
Hierarchical path planning of mobile robots in complex indoor
environments

Marija Seder, Petar Mostarac and Ivan Petrović

Abstract

Inspired by the hierarchical D* (HD*) algorithm of D. Cagigas (Cagigas, 2005), in this paper we introduce a novel
hierarchical path planning algorithm called focused hierarchical D* (FHD*). Unlike the original HD* algorithm, the FHD*
algorithm guarantees the optimality of the global path, andit requires considerably less time for the path replanning operations.
This is achieved with several modifications: (i) optimal placement of the so-called bridge nodes needed for hierarchy creation,
(ii) focusing the search around the optimal path, which reduces the search area without loss of optimality, and (iii) introduction
of partial starts and partial goals that further reduce computational time of replanning operations. The FHD* algorithm was
tested in a multiroom indoor environment and compared to theoriginal HD* algorithm, the nonhierarchical D* algorithm,and
focused D* algorithm under the same conditions. The FHD* algorithm significantly outperforms other algorithms with respect
to the computational time. Furthermore, it can be easily extended to the problem of path planning between different floors or
buildings.

I. I NTRODUCTION

An autonomous mobile robot is expected to provide flexible services in dynamic environments populated by other moving
objects or/and animals and human beings. The major task thatit should be capable to perform autonomously is finding and
moving to the goal position given by the user or by the superimposed task planning and scheduling controller. The robot
motion control system is a two-level system with path planning controller at higher level and path following controllerat
lower level. The task of the path planning algorithm is to compute the optimal path to the given goal and to replan the
path in case the previously planned path is blocked by obstacles. The path following algorithm directly controls the robot
motion with the aim to follow the planned path to the goal obeying robots kinematic and dynamic constraints. The path
(re)planning in dynamic environments is in focus of this paper, where particular attention is paid to real-time issues of the
planning process.

The majority of path planning algorithms produce a graph of possible paths to the goal (Latombe, 1991) and then an
optimal path is found by a classical graph search algorithm such as A* algorithm (Nilsson, 1971), D* algorithm (Stentz, 1994)
or focused D* (FD*) algorithm (Stentz, 1995). Two-dimensional (2D) occupancy grid maps are usually used to represent
environments, where the grid is a rectangular array with equal spacing and the connectivity of the grid cells is considered to
be eight-neighbor. Grid cells cover the area densely and each grid cell contains the information about the traversability and
possibly uncertainty. As long as the spacing of the grid is sufficiently small, all the information needed for path planning
has been preserved.

Classical graph search algorithms have two significant limitations. Firstly, resulting path is geometric curve with sharp
edges as a multiple of 45 which is hard to follow due to kinematic and dynamic constraints of the mobile robot. This problem
has been alleviated in various manners. For example, the Field D* algorithm extends standard D* algorithm by using linear
interpolation to derive the path cost of points not sampled in the grid (Ferguson and Stentz, 2007). This algorithm efficiently
produces very low-cost paths with a range of continuous headings, but in large environments is computationally inefficient. In
our previous work (Seder and Petrović, 2007) the smooth trajectory is produced by integration of FD* algorithm and Dynamic
Window local obstacle avoidance algorithm (Fox, Burgard and Thrun, 1997) considering explicitly mobile robot kinematics
and dynamics and also ensuring collision-free motion amongmoving obstacles. Secondly, with a uniform resolution grid,
these methods can be very memory and time intensive when the entire environment is represented at the highest resolution
of the grid map. There are a number of approaches trying to solve this limitation. For example, quadtrees are used rather
than uniform resolution grids in (Samet, 1982), but computed path can be suboptimal. Multi-resolution Field D* (Ferguson
and Stentz, 2006) produces direct paths through a non-uniform resolution grid with lower computational time and memory.

In large complex indoor environments, such as multi-room floors, multi-floor buildings or group of buildings, the world
model can become too large making path planning intractableor very inefficient. The plain graph information must be
arranged to reduce complexity, gain efficiency and clarity.A suitable choice is hierarchical decomposition of the map based
on hierarchical graphs (H-Graphs) (Fernández-Madrigal and González, 1998), (Fernández-Madrigal and González,2002).
Hierarchies of abstraction can reduce exponential complexity problems to linear ones (Korf, 1987). The interesting approaches
to finding the problem of finding good abstraction hierarchies (Huang, Jing and Rundensteiner, 1997), (Giunchiglia, 1999),
(Galindo, Fernández-Madrigal and González, 2004).

Hierarchical path planning is based on a refinement process through the hierarchy of abstractions and a reconstruction
process that links partial paths obtained after refinement.In (Cagigas and Abascal, 2004) a set of optimal partial pathsare

M. Seder, P. Mostarac and I. Petrović are with Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10000 Zagreb, Croatia,
e-mail: {marija.seder, petar.mostarac, ivan.petrovic}@fer.hr

previously stored in some nodes of the H-graph in order to speed up the refinement process. Even more strict demand on
the computational time is required for path replanning in dynamic environments. The problem of many real-time algorithms
is time or path cost nonoptimality. In (Cagigas, 2005) D* algorithm, which is widely used in dynamic environments,
is converted into hierarchical D* (HD*) algorithm that usesprecalculated path (materialization of costs). HD* algorithm
improves computational time performance of the D* algorithm in large search spaces, including also three dimensional
spaces, and therefore allows to obtain paths in a faster and more accurate way than traditional hierarchical path planning.
Although HD* algorithm uses the set of precalculated partial optimal paths between key points, it is not ensured that the
global path created as a union of these optimal partial pathsis also optimal. Also, HD* algorithm uses heuristics towards
the goal. However, heuristics towards the start would speedup the replanning process, (Stentz, 1995).

In this paper a new method is proposed that ensures path optimality and improves dynamic characteristics of the HD*
algorithm. Path optimality is ensured by optimal placementof the key points between which the partial paths are calculated.
Replanning process is accelerated by use of heuristics towards the introduced partial starts. Also, the partial goals are
introduced from which the searching will continue in the replanning process. This procedure further shortens computational
time.

The rest of the paper is organized as follows. In Section II a concept of the H-Graph is briefly described. In Section III
classical search algorithms (A*, D*, FD*) and hierarchicalsearch algorithm (HD*) are restated. Section IV describes proposed
focused hierarchical D* algorithm (FHD*), which is an improvement of the HD* algorithm. In Section V experimental results
obtained with FHD* are analyzed and compared to the results obtained with HD*, D* and FD* algorithms under the same
circumstances. Finally, in Section VI some conclusions arepointed out.

II. H IERARCHICAL MAP MODEL

A hierarchical path planner is supported by a hierarchy of abstractions representing different views of a robot environment,
i.e. 3D view, not physical but abstract. Thus, a graph-basedhierarchical environment representation is needed.

A. H-Graph Definitions

The H-Graph is a sequence of hierarchical levelsL = L0, L1, ..., LD, whereD is the depth of the hierarchy.L0 is the
“root level” which represents the most abstract description of an environment.LD represents the most detailed description
of an environment. Each levelLi, (0 ≤ i ≤ D) contains also a graphGi = (Ni, Ai, Ci, Wi, Ti), whereNi is a set of
nodes,Ai is a set of arcs,Ci is a set of Cartesian coordinates forNi, Wi is a set of weights forAi and Ti is a set of
precalculated paths associated toNi. The union of graphsG0, G1, G2, ..., GD is a graphG = (N, A, C, W, T), where
N = N0∪N1∪ ...∪ND, A = A0∪A1∪ ...∪AD, C = C0∪C1∪ ...∪CD, W = W0∪W1∪ ...∪WD , T = T0∪T1∪ ...∪TD.
An arc a(nJ , nK , wH) ∈ A is defined by three elementsnJ , nK , wH , wherenJ , nK ∈ N , nJ 6= nK and wH ∈ W . A
Cartesian coordinatecI ∈ C is defined by(x, y), wherex, y ∈ N. A weight wI ∈ W is real number(wI ∈ R).

B. Categories of nodes and associated functions

Nodes are classified into four classes:end, cross, submap andbridge nodes. Submap nodes represent a subset of nodes
in a deeper abstraction level of the hierarchy. The submap node set contained inN is calledSN (SN ⊂ N). The following
functions are associated to submap nodes:

• map→ nJ .map = nK , wherenJ ∈ Lj , nK ∈ Lk, j = k + 1 (0 < j ≤ D), (0 ≤ k < D) andnJ ⊂ nK in Lk. Map
function shows in which node isnJ included in an upper level of the hierarchy. It means thatnK containsnJ in its
submap.

• depth→ nJ .depth = x, wherenJ is a node fromLx level. Function returns the level of the hierarchy which contains
nJ .

End nodes are starting or goal nodes of a robot path planning.It means that they are included inLD level of the hierarchy
representing physical position of a robot in the environment. Cross nodes are subtargets which represent turnovers or crossings
of the paths. Bridge nodes are nodes that connect submap to a parent submap and they are included inSN subset. The
bridge node set included inN is calledBN (BN ⊂ N). The following functions are associated to bridge nodes:

• get bridgenodes→ nI .get bridge nodes = BNI ⊆ BN , wherenI ∈ N , nI .depth < D and BNI satisfies∀nx ∈
BNI , nx.map = nI . If nI is a submap node, then the function returns the set of the bridge nodes which are included
in nI and are found in the next deeper level of the hierarchy.

Bridge nodes are divided into two classes:horizontal bridge nodes andvertical bridge nodes. Horizontal bridge nodes
follow the definition given earlier. Vertical bridge nodes are almost equal to horizontal bridge nodes but conceptuallythey
connect two submaps that represent two floors in a building. Vertical bridge nodes are, therefore, connected to a physical
infrastructure of a building. Usually elevator entrances are used as positions of vertical bridge nodes. An example of modeling
a building as an H-Graph of floor levels with horizontal and vertical bridge node connections is shown in Fig. 1. Each floor
level is represented by a submap node with noted other nodes in a deeper abstraction level of the hierarchy and a vertical
bridge node that connects floor levels and serves for path planning between them.

Fig. 1. Example of hierarchical H-Graph model of a building.

C. Paths and associated functions

Arcs (A) are non-directed which allows navigation in both directions between two nodes. Cartesian coordinates (C) are
attributes associated to each node. They are used in the heuristic function of the path planning algorithm. Weights (W)
indicate the cost of traversing arcs and are used by the cost function of the path planning algorithm.

A path is defined as a succession of nodes. The whole set of paths contained in an H-Graph is calledP . For example,
a pathPI ∈ P of length L is defined byPI = (n0, n1, . . . , nL), wheren0, n1, . . . , nL ∈ N and ∃ a0(n0, n1, w(0,1)),
a1(n1, n2, w(1,2)), . . . , aL−1(nL−1, nL, w(L−1,L)) ∈ A. A pathPI has three attributes:

• cost→ PI .cost = x, wherex ∈ R, assigns or gets path cost toPI .
• length→ PI .length = L + 1, whereL ∈ N, PI ∈ P andPI = (n0, n1, . . . , nL), returns the path length ofPI .
• index→ PI .index(J) = nJ , wherenJ ∈ PI , returns the node of a path in positionJ .

Each submap nodenI ∈ Ni ⊂ N(0 ≤ i ≤ D) has its own precalculated path setPPSnI ∈ Ti ⊂ T (0 ≤ i ≤ D). The
following functions are associated to a submap nodenI :

• pre path→ nI .pre path(nX , nY) = PZ , wherenX , nY ∈ N , PZ = (nX , nX+1, ..., nY), PZ ∈ PPSnI ⊂ P . If the
requested path does not exist, the function returns NULL.

Precalculated paths are length optimal, calculated off-line between key points. Precalculated paths are grouped intothree
classes:

1) Paths which connect two bridge nodes within the submap node nI .
2) Paths which connect the bridge nodes ofnI (nI .get bridge nodes) with the bridge nodes of its parent submap

((nI .map).get bridge nodes).
3) Path which connects the closely related submap nodes, called “brother” submaps contained innI . Two submap nodes

nX , nY ∈ N are “brother” submaps contained innI if nX .map = nY .map = nI , i.e. if they have the same “parent”
submap in an upper level of the hierarchy.

With precalculated paths, recalculating several subpathsin a hierarchical search process is avoided. Thus, the extrastorage
space for the paths is required, but computational time is much lower because refinement of nodes in deeper levels of the
hierarchy is avoided. Moreover, the H-Graph map model is very flexible and easily adapted. If the building map needs
expanding, then the inner modularity of the H-Graphs solvesthe problem by adding precalculated partial paths between the
new nodes and the old bridge nodes. In addition, the precalculated paths can be stored in a path set which can be added to
or removed from the H-Graph.

D. An example of the hierarchical map

Following an example in (Cagigas and Abascal, 2004), one floor of a building is observed. The H-Graph has four abstract
levels. At the most abstract level of the hierarchy (L0), each floor is observed as a submap node, named Floor in Fig. 3.
Level L0 contains a graphG0 composed of only floor nodes.

Level L1 is composed of the floor sections and contains a graphG1, which connects the nodes contained in the submap
nodeFloor, Fig. 3. These nodes are named:North, South, EastandWest.

Each of these four nodes in the deeper levelL2 contains a graphG2i (∀ i ∈ North, South, East, West), which connects
the nodes contained in the corresponding submap. Floor section has its share of the belonging rooms. That introduces an
extra information about the position of a room. Figs. 4 and 5 show the levelL2 and the corresponding graphG2North.

Fig. 2. First two most abstract levels of the hierarchy,L0 andL1.

Fig. 3. Corresponding graph of the levelL1, graphG1.

Fig. 4. The division of sectionNorth to its corresponding rooms in the levelL2 of the hierarchy.

Fig. 5. GraphG2North consists horizontal bridge nodes associated to cross nodesin graphG1.

Each room in the deepest levelL3 contains a graphG3i (∀ i ∈ N1, N2, N3) which connects the nodes contained in the
corresponding submap. Further division is not necessary. Figs 6 and 7 show the deepest levelL3 and the corresponding
graphG3N1. These nodes contain all the information needed for the pathplanning algorithm (real position, traversability,
etc.) and allow positioning of a mobile robot at every available location within a room (i.e. end nodes). These nodes are
on-line updated as the environment changes.

Fig. 6. NodeN1 in the levelL3 represents the map of a room.

Fig. 7. Graph of the roomN1 which defines detailed description of internal space, its connection to other rooms in the same sector (section) and the
connection to other sectors using the horizontal bridge nodes. .

III. PATH PLANNING

A. Classical search algorithms

Graph based search algorithms are the most commonly used algorithms for path planning of mobile robots. Among them
the most popular one is A* algorithm (Nilsson, 1971), which finds complete and optimal path in static environments. It is
based on path cost functionsg andh. Functiong represents the total cost from the start node of the search tothe current
node. It is calculated as follows:g =

∑
wi, i = 1, ..., dN , wheredN is the depth of the currently reached node in the search

tree andwi is the cost of traversing an arc when node ni is expanded with its neighbor node. Functionh is a heuristic
function, which estimates, but never overestimates, the cheapest path cost for achieving the goal node from the currentnode
in the (x, y) grid map search space. Such a heuristic function is called admissible and optimistic. The total cost function
f = g + h determines the order of expanding the nodes in the state space. When following any path from the start node the
value of thef -function never decreases, which is true if heuristic exhibits monotonicity.

The path cost is based on some metric such as distance, time, energy expended, risk, etc. In our implementation, the
path cost is based on distance travelled. The most often usedheuristic function is the Euclidean distance from the current
node to the goal node. However, the Euclidean distance is computationally inefficient since calculation of the square root
function for each node expansion demands floating point arithmetic. In order to alleviate this problem a heuristic that uses
integer arithmetic is proposed. This is possible in occupancy grid maps because they enable transition costs to be described
as integer multiplies. For example, if each cell in a grid is regarded as a node in the graph, length of the edgee can be
used for straight transition (e.g.e = 10cm) and length of the diagonald for diagonal transition (e.g.d = 14cm). We used
the following heuristic:

a = max(|xG − xN |, |yG − yN |),

b = min(|xG − xN |, |yG − yN |),

h(N) = db + e(a − b), (1)

where (xN , yN) are the coordinates of the current nodeN and (xG, yG) are the coordinates of the goal nodeG. This
heuristic exhibits monotonicity because it fulfills the triangular inequality property.

A* search fans out from the start node, expanding neighbor nodes within the contours of increasingf -value until the
goal node is reached. During the expansion, backpointers tothe parent nodes are set. The A* uses backpointers to represent
paths to the start.

In a dynamic environment the global path must be completely replanned each time the environment changes or a mobile
robot follows the path imperfectly. The A* algorithm performs poorly since it does not use search information from previous
iterations. Minimum path criterion may not be optimal in thesense of minimum time. This problem has been solved by D*
graph search algorithm introduced in (Stentz, 1994), whichallows updating of only those nodes along the path that actually
change due to sensor measurements. The D* algorithm is similar to A* in the case of initial off-line path planning. The
main distinction to the A* algorithm is that the D* algorithmsearch fans out not from the start node but from the goal
node. Cost functiong here represents the total path cost from the goal node to the current node. It is computed from the
goal node since the search starts from the goal. Nodes are expanded within the contours of increasingg-value until the start
node is reached. During the expansion, backpointers from each node in the searched area to its parent nodes are set. The
D* uses backpointers to represent paths to the goal. Optimalpaths to the goal from every node in the expanded area of
the environment are computed simply by following the backpointers. Further on-line execution of the algorithm relies on
sensor information about the robot environment. Any discrepancy that is discovered from the earlier information aboutthe
environment initiates algorithm execution. Nodes which traversal cost has changed are expanded first. Important functions
for the replanning process are functiong and so-called key functionk, which is defined as

k(N) = min(k(N), gnew), (2)

wheregnew is a new value of the cost functiong of the expanded nodeN due to cost changes in the environment in the
replanning process. Initially,k is equal tog. D* handles any path cost optimization problem where the cost parameters
change during the search process by processing raise and lower states. Raise state is classified by relationk < g. It is
used to propagate information about path cost increases. Lower state is classified by relationk = g. It is used to propagate
information about path cost reductions. Order of expandingthe nodes is defined by minimal value of the functionk, where
the cost change is propagated through the number of nodes around the optimal path. New path, if exists, is determined by
redirecting the pointers locally. The replanning process stops when the cost of the best node examined is greater than the
cost of the node of robot current position.

Including the heuristic in the remaining cost of the path to the start node leads to the focused D* algorithm (FD*) variant
(Stentz, 1995). Heuristic is chosen similar to (1) but coordinates of the start nodeS(xS , yS) are used instead of the goal
nodeG(xG, yG). The initial planning is similar as with the A* algorithm, but starts from the goal node. Replanning is
similar as with the D* algorithm except the cost functionf is now sum of the heuristic functionh and the key functionk
(f = k + h).- Order of expanding the nodes is defined by minimal value ofthe cost function.

B. A.Cagigas hierarchical search algorithm

The key part of Cagigas HD* algorithm is the set of the precalculated paths. Paths between bridge nodes are calculated
by A* algorithm (heuristic function is calculated towards the goal). A partial path defines connection between two bridge
nodes with a certain cost. If a path between two bridge nodes exists then these bridge nodes are considered as neighbor
nodes in a search process. When calculating the initial path, (Cagigas and Abascal, 2004), the start node and the goal node
are treated as bridge nodes and partial paths are calculatedbetween them and their adjacent bridge nodes. There is no search
process at the deepest level of the hierarchy and their corresponding graphs. Instead, the search algorithm tries to findthe
best path between the submaps where the start and the goal nodes are included. These submaps are linked to their parent
submaps in an upper level of the hierarchy through their bridge nodes. Process ends when the set of partial paths that joins
the start and the goal node is constructed. It is a typical bottom-up process used when working with hierarchical graphs.

When a broken arc is detected in the initial path in the mobilerobot vicinity, the path should be replanned. In (Cagigas,
2005) the path is replanned from the start node, which represents the current robot position, to the goal node. The heuristic
function (1) is calculated towards the goal node and order ofexpanding the nodes depends on the total cost function
f = g + h, as in A* algorithm. The cost functiong represents the total cost from the start node to the current node of
the search. Planning ends when a node included in the initialpath is found. When the first bridge node from the deepest
level is reached, hierarchical widening begins. Because every bridge node at the deepest level contains partial paths towards
other bridge nodes from the upper level, planning is shiftedupwards in the hierarchy. In upper levels, submap nodes are
expanded according to functionf = g +h until the goal submap node is reached. Here, functiong is calculated as a sum of
the materialized costs of the precalculated paths between bridge nodes,g =

∑
Pi.cost, i = 1, ..., dN , wheredN is the depth

of the currently reached bridge node in the search tree at theupper level andPi.cost is actually the weight, i.e. the cost
of traversing an arc between start and goal bridge node of thepartial pathPi. Thereby, at higher levels only bridge nodes
exists with their arcs and weights. Functionh is again calculated according to (1). Since precalculated paths may include
submap nodes too, these nodes must be substituted by associated precalculated path for the final solution (node unrolling).

In (Cagigas and Abascal, 2004) and (Cagigas, 2005), placement of bridge nodes is not considered, although it is crucial
for the performances of the hierarchical planning. If the bridge nodes are placed at arbitrary positions in the environment,
they may be placed apart from the optimal path between the start node and the goal node. In that case, a union of partial
optimal paths between the bridge nodes may not be optimal.

IV. FOCUSED HIERARCHICALD* SEARCH ALGORITHM

With the goal to ensure optimality of the global path and to decrease computational complexity of path replanning in
real-time, we propose three important modifications of the HD* algorithm: (i) optimal placement of the bridge nodes, (ii)
focusing the search around the optimal path, and (iii) introduction of partial starts and goals. We named our algorithm as
the focused HD* algorithm (FHD*).

A. Optimal placement of the bridge nodes

Lets assume that an indoor environment can be geometricallydivided into rooms and halls. InLD−1 level there are
submap nodes each representing a room with related bridge nodes that connect it with other rooms. Links between nodes
respect geometrical structure of the environment. Vertical bridge nodes are placed at positions of stairs and elevators, i.e.
exactly at physical connections of a floor/building with itsneighboring floors/buildings. They are the local goals necessary
for taking the next level. If there is a room with more than twobridge nodes it will certainly contain a cross node, since more
than one path through it exists. Here, cross nodes are not of importance for path planning since placement of bridge nodes
keeps path optimality.LD level for thei-th room is associated to respective graphGDi, which is a part of the occupancy
grid map and contains geometrical characteristics of the environment. Each cell in the grid map corresponds to a node in
GDi. It would be perceived that flexibility of hierarchical map that is adapted here to physical structure of the environment
is used. If there are many rooms at levelLD−1 they can be grouped together in a submap, which represents a sector of the
environment by adding next level,LD−2. Also, by adding other floors toL0, the number of nodes at the level would grow,
while by adding one whole new building to the map one more abstract level would be added and it would contain only two
nodes representing those two mentioned buildings (Cagigasand Abascal, 2004), (Cagigas, 2005).

Bridge nodes that connect submap nodes must be placed in the optimal path that should be followed by a mobile robot
on its way from one room to the other. When a mobile robot follows the optimal path, the trajectory safeness is of great
importance. In a narrow passage the safest path would be one that goes through the middle of the passage. Since D* and
FD* algorithms are capable of handling continuous values for arc costs, a potential field (Khatib, 1986) can be constructed
by assigning the highest cost values to the occupied cells and decreasing the cost values for unoccupied cells proportionally
to their distance from the obstacles. Obviously, in narrow passages middle cells will have minimal cost values, and therefore
the optimal path would pass through them. Therefore, it is logical to place the bridge nodes in the middle of the doors
separating the rooms, as shown in Fig. 8.

Fig. 8. Map of the floor level with division on submap nodes andpositions of bridge nodes.

In our implementation of the potential field integer values of costs are used in the form of so-called safety cost mask
(Seder, Maček and Petrović, 2005). The safety cost mask isincluded at the deepest levelLD, associated to the occupancy
grid map. The grid map is composed of unoccupied cells and occupied cells. Each cell in the grid map within the safety cost
mask around an occupied cell receives a corresponding safety cost value, which depends on its distance from the occupied
cell. The utmost cells of the safety cost mask obtain a cost value for one greater than unoccupied cells out of the safety
cost mask, and safety cost value of inner cells incrementally increase from utmost cells to the occupied cell. The size of
the cost mask can be determined as in our previous work, (Seder and Petrović, 2007). Therefore, the optimal path would
go through the middle of the narrow passages, i.e. exactly where bridge node is placed.

Fig. 9 represents the detailed description of a part of a hall. Real coordinates of the grid map cells are noted on the
x− andy−axes. The cells containing obstacles are C-space enlarged prior to an execution of the path search algorithm to
account for the robot dimensions. Cost values of the enlarged obstacle cells are presented with black colour and of cells
free of obstacles with white colour. Shades of grey correspond to incrementally higher cost value closer to the obstacles.
Obstacle cells of the real obstacle placement (without accounting for the robot dimensions) are marked with x-marks. The
cells in the grid map have assigned unique identifiers used for spatial indexing purpose. CellSij is uniquely defined with

Fig. 9. The occupancy grid map with cost mask at levelLD .

Fig. 10. Three dimensional view of the cost grid map: function v.

grid map coordinates(i, j) given by(⌊
x

dCELL

⌋, ⌊
y

dCELL

⌋), wherex, y are real coordinates of the middle point of the cell

in the environment anddCELL is the edge length of the cell. Occupancy grid map with the cost mask is considered as
a function of two variablesv : (i, j) 7→ V , where domain is the Cartesian product of two sets of grid mapcoordinates,
i ∈ I = {0, 1, 2, ..., MI} and j ∈ J = {0, 1, 2, ..., MJ}, whereMI , MJ are defined by the size of the environment, and
codomainV is a set of cost values assigned to each cell in the grid map. Minima of the functionv are at cells out of the
safety cost mask and maxima are at occupied cells. Local minima and local maxima along one coordinate are significant
for narrow passages detections. The cell at which local minimum is present, but is not also the global minimum, could be
the place of a narrow passage or it could be some hollow in the obstacle. The local maximum of the other coordinate at
the same cell would confirm that it is really a narrow passage,as is illustrated in Figure 10. Finding of narrow passages is
actually equivalent to finding of saddle points of the function v as follows:

v
′′

i (i, j) = v(i − 1, j) − 2v(i, j) + v(i + 1, j),

v
′′

j (i, j) = v(i, j − 1) − 2v(i, j) + v(i, j + 1),

∀nij ∈ GD : sign(v
′′

i (i, j)) = −sign(v
′′

j (i, j)),

(3)

wherenij is a node from the graphGD associated to cellSij , i ∈ I andj ∈ J , whose coordinates fullfills given expression.
More details can be found in (Seder, Jurić-Kavelj and Petrović, 2008).

In (Cagigas and Abascal, 2004) it is pointed out that each submap is connected to a bridge node in the next deeper level
of the hierarchy. Since we placed bridge nodes at the doors each of them is shared by two neighbor rooms. Therefore,
number of bridge nodes is almost halved comparing to the original HD* algorithm, what additionally accelerates execution

of the FHD* algorithm.
If there is a path between two submap nodes it has to contain a bridge node. Optimality in sense of the path cost relies

in the fact that once assembled path certainly contains partially optimal paths. A classical search algorithm takes care of the
optimality of the path between two bridge nodes. In Fig. 11 itis shown that the optimal path produced by the D* algorithm
between the start node and the goal node, which are not in the same submap at some level of the hierarchy, is exactly the
same as the path composed of precalculated paths produced bythe D* algorithm. Length of the path as a number of cells
between two nodesN1, N2 ⊂ N is noted asl(N1,N2). It can be seen that the path from the start node to the goal node in
the upper subfigure, Fig. 11, is of the same length as the sum ofthe partial path lengths in the lower subfigure. It should
be also noticed that nodesBN1 andBN2 are counted twice. Since D* algorithm does not use heuristic, it is not optimal in
the computational time and memory usage, so usage of the FD* algorithm is preferred. The FD* algorithm uses heuristic
in order to minimize computational time for the optimal pathfinding. If the free space in the environment is wide enough
to allow different paths with the same cost, path computed bythe FD* algorithm may differ geometrically from the path
computed by the D* algorithm, as shown in Fig. 12. Nevertheless, the path computed by the FD* algorithm is optimal by
the cost and geometrical differences are not of any importance. Comparing the corresponding paths in Fig. 12 and Fig. 11,
it can be observed that lengths of both paths are equal.

Fig. 11. Optimal path obtained by D* (upper subfigure) and union of partial paths obtained by D* (lower subfigure).

B. Focusing the search around the optimal path

In (Cagigas, 2005) heuristic towards the goal is used for expanding the best nodes according to the functionf = g + h.
The cost that is estimated by the heuristic function can be replaced by the exact cost from the goal node to the current node.
A mobile robot on its way to the goal continuously changes itsposition. When a new unknown obstacle blokes the optimal
path, replanning process uses robot current position as thestart node. Therefore, it will be more useful to calculate heuristics
toward the moving start position, since its cost continuously changes, whilst the goal is at fixed position. Replanning by the
A* algorithm is slower than by the FD* algorithm. In case of the A* algorithm there is no direct path to the goal from all
of the nodes in the searched area, as is the case with the FD* algorithm. That information in the FD* algorithm is simply
reused for fast replanning. On the contrary, in the A* algorithm nodes are pointing towards start node and that information
is not useful for replanning. Also, because of the heuristicproperty of nonoverestimating the path cost, for the A* algorithm
it follows:

f(start) ≤ f(n) ≤ f(goal), (4)

while for the FD* algorithm the relation is opposite:

f(goal) ≤ f(n) ≤ f(start), (5)

Fig. 12. Optimal path obtained by FD* (upper subfigure) and union of partial paths obtained by FD* (lower subfigure).

wheren is a node in the optimal path between the start node and the goal node andf is a total cost function defined as
f = g +h for the A* algorithm andf = k +h for the FD* algorithm. Since the nodes are explored orderly according to the
minimal value of the functionf , the FD* algorithm chooses nodes closer to the goal firstly, while the A* algorithm chooses
nodes closer to the start firstly. Therefore, replanning by the A* algorithm starts with the start node, while replanningby the
FD* algorithm starts with the newly occupied node (the obstacle node). Redirecting the pointers locally around the obstacle
node is much faster than exploring nodes from the start node.

Since a set of precalculated paths between bridge nodes is constant and unchangeable for a map, it can be calculated
off-line. The FHD* algorithm calculates initial path similarly as the HD* algorithm. The start node and the goal node are
treated as bridge nodes and partial paths are calculated between them and their adjacent bridge nodes by the FD* algorithm.
In upper levels, bridge nodes are expanded according to the function f = g + h until the start node is reached. Here,
functiong is calculated from the goal node to the current bridge node asa sum of the materialized costs of the precalculated
paths between bridge nodes,

∑
Pi.cost, i = 1, ..., dN . Functionh is heuristic towards the start node computed as with the

FD* algorithm. During the expansion, backpointers to the parent nodes are set. These backpointers are used as in the FD*
algorithm, to represent paths to the goal node. Optimal paths to the goal from every bridge node are computed simply by
following the backpointers.

Also, every expanded node has assigned calculated cost values of function g and k (defined as in the FD* algorithm),
which is important for further path replanning process. Accordingly, additional attributes are added to the pathPI :

• g → PI .g(J) = x, wherex ∈ R, assigns or gets path costg to PI .index(J) (the node of a path in positionJ).
• k → PI .k(J) = x, wherex ∈ R, assigns or gets path costk to PI .index(J).

C. Partial starts and partial goals

Partial starts and partial goals are introduced in the replanning process of the FHD* algorithm. Their purpose is lowered
computing time and memory usage, without loss of optimality. If a mobile robot detects a new unknown obstacle blocking
the initial path, replanning process is engaged. It is divided into three steps:

1) Replanning at levelLD: A newly occupied node that first occurs in the initial path followed by a mobile robot is
noted asNo. Replanning is done only in the submap containingNo. This submap is called the obstacle submap. In the
case thatNo is exactly the bridge node, the submap that is next to the bridge node in the initial path is considered as the
obstacle submap. Node that containsNo is expanded first. Nodes that point toNo have their cost enlarged (raise states).
This propagation of cost enlargement spreads backwards to the partial start node (Nps), which is defined as follows. The
submap that contains robots current position (Nc) is called the current submap. IfNc is the bridge node, the current submap
is considered as the submap next toNc in the initial path. Partial start nodeNps is Nc if the current submap and the

obstacle submap are the same submap. Otherwise,Nps is the bridge node that connects these two submaps. A specialcase
is No ⊂ BN , whereNps is the first free node beforeNo in the initial path. Fig. 13 illustrates the example of this three
cases of obstacle placement. In the left subfigureNc andNo are in the same submapRoomi. Nps is thenNc. In the middle

Fig. 13. Three situations of placement of obstacle and current position. Path replanning at levelLD: obstacle in the current submap (left); obstacle in
the neighbor submap (middle); obstacle at the bridge node (right).

subfigureNc is in submapRoomi andNo is in submapRoomk. Partial startNps is thenBNi. In the right subfigureNo is
BNi. Nps is one node beforeBNi. Order of expanding the nodes is defined by minimal value of functionf = k+h, where
k is defined as in FD* andh is heuristic towardsNps. When node which will lower the cost of the previously raisedstates
is expanded, redirecting the pointers will form a new path around the obstacle, as illustrated in Fig. 13. Replanning process
at levelLD stops when there are no relevant nodes with the cost less or equal than the cost ofNps in the obstacle submap.
If there is no path in the obstacle submap, i.e. the path is completely closed with an obstacle,Nps will have prohibitively
large cost. With an updated cost ofNps, searching is continued upwards in the hierarchy. An example of possible three
situations, where no path is found in the obstacle submap, isshown in Fig. 14. In the left subfigure an obstacle is placed in

Fig. 14. Three situations of placement of obstacle and current position. No path is found at levelLD: obstacle in the current submap (left); obstacle in
the neighbor submap (middle); obstacle at the bridge node (right).

the current submap. There is no path fromNps to BNi in the obstacle submapRoomi. In the middle subfigure an obstacle
is not placed in the current submap. There is no path fromNps to Ng in the obstacle submapRoomk. In the right subfigure
No is BNi and there is no path fromNps to Ng in the obstacle submapRoomk.

2) Replanning in upper levels of the hierarchy:Updated nodeNps is expanded first. Expanding of nodes is done similarly
as in levelLD, but hierarchically. That means that bottom-up process is used and all bridge nodes that point toNps in
upper levels raise their state. Here, heuristic towardsNc is calculated and nodes are expanded according to minimal values
of functionf = k +h. All nodes that could not be expanded due to unknown path costare remembered for the final step of
replanning. Those nodes do not have a partial path withNc at levelLD. Therefore, optimal path could not be yet completed.
When all sufficient bridge nodes have updated their costs, searching is shifted again at the deepest level of the hierarchy.
Fig. 15 illustrates a configuration of nodes at levelLD−1 that corresponds to the configuration of nodes in Fig. 14, theright
subfigure. All costs to the goal node that have been changed (functiong) due to the replanning process are noted. Remaining
step is linkingNc with this solution.

Fig. 15. Replanning of bridge nodes at levelLD−1.

3) Linking process at levelLD: Every bridge node, which does not have partial path withNc in the current submap is
examined. Partial paths should be calculated to ensure optimality of the total path. If more than one path cost should be
calculated, D* algorithm is used in the most effective way. Instead of calculating separately each path cost, all path costs
are determined with one initial search execution by D* algorithm. Robot current positionNc is the partial goalNpg for
exploring the whole current submap by D* algorithm. Nodes are expanded according to minimal values of functionf = g,
until all sufficient bridge nodes are reached, or all possible nodes in the current submap are exhausted. From every free node
in the searched area optimal path and path cost toNpg are determined. If only one path cost must be calculated, instead of
D*, FD* should be used in order to minimize number of searchednodes. Fig. 16 shows the remaining partial path calculated
from Npg to BNj. This remaining partial path is linked with initially calculated partial paths between nodesBNj , BNl

Fig. 16. Linking process at levelLD .

andNg (the goal node).

V. TEST RESULTS

The proposed path planning algorithm has been implemented in Player/Stage(a free software tool for robot and sensor
applications,www.playerstage.sourceforge.net) and tested on Pioneer 3DX mobile robot (manufactured by Mobile
Robots Inc.) at our Department. We compare FHD* algorithm with D*, FD* and HD* algorithms under the same circum-
stances. A 2D occupancy grid map of the Department is built and organized into hierarchical levels. The deepest level
LD contains nodes that are matched to the occupancy grid map which describes details of the mobile robot environment.
Mobile robot is equipped with laser range finder that is used to detect dynamic obstacles and to update occupancy grid map
information.

In LD−1 level there are nodes that represent individual rooms and halls. Fig. 17 shows grouping of nodes from levelLD

into rooms. Each room is presented by a different color. Bridge nodes are noted with black⋄-marks. For clarity, only first
four rooms and bridge nodes are named. InLD−2 level there are nodes that represent floors. Algorithms are tested in one
floor of a building and, therefore,LD−2 level contains only one node. The algorithm described in (Seder and Petrović, 2007)
is used for path following.

In Fig. 18 the set of precalculated paths for the optimal pathgeneration between the start node (inRoom1) and the goal
node (inRoom4) is shown. This set is used by both hierarchical algorithms,HD* and FHD*. So, advantage of placing the
bridge nodes at optimal places is not pointed out and is considered that HD* is working with the same bridge nodes as
FHD*. Therefore, initial searching is the same for both algorithms.

Fig. 17. Submap nodes in levelLD−1 representing rooms and bridge nodes between rooms.

Fig. 18. The set of precalculated paths between bridge nodes.

The experiments are organized in a way that once robot detects an unknown obstacle in the initial path, path must be
replanned at the higher level of the hierarchy. In Fig. 19 initial and replanned paths are compared for FHD* and FD*
algorithms. All paths are optimal, but geometrically different because of already mentioned characteristic of using heuristics

Fig. 19. The comparison of the initial and replanned paths computed by FHD* and FD*.

towards different starts. When robot traverses to positionnoted as “replanning position” in Fig. 19 it detects by laserrange
finder that the door is closed. Traversed trajectory is notedwith dashed line. The path comparison for HD* and D* is not
necessary since they also produce optimal and similar paths.

Next figures show searched area for FD*, D*, HD* and FHD* algorithms. They are purposely ordered according to the
number of expanded states. In Fig. 20 searched area by FD* algorithm is shown. Inner area is searched initially and outher

Fig. 20. The searched area by FD* algorithm.

when new obstacle appears. Since FD* uses heuristics, minimal area is searched initially. Therefore, replanning process
continues where initial planning stops and further extendsthe area until the new path is calculated. In Fig. 21 searched
area by D* algorithm is shown. Since D* does not use heuristics, the area that spreads radially around the goal is searched

Fig. 21. The searched area by D* algorithm.

initially. Therefore, replanning area is a little bit smaller than in the case of FD* algorithm, since the path from everynode
in the area is computed initially. In Fig. 22 searched area byHD* algorithm is shown. The area searched initially is based

Fig. 22. The searched area by HD* algorithm.

on the distance of the start/goal node from all the bridge nodes in its submap that are linked to bridge nodes of the goal/start
submap. There is only one path computed from the start node tothe bridge node in the start submap and corresponding
searched area is small. There are two paths computed from thegoal to the two bridge nodes in the goal submap that lead to
the start submap. In the replanning process, besides a couple of bridge nodes updated at the higher level of the hierarchy,
only one whole room is searched which saves computational time significantly. In Fig. 23 searched area by FHD* algorithm
is shown. Initially searched area is the same as in HD*, but, the replanning search is further decreased. Results of the

Fig. 23. The searched area by FHD* algorithm.

algorithm comparison from the computational point of view are presented in Tab. I for initial calculations and in Tab. II
for replanning calculations. Since the path cost is tightlyassociated with the path length, it is equal for each algorithm.

TABLE I

COMPARISON OFPATH PLANNING ALGORITHMS IN INITIAL PROCESS

Alg. path num. of num. planning
length explored of time
[cells] nodes iterations [ms]

D* 187 27360 21063 272 ms

FD* 187 6767 4783 36 ms

HD* 187 3150 2082 25 ms

FHD* 187 3159 2082 25 ms

TABLE II

COMPARISON OFPATH PLANNING ALGORITHMS IN REPLANNING PROCESS

Alg. path num. of num. replanning
length explored of time
[cells] nodes iterations [ms]

D* 188 14518 11395 120 ms

FD* 188 17796 12358 130 ms

HD* 188 5822 5571 70 ms

FHD* 188 3398 2945 41 ms

Number of explored nodes is the key indicator of the computational complexity of the algorithms. Number of iterations is
associated to re-doings of the mainwhile loop of the search algorithm.

VI. CONCLUSION

In this paper the FHD* algorithm is proposed as extension of the HD* algorithm of Cagigas. Several important modifi-
cations were made in order to improve algorithm behavior during on-line path planning (i.e., path replanning). In particular,
the path cost, computational time, and memory usage are significantly reduced. We proposed the strategy for the optimal
placement of bridge nodes a key component when creating the set of precalculated (i.e., partial) paths thus guaranteeing
the optimality of the total path. By using heuristics towards robots’ current position the replanning process is focused
around the optimal path. As a consequence, the new optimal path is found by examining minimal number of nodes. Partial
goals and partial starts are introduced for fast replanningand creation of new links between hierarchical levels. The D*,
FD*, HD* and FHD* algorithms were experimentally tested andcompared under the same conditions. The experiments
confirmed expected advantages of hierarchical planning algorithms (HD* and FHD*). The set of precalculated paths ensures
fast replanning in the case of changing the goal position, given either by the robot user or superimposed task planning and
scheduling algorithm. Furthermore, since replanning by the FHD* algorithm is very fast, one could also expect fast response
in environment populated with moving obstacles.

VII. ACKNOWLEDGMENTS

This research has been supported by the Ministry of Science,Education and Sports of the Republic of Croatia under grant
No. 036 − 0363078− 3018.

REFERENCES

Cagigas, D. 2005. Hierarchical D* algorithm with materialization of costs for robot path planning.Robotics and Autonomous Systems52(2-3), 190–208.
Cagigas, D. and Abascal, J. 2004. Hierarchical Path Search with Partial Materialization of Costs for a Smart Wheelchair. Journal of Intelligent and Robotic

Systems39(4), 409–431.
Ferguson, D. and Stentz, A. 2006. Multi-resolution Field D.Intelligent Autonomous Systems 9: IAS-9.
Ferguson, D. and Stentz, A. 2007. Field D*: An Interpolation-Based Path Planner and Replanner.Robotics Research: Results of the 12 th International

Symposium ISRR(STAR: Springer Tracts in Advanced RoboticsSeries Volume 28)28, 239–253.
Fernández-Madrigal, J.-A. and González, J. 1998. Hierarchical graph search for mobile robot path planning.Robotics and Automation, 1998. Proceedings.

1998 IEEE International Conference on1, 656–661.
Fernández-Madrigal, J.-A. and González, J. 2002. Multihierarchical graph search.IEEE Transactions on Pattern Analysis and Machine Intelligence

24(1), 103–113.
Fox, D., Burgard, W. and Thrun, S. 1997. The dynamic window approach to collision avoidance.Robotics & Automation Magazine, IEEE4(1), 23–33.
Galindo, C., Fernández-Madrigal, J.-A. and González, J.2004. Improving efficiency in mobile robot task planning through world abstraction.Robotics,

IEEE Transactions on [see also Robotics and Automation, IEEE Transactions on]20(4), 677–690.
Giunchiglia, F. 1999. Using Abstrips Abstractions–Where do We Stand?.Artificial Intelligence Review13(3), 201–213.
Huang, Y., Jing, N. and Rundensteiner, E. 1997. A Hierarchical Path View Model for Path Finding in Intelligent Transportation Systems.GeoInformatica

1(2), 125–159.
Khatib, O. 1986. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots.The International Journal of Robotics Research5(1), 90–98.
Korf, R. 1987. Planning as search: a quantitative approach.Artificial Intelligence33(1), 65–68.
Latombe, J. 1991.Robot Motion Planning. Kluwer Academic Publishers. Dodrecht, Netherlands.
Nilsson, N. 1971.Problem-Solving Methods in Artificial Intelligence. McGraw-Hill Pub. Co.
Samet, H. 1982. Neighbor Finding Techniques for Images Represented by Quadtrees..Computer Graphics and Image Processing18, 37–57.
Seder, M., Jurić-Kavelj, S. and Petrović, I. 2008. Automatic Creation of Hierarchical Maps for Indoor Environments.Proceedings of the Fifth International

Conference on Computational Intelligence, Robotics and Autonomous Systems (CIRAS 2008)pp. 19–24.
Seder, M., Maček, K. and Petrović, I. 2005. An integrated approach to real-time mobile robot control in partially known indoor environments.Industrial

Electronics Society, 2005. IECON 2005. 32nd Annual Conference of IEEEpp. 1785–1790.
Seder, M. and Petrović, I. 2007. Dynamic window based approach to mobile robot motion control in the presence of moving obstacles.Robotics and

Automation, 2007 IEEE International Conference onpp. 1986–1991.
Stentz, A. 1994. Optimal and efficient path planning for partially-known environments.Robotics and Automation, 1994. Proceedings., 1994 IEEE

International Conference onpp. 3310–3317.
Stentz, A. 1995. The focussed D* algorithm for real-time replanning. Proceedings of the International Joint Conference on Artificial Intelligence8.

