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Abstract

Inspired by the hierarchical D* (HD*) algorithm of D. CaggdCagigas, 2005), in this paper we introduce a novel

hierarchical path planning algorithm called focused hghizal D* (FHD*). Unlike the original HD* algorithm, the FBI*
algorithm guarantees the optimality of the global path, iamdquires considerably less time for the path replanniperations.
This is achieved with several modifications: (i) optimalgament of the so-called bridge nodes needed for hierarasation,
(ii) focusing the search around the optimal path, which ceduthe search area without loss of optimality, and (iiijaduction
of partial starts and partial goals that further reduce aaatjpnal time of replanning operations. The FHD* algarmithvas
tested in a multiroom indoor environment and compared tootiginal HD* algorithm, the nonhierarchical D* algorithrand
focused D* algorithm under the same conditions. The FHDbatgm significantly outperforms other algorithms with pest
to the computational time. Furthermore, it can be easilgr¢d to the problem of path planning between different $laor
buildings.

|. INTRODUCTION

An autonomous mobile robot is expected to provide flexibleises in dynamic environments populated by other moving
objects or/and animals and human beings. The major taskttsladbuld be capable to perform autonomously is finding and
moving to the goal position given by the user or by the supgoised task planning and scheduling controller. The robot
motion control system is a two-level system with path plagniontroller at higher level and path following controlkgr
lower level. The task of the path planning algorithm is to pome the optimal path to the given goal and to replan the
path in case the previously planned path is blocked by olestathe path following algorithm directly controls the oab
motion with the aim to follow the planned path to the goal dhgyrobots kinematic and dynamic constraints. The path
(re)planning in dynamic environments is in focus of this grapvhere particular attention is paid to real-time issuethe
planning process.

The majority of path planning algorithms produce a graph adgible paths to the goal (Latombe, 1991) and then an
optimal path is found by a classical graph search algorithoh &is A* algorithm (Nilsson, 1971), D* algorithm (Stent®94)
or focused D* (FD*) algorithm (Stentz, 1995). Two-dimensib (2D) occupancy grid maps are usually used to represent
environments, where the grid is a rectangular array witrekgpacing and the connectivity of the grid cells is congdeo
be eight-neighbor. Grid cells cover the area densely anld gad cell contains the information about the traversab#ind
possibly uncertainty. As long as the spacing of the grid ificently small, all the information needed for path plamgi
has been preserved.

Classical graph search algorithms have two significanttditioins. Firstly, resulting path is geometric curve withagh
edges as a multiple of 45 which is hard to follow due to kineocatd dynamic constraints of the mobile robot. This problem
has been alleviated in various manners. For example, thé Bifealgorithm extends standard D* algorithm by using linea
interpolation to derive the path cost of points not samptethe grid (Ferguson and Stentz, 2007). This algorithm effitty
produces very low-cost paths with a range of continuousingagdbut in large environments is computationally ineéfidi In
our previous work (Seder and Petrovi¢, 2007) the smoojbdiary is produced by integration of FD* algorithm and Dymia
Window local obstacle avoidance algorithm (Fox, Burgard &hrun, 1997) considering explicitly mobile robot kinemoat
and dynamics and also ensuring collision-free motion ammoging obstacles. Secondly, with a uniform resolution grid
these methods can be very memory and time intensive whemtire environment is represented at the highest resolution
of the grid map. There are a number of approaches trying teedbis limitation. For example, quadtrees are used rather
than uniform resolution grids in (Samet, 1982), but comguiath can be suboptimal. Multi-resolution Field D* (Fergas
and Stentz, 2006) produces direct paths through a non+amifesolution grid with lower computational time and memory

In large complex indoor environments, such as multi-roororp multi-floor buildings or group of buildings, the world
model can become too large making path planning intractableery inefficient. The plain graph information must be
arranged to reduce complexity, gain efficiency and claAtguitable choice is hierarchical decomposition of the magell
on hierarchical graphs (H-Graphs) (Fernandez-Madrigdl @onzéalez, 1998), (Fernandez-Madrigal and Gonz&le@p).
Hierarchies of abstraction can reduce exponential contglproblems to linear ones (Korf, 1987). The interestingaaches
to finding the problem of finding good abstraction hierarsHiduang, Jing and Rundensteiner, 1997), (Giunchiglia9),99
(Galindo, Fernandez-Madrigal and Gonzalez, 2004).

Hierarchical path planning is based on a refinement prodessigh the hierarchy of abstractions and a reconstruction
process that links partial paths obtained after refinemaniCagigas and Abascal, 2004) a set of optimal partial patks
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previously stored in some nodes of the H-graph in order tedpg the refinement process. Even more strict demand on
the computational time is required for path replanning inatyic environments. The problem of many real-time algarih

is time or path cost nonoptimality. In (Cagigas, 2005) D*althm, which is widely used in dynamic environments,
is converted into hierarchical D* (HD*) algorithm that uspeecalculated path (materialization of costs). HD* algorn
improves computational time performance of the D* algamntim large search spaces, including also three dimensional
spaces, and therefore allows to obtain paths in a faster amd accurate way than traditional hierarchical path plagni
Although HD* algorithm uses the set of precalculated phdiatimal paths between key points, it is not ensured that the
global path created as a union of these optimal partial patlasso optimal. Also, HD* algorithm uses heuristics towsard
the goal. However, heuristics towards the start would spgethe replanning process, (Stentz, 1995).

In this paper a new method is proposed that ensures path ajyirand improves dynamic characteristics of the HD*
algorithm. Path optimality is ensured by optimal placenrthe key points between which the partial paths are caledla
Replanning process is accelerated by use of heuristicsrdswtae introduced partial starts. Also, the partial goaks a
introduced from which the searching will continue in thelagming process. This procedure further shortens compuott
time.

The rest of the paper is organized as follows. In Section lbacept of the H-Graph is briefly described. In Section Il
classical search algorithms (A*, D*, FD*) and hierarchisahrch algorithm (HD*) are restated. Section IV describbeppsed
focused hierarchical D* algorithm (FHD*), which is an impeiment of the HD* algorithm. In Section V experimental résul
obtained with FHD* are analyzed and compared to the resbitgimed with HD*, D* and FD* algorithms under the same
circumstances. Finally, in Section VI some conclusionspaiated out.

Il. HIERARCHICAL MAP MODEL

A hierarchical path planner is supported by a hierarchy sfralstions representing different views of a robot envinent,
i.e. 3D view, not physical but abstract. Thus, a graph-bdsedrchical environment representation is needed.

A. H-Graph Definitions

The H-Graph is a sequence of hierarchical levkels- Ly, L1, ..., Lp, where D is the depth of the hierarchy,, is the
“root level” which represents the most abstract descniptiban environmentL , represents the most detailed description
of an environment. Each levdl;, (0 < i < D) contains also a grapt¥; = (N, 4;,C;, W;,T;), where N; is a set of
nodes,A; is a set of arcs(; is a set of Cartesian coordinates 5, I; is a set of weights ford; andT; is a set of
precalculated paths associatedNp. The union of graph7y, G, Ga, ..., Gp is a graphG = (N, A,C, W, T), where
N = NoUN;U...UNp, A =AgUAU...UAp, C =CoUCLU..UCp, W =WoUW U..UWp, T =Ty UT 1 U...UTp.

An arca(ny,ni,wy) € A is defined by three elements;, nx, wy, wheren;,nxg € N, ny # ng andwy € W. A
Cartesian coordinate; € C' is defined by(x,y), wherex,y € N. A weightw; € W is real numbef(w; € R).

B. Categories of nodes and associated functions

Nodes are classified into four classesd, cross, submap andbridge nodes. Submap nodes represent a subset of nodes
in a deeper abstraction level of the hierarchy. The submale set contained itV is calledSN (SN C N). The following
functions are associated to submap nodes:

e Map— ny.map = ng, Whereny € Lj, nx € Ly, j=k+1(0<j<D), (0<k<D)andn; C ng in L. Map
function shows in which node is; included in an upper level of the hierarchy. It means that containsn; in its
submap.

o depth— n;.depth = x, wheren; is a node fromL,. level. Function returns the level of the hierarchy which tedms
nj.

End nodes are starting or goal nodes of a robot path planhingeans that they are included iy level of the hierarchy
representing physical position of a robot in the environtn€ross nodes are subtargets which represent turnoversssirtgs
of the paths. Bridge nodes are nodes that connect submap aoeatsubmap and they are includeddiV subset. The
bridge node set included iV is called BN (BN C N). The following functions are associated to bridge nodes:

o getbridgenodes— nj.get_bridge_nodes = BN; C BN, wheren; € N, ny.depth < D and BN satisfiesvVn, €
BNy, n..map = ny. If ny is a submap node, then the function returns the set of thgdmaddes which are included
in ny and are found in the next deeper level of the hierarchy.

Bridge nodes are divided into two classésrizontal bridge nodes andwvertical bridge nodes. Horizontal bridge nodes
follow the definition given earlier. Vertical bridge node® almost equal to horizontal bridge nodes but conceptilady
connect two submaps that represent two floors in a buildirgtidal bridge nodes are, therefore, connected to a pHysica
infrastructure of a building. Usually elevator entranceswsed as positions of vertical bridge nodes. An exampleanfating

a building as an H-Graph of floor levels with horizontal andtieal bridge node connections is shown in Fig. 1. Each floor
level is represented by a submap node with noted other nodagdeeper abstraction level of the hierarchy and a vertical
bridge node that connects floor levels and serves for patimplg between them.
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Fig. 1. Example of hierarchical H-Graph model of a building.
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C. Paths and associated functions

Arcs (A) are non-directed which allows navigation in botlnedtions between two nodes. Cartesian coordinatgsate
attributes associated to each node. They are used in thésthedunction of the path planning algorithm. Weightd/§
indicate the cost of traversing arcs and are used by the gostién of the path planning algorithm.

A path is defined as a succession of nodes. The whole set of patitained in an H-Graph is callde. For example,
a pathPr € P of length L is defined byP; = (ng,n1,...,nr), whereng,ni,...,ny € N and 3 ag(no, n1,w,1)),
ai(ni,n2, wa,2)),.--, ar—1(nL—1,nr, w—1,)) € A. A path P; has three attributes:

e COSt— Pr.cost = x, wherez € R, assigns or gets path cost 9.

o length— P;.length = L+ 1, whereL € N, P; € P and P; = (ng,n1,...,nz), returns the path length a?;.

o index — Pr.index(J) = ny, wheren; € Py, returns the node of a path in position

Each submap node; € N; ¢ N(0 < i < D) has its own precalculated path $8PS,; € T; C T(0 < i < D). The
following functions are associated to a submap nogde

o prepath— nr.pre_path(nx,ny) = Pz, wherenx,ny € N, P; = (nx,nx+1,...,ny), Pz € PPS,; C P. If the

requested path does not exist, the function returns NULL.
Precalculated paths are length optimal, calculated oé-lhetween key points. Precalculated paths are groupedhrdae
classes:

1) Paths which connect two bridge nodes within the submag ned

2) Paths which connect the bridge nodesmf (n;.get_bridge_nodes) with the bridge nodes of its parent submap
((nr.map).get_bridge_nodes).

3) Path which connects the closely related submap noddedcalrother” submaps contained iry. Two submap nodes
nx,ny € N are “brother” submaps containediin if nx.map = ny.map = ny, i.e. if they have the same “parent”
submap in an upper level of the hierarchy.

With precalculated paths, recalculating several subpatlashierarchical search process is avoided. Thus, the stdrage
space for the paths is required, but computational time ishmower because refinement of nodes in deeper levels of the
hierarchy is avoided. Moreover, the H-Graph map model iy Wexible and easily adapted. If the building map needs
expanding, then the inner modularity of the H-Graphs sotliesproblem by adding precalculated partial paths between t
new nodes and the old bridge nodes. In addition, the preleddclipaths can be stored in a path set which can be added to
or removed from the H-Graph.

D. An example of the hierarchical map

Following an example in (Cagigas and Abascal, 2004), one fiba building is observed. The H-Graph has four abstract
levels. At the most abstract level of the hierarcliy), each floor is observed as a submap node, named Floor in Fig. 3
Level Ly contains a graplizy composed of only floor nodes.

Level L, is composed of the floor sections and contains a g@phwhich connects the nodes contained in the submap
node Floor, Fig. 3. These nodes are namétbrth, South Eastand West

Each of these four nodes in the deeper levglcontains a graplirs; (V @ € North, South, East, West), which connects
the nodes contained in the corresponding submap. Flooiosdtas its share of the belonging rooms. That introduces an
extra information about the position of a room. Figs. 4 andhéwsthe levell, and the corresponding gragfyor¢n-
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Each room in the deepest leve contains a graplds; (V i € N1, N2, N3) which connects the nodes contained in the
corresponding submap. Further division is not necessagg & and 7 show the deepest leve] and the corresponding
graphGsy1. These nodes contain all the information needed for the plthning algorithm (real position, traversability,

etc.) and allow positioning of a mobile robot at every auagalocation within a room (i.e. end nodes). These nodes are
on-line updated as the environment changes.
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1. PATH PLANNING
A. Classical search algorithms

Graph based search algorithms are the most commonly usedtlaigs for path planning of mobile robots. Among them
the most popular one is A* algorithm (Nilsson, 1971), whiaid8 complete and optimal path in static environments. It is
based on path cost functiogsand h. Functiong represents the total cost from the start node of the seartetcurrent
node. It is calculated as followg:= > w;, i = 1, ...,dx, Wheredy is the depth of the currently reached node in the search
tree andw; is the cost of traversing an arc when node ni is expanded wstiméighbor node. Functioh is a heuristic
function, which estimates, but never overestimates, tleajpbst path cost for achieving the goal node from the curneaé
in the (x, ) grid map search space. Such a heuristic function is caliidissible and optimistic. The total cost function
f = g+ h determines the order of expanding the nodes in the state s@éuen following any path from the start node the
value of the f-function never decreases, which is true if heuristic eitilmonotonicity.

The path cost is based on some metric such as distance, tiraggyeexpended, risk, etc. In our implementation, the
path cost is based on distance travelled. The most often luseudstic function is the Euclidean distance from the auirre
node to the goal node. However, the Euclidean distance iutationally inefficient since calculation of the squaretro
function for each node expansion demands floating poirfiragtic. In order to alleviate this problem a heuristic thegs
integer arithmetic is proposed. This is possible in occaparid maps because they enable transition costs to beildedcr
as integer multiplies. For example, if each cell in a gridegarded as a node in the graph, length of the edgan be
used for straight transition (e.g.= 10cm) and length of the diagondlfor diagonal transition (e.gl = 14cm). We used
the following heuristic:

a=max( |zg —zn|,|yc —yn | ).
b=min( |z¢ —on|,|yc —yn | ),
h(N) =db+ e(a — b), (1)

where (zy,yn) are the coordinates of the current nodeand (x¢,ys) are the coordinates of the goal node This
heuristic exhibits monotonicity because it fulfills theatrgular inequality property.

A* search fans out from the start node, expanding neighbalesawithin the contours of increasingvalue until the
goal node is reached. During the expansion, backpointeisetparent nodes are set. The A* uses backpointers to refrese
paths to the start.



In a dynamic environment the global path must be compleggiyanned each time the environment changes or a mobile
robot follows the path imperfectly. The A* algorithm perfos poorly since it does not use search information from previ
iterations. Minimum path criterion may not be optimal in #ense of minimum time. This problem has been solved by D*
graph search algorithm introduced in (Stentz, 1994), whitdws updating of only those nodes along the path that #gtua
change due to sensor measurements. The D* algorithm isasitoil A* in the case of initial off-line path planning. The
main distinction to the A* algorithm is that the D* algorithsearch fans out not from the start node but from the goal
node. Cost functiory here represents the total path cost from the goal node toutrert node. It is computed from the
goal node since the search starts from the goal. Nodes aemé&g within the contours of increasipgralue until the start
node is reached. During the expansion, backpointers frach eade in the searched area to its parent nodes are set. The
D* uses backpointers to represent paths to the goal. Optiatis to the goal from every node in the expanded area of
the environment are computed simply by following the badkimss. Further on-line execution of the algorithm relies o
sensor information about the robot environment. Any disaney that is discovered from the earlier information aktbet
environment initiates algorithm execution. Nodes whicwvérsal cost has changed are expanded first. Importanidoact
for the replanning process are functigrand so-called key functiok, which is defined as

E(N) = min(k(N), gnew)s 2)

whereg,.., is a new value of the cost function of the expanded nod& due to cost changes in the environment in the
replanning process. Initiallyi is equal tog. D* handles any path cost optimization problem where the pasameters
change during the search process by processing raise amdl &tates. Raise state is classified by relatior g. It is
used to propagate information about path cost increaseger _state is classified by relatidgn= g. It is used to propagate
information about path cost reductions. Order of expandliegnodes is defined by minimal value of the functignvhere

the cost change is propagated through the number of nodaadithe optimal path. New path, if exists, is determined by
redirecting the pointers locally. The replanning procasps when the cost of the best node examined is greater tlean th
cost of the node of robot current position.

Including the heuristic in the remaining cost of the pathhe $tart node leads to the focused D* algorithm (FD*) variant
(Stentz, 1995). Heuristic is chosen similar to (1) but cauates of the start nod&(zs,ys) are used instead of the goal
node G(z¢,yc). The initial planning is similar as with the A* algorithm, bstarts from the goal node. Replanning is
similar as with the D* algorithm except the cost functigris now sum of the heuristic functioh and the key functiork
(f = k + h).- Order of expanding the nodes is defined by minimal valuthefcost function.

B. A.Cagigas hierarchical search algorithm

The key part of Cagigas HD* algorithm is the set of the predaled paths. Paths between bridge nodes are calculated
by A* algorithm (heuristic function is calculated towardsetgoal). A partial path defines connection between two leridg
nodes with a certain cost. If a path between two bridge nodestsethen these bridge nodes are considered as neighbor
nodes in a search process. When calculating the initial, §&#gigas and Abascal, 2004), the start node and the goal nod
are treated as bridge nodes and partial paths are calcliletegen them and their adjacent bridge nodes. There is mchsea
process at the deepest level of the hierarchy and their sfmoreling graphs. Instead, the search algorithm tries totfiad
best path between the submaps where the start and the gaed aoslincluded. These submaps are linked to their parent
submaps in an upper level of the hierarchy through theirgeridodes. Process ends when the set of partial paths that join
the start and the goal node is constructed. It is a typicagbboup process used when working with hierarchical graphs.

When a broken arc is detected in the initial path in the mofaileot vicinity, the path should be replanned. In (Cagigas,
2005) the path is replanned from the start node, which repteghe current robot position, to the goal node. The hiairis
function (1) is calculated towards the goal node and ordeexgfanding the nodes depends on the total cost function
f = g+ h, as in A* algorithm. The cost functiop represents the total cost from the start node to the curredé rof
the search. Planning ends when a node included in the ipiéitd is found. When the first bridge node from the deepest
level is reached, hierarchical widening begins. Becauseydwidge node at the deepest level contains partial pathartls
other bridge nodes from the upper level, planning is shifipdiards in the hierarchy. In upper levels, submap nodes are
expanded according to functigh= g+ h until the goal submap node is reached. Here, funcgjig calculated as a sum of
the materialized costs of the precalculated paths betwadgebnodesg = > P;.cost, i = 1, ...,dn, wheredy is the depth
of the currently reached bridge node in the search tree atpiper level andP;.cost is actually the weight, i.e. the cost
of traversing an arc between start and goal bridge node opdingal pathP;. Thereby, at higher levels only bridge nodes
exists with their arcs and weights. Functibns again calculated according to (1). Since precalculasgtigpmay include
submap nodes too, these nodes must be substituted by @sdquiacalculated path for the final solution (node unrg)lin

In (Cagigas and Abascal, 2004) and (Cagigas, 2005), plateofidridge nodes is not considered, although it is crucial
for the performances of the hierarchical planning. If thieldpe nodes are placed at arbitrary positions in the enviertm
they may be placed apart from the optimal path between therstde and the goal node. In that case, a union of partial
optimal paths between the bridge nodes may not be optimal.



IV. FOCUSED HIERARCHICALD* SEARCH ALGORITHM

With the goal to ensure optimality of the global path and terdase computational complexity of path replanning in
real-time, we propose three important modifications of thg* ldlgorithm: (i) optimal placement of the bridge nodes) (ii
focusing the search around the optimal path, and (iii) ohigion of partial starts and goals. We named our algoritem a
the focused HD* algorithm (FHD%).

A. Optimal placement of the bridge nodes

Lets assume that an indoor environment can be geometridaligled into rooms and halls. I, _; level there are
submap nodes each representing a room with related briddesribat connect it with other rooms. Links between nodes
respect geometrical structure of the environment. Vdrticelge nodes are placed at positions of stairs and eleyater
exactly at physical connections of a floor/building with ftsighboring floors/buildings. They are the local goals ssagy
for taking the next level. If there is a room with more than tar@dge nodes it will certainly contain a cross node, sinceeno
than one path through it exists. Here, cross nodes are notpdrtance for path planning since placement of bridge nodes
keeps path optimalityL , level for thei-th room is associated to respective gragp;, which is a part of the occupancy
grid map and contains geometrical characteristics of thir@mment. Each cell in the grid map corresponds to a node in
G p,. It would be perceived that flexibility of hierarchical mdpat is adapted here to physical structure of the environment
is used. If there are many rooms at levigh_; they can be grouped together in a submap, which represeetsa f the
environment by adding next level,,_». Also, by adding other floors té,, the number of nodes at the level would grow,
while by adding one whole new building to the map one morerabstevel would be added and it would contain only two
nodes representing those two mentioned buildings (CagigdsAbascal, 2004), (Cagigas, 2005).

Bridge nodes that connect submap nodes must be placed irptimeab path that should be followed by a mobile robot
on its way from one room to the other. When a mobile robot fedidhe optimal path, the trajectory safeness is of great
importance. In a narrow passage the safest path would behabegdes through the middle of the passage. Since D* and
FD* algorithms are capable of handling continuous valugsafo costs, a potential field (Khatib, 1986) can be constaict
by assigning the highest cost values to the occupied cetldlanreasing the cost values for unoccupied cells propatlip
to their distance from the obstacles. Obviously, in narrasgages middle cells will have minimal cost values, ancetbes
the optimal path would pass through them. Therefore, it gicll to place the bridge nodes in the middle of the doors
separating the rooms, as shown in Fig. 8.
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Fig. 8. Map of the floor level with division on submap nodes aoditions of bridge nodes.

In our implementation of the potential field integer valuéscosts are used in the form of so-called safety cost mask
(Seder, Macek and Petrovic, 2005). The safety cost masicigded at the deepest levélp, associated to the occupancy
grid map. The grid map is composed of unoccupied cells andped cells. Each cell in the grid map within the safety cost
mask around an occupied cell receives a correspondingysadst value, which depends on its distance from the occupied
cell. The utmost cells of the safety cost mask obtain a colstevior one greater than unoccupied cells out of the safety
cost mask, and safety cost value of inner cells incremgniatirease from utmost cells to the occupied cell. The size of
the cost mask can be determined as in our previous work, (SedkPetrovic, 2007). Therefore, the optimal path would
go through the middle of the narrow passages, i.e. exactirevhridge node is placed.

Fig. 9 represents the detailed description of a part of a R#hkl coordinates of the grid map cells are noted on the
x— andy—axes. The cells containing obstacles are C-space enlargadi@ an execution of the path search algorithm to
account for the robot dimensions. Cost values of the enthajestacle cells are presented with black colour and of cells
free of obstacles with white colour. Shades of grey corredpo incrementally higher cost value closer to the obsgacle
Obstacle cells of the real obstacle placement (without @aiog for the robot dimensions) are marked with x-markse Th
cells in the grid map have assigned unique identifiers useddatial indexing purpose. Cefl;; is uniquely defined with
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grid map coordinatesi, j) given by(Ld ’ 1 L Y 1), wherez, y are real coordinates of the middle point of the cell

in the environment andcgr;, is the ed%e Iengtﬁ olf the cell. Occupancy grid map with tha owssk is considered as

a function of two variables : (i,j) — V, where domain is the Cartesian product of two sets of grid ew@grdinates,
ielI={0,1,2,..,M;} andj € J ={0,1,2,...., M}, where M;, M; are defined by the size of the environment, and
codomainV is a set of cost values assigned to each cell in the grid mapinMi of the functionv are at cells out of the
safety cost mask and maxima are at occupied cells. Localnmirgnd local maxima along one coordinate are significant
for narrow passages detections. The cell at which localmuni is present, but is not also the global minimum, could be
the place of a narrow passage or it could be some hollow in bBstaole. The local maximum of the other coordinate at
the same cell would confirm that it is really a narrow passagses illustrated in Figure 10. Finding of narrow passages is
actually equivalent to finding of saddle points of the fuosti as follows:

vy (1,4) = v(i = 1,§) = 20(i, j) + v(i + 1, ),
v; (i, 7) =v(i,j — 1) = 20(i,§) + (i, j +1), (3)
Vni; € Gp :sign(v; (i,7)) = —sign(v; (z 7)),
wheren;; is a node from the grap&fp associated to celb;;, i € I andj € J, whose coordinates fullfills given expression.
More details can be found in (Seder, Juric-Kavelj and Raétr@2008).
In (Cagigas and Abascal, 2004) it is pointed out that eacimsipbis connected to a bridge node in the next deeper level
of the hierarchy. Since we placed bridge nodes at the doars ehithem is shared by two neighbor rooms. Therefore,
number of bridge nodes is almost halved comparing to thar@ligiD* algorithm, what additionally accelerates exeouti



of the FHD* algorithm.

If there is a path between two submap nodes it has to contaiidgebnode. Optimality in sense of the path cost relies
in the fact that once assembled path certainly containgafigroptimal paths. A classical search algorithm take®aafrthe
optimality of the path between two bridge nodes. In Fig. 1i§ gshown that the optimal path produced by the D* algorithm
between the start node and the goal node, which are not inathe submap at some level of the hierarchy, is exactly the
same as the path composed of precalculated paths produdbe Iy algorithm. Length of the path as a number of cells
between two noded/;, No C N is noted as(y,,n,)- It can be seen that the path from the start node to the goa imod
the upper subfigure, Fig. 11, is of the same length as the sutimeopartial path lengths in the lower subfigure. It should
be also noticed that noddsN; and BN, are counted twice. Since D* algorithm does not use heuristis not optimal in
the computational time and memory usage, so usage of the KEptithm is preferred. The FD* algorithm uses heuristic
in order to minimize computational time for the optimal péitiding. If the free space in the environment is wide enough
to allow different paths with the same cost, path computedhieyFD* algorithm may differ geometrically from the path
computed by the D* algorithm, as shown in Fig. 12. Nevertsgl¢he path computed by the FD* algorithm is optimal by
the cost and geometrical differences are not of any impoeta@omparing the corresponding paths in Fig. 12 and Fig. 11,
it can be observed that lengths of both paths are equal.

y [m]

wrersear

start I(starL,
{ﬁ\ = 34

y [m]

Fig. 11. Optimal path obtained by D* (upper subfigure) ancborof partial paths obtained by D* (lower subfigure).

B. Focusing the search around the optimal path

In (Cagigas, 2005) heuristic towards the goal is used foaesng the best nodes according to the functfos g + h.
The cost that is estimated by the heuristic function can paced by the exact cost from the goal node to the current.node
A mobile robot on its way to the goal continuously changedsition. When a new unknown obstacle blokes the optimal
path, replanning process uses robot current position astaéinenode. Therefore, it will be more useful to calculatarigtics
toward the moving start position, since its cost continlypakanges, whilst the goal is at fixed position. Replannigghe
A* algorithm is slower than by the FD* algorithm. In case o&tiA* algorithm there is no direct path to the goal from all
of the nodes in the searched area, as is the case with the lgbritam. That information in the FD* algorithm is simply
reused for fast replanning. On the contrary, in the A* altion nodes are pointing towards start node and that infoonati
is not useful for replanning. Also, because of the heuristaperty of nonoverestimating the path cost, for the A* ailipon
it follows:

f(start) < f(n) < f(goal), (4)

while for the FD* algorithm the relation is opposite:

f(goal) < f(n) < f(start), (6)
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Fig. 12. Optimal path obtained by FD* (upper subfigure) antbmirof partial paths obtained by FD* (lower subfigure).

wheren is a node in the optimal path between the start node and thiengda andf is a total cost function defined as
f = g+ h for the A* algorithm andf = k + h for the FD* algorithm. Since the nodes are explored ordeclyoading to the
minimal value of the functiorf, the FD* algorithm chooses nodes closer to the goal firsthijesthe A* algorithm chooses
nodes closer to the start firstly. Therefore, replanningheyA* algorithm starts with the start node, while replanniygthe
FD* algorithm starts with the newly occupied node (the oblgtaode). Redirecting the pointers locally around the adiet
node is much faster than exploring nodes from the start node.

Since a set of precalculated paths between bridge nodessacth and unchangeable for a map, it can be calculated
off-line. The FHD* algorithm calculates initial path siraily as the HD* algorithm. The start hode and the goal node are
treated as bridge nodes and partial paths are calculatagéethem and their adjacent bridge nodes by the FD* algurith
In upper levels, bridge nodes are expanded according touhetibn f = ¢g + A until the start node is reached. Here,
functiong is calculated from the goal node to the current bridge node @sm of the materialized costs of the precalculated
paths between bridge node€s, P;.cost, i = 1, ..., dx. Functionh is heuristic towards the start node computed as with the
FD* algorithm. During the expansion, backpointers to theepanodes are set. These backpointers are used as in the FD*
algorithm, to represent paths to the goal node. Optimalsptdtthe goal from every bridge node are computed simply by
following the backpointers.

Also, every expanded node has assigned calculated costsvafufunction g and k (defined as in the FD* algorithm),
which is important for further path replanning process. édingly, additional attributes are added to the p&ih

e g — Pr.g(J) =z, wherex € R, assigns or gets path cagtto P;.indexz(.J) (the node of a path in positiof).

o k— Pr.E(J) =z, wherex € R, assigns or gets path castto P;.index(J).

C. Partial starts and partial goals

Partial starts and partial goals are introduced in the rejtey process of the FHD* algorithm. Their purpose is lowdere
computing time and memory usage, without loss of optimalftga mobile robot detects a new unknown obstacle blocking
the initial path, replanning process is engaged. It is @igithto three steps:

1) Replanning at leveL: A newly occupied node that first occurs in the initial pathldeled by a mobile robot is
noted asN,. Replanning is done only in the submap containikig This submap is called the obstacle submap. In the
case thatVN, is exactly the bridge node, the submap that is next to thegbritbde in the initial path is considered as the
obstacle submap. Node that contaiNs is expanded first. Nodes that point 29, have their cost enlarged (raise states).
This propagation of cost enlargement spreads backwardsetgdrtial start nodeNy,s), which is defined as follows. The
submap that contains robots current positidf)(is called the current submap. N, is the bridge node, the current submap
is considered as the submap nextXp in the initial path. Partial start nod#,, is N, if the current submap and the



obstacle submap are the same submap. Otherwiseis the bridge node that connects these two submaps. A spasal
is N, C BN, where N, is the first free node befor#/, in the initial path. Fig. 13 illustrates the example of thisete
cases of obstacle placement. In the left subfigMreand N, are in the same submdpoom;. N, is thenN.. In the middle

B initial path
. obstacle node
E>l replanned path

Room; BN, Room; BN

Fig. 13. Three situations of placement of obstacle and nuipesition. Path replanning at levély: obstacle in the current submap (left); obstacle in
the neighbor submap (middle); obstacle at the bridge nadbt)r

subfigurelV. is in submapRoom; and N, is in submapRoomy,. Partial startV,,, is thenBN;. In the right subfigureV, is
BN;. N, is one node befor& N;. Order of expanding the nodes is defined by minimal value otfion f = £+ h, where

k is defined as in FD* and is heuristic towardsV,,. When node which will lower the cost of the previously raistates

is expanded, redirecting the pointers will form a new pathuad the obstacle, as illustrated in Fig. 13. Replanninggss

at level L stops when there are no relevant nodes with the cost lessuat #tan the cost oV, in the obstacle submap.

If there is no path in the obstacle submap, i.e. the path isptetely closed with an obstacley,, will have prohibitively
large cost. With an updated cost 6f,,, searching is continued upwards in the hierarchy. An exanoplpossible three
situations, where no path is found in the obstacle submaghawn in Fig. 14. In the left subfigure an obstacle is placed in

E| initial path
. obstacle node

-> forbidden path

Npo =N, -g
9(Nps) = 00
2
Room; BN,

Fig. 14. Three situations of placement of obstacle and nupesition. No path is found at levél : obstacle in the current submap (left); obstacle in
the neighbor submap (middle); obstacle at the bridge nagbt)r

the current submap. There is no path frovps to BN; in the obstacle submafoom;. In the middle subfigure an obstacle
is not placed in the current submap. There is no path figmto N, in the obstacle submafoom. In the right subfigure
N, is BN; and there is no path fronV,, to IV, in the obstacle submaBoom,.

2) Replanning in upper levels of the hierarchypdated nodeV,,; is expanded first. Expanding of nodes is done similarly
as in level Lp, but hierarchically. That means that bottom-up processsesduand all bridge nodes that point 29,5 in
upper levels raise their state. Here, heuristic towa¥dss calculated and nodes are expanded according to mininha¢ya
of function f = k + h. All nodes that could not be expanded due to unknown patharestemembered for the final step of
replanning. Those nodes do not have a partial path Witlat level L. ,. Therefore, optimal path could not be yet completed.
When all sufficient bridge nodes have updated their costeching is shifted again at the deepest level of the hieyarch
Fig. 15 illustrates a configuration of nodes at leXig)_; that corresponds to the configuration of nodes in Fig. 14ritite
subfigure. All costs to the goal node that have been changedt{®éng) due to the replanning process are noted. Remaining
step is linking N, with this solution.
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Fig. 15. Replanning of bridge nodes at leveb .

3) Linking process at level ,: Every bridge node, which does not have partial path within the current submap is
examined. Partial paths should be calculated to ensurenality of the total path. If more than one path cost should be
calculated, D* algorithm is used in the most effective waystéad of calculating separately each path cost, all paits co
are determined with one initial search execution by D* alfpon. Robot current positiodV, is the partial goalV,, for
exploring the whole current submap by D* algorithm. Nodes eéxpanded according to minimal values of functjoe: g,
until all sufficient bridge nodes are reached, or all possitddes in the current submap are exhausted. From everyddee n
in the searched area optimal path and path cog{jpare determined. If only one path cost must be calculatetkadsof
D*, FD* should be used in order to minimize number of searchedes. Fig. 16 shows the remaining partial path calculated
from N,, to BN;. This remaining partial path is linked with initially callewed partial paths between nodBsV;, BN,

. new partial path

7 precalculated path
between bridge
nodes

Room; BN,

Fig. 16. Linking process at level .

and N, (the goal node).
V. TEST RESULTS

The proposed path planning algorithm has been implement&dayer/Stagga free software tool for robot and sensor
applicationsyww. pl ayer st age. sour cef or ge. net ) and tested on Pioneer 3DX mobile robot (manufactured byiob
Robots Inc.) at our Department. We compare FHD* algorithrthvid*, FD* and HD* algorithms under the same circum-
stances. A 2D occupancy grid map of the Department is built @amganized into hierarchical levels. The deepest level
Lp contains nodes that are matched to the occupancy grid maghvdeiscribes details of the mobile robot environment.
Mobile robot is equipped with laser range finder that is ugeddtect dynamic obstacles and to update occupancy grid map
information.

In Lp_4 level there are nodes that represent individual rooms alisl. Irég. 17 shows grouping of nodes from leveh
into rooms. Each room is presented by a different color. g&ridodes are noted with blackmarks. For clarity, only first
four rooms and bridge nodes are namedLlp_ level there are nodes that represent floors. Algorithmsested in one
floor of a building and, thereford,, _, level contains only one node. The algorithm described idéBand Petrovic, 2007)
is used for path following.

In Fig. 18 the set of precalculated paths for the optimal mgtheration between the start node finom;) and the goal
node (in Roomy) is shown. This set is used by both hierarchical algorithiri3* and FHD*. So, advantage of placing the
bridge nodes at optimal places is not pointed out and is densi that HD* is working with the same bridge nodes as
FHD*. Therefore, initial searching is the same for both aitdpons.
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Fig. 17. Submap nodes in levélp _; representing rooms and bridge nodes between rooms.
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Fig. 18. The set of precalculated paths between bridge nodes

The experiments are organized in a way that once robot degeacunknown obstacle in the initial path, path must be
replanned at the higher level of the hierarchy. In Fig. 1%9iahiand replanned paths are compared for FHD* and FD*
algorithms. All paths are optimal, but geometrically diffat because of already mentioned characteristic of ustogistics
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Fig. 19. The comparison of the initial and replanned pathmpded by FHD* and FD*.

towards different starts. When robot traverses to positioted as “replanning position” in Fig. 19 it detects by las®gige
finder that the door is closed. Traversed trajectory is netitd dashed line. The path comparison for HD* and D* is not
necessary since they also produce optimal and similar paths

Next figures show searched area for FD*, D*, HD* and FHD* altfons. They are purposely ordered according to the
number of expanded states. In Fig. 20 searched area by FDritalgn is shown. Inner area is searched initially and outher
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Fig. 20. The searched area by FD* algorithm.

when new obstacle appears. Since FD* uses heuristics, @iranea is searched initially. Therefore, replanning psece
continues where initial planning stops and further extetidgsarea until the new path is calculated. In Fig. 21 searched
area by D* algorithm is shown. Since D* does not use heusstite area that spreads radially around the goal is searched

newly
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Fig. 21. The searched area by D* algorithm.

initially. Therefore, replanning area is a little bit snealthan in the case of FD* algorithm, since the path from evege
in the area is computed initially. In Fig. 22 searched are&lBy algorithm is shown. The area searched initially is based
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Fig. 22. The searched area by HD* algorithm.

on the distance of the start/goal node from all the bridgeesad its submap that are linked to bridge nodes of the gaat/st
submap. There is only one path computed from the start nodeetdoridge node in the start submap and corresponding
searched area is small. There are two paths computed frogotildo the two bridge nodes in the goal submap that lead to
the start submap. In the replanning process, besides aecofiridge nodes updated at the higher level of the hierarchy
only one whole room is searched which saves computatiomal significantly. In Fig. 23 searched area by FHD* algorithm
is shown. Initially searched area is the same as in HD*, e, replanning search is further decreased. Results of the
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Fig. 23. The searched area by FHD* algorithm.

algorithm comparison from the computational point of viesg @resented in Tab. | for initial calculations and in Tab. I
for replanning calculations. Since the path cost is tiglatygociated with the path length, it is equal for each algoarit

TABLE |
COMPARISON OFPATH PLANNING ALGORITHMS IN INITIAL PROCESS

Alg. path num. of num. planning
length | explored of time
[cells] nodes | iterations [ms]
D* 187 27360 21063 272 ms
FD* 187 6767 4783 36 ms
HD* 187 3150 2082 25 ms
FHD* 187 3159 2082 25 ms
TABLE 1l

COMPARISON OFPATH PLANNING ALGORITHMS IN REPLANNING PROCESS

Alg. path num. of num. replanning
length | explored of time
[cells] nodes | iterations [ms]
D* 188 14518 11395 120 ms
FD* 188 17796 12358 130 ms
HD* 188 5822 5571 70 ms
FHD* 188 3398 2945 41 ms

Number of explored nodes is the key indicator of the comjrtat complexity of the algorithms. Number of iterations is
associated to re-doings of the mairile loop of the search algorithm.

VI. CONCLUSION

In this paper the FHD* algorithm is proposed as extensiorhefHiD* algorithm of Cagigas. Several important modifi-
cations were made in order to improve algorithm behaviomduon-line path planning (i.e., path replanning). In partar,
the path cost, computational time, and memory usage ardisanly reduced. We proposed the strategy for the optimal
placement of bridge nodes a key component when creatingethef precalculated (i.e., partial) paths thus guaranteein
the optimality of the total path. By using heuristics towandbots’ current position the replanning process is foduse
around the optimal path. As a consequence, the new optintlalipdound by examining minimal number of nodes. Partial
goals and partial starts are introduced for fast replanaimg creation of new links between hierarchical levels. The D
FD*, HD* and FHD* algorithms were experimentally tested acmimpared under the same conditions. The experiments
confirmed expected advantages of hierarchical planningritgns (HD* and FHD*). The set of precalculated paths easur
fast replanning in the case of changing the goal positiorergeither by the robot user or superimposed task plannidg an
scheduling algorithm. Furthermore, since replanning teyRRID* algorithm is very fast, one could also expect fast oese
in environment populated with moving obstacles.
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