedback we have proposed a state estimation method based on
fast sampling of measured output variables, which are frequency, active power flow interchange and
generated power from power plants engaged in LFC in the CA. The same estimation method is also used for
the estimation of external disturbances in the CA, what additionally improves the overall system behavior.
Design of the discrete-time sliding mode controller for LFC with desired behavior is accomplished by using
a genetic algorithm. To the best of our knowledge, proposed controller outperforms any of the existing
controllers in fulfilling the requirements of LFC. It was thoroughly compared to the commonly used PI
controller by extensive simulation experiments on a power system with four interconnected CAs. These
experiments show that the proposed controller ensures better disturbance rejection, maintains required
control quality in the wider operating range, shortens the frequency’s transient response avoiding the
overshoot and is more robust to uncertainties in the system.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Power systems are composed of interconnected subsystems or
control areas (CAs). Most of European countries are members of
“Union for the Co-ordination of Transmission of Electricity” (UCTE)
interconnection [1]. It is assumed that each CA consists of a coher-
ent group of generators. CAs are interconnected by the tie-lines.
Because of the differences in generation and load in a power sys-
tem, system’s frequency deviates from its nominal value and active
power flow interchanges between areas deviate from their con-
tracted values. The purpose of load-frequency control (LFC) in each
CA is to compensate for those deviations. That is obtained by chang-
ing power outputs of certain generators within the CA. To test LFC
algorithms, an example power system is usually modeled as an
interconnection of a few CAs. Since all generators in one CA are
coherent, all power plants engaged in LFC in a CA can be replaced
with one substitute power plant [2]. In some CAs that power plant is
of thermal type and in some CAs of hydro type. When modeling a CA,
power imbalance and losses can be seen as external disturbances.
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Nowadays, in the majority of CAs PI type controllers with con-
stant parameters are used for LFC [3–6]. However, systems with PI
control have long settling time and relatively large overshoots in
frequency’s transient responses [7]. Besides, PI control algorithm
provides required behavior of the system only in the vicinity of
the nominal operating point, for which it is designed. But, oper-
ating point of a power system usually changes a lot, which is
primarily caused by the amount and characteristic of power con-
sumption, characteristics of power plants and the number of power
plants engaged in LFC in a CA. Future power systems will rely on
large amounts of distributed generation with large percentage of
renewable energy based sources, what will further increase sys-
tem uncertainties and thereby induce new requirements to the LFC
system [8]. The shortening of time periods in which each level of fre-
quency regulation must finish could be also expected in the future
[9].

Therefore, an advanced controller should be developed and used
instead of the PI controller in order to: (1) ensure better distur-
bance rejection, (2) maintain required control quality in the wider
operating range, (3) shorten the frequency’s transient responses
avoiding the overshoots and (4) be robust to uncertainties in the
system. Additionally, a new control algorithm for a CA should
enable decentralized LFC of interconnected CAs, i.e. its structure
and parameters must not depend on applied controllers in neigh-
boring CAs. It should also be a discrete-time control algorithm with
sampling time in the range 1–5 s as required in UCTE intercon-
nection [1]. Finally, it should be relatively simple to implement,
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in order to be accepted as adequate replacement of PI control
algorithm.

Recently, many different control algorithms have been proposed
for LFC [10,11] in order to overcome limitations of the PI con-
troller. Among them, the most immanent are based on: robust
control, [5,12], fuzzy logic [13–15], neural networks [16–18], model
predictive control [19,20], optimal control [21–23], adaptive con-
trol [24–26] and sliding mode control (SMC) [27–31] algorithms.
Some drawbacks present in the above algorithms can be listed
as follows: (1) measurements from neighbor CAs are required
for controller synthesis, but obtaining them could be impractical
in real power system [25,27]; (2) control signal is computed in
continuous-time [5,15,27–32] although in real power system the
signal should be sent to the power plants in discrete-time; (3) con-
trollers are based on full system state, but with no estimator present
[14,22,27–31]; (4) controllers are complex and of high order [20];
(5) there is a requirement for on-line parameters identification
[24,30]; (6) the choosing of appropriate controller parameters
is problematic [23,29,32]. Listed drawbacks clearly indicate that
none of the abovementioned controllers fulfills all requirements
for LFC.

In this paper we propose a discrete-time sliding mode controller
that at best of our knowledge outperforms any of the existing con-
trollers in fulfilling the requirements for LFC. Generally, SMC is a
robust control technique that shows very good behavior in control-
ling systems with external disturbances and parameter variations
[33]. In SMC, system closed-loop behavior is determined by a sub-
manifold in the state space, which is called a sliding surface. The
goal of the sliding mode control is to drive the system trajectory to
reach the sliding surface and then to stay on it. When the trajectory
is on the surface, system invariance to particular uncertainties and
parameter variations is guaranteed.

Ideal sliding of the system trajectory along the sliding surface
can be achieved only by the continuous-time SMC with very high
(theoretically infinite) switching frequency of the control signal.
But, real power plants are unable to respond to so fast changes
of the control signal, and that is the reason why we propose a
discrete-time sliding mode controller which changes control signal
periodically in discrete-time instants. Of course, with the usage of
discrete-time SMC the system trajectory can’t be kept on the sliding
surface but inside a small band around the surface. That behavior is
known as quasi sliding mode [34]. Two main problems in design-
ing discrete-time SMC for LFC are appropriate choices of sliding
surface which defines desired system behavior, and of reaching
law which must be chosen to ensure convergence of the trajec-
tory from any point in the state space towards the surface [35]. An
optimization method based on genetic algorithm (GA) is proposed
for finding optimal parameters of the sliding surface and of the
reaching law.

If only thermal power plants are used for LFC in a CA then stable
sliding mode controller can be also designed using only measured
output signals, which are frequency, active power flow interchange
and generated power from each power plant in that CA. But, if hydro
power plants are used for LFC then full-state feedback is needed
because of their non-minimum phase behaviors. We have devel-
oped a full-state sliding mode controller, which can be applied in
either cases. The usage of the state estimation method based on
fast output sampling (FOS) [36] is proposed, what is possible due
to availability of multiple measurements of output signals in each
sampling period of the controller. FOS estimation method is also
used for the estimation of external disturbances, what additionally
improves the overall system behavior.

The brief outline of the paper is as follows: Section 2 presents
power system model, Section 3 describes state and disturbance
estimation technique. Section 4 gives an overview of discrete-time
SMC and its application to LFC. Section 5 presents a GA used for

the purpose of finding optimal sliding mode algorithm parameters,
while Section 6 contains simulation results.

2. Mathematical model of a power system

An example mathematical model of a power system used in this
paper consists of four interconnected CAs, each represented with
one substitute thermal or hydro power plant. Each CA has its own
load frequency controller, as it is shown in Fig. 1. Power system is
modeled as continuous, while control signals are sent to the plants
in discrete-time.

It is supposed that power plants in CA1 and CA4 are thermal
power plants, while power plants in CA2 and CA3 are hydro power
plants. Furthermore, power plants in CA1 and CA2 have less gener-
ating capacity then those in CA3 and CA4. Sliding mode based LFC,
described in Section 4, will be applied to CA1 and CA3, while LFC in
other CAs will be based on conventional PI type control algorithm.

Linearized mathematical model of each of four CAs can be
described with the following equation:

ẋi(t) = Aixi(t) +
∑

j

Aijxj(t) + Biui(t) + Fidi(t) + �i(x, u, t), (1)

where xi ∈Rn is the system state vector, xj ∈Rp is a state vector
of the neighbor system, ui ∈Rm is the control signal vector, di ∈Rk

is the disturbance vector, �i is a vector of uncertainties and y ∈Rl

is the output vector. Matrices in (1) have appropriate dimensions:
Ai ∈Rn×n, Aij ∈Rn×p, Bi ∈Rn×m, Fi ∈Rn×k and Ci ∈Rl×n.

Linearized model of CAs are used instead of the nonlinear ones
because proposed SMC is based on such a linear model, where
linearization error is included in the uncertainty term �i(x, u, t).
Simplified linearized continuous-time models of CAs with one sub-
stitute hydro or thermal power plant are shown in Figs. 2 and 3,
respectively.

For the model shown in Fig. 2 state and disturbance vectors from
(1) are (see Table 1):

xi(t) =

⎡
⎢⎢⎢⎢⎢⎣

�fi(t)

�Ptiei(t)

�Pgi(t)

�xgi(t)

�xghi(t)

⎤
⎥⎥⎥⎥⎥⎦ , di(t) = �Pdi(t). (2)

Fig. 1. Four interconnected control areas.
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Fig. 2. The block diagram of i-th control area represented with hydro power plant.

Matrices in (1) are:

Ai =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
TPi

−KPi

TPi

KPi

TPi
0 0∑

j

KSij 0 0 0 0

2˛ 0 − 2
TWi

2� 2ˇ

−˛ 0 0 − 1
T2i

−ˇ

− 1
T1iRi

0 0 0 − 1
T1i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Bi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

0

−2Riˇ

Riˇ

1
T1i

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, Fi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−KPi

TPi

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(3)

with coefficients:

˛ = TRi

T1iT2iRi
, ˇ = TRi − T1i

T1iT2i
, � = T2i + TWi

T2iTWi
. (4)

Matrices Aij in (1) have dimensions 5 × 4 or 5 × 5, depending on
whether they are used to describe hydro–thermal or hydro–hydro
connection. All of their elements are equal to zero, except the ele-
ment at position (1, 2), which is equal to −KSij .

For the model shown in Fig. 3 state and disturbance vectors from
(1) are:

xi(t) =

⎡
⎢⎢⎢⎣

�fi(t)

�Ptiei(t)

�Pgi(t)

�xgi(t)

⎤
⎥⎥⎥⎦ , di(t) = �Pdi(t), (5)

while matrices in (1) are:

Ai =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
TPi

−KPi

TPi

KPi

TPi
0∑

j

KSij 0 0 0

0 0 − 1
TTi

1
TTi

− 1
TGiRi

0 0 − 1
TGi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Bi =

⎡
⎢⎢⎢⎢⎣

0

0

0

1
TGi

⎤
⎥⎥⎥⎥⎦ , Fi =

⎡
⎢⎢⎢⎢⎣

−KPi

TPi

0

0

0

⎤
⎥⎥⎥⎥⎦ .

(6)

In this case, matrices Aij in (1) have dimensions 4 × 4 or 4 × 5,
depending on whether they are used to describe thermal–thermal
or thermal–hydro connection. Again, all of their elements are equal
to zero, except the element at position (1, 2), which is equal to −KSij .

Signals and parameters used in the models from Figs. 2 and 3
are shown in Table 1.

Fig. 3. The block diagram of i-th control area represented with thermal power plant.
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Table 1
Power system variables and parameters.

Parameter/variable Description Unit

�f (t) Frequency deviation Hz
�Pg (t) Generator output power deviation p.u.MW
�xg (t) Governor valve position deviation p.u.
�xgh(t) Governor valve servomotor position deviation p.u.
�Ptie(t) Tie-line active power deviation p.u.MW
�Pd(t) Load disturbance p.u.MW
�ı(t) Rotor angle deviation rad
KP Power system gain Hz / p.u.MW
TP Power system time constant s
TW Water starting time s
T1, T2, TR Hydro governor time constants s
TG Thermal governor time constant s
TT Turbine time constant s
KS Interconnection gain between CAs p.u.MW
KB Frequency bias factor p.u.MW / Hz
R Speed droop due to governor action Hz / p.u.MW
ACE Area control error p.u.MW

UCTE prescribes a set of rules and recommendations about LFC
for its members. Thereby, an area control error (ACE) signal is intro-
duced as a quantitive measure of CA’s deviation from the proposed
behavior. ACE is defined as a combination of frequency deviation
in a CA and of active power flow deviation in tie-lines connecting a
CA with the neighbor areas. The goal of LFC in each area is to com-
pensate for ACE deviations. Therefore, let the output of the system
(1) be defined as:

yi(t) = Cixi(t) = ACEi(t) = KBi�fi(t) + �Ptiei(t), (7)

where parameter KB is tuned in a way that ensures ACE differ-
ent than zero only for a CA in which the disturbance occurs. In
all other CAs, values of ACE signals are not significantly affected by
that disturbance.

Matrix Ci in (7) is Ci = [ KBi 1 0 0 0 ] for a CA with hydro
power plant and Ci = [ KBi 1 0 0 ] for a CA with thermal power
plant.

3. System state and disturbance estimation

A general continuous-time linear system with added distur-
bance and neglected uncertainties can be described with the
following equations:

ẋ(t) = Ax(t) + Bu(t) + Fd(t),

y(t) = Cx(t).
(8)

Let us assume that control signal u from (8) is able to change its
value only every � seconds, where � is a sampling period.

In order to design discrete-time estimator, system (8) is dis-
cretized using the Zero-Order-Hold (ZOH) discretization method,
with sampling period �. That results in the following discrete-time
system:

x((k + 1)�) = G�x(k�) + H�u(k�) + W�d(k�),

y(k�) = Cx(k�).
(9)

Matrices in (9) are defined as follows:

G� = eA�,

H� =
�∫
0

eAtBdt,

W� =
�∫
0

eAtFdt.

(10)

Fig. 4. The usage of the FOS estimation method in system control.

Let us also assume that only system output is measurable, and
only at certain time instances, y(kT), where T is a subsampling
period:

T = �

N
, (11)

where N ∈N. Those samples can be used as input signals of the
appropriate estimator for unmeasured state and disturbance sig-
nals in (8).

LFC applied nowadays in real power systems is an exam-
ple of a system with multiple sampling periods. In LFC, control
signal is sent to the power plants in discrete-time. In UCTE
interconnection that period is 1–5 s [6]. Additionally, during one
sampling period several measurements of frequency f (kT) and
tie-line power Ptie(kT) signals are gathered. Besides those sub-
samples, which are inputs to classical PI controller, subsamples
of generated power Pg(kT) are also gathered for monitoring pur-
poses. Those samples could also be used as inputs to the estimator.
Because a substitute power plant is used in modeling a CA and
also in controller synthesis, all other state and disturbance sig-
nals, that cannot be measured in the real system, must therefore be
estimated.

3.1. Fast output sampling method

Fast output sampling (FOS) is an estimation technique appro-
priate for continuous time system controlled with discrete-time
control signal, where the output signal can be sampled several
times during one period of the control signal [36]. FOS shows
better performance than standard estimation techniques, because
it reduces the estimation error to zero after just one sampling
period [34]. Standard estimators need at least � sampling periods
to achieve errorless estimation, where � is the observability index
of the system [37]. To use FOS estimation technique, it must be
satisfied N ≥ � [36].

The principle of using FOS estimation technique in system
control is shown in Fig. 4. Firstly, the last N subsamples of the
output signal y(t), measured in the most recent sampling period
�, are used to estimate the system state. Then, that estimated
state is used to compute the control signal for the next sampling
period.
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Consider system (8), sampled at subsampling period T:

x((k + 1)T) = GT x(kT) + HT u(kT) + WT d(kT),

y(kT) = Cx(kT).
(12)

It should be noted that system (12) has different sampling period
than system (9). Its matrices GT , HT and WT are defined similar to
those in (10), just with subsampling period T instead of sampling
period �. Relation between those two sampling periods is given
with (11).

System with fast output sampling can be described by combin-
ing (9) and (12). Generally, let the input vector of that system be
decoupled into two components: u� (with sampling period �) and
uT (with subsampling period T).

The system’s N consecutive subsamples, taken during the sam-
pling period �, can now be calculated as:

x(k� + T) = GT x(k�) + HT (u�(k�) + uT (k�))

+WT d(k�),

x(k� + 2T) = G2
T x(k�) + (GT HT + HT )u�(k�)

+GT HT uT (k�) + HT uT (k� + T)

+(GT WT + WT )d(k�),

...

x(k� + (N − 1)T) = GN−1
T x(k�) +

N−2∑
i=0

(Gi
T HT )u�(k�)

+ GN−2
T HT uT (k�)

+GN−3
T HT uT (k� + T) + . . .

+HT uT (k� + (N − 2)T)

+
N−2∑
i=0

(Gi
T WT )d(k�).

(13)

It is assumed here that the disturbance d(k�) has a constant
value during the whole sampling period �. That assumption is rea-
sonable for LFC because in real power systems changes of �Pd(t)
during one sampling period � can be neglected. It is also assumed
that there is no direct influence of input signal to system’s output,
i.e. D = 0.

A procedure to estimate unmeasured state and disturbance
starts from a vector of output subsamples y∗

k
, which consists of the

last N output subsamples, sampled in the most recent sampling
period �. It is:

y∗
k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(k�)

y(k� + T)

y(k� + 2T)

...

y(k� + (N − 2)T)

y(k� + (N − 1)T)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

Now from (9), (13) and (14) it follows:

y∗
k = G̃x(k�) + H̃u�(k�) + H̄u∗

k + W̃d(k�), (15)

where

u∗
k

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uT (k�)

uT (k� + T)

uT (k� + 2T)

...

uT (k� + (N − 3)T)

uT (k� + (N − 2)T)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, G̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C

CGT

CG2
T

...

CGN−2
T

CGN−1
T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

H̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

CHT

C(GT HT + HT )

...

C
N−3∑
i=0

Gi
T HT

C
N−2∑
i=0

Gi
T HT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, W̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

CWT

C(GT WT + WT )

...

C
N−3∑
i=0

Gi
T WT

C
N−2∑
i=0

Gi
T WT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

H̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0

CHT 0 · · · 0 0

CGT HT CHT · · · 0 0

...
...

. . .
...

...

CGN−3
T HT CGN−4

T HT · · · CHT 0

CGN−2
T HT CGN−3

T HT · · · CGT HT CHT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(16)

Matrices G̃ and W̃ may not be square, so Eq. (15) could have multi-
ple solutions. In that case, Moore-Penrose matrix pseudoinverse is
used in estimation algorithm instead of the regular inverse. Pseu-
doinverse of matrix M is defined as [38]:

M+ = (MT M)
−1

MT . (17)

Eq. (15) can be directly used only for disturbance estimation:

d̂(k�) = W̃
+ (

y∗
k − G̃x(k�) − H̃u�(k�) − H̄u∗

k

)
, (18)

The usage of matrix’s pseudoinverse will ensure that estimated
values represent the least square solution of (15) [39].

Nevertheless, if Eq. (15) is also used for state estimation, esti-
mated value would be delayed one sampling period �. Therefore, for
state estimation, that equation is combined with discrete systems
dynamics (9), which results in the following state estimation:

x̂((k + 1)�) = G� G̃
+

y∗
k

+ H�u�(k�) − G� G̃
+

H̄u∗
k

+H◦u◦
k + (W� − G� G̃

+
W̃)d(k�),

(19)

where

H◦ = [GN−1
T HT GN−2

T HT · · · GT HT HT ],

u◦
k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uT (k�)

uT (k� + T)

uT (k� + 2T)

...

uT (k� + (N − 2)T)

uT (k� + (N − 1)T)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
(20)
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Fig. 5. A dynamical subsystem for state estimation.

3.2. Power system’s state estimation

To estimate system state of a CA represented with substitute
hydro power plant (Fig. 2), FOS is used. FOS is applied only to the
subsystem of the power plant model, which is shown in Fig. 5, while
the values of state, input and output vectors in (15) are shown in
Table 2 (for this case unmeasured system state is �xgi and �xghi,
sampled input is ui(k�), subsampled input is �fi(kT) and the output
is �Pgi(kT)). In this subsystem, there are no disturbances present.
Because matrix G̃ is generally not a regular square matrix, there
may be many solutions of (15), so matrix pseudoinverse is used.
The estimated state, computed by Eq. (19), is:⎡
⎢⎣

�P̂gi(k�)

�x̂gi(k�)

�x̂ghi(k�)

⎤
⎥⎦ = G�iG̃

+
i �P∗

g(k−1)i + H�iui((k − 1)�)

−G�iG̃
+
i H̄i�f∗

(k−1)i + H◦
i�f◦

(k−1)i,

(21)

where subscript i = 2, 3 (according to Fig. 1).
Similar procedure can be used to estimate unmeasurable sys-

tem state of a CA represented with substitute thermal power plant
(Fig. 3). The unmeasured system state is now �xgi, while all other
substitute values are equal to those for system with substitute
hydro power plant. Estimation equation for that case is:[

�P̂gi(k�)

�x̂gi(k�)

]
= G�iG̃

+
i �P∗

g(k−1)i + H�iui((k − 1)�)

−G�iG̃
+
i H̄i�f∗

(k−1)i + H◦
i�f◦

(k−1)i,

(22)

where subscript i = 1, 4 (according to Fig. 1).
Values of estimated generator output power deviations, �P̂gi,

calculated by (21) or (22), are not used in the control algorithm,
but their measured values are used there instead.

Table 2
Substitute matrices in (19) for state estimation.

Value in (19) Substitute value

x̂

[
�P̂gi

�x̂gi

�x̂ghi

]
or

[
�P̂gi

�x̂gi

]
y∗ �P∗

gi

u� ui

u∗,u◦,uT �f∗
i , �f◦

i, �fi

d –

Fig. 6. A dynamical subsystem for disturbance estimation.

3.3. Power system’s disturbance estimation

To estimate disturbance �Pd in CAs shown in Figs. 2 and 3, FOS
is applied only to the subsystem shown in Fig. 6. In this case the
substitute values of matrices in (15) are shown in Table 3 (system
state is �fi(k�), output is �fi(kT), subsampled input is �Pgi(kT) −
�Ptiei(kT) and the disturbance is �Pdi(kT)). In this case, there is no
input signal with sample period � present in the subsystem.

The estimated disturbance, computed by Eq. (18),is:

�P̂di(k�) = W̃
+
i

[
�f∗

ki − G̃i�fi(k�) − H̄i(�P∗
gki − �P∗

tieki)
]

, (23)

where subscript i = 1, . . . , 4, since this disturbance estimation
algorithm is independent of substitute power plant type.

Because it is assumed that disturbance has a constant value dur-
ing the whole sampling period � and because pseudoinverse matrix
is used, the mean value of disturbance signal during the sampling
period � is calculated by Eq. (23).

With (21) or (22) and (23), both, full system state x(k�) and dis-
turbance d(k�) are estimated. Therefore, a state based sliding mode
LFC controller can be designed.

Table 3
Substitute matrices in (18) for disturbance estimation.

Value in (18) Substitute value

x �fi
y∗ �f ∗

i
u� –
u∗, uT �P∗

gi
− �P∗

tiei
, �Pgi − �Ptiei

d �Pdi
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4. Discrete-time sliding mode control and its application to
LFC

Sliding mode control is a control technique appropriate for
controlling time-variant systems in the presence of external dis-
turbances. SMC based only on output signal cannot be used for
systems with non-minimum phase behavior, because it leads to
instability [35]. As seen from Fig. 2, a hydro power plant is a sys-
tem with non-minimum phase behavior. Therefore, SMC based on
full system state must be used in this case. To improve overall sys-
tem behavior, disturbance is also included into controller’s design.
Because all state and disturbance are not measurable, estimation
technique described in Section 3 is used to obtain their unmeasured
components.

4.1. Sliding mode control for systems with uncertainties

Eq. (8) describes a linear time-invariant (LTI) system model in
the presence of external disturbance. But in real systems there
are many uncertainties present, which are caused by unmodelled
dynamics or variations of system parameters. They can highly affect
system’s behavior.

A continuous LTI system (8) with additive uncertainties is
described as:

ẋ(t) = Ax(t) + Bu(t) + Fd(t) + �(x, u, t). (24)

One way to categorize uncertainties in the system is into matched
or unmatched uncertainties [40]. A condition that defines matched
uncertainties is:

�m(x, u, t) ∈R(B), (25)

whereas all other uncertainties are unmatched. Because of the
matching condition (25), matched uncertainties can be written as:

�m(x, u, t) = B�, (26)

where � ∈Rm [40].
For better insight into system dynamics with SMC and for sim-

pler controller synthesis it is more convenient to transform the
system (24) into a regular canonical form [33]:[

ẋc1(t)

ẋc2(t)

]
=
[

A11 A12

A21 A22

][
xc1(t)

xc2(t)

]
+
[

0

B2

]
u(t)

+
[

F1

F2

]
d(t) +

[
�u(x, t)

�m(x, u, t)

]
,

(27)

where xc1 and xc2 represent state vectors of the decoupled sub-
systems of system (24). In regular form system’s uncertainties are
decoupled into matched and unmatched ones.

As it can be seen from (27), the influence of matched uncer-
tainties in continuous SMC can be fully compensated with proper
control signal, which is not the case for unmatched uncertainties.

System’s transformation into regular form can be done with
nonsingular transformation matrix Tcr , where matrices defining the
transformed system can be obtained from the original system as:

xcr(t) =
[

xc1(t)

xc2(t)

]
= Tcrx(t),

Ar =
[

A11 A12

A21 A22

]
= TcrAT−1

cr ,

Br =
[

0

B2

]
= TcrB, Fr =

[
F1

F2

]
= TcrF.

(28)

SMC design procedure is shown in Fig. 7. It consists of two major
steps: (1) selecting a sliding surface and (2) computing a control

Fig. 7. SMC computation scheme.

law that will force system’s trajectory towards the chosen surface.
A sliding surface will be selected for continuous time system in reg-
ular form, because then sliding surface’s dependency upon system
parameters in (3) or (6) is preserved. Because of the controller’s
discrete-time implementation, a control law will be computed for
discrete-time system in regular form.

4.2. A sliding surface

The first step in SMC controller synthesis is choosing a sliding
surface, which defines desired system dynamics:

�(x) = Sx = 0, (29)

where S ∈Rm×n is a switching matrix.
The aim of SMC is to force the state, firstly to reach, and then to

stay on the sliding surface. According to that, system trajectory in
SMC consists of two phases: a reaching phase and a sliding phase.
SMC is forcing system’s trajectory towards the surface by switching
between different controller structures, depending on the sign of a
switching function. The switching function is defined as:

�(t) = Sx(t). (30)

It is important to distinguish the sliding surface �(x) = 0, which
is time-independent manifold in state space and the switching
function �(t), which is time-dependent function of system state’s
position regarding to the sliding surface.

For the system in regular form (27), switching function
becomes:

�(t) = Sc1xc1(t) + Sc2xc2(t), (31)

where

Scr =
[

Sc1 Sc2
]

= ST−1
cr . (32)

System dynamics in the sliding mode are obtained from (27) and
(31):

[
ẋc1(t)

�̇(t)

]
=
[

Â11 Â12

Â21 Â22

][
x1(t)

�(t)

]
+
[

0

B̂2

]
u(t)

+
[

F1

F̂2

]
d(t) +

[
�u(x, t)

�s(x, u, t)

]
.

(33)
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where

Â11 = A11 − A12S∗
c,

Â12 = A12S−1
c2 ,

Â21 = Sc1A11 − Sc1A12S∗
c + Sc2A21 − Sc2A22S∗

c,

Â22 = Sc1A12S−1
c2 + Sc2A22S−1

c2 ,

B̂2 = Sc2B2,

F̂2 = Sc1F1 + Sc2F2,

�s(x, u, t) = Sc1�u(x, t) + Sc2�m(x, u, t),

S∗
c = S−1

c2 Sc1.

(34)

The term �s(x, u, t) in (33) and (34) denotes sliding uncertainties,
which can be defined as the total influence of uncertainties to the
dynamics of reaching the sliding mode.

Including the condition for sliding mode (�(t) = 0) into the sys-
tem (33), the dynamics of the system in sliding mode become:

ẋc1(t) = Â11x1(t) + F1d(t) + �u(x, t). (35)

From (35) two improvements in system behavior can be noted. One
is that the order of system dynamics is reduced compared to the
original system (27). The reduction factor is m, which is a dimen-
sion of the control signal u(t). The other improvement is system’s
invariance to matched uncertainties, as they are not present in (35).

Remark 1. For discrete-time systems those improvements are not
fully valid. Due to discrete control signal, system trajectory can not be
held strictly on the surface and matched uncertainties can influence the
systems dynamics. Nevertheless, if the boundedness of uncertainties is
conserved, system trajectory will maintain inside a narrow band in the
vicinity of the sliding surface.

Switching matrix S in (29) must be chosen such that the system
in sliding mode is stable, i.e. all eigenvalues of matrix Â11 must be
in the left complex halfplane.

In LFC it is required for system output i.e. ACE signal in steady
state to be equal to zero. In sliding mode system output in steady
state depends upon parameters of the switching matrix S [41].
Therefore, besides ensuring system’s stability in sliding mode,
matrix S should be chosen such to minimize system’s steady state
error.

4.3. A control law

A control law will be computed for discrete-time ZOH approxi-
mation of continuous-time LTI system with uncertainties (24):

x((k + 1)�) = Gx(k�) + Hu(k�) + Wd(k�) + �(x, u, k�), (36)

where matrices G, H and W are obtained from (10). For control
law computation discrete-time systems (36) is firstly transformed
into regular form using nonsingular transformation matrix Tr .
Transformation procedure is similar to the one described for
continuous-time system.

For the system in regular form, the switching function is defined
as:

�(k�) = S1x1(k�) + S2x2(k�), (37)

where

Sr =
[

S1 S2
]

= ST−1
r . (38)

Combining discrete-time system in regular form and Eq. (37), sys-
tem dynamics in the sliding mode are obtained as:[

x1((k + 1)�)

�((k + 1)�)

]
=
[

Ĝ11 Ĝ12

Ĝ21 Ĝ22

][
x1(k�)

�(k�)

]
+
[

0

Ĥ2

]
u(k�)

+
[

W1

Ŵ2

]
d(k�) +

[
�u(x, k�)

�s(x, u, k�)

]
.

(39)

where

Ĝ11 = G11 − G12S∗,

Ĝ12 = G12S−1
2 ,

Ĝ21 = S1G11 − S1G12S∗ + S2G21 − S2G22S∗,

Ĝ22 = S1G12S−1
2 + S2G22S−1

2 ,

Ĥ2 = S2H2,

Ŵ2 = S1W1 + S2W2,

�s(x, u, k�) = S1�u(x, k�) + S2�m(x, u, k�)

S∗ = S−1
2 S1.

(40)

The control law will be computed according to (39), by an appro-
priate choice of a reaching law. The reaching law is in charge of
driving system trajectory to the sliding surface �(x) = 0. Among
several known reaching laws [42–46], a linear reaching law from
[46] is chosen to be used for LFC. It is defined as:

�(k + 1) = ��(k), (41)

where � is a diagonal matrix whose elements are constrained to
0 ≤ �i < 1.

When applied to the system (39) and with neglected uncertain-
ties, reaching law (41) results with the following control law:

u(k�) = Ĥ
−1
2

[
(� − Ĝ22)�(k�) − Ĝ21x1(k�) − Ŵ2d(k�)

]
. (42)

Because uncertainties are neglected in the computation of the con-
trol law (42), the ideal sliding mode is not guaranteed. Instead of
that, system trajectory will reside in a quasi sliding mode band,
whose width, wb, depends upon the value of components of sliding
uncertainties vector, �s(x, u, k�), and also upon the parameters of
matrix � [35]:

wb =

√√√√ m∑
i=1

(
1

1 − �i
max(�si(x, k�))

)
. (43)

As stated above, in LFC state and disturbance are not fully mea-
surable, therefore their unmeasured values in (42) are substituted
with the estimated values. Estimated states are obtained by (21) or
(22), while estimated disturbances are obtained by (23). Estimated
values are not exactly equal to the true values. The differences
are caused by discretization (9) and by least square approxima-
tion which is obtained when matrix’s pseudoinverse (17) is used.
They are further included into the computation of control signal
(42). Because those errors can also be seen as uncertainties in (24),
their influence can be reduced by introducing sliding uncertainties
estimation term into (42). Thus, the control law becomes:

u(k�) = Ĥ
−1
2

[
(� − Ĝ22)�(k�) − Ĝ21x1(k�) − Ŵ2d(k�) − �̂s(k�)

]
,

(44)

where

�̂s(k�) = �̂s((k − 1)�) + �(k�) − ��((k − 1)�). (45)
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When sliding uncertainties estimation is included into the con-
trol law computation, the width of the quasi sliding mode band
becomes [35]:

wb =

√√√√ m∑
i=1

(
1

1 − �i
max(��si(x, k�))

)
, (46)

where ��si(x, k�) = |�si(x, (k + 1)�) − �si(x, k�)|. The width of quasi
sliding mode band in (43) is based on the maximal value of sliding
uncertainties, while the width in (46) is based on the maximal rate
of change of sliding uncertainties. Generally, the width (46) is much
smaller.

Since the main task of the sliding mode controller is to steer the
system towards the sliding surface, estimating sliding uncertainties
instead of all system uncertainties is enough to obtain that task.

4.4. SMC application to LFC

Remark 2. Because control signal in LFC has dimension one (m =
1, u ≡ u), there is only one sliding surface. Therefore, switching matrix
becomes a switching vector while reaching law matrix becomes a scalar
(� ≡ �).

According to (2), a switching vector for a CA with hydro power
plant is:

S =
[

sf sPtie sPg sxg sxgh

]
, (47)

while according to (5), a switching vector for a CA with thermal
power plant it is:

S =
[

sf sPtie sPg sxg

]
. (48)

The choice of parameters of switching vectors (47) and (48) must
ensure system’s stability in the sliding mode and it must also min-
imize ACE deviation in the steady state, which is the main goal of
LFC.

Minimization of ACE in steady state sliding mode can be done
either analytically [41,47] or with the usage of iterative heuristic
algorithms [7,48]. In this paper, steady state ACE will be minimized
analytically. Minimization procedure results in constraints that will
be later incorporated into a genetic algorithm in charge of finding
controller’s optimal parameters (see Section 5).

The constraints will be computed separately for a CA with hydro
power plant and for a CA with thermal power plant. To compute the
constraints, the systems must be in regular form. A CA with thermal
power plant, described with (6), is already in regular form, therefore
Tcr = I. For a CA with hydro power plant transformation matrix is:

Tcr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

KB 1 0 0 0

0 1 0 0 0

0 0 1 2 0

0 0 0 1 −TR

T2

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (49)

Steady state ACE for system in regular form can be computed using
(35) and neglecting uncertainties. In sliding mode’s steady state it
is ẋc1(t) = 0, therefore ACE becomes:

ACEss = −C1Â
−1
11 F1d(t), (50)

where

Cr =
[

C1 C2
]

= CT−1
cr . (51)

For ACEss to be equal to zero for system in sliding mode regardless
the value of disturbance, parameters of the switching vector must
be chosen such that they ensure:

C1Â
−1
11 F1 = 0. (52)

Solving (52) for a CA with hydro power plant, the switching vector
(47), and the transformation matrix (49) gives:

sPg + sxg + sxgh = 0,
sPtie /= 0.

(53)

Similarly, solving (52) for a CA with thermal power plant and the
switching vector (48), while having in mind Tcr = I, gives:

sPg + sxg = 0,
sPtie /= 0.

(54)

Inequality sPtie /= 0 in (53) and (54) is a constraint introduced to
avoid undefined solution of (52), ACEss = 0/0.

Altogether, parameters of the switching vector S must be chosen
such that matrix Â11 is a Hurwitz matrix, while condition (53) or
(54) must also be fulfilled.

5. GA for finding LFC controller’s parameters

As it can be seen from (38), (40) and (44), apart from system
parameters, control law depends on switching vector S and reach-
ing law parameter �. To determine their optimal values GA is used.

GA is a random search approach which imitates natural process
of evolution. It is appropriate for finding global optimal solution
inside a multidimensional searching space. GAs have been used to
find parameters for different LFC algorithms, e.g. integral control
[21] or variable structure control [7,32]. The main problem in apply-
ing SMC based LFC presented in [7,32] is that a rapidly changing
continuous time control signal is used there. Unfortunately, that is
impracticable in real power system and discrete-time control signal
must be used instead.

Since scaling of the switching vector has no effect on the dynam-
ics of the sliding motion [33], it can be assumed that switching
vector parameter sPg in (47) and (48) is sPg = 1.

For a CA with hydro power plant GA should find optimal values
of sf , sPtie, sxg and �, while sxgh can be computed from (53). There-
fore, every chromosome in the population consists of four genes:
sf , sPtie, sxg and �.

For a CA with thermal power plant GA should find optimal values
of sf , sPtie, and �, while from (54) it can be computed that sxg = −1.
Therefore, in this case every chromosome in the population consists
of three genes: sf , sPtie and �.

A detailed flow chart of the GA used in this paper is shown in
Fig. 8. From random initial population, GA starts a loop of evolution
processes, consisting of selection, crossover and mutation, in order
to improve the average fitness function of the whole population.

GA consists of the following steps:

(i) A random initial population is created.
(ii) For all chromosomes in the population a switching vector S in

the form (47) or (48) is calculated and then it is transformed
into regular form using (38).

(iii) Using (40), parameters of the control law (42) are calculated.
(iv) For every chromosome in the population that ensures all eigen-

values of the matrix Ĝ11 from (39) are within the complex unit
circle, fitness function is evaluated by simulation on the pro-
posed power system model. The chromosome with the best
fitness function is memorized and used again in step (viii)
(elitism).

(v) Using roulette wheel selection [49], individual chromosomes
are selected for creating the next generation.
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Fig. 8. Flow chart of GA algorithm.

(vi) Offsprings are created by the process of one-point crossover
between selected chromosomes. The probability of crossover
is pc .

(vii) Some random bits of offspring chromosomes are mutated. The
probability of mutation is pm.

(viii) The next generation is composed of the obtained offsprings and
of the best chromosome in the current generation (calculated
in step (iv)).

(ix) Steps (ii)–(ix) are repeated until predefined number of gener-
ation has been produced.

Fitness function used in step (iv) is modified integral square of
ACE and control signals:

J =
∫ ∞

0
(ACE(t))2dt + �(u(t))2dt, (55)

where � is a weighting factor.
Parameters used in GA are shown in Table 4.

Table 4
Parameters of the used genetic algorithm.

Parameter Description Value

Nch Chromosomes in the population 100
ng Genes in every chromosome 5
nb Bits in every gene 10
pc Probability of crossover 0.7
pm Probability of mutation 0.05
NGM Maximal number of generations 50

Instead of searching for the optimal values of sliding mode algo-
rithm parameters throughout the vast space of possible solutions,
this procedure reduces GA’s searching space to significantly smaller
subspace. Within that subspace, system stability and no steady
state error is guarantied. This increases the possibility of finding
global optimal solution instead of a local one.

If GA search algorithm for SMC based LFC parameters is com-
pared to the search algorithm presented in [47], GA is able to find
the optimal solution with smaller value of the fitness function,
while having longer computation time. The reason is in GA’s ability
to escape from local extremes. Since the optimal controller param-
eters are computed off-line and only once, disadvantage regarding
computation time can be neglected.

6. Simulation results

6.1. Simulation parameters

To test the proposed sliding mode algorithm, simulations of
interconnected power system consisting of four CAs as shown in
Fig. 1 were conducted. Parameters of the simulated system are
given in Table 5 (most of them are from [21] and [29]). Sampling
period of the control signal was � = 1 s and subsampling period
of the output signals was T = 0.2 s, which satisfied observabil-
ity indices constraints, therefore making matrix forms (XT X) in
(21)–(23) invertible.

We conducted simulations as follows. Firstly, to obtain fair com-
parison of the proposed SMC controller with the PI controller,
parameters of PI controllers were obtained using GAs for all four
CAs. Discrete-time PI controllers were used, where the control sig-
nal was obtained from system’s output measurements as:

u(k�) = −
(

KprACE(k�) + Kint

k∑
l=0

ACE(l�)

)
. (56)

Parameters of PI controllers were also chosen to minimize fitness
function (55). The controller’s parameters (proportional gain Kpr

and integral gain Kint) are shown in Table 6.

Table 5
Parameters of interconnected power system model.

Parameter Unit Control area
CA1 CA2 CA3 CA4

KP [Hz/p.u.MW] 120 115 80 75
TP [s] 20 20 13 15
R [Hz/p.u.MW] 2.4 2.5 3.3 3
KB [p.u.MW/Hz] 0.425 0.409 0.316 0.347
TR [s] – 0.6 0.513 –
T1 [s] – 48.7 32 –
T2 [s] – 5 10 –
TW [s] – 1 2 –
TG [s] 0.08 – – 0.2
TT [s] 0.3 – – 0.3
KS12 [p.u.MW] 0.545
KS14 [p.u.MW] 0.5
KS23 [p.u.MW] 0.444
KS34 [p.u.MW] 0.545
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Table 6
Parameters of the optimal PI controllers.

Control area Kpr Kint

CA1 0.2605 0.4962
CA2 5.2951 0.0828
CA3 2.8426 0.0613
CA4 0.3218 0.7043

Table 7
Parameters of the the optimal SMC controllers.

Control area S �

CA1 [−0.8858 −1.8804 1 −1] 0.9985
CA3 [−1.3797 10.0342 1 −16.7999 15.7999] 0.9969

Secondly, optimal SMC controller parameters for CA1 were
obtained with optimal PI controllers used in other three CAs. Anal-
ogously, optimal SMC controller parameters in CA3 were obtained
with optimal PI controllers used in CA1, CA2 and CA4. Controller
parameters obtained with GAs for CA1 and CA3 are shown in
Table 7. Weighting parameter � in the fitness function (55) was
set to � = 0.01.

Thirdly, the interconnection scheme was simulated with simul-
taneous use of the SMC controllers in CA1 and CA3.

During the simulation, four step disturbances were generated,
one in each CA: �Pd1 = 1% p.u.MW, at t = 1 s, �Pd2 = −1% p.u.MW,
at t = 120 s, �Pd3 = 1% p.u.MW, at t = 360 s and �Pd4 = −1%
p.u.MW, at t = 600 s. The disturbances in neighbor CAs were gen-
erated to test the overall power system behavior.

6.2. Estimations

Estimation of disturbances and unmeasured states were
obtained using (21)–(23). For CA1, true and estimated disturbance
signals during the first three minutes are shown in Fig. 9. For
CA3 true and estimated governor valve position deviation (�xg(t))
and governor valve servomotor position deviation (�xgh(t)) signals
throughout the seventh minute are shown in Fig. 10.

It can be seen from the figures that state estimation is very good
in the sampling instants. Disturbance estimation is slightly poorer,
especially right after the disturbances occur, but estimation errors
disappear with time. The reason for that is the fact that system
dynamics within period � are included in state estimation, while
the disturbance is presumed constant during that period.

6.3. Load-frequency control

ACE signals with the optimal SMC controller parameters in CA1
and CA3 and with the optimal PI controller parameters in CA2 and
CA4 are shown in Fig. 11. Control laws are given with (44) and
(56). It can be observed from the figure that controllers in all four
CAs regulate ACE signals to zero after the disturbances occur (it
can also be noted that in all four CAs it is in steady state ACEss = 0).

Fig. 9. True and estimated disturbance in CA1.

Fig. 10. True and estimated state in CA3.

Due to smaller time constants in thermal power plants, disturbance
compensation in CA1 and CA4 is much faster than in CA2 and CA3.

Switching functions (29) in CA1 and CA3 are shown in Fig. 12.
It can be seen from the figure that the system tends to return into
sliding mode after the disturbances occur.

Fig. 11. ACE signals in interconnected power system.
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Fig. 12. Switching function in areas with sliding mode controllers.

A comparison of sliding mode based controller and PI controller
is shown in Fig. 13. It can be seen from the figure that SMC and
PI controllers give similar behavior in CA1 (thermal power plant),
while in CA3 (hydro power plant) SMC gives better behavior than PI
controller, i.e. it gives system response without overshoot and with
shorter settling time. Therefore, this control algorithm is appro-
priate for controlling CAs which have mostly hydro power plants
engaged in load-frequency control.

6.4. SMC and PI based LFC with nonlinearities in the model

Although linearized models are used for controllers synthesis,
in real power plants there are many nonlinearities present. It is the
most common to consider the effects of generation rate constraint
(GRC) and of governor deadband (GDB) [16,23,50,51]. A thermal
power plant model with included GRC and GDB is shown in Fig. 14,
while hydro power plant with same nonlinearities is shown in
Fig. 15.

In simulations, GRC was set to ±0.0017 p.u.MW/s for thermal
power plants and ±0.045 p.u.MW/s for hydro power plants. Back-
lash width of GDB was set to D = 0.04% for both, thermal and hydro
power plants [7].

Fig. 13. ACE with SMC and PI controller.

To compare SMC and PI based LFC for model with nonlinearities,
system behavior was tested against a larger disturbance �Pdi = 10%
p.u.MW in CA1 and CA3. In Fig. 16 ACE in CA1 and CA3 for system
with nonlinearities and both controllers is shown.

Switching functions (29) in CA1 and CA3 for system with non-
linearities are shown in Fig. 17.

Because PI controller is designed for the vicinity around an oper-
ating point, its behavior is significantly degraded when system
differs from that operating point. That deviation from the operat-
ing point is caused by large disturbance. In CA1 PI controller causes
significant oscillations due to nonlinearities [50], while with SMC
controller those oscillation are damped. Nevertheless, SMC based
controller shows good behavior even when system is not in the
vicinity of the operation point. The reason for that is its robustness
to uncertainties. Nonlinear system model shows that SMC based
controller is superior to PI controller for both, thermal and hydro
substitute power plant.

The only drawback of SMC based controller is that it can not
force ACE signal to be equal to zero in steady state, instead the con-
troller keeps it in narrow zone around zero. Width of that zone is
determined by uncertainties in the system. As it is seen in Fig. 17,
adding only estimation of sliding uncertainties into control law
computation results in very narrow quasi sliding mode band. Since

Fig. 14. Thermal power plant with nonlinearities.

Fig. 15. Hydro power plant with nonlinearities.
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Fig. 16. ACE in CA1 and CA3 for system with included nonlinearities.

Fig. 17. Switching function in areas with sliding mode controllers in the presence
of nonlinearities.

UCTE defines allowable absolute frequency deviation from its nom-
inal up to 50 mHz during normal system operation [1], there is no
need to include estimation of unmatched uncertainties into con-
trol algorithm. If that would be needed for the implementation of
this algorithm in real power system, a good method can be found
in [52].

7. Conclusion

In this paper, a design method of discrete-time sliding mode
based load-frequency controller for power system is presented.
Controller is designed for both power system represented with
hydro and with thermal power plant. Since sliding mode con-
troller needs full-state feedback, all unmeasured system states
and disturbance are estimated by the method based on fast sam-
pling of measured system variables. Parameters of the controllers
are tuned using GAs in a way to minimize integral square of the
area control error and control signal. The proposed controller is
validated through simulations on linear and nonlinear power sys-
tem models consisting of four different control areas. Simulation
results obtained on linear power system model show that the
proposed sliding mode based load frequency control outperforms
conventional PI based load-frequency control regarding dynamical

behavior for control areas represented with hydro power plat. Sim-
ulation results obtained on nonlinear power system model show
that sliding mode based load-frequency control significantly out-
performs conventional PI based load frequency control regarding
damping of the oscillation caused by nonlinearities, for both types
of power plants.
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