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Abstract: Laser range sensors (LRS) are ubiquitous in mobile robotics. They are usually
modeled as having statistical error only, despite some having systematic error (bias) documented.
This paper deals with bias estimation for laser range sensors in order to produce better
calibration for two LRS. Assuming both LRS sense in the same plane, we propose an algorithm
to estimate position and orientation of the second laser in the coordinate frame of the first
laser, or vice versa. In order to truly have corresponding points in two LRS scans, we propose a
calibration target. We use cylindrical objects of known radius, placed in the field of view of both
LRS, perpendicularly to the sensing plane. Centers of circles that result from the intersection of
the sensing plane and cylindrical objects then become corresponding points. Our algorithm first
estimates cylinder centers, together with their respective uncertainties, and then using those
results produces Euclidean transform estimate, together with it’s respective uncertainty. The
results of this algorithm can be used to gather very precise ground truth for people tracking
applications with LRS. In case of occlusions, one has obvious benefits from two or more different
viewpoints.
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1. INTRODUCTION

People detection and tracking is recognized as one of the
key technologies in the field of mobile robotics. A large
number of approaches to laser range sensors (LRS) people
tracking exist, e.g. Topp and Christensen (2005); Kluge
et al. (2001); Fod et al. (2002); Schulz et al. (2003) to
name a few. All of these approaches have their strengths
and weaknesses, but they are hard to compare directly.
Until Bernardin and Stiefelhagen (2008) proposed two
metrics to evaluate multiple objects tracking algorithm
performance (collectively named CLEAR MOT), there
was no standard metric a researcher could report in order
to compare his algorithm with other approaches. Yet, even
most recent works like Luber et al. (2011) which do report
one CLEAR MOT metric, lack the ground truth for the
tracked objects in the data, therefore reporting only one of
the two metrics. Luber et al. (2011) report multiple objects
tracking accuracy (MOTA) which depends on number of
mis-detections, false positives and mismatches of tracked
objects. MOTA essentially evaluates the first half of the
multiple objects tracking algorithm pipeline, i.e. detection
and data association. The second CLEAR MOT metric,
moving objects tracking precision (MOTP) is the total
error in estimated position for matched object-hypothesis
pairs over all frames, averaged by the total number of
matches made. It shows the ability of the MOT algorithm
to estimate precise object positions, independent of its skill
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at recognizing object configurations, keeping consistent
trajectories, and so forth. MOTP essentially evaluates the
second half of the MOT algorithm pipeline.

Motivated to obtain ground truth data with ubiquitous
and very precise laser range sensors, we investigate au-
tomatic calibration of a pair of such sensors. In case of
occlusions, one has obvious benefits from two or more dif-
ferent viewpoints. Assuming both lasers sense in the same
plane, we propose an algorithm which finds Euclidean
transform that represents the position and orientation of
one laser in the coordinate frame of the other, similarly
as in Sasaki and Hashimoto (2011). The algorithm also
calculates uncertainties of the position and orientation
estimates.

In the field of computer vision, algorithms for solving more
general problems than this exist. E.g., 2D homography
estimation, but it assumes known point correspondences
in two views. In computer vision, corresponding points
are obtained automatically by using a calibration pattern.
With laser range sensors there are generally no correspond-
ing raw measurements in two views, even though some
algorithms in this field, e.g. the iterative closest point
algorithm, make this assumption.

Therefore, we needed to devise a calibration object for
lasers. Considering view invariance, we settle for cylinders
perpendicular to the laser sensing plane, so that their
intersection results in a circle. Our calibration setup is
shown in Fig. 1. Centers of such circles can be used as
corresponding points between two views. In contrast to
our approach, Sasaki and Hashimoto (2011) use a mobile



Fig. 1. Experimental setup of two laser range sensors
calibration

robot to generate corresponding points. They used Pioneer
mobile robots, which are fairly circular, but they stipulated
that the robot’s center was at distance d = 15 cm in
the direction of scanning from the center of the cluster
of points belonging to the robot. This is a very rough
approximation, and the authors acknowledge that for more
accurate results they should use a model of the object.

This paper is organized as follows. Section 2 discuses the
Euclidean transform estimation algorithm and is divided
into subsections discussing individual aspects. Section 3
evaluates proposed algorithm on real world data obtained
with SICK LMS 200 and 291 units. Section 4 concludes
the paper.

2. ESTIMATION OF 2D EUCLIDEAN TRANSFORM
BETWEEN TWO LASER RANGE SENSORS

2.1 Estimating circle from laser range data

Laser range readings are usually modeled as independent
Gaussian random variables with true range as mean and
known standard deviation, equal for all readings. In order
to estimate the circle in maximum likelihood sense from
this data, one should minimize the sum of squared dis-
tances from measured range and the intersection of the
same laser beam with the estimated circle.

Given a circle C and a set of laser beams sensing it, we
define observed variables ∆ri = rCi − ri, where rCi is
the range of the i-th laser beam to it’s intersection with
the circle C and ri is the measured range by the laser.
Assuming observations ∆ri ∼ N (0, σ2

r) are independent
and identically distributed, we can define circle likelihood
function given all observations

L(C|r1, r2, . . . , rn) =

n∏
i=1

f(∆ri; 0, σ2
r) , (1)

where f(∆ri; 0, σ2
r) is the normal probability density func-

tion.

The circle estimate in maximum likelihood sense is

Ĉmle = arg max
C∈C

L(C|r1, r2, . . . , rn) . (2)

Maximizing likelihood is the same as maximizing log-
likelihood, due to monotonicity of the log function. Since
observation pdfs are normal

f(∆ri; 0, σ2
r) =

1√
2πσ2

r

e
−

∆r2
i

2σ2
r , (3)

it makes sense to work with log-likelihood. Our likelihood
maximization problem becomes

Ĉmle = arg max
C∈C

lnL(C|r1, r2, . . . , rn)

= arg max
C∈C

(
− 1

2σ2
r

n∑
i=1

∆r2
i + const.

)
,

(4)

or more condense

Ĉmle = arg min
C∈C

n∑
i=1

∆r2
i . (5)

The problem of estimating circle from laser range data
becomes a nonlinear least-squares problem.

2.2 Finding covariance matrix of the estimated circle
parameters

Since we cannot give a closed form solution for the circle
estimate, we will also need to propagate the covariance
matrix backwards, as described in Hartley and Zisserman
(2004).

Consider a differentiable mapping f from a parameter
space, RM to a measurement space RN , and let a Gaussian
probability distribution be defined on RN with covariance
matrix Σ. Let SM be the image of the mapping f .
We assume that M < N and that SM has the same
dimension M as the parameter space RM . Thus we are
not considering the over-parametrized case at present.
A vector p ∈ RM represents a parametrization of the
point f(p) on SM . Finding the point on SM closest in
Mahalanobis distance to a given point x ∈ RN defines a
map from RN to the surface SM . We call this mapping
η : RN → SM . Now, f is by assumption invertible on the
surface SM , and we define f−1 : SM → RM to be the
inverse function.

By composing the map η : RN → SM and f−1 : SM → RM
we have a mapping f−1 ◦ η : RN → RM . This mapping
assigns to a measurement vector x, the set of parameters p̂
corresponding to the ML estimate x̂. In principle we may
propagate the covariance of the probability distribution
in the measurement space RN to compute a covariance
matrix for the set of parameters p corresponding to ML
estimate.

If f is affine, we may write f(p) = f(p̄) + J(p − p̄),
where f(p) = x is the mean of the probability distribution
on RN . Since we are assuming that the surface SM =
f(RM ) has dimension M , the rank of J is equal to its
column dimension. Given a measurement vector x, the ML
estimate x̂ minimizes ‖x− x̂‖Σ = ‖x− f(p̂)‖Σ. Thus, we
seek p̂ to minimize this latter quantity. However,

‖x− f(p̂)‖Σ = ‖(x− x̄)− J(p̂− p̄)‖Σ (6)

and this weighted least-squares problem is minimized when

p̂− p̄ = (JTΣ−1J)−1JTΣ−1(x− x̄) . (7)



Writing p̄ = f−1(x̄) and p̂ = f−1(x̂), we see that

f−1 ◦ η(x) = p̂

= (JTΣ−1J)−1JTΣ−1(x− x̄) + p̄

= (JTΣ−1J)−1JTΣ−1(x− x̄) + f−1(x̄)

= f−1 ◦ η(x̄) + (JTΣ−1J)−1JTΣ−1(x− x̄) .
(8)

This shows that f−1 ◦ η is affine and (JTΣ−1J)−1JTΣ−1

is its linear part. Applying forward propagation of covari-
ance, we see that the covariance matrix for p̂ is

Σp̂ = (JTΣ−1J)−1JTΣ−1ΣΣ−TJ(JTΣ−1J)−T

= J−1ΣJ−TJTΣ−1ΣΣ−TJ−1ΣJ−T

= J−1ΣJ−T

= (JTΣ−1J)−1 ,

(9)

recalling that Σ is symmetric.

It is assumed that the cylindrical objects used for calibra-
tion are of known radius R. The parameter vector p in that
case consists of [xc yc]

T, i.e. circle centers. Measurement
space is a vector of ranges that the laser range sensor
produces for the corresponding cylinder. Since we assume
independence of the individual LRS measurements, we
can consider only one LRS measurement (r, ϕ). Mapping
from parameter space to measurement space for this single
reading is as follows

rC =
√
x2 + y2

x =
xc + yc tanϕ±

√
D

1 + tan2ϕ

y = x tanϕ

D = (xc + yc tanϕ)2 − (1 + tan2ϕ)(x2
c + y2

c −R2) .
(10)

The Jacobian of this transformation at [xc yc]
T is given

with

JC =
∂ rC
∂p

=
[
∂ rC
∂xc

∂ rC
∂yc

]
=

1

2
(x2 + y2)−

1
2

[
2x ∂x

∂xc
+ 2y ∂y

∂xc
2x ∂x

∂yc
+ 2y ∂y∂yc

]
=

1

rC

[
x ∂x
∂xc

+ y ∂x
∂xc

tanϕ x ∂x
∂yc

+ y ∂x∂yc tanϕ
]

∂x

∂xc
=

1±D− 1
2 (yc tanϕ− xc tan2 ϕ)

1 + tan2 ϕ

∂x

∂yc
=

tanϕ±D− 1
2 (xc tanϕ− yc)

1 + tan2 ϕ
,

(11)
where the ambiguous sign is determined by Eq. (10), i.e.
out of two possible line and circle intersections, the one
closer to the origin (LRS) is taken.

Finally, given all the measurements for a cylinder, esti-
mated center uncertainty is given by

ΣC =

∑
j

JT
C j Σ−1

r j JC j

−1

. (12)

2.3 Estimating 2D Euclidean transform

2D Euclidean transform consists of rotation θ and transla-
tion t. Having determined cylinder centers with both LR
sensors (xi and x′i), we can proceed to estimate Euclidean
transform.

After translating cylinder centers for t1 and t2 to move
them to their respective centroids, Kabsch algorithm (con-
strained orthogonal Procrustes problem) can be applied in
order to determine rotation θ between those two point sets.
Translation part of the transform is then

t = Rot(θ)t1 − t2 , (13)

where

Rot(θ) =

[
cos θ − sin θ
sin θ cos θ

]
. (14)

Unfortunately, this is not an ML estimate given cylinder
center uncertainties ΣC . But it is a good starting point for
solving the following minimization problem

θ̂mle, t̂mle = arg min
θ,t,x̄i

∑
i

(xi − x̄i)
T Σ−1
C i (xi − x̄i)+

(x′i − x̄′i)
T Σ−1
C′ i (x′i − x̄′i) ,

(15)

where x̄′i = Rot(θ)x̄i + t. Using Cholesky decomposition
for matrices Σ−1

C i and Σ−1
C′ i one can construct a criteria

function that can be used with the readily available
nonlinear least squares minimization algorithms.

2.4 Estimating 2D Euclidean transform uncertainty

In θ, t parametrization the transform is obviously non-
linear. It is usual to represent the transform in linear and
over-parametrized form

H =

[
Rot(θ) t

0T 1

]
(16)

and represent points in homogeneous coordinates. In this
case we have cos θ and sin θ instead of just θ.

In order to apply result for circle uncertainty in Eq. (9)
we introduce mapping g : Rd → RM from the space of
essential parameters Rd to the parameter space RM . Now
f ◦g maps from essential parameter to measurement space.
If the partial derivatives matrix of g is given by A, then
the partial derivatives matrix of f ◦ g is JA. Given that,
the covariance matrix of essential parameters is then given
by

Σhd = (ATJT Σ−1
N JA)−1 (17)

and the covariance matrix of parameters is given by

ΣhM = A(ATJT Σ−1
N JA)−1AT . (18)

Assuming hM =
[
cos θ sin θ tT x̄1 . . . x̄n

]T
and hd =[

θ tT x̄1 . . . x̄n
]T

we get partial derivative matrices

A =

[− sin θ
02×2ncos θ

02n×1 I2n×2n

]
(19)

and



JhM =
∂
[
x̄T

1 . . . x̄T
n x̄′1

T . . . x̄′n
T
]T

∂hM

=



02n×4 I2n×2n

x̄1,1 −x̄1,2 1 0 cos θ − sin θ
0x̄1,2 x̄1,1 0 1 sin θ cos θ

...
0

. . .
x̄n,1 −x̄n,2 1 0 cos θ − sin θ
x̄n,2 x̄n,1 0 1 sin θ cos θ


.

(20)

3. ALGORITHM EVALUATION ON REAL WORLD
DATA

In this section we evaluate the proposed 2D Euclidean
transform estimation algorithm on data obtained with two
different SICK LR sensors. The algorithm is summarized
in the pseudocode that follows.

1: procedure EstimateEuclideanTransform
(LRS data, cylinder scan segments)

2:3: for all laser ∈ LRS do
4: for all segment ∈ cylinder segments do
5: Ĉ ← estimate cylinder center using Eq. (5)
6: ΣC ← estimate it’s uncertainty using Eq.

(12)
7: end for
8: end for
9: t1 ← centroid of the LRS1 cylinder centers

10: t2 ← centroid of the LRS2 cylinder centers
11: Rot(θ) ← by applying Kabsch algorithm on the

resulting corresponding points
12: t← Rot(θ)t1 − t2

13: θ̂mle, t̂mle ← by minimizing Eq. (15) and using
previous results for initialization

14: ΣhM ← by inserting Equations (19) and (20) into
(18)

15: end procedure

The sensors used where LMS 200-30106 (indoor unit,
mounted on Pioneer 3-DX) and LMS 291-S05 (outdoor
unit, mounted on Pioneer 3-AT). The robots were placed
in the opposite corners of a 7 × 6.5 m2 room. Three fire
extinguishers were used as calibration targets (cylindrical
objects), placed in the center of the room, in the field of
view of both LRS.

Circle estimate of the central cylinder in the FOV of the
outdoor SICK unit, as shown in Fig. 2, was unexpected.
It’s center was estimated fairly closer to the LRS than truly
is in order to have intersection points between the circle
and the laser beams. Either our cylinder had larger radius
than we thought, or there was something wrong with the
sensor.

3.1 Modeling and measuring LRS bias

Technical specifications for LMS 291 state that the device
has a bias of ±35 mm in it’s millimeter mode (range in
1 to 20 m). The LMS 200 has somewhat smaller bias of
±15 mm, but it also has smaller range (from 1 to 8 m).
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Fig. 2. Estimating circle from LMS 291 data. Blue crosses
represent laser measurements (100 scans), green x is
their mean. Estimated circle is drawn with dashed ma-
genta line, and magenta ellipse is 10 times magnified
95% confidence region of circle center.

Given that, measured range is modeled as follows

ri = rtrue
i + b+ δr , (21)

where δr ∼ N (0, σ2
r). A convenient way to estimate bias is

to measure a straight wall with as large FOV as possible.
Wall (line) is given in Hess normal form with parameters
(p, ϑ). The laser measurement (of that line) at angle ϕi is
then

rL i =
p

cos(ϕi − ϑ)
+ b . (22)

Bias is found by minimizing the following criteria function

b̂mle = arg min
p,ϑ,b

∑
i∈L

(ri − rL i)
2
. (23)

You may notice that the line parameters are estimated as
well. We found this to be easier than to place the laser so
that line parameters are exactly known.

Results of bias estimation for SICK LMS 291 are shown in
Fig. 3. Estimated bias was 24.5 mm. Following the same
procedure, estimated bias for SICK LMS 200 was 11 mm.

3.2 Results after accounting for LRS bias

After accounting for LRS bias, circle estimate for central
cylinder in LMS 291 FOV is shown in Fig. 4. Taking
bias into account, we have managed to get a much better
estimate for the cylinder center.

After running the algorithm, we got the following trans-
form matrix

H =

Rot(−170.30◦)
4.75
1.26

0T 1

 . (24)

We also have got the full covariance matrix of the trans-
form for use in point transfer covariance calculation. As
an example, we got σθ = 0.033◦, σt1 = 1.3 mm and
σt2 = 1.61 mm.

In order to test our estimate, we ran our algorithm 10
times on sequentially obtained data. Cylinders remained



Fig. 3. Estimating LMS 291 bias. Blue x-es are laser
measurements (100 scans). Green line connects their
mean. Red line represents ideal readings of the esti-
mated line with an LRS that has the estimated bias
(24.5 mm in this case).
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Fig. 4. Estimating circle from LMS 291 data. Bias is taken
into account.

on the same location during the experiment. We obtained
following standard deviations for those 10 estimates; σθ =
0.032◦, σt1 = 3.21 mm and σt2 = 1.44 mm. Except for
σt1 , standard deviations do not deviate much from those
reported by our algorithm. Some deviations were expected,
because of linear approximations made in multiple steps
of the algorithm.

4. CONCLUSION

In this paper we have presented an algorithm for 2D
Euclidean transform estimation for laser range sensors. A
calibration target is used, in form of cylindrical objects
perpendicular to the sensing plane. Estimation of cylinder
centers turned out to be very sensitive to laser bias.
Therefore, in this paper we also proposed a method to
estimate it.

Fig. 5. Calibration results. Measurements from SICK LMS
200 (red x-es) are shown in the frame of SICK LMS
291 (blue crosses).

The results of this algorithm can be used to gather very
precise ground truth for people tracking applications with
LRS. In case of occlusions, one has obvious benefits from
two or more different viewpoints. For people tracking, we
could obtain exact positions for all possible individual
leg configurations. This data would enable evaluating full
CLEAR MOT metric (MOTA and MOTP).
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