
  

  

Abstract— Vehicle platoon systems are a promising approach 

for new transportation systems because of their innovative 

capabilities. A basic problem in platoon systems is the control of 

the inter-vehicle spacing. In this paper, a new nonlinear 

longitudinal spacing control of vehicles in a platoon is proposed, 

which takes into account both vehicle characteristics and road 

conditions. It ensures the string stability of a string of vehicles, 

traffic flow stability and in comparison with the common 

constant time-gap spacing control policy increases the capacity 

of the traffic flow. 

I. INTRODUCTION 

The idea of longitudinal vehicle control has grown very 
quickly and became very attractive with the increasing 
problems of traffic congestion and safety. Longitudinal 
vehicle control system controls the longitudinal motion of 
the vehicle, such as its longitudinal velocity, acceleration or 
longitudinal distance from the preceding vehicle, i.e. the 
platoon leader, in the same lane, by using throttle and brake 
controllers, all this with a primary goal of reducing the 
efforts of the driver. 

The cruise control (CC) system [1] works in a way that 
the driver brings the vehicle speed to the wanted level and 
then by pressing the right button activates the system that 
maintains the wanted speed of the vehicle by controlling the 
electronic throttle of the engine. In case a driver sees a 
slower vehicle in the front he should react by pressing the 
brake-shoe and the control of the vehicle will be given back 
to him. A more modern version of this system – adaptive 
cruise control (ACC), involves also the controlling of the 
brake system. In case of a slower vehicle in the front, which 
is detected with an on-board distance radar sensor, the 
vehicle automatically slows down and switches from the 
maintaining constant speed mode to the maintaining constant 
distance mode, i.e. to the longitudinal spacing control, with 
respect to the slower preceding vehicle. If the preceding 
vehicle changes the traffic lane, the ACC system accelerates 
the vehicle to the speed that was previously given to it.  
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With the rapid evolution of vehicles and due to the 
emerging problems of traffic congestion in overpopulated 
cities, the program PATH (Partners for Advanced Transit 
and Highways) proposed the concept of controlling vehicle 
platoons where the vehicles travel together with a close 
spacing. It was estimated that the traffic capacity is about 
four times the capacity of a typical highway if all the 
vehicles travel in the closely packed platoons [2]. Traveling 
with a close spacing between preceding and following 
vehicle may be extremely dangerous. One of the major 
mistakes that drivers do in traffic is following the preceding 
vehicle with a very small distance from it. It is estimated that 
15% of car crashes refers to the collision of vehicles in a 
platoon [3]. A bigger distance between vehicles gives more 
time to react when the vehicle in the front suddenly brakes. 
This way a driver gets more space to “escape” from a 
dangerous situation. For these reasons it is necessary that the 
ACC system, depending on the environment conditions 
(weather condition, road characteristics), and vehicle 
characteristics (first of all brakes quality), ensures a safe 
distance to the preceding vehicle. 

Inspired by the concept of platoon [2, 4, 5], our principal 
objective is to design a longitudinal spacing control system 
which can enhance vehicle safety and increase traffic 
capacity. More specifically, the proposed longitudinal 
spacing controller possesses the following properties: (i) it 
guarantees string stability in a platoon of vehicles; (ii) it 
leads to increased traffic capacity and stable traffic flow; (iii) 
it explicitly takes into account the vehicle’s braking 
capability and road conditions; (iv) it could be used for a 
wide range of vehicle’s velocity. 

The rest of the paper is structured as follows. The 
architecture of the longitudinal spacing control system is 
described in chapter two. The definitions of string stability of 
a platoon of vehicles and traffic flow stability are given in 
chapter three. In chapter four, it is analyzed the constant 
time-gap spacing control policy and the proposed spacing 
control policy. The influence of the spacing control policy on 
the traffic flow is analyzed in chapter five. Chapter six is the 
conclusion of this paper. 

II. ARCHITECTURE OF LONGITUDINAL SPACING CONTROL 

SYSTEM 

The longitudinal spacing control system is designed to be 
hierarchical [6], with an upper level controller and a lower 
level controller as shown in Fig. 1. The preceding vehicle is 
independent of following vehicle, travels on its own. It is 
assumed that there is no any communication between the two 
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vehicles. The longitudinal motion of the preceding vehicle 
and following vehicle are measured by the upper-level 
controller in order to compute the desired acceleration 
commands. Since the desired acceleration is not a true 
control input, a lower-level controller is required to 
determine either a throttle (regulates the flow of the air in the 
burning chamber) or brake input in order to track the desired 
acceleration computed by the upper-level controlled. The 
relation between the openness of the throttle and the 
developed torque on the engine axle is a nonlinear function 
and it is usually given in a table or in a diagram. Brake 
algorithm takes the desired acceleration and subtracts it to 
the actual vehicle acceleration and provides a brake torque. 
The information of the longitudinal motion of controlled 
vehicle is fed back to the upper-level controller to establish a 
feedback closed loop system. 

 

Figure 1. Two-level structure for longitudinal spacing control system          

III. STABILITY DEFINITIONS 

A. Individual vehicle stability 

The vehicle following control law is said to provide 
individual vehicle stability if the spacing error of the 
following vehicle converges to zero when the preceding 
vehicle is operating at constant speed. Spacing error in this 
definition refers to the difference between the actual and 
desired spacing from the preceding vehicle. For the i-th 
vehicle (see Fig. 2) the spacing error is defined as 

iiii Sxx +−= −1δ ,                 (1) 

where ix  is location of the i-th vehicle and iS  is desired 

inter-vehicle spacing of the i-th vehicle and it includes the 

preceding vehicle length 1−il . 

The i-th vehicle is said to provide individual vehicle 
stability if the following condition is satisfied: 

00 →⇒→ iix δ&& .                 (2)  

B.  String stability of a string of vehicles 

The string stability of a platoon of vehicles refers to a 
property in which spacing errors are guaranteed not to 
amplify as they propagate towards the tail of the string. This 

property ensures that any spacing error present at the head of 
the platoon does not amplify into a large error at the tail of 
the platoon. Equivalently, this property ensures that the 
variation of preceding vehicle speed will not result in 
amplified fluctuations in the following vehicle speed. The 
spacing error is expected to be non-zero during acceleration 
and deceleration of the preceding vehicle.  

The oscillating behavior of the preceding vehicle might 
become so severe at some point in the string that the vehicles 
reach their accelerating or braking limits. Hence, a string 
unstable platoon may result a “harmonica effect” which may 
result in traffic jams or even collisions. String stability must 
not be confused with “ordinary stability”, i.e. stability of 
solutions of differential equations and of trajectories of 
dynamical systems under small perturbations of initial 
conditions, as they evolve in time. String stability considers 
the propagation of disturbances from vehicle to vehicle, i.e. 
as they evolve in vehicle index.  

 

Figure 2. Vehicle platoon 

Sheikholeslam and Desoer [7] were the first who set up 
the condition for string stability. The more formalized and 
generalized definition of string stability and a sufficient 
condition for string stability was given by Swaroop [8, 9].  

Consider vehicle following system, such as a vehicle 
platoon as shown in Fig. 2. The spacing error for the i-th 
vehicle is defined in (1). A sufficient condition for string 
stability is that [8, 9]: 

∞−∞
≤ 1ii δδ .                      (3) 

Let )(sH  be the transfer function relating the spacing 

errors of consecutive vehicles 
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where )(siδ  is Laplace transform of )(tiδ . Let )(th  be the 

impulse response of )(sH , thus the condition (3) for string 

stability becomes 

1)(
1

≤th .                     (5) 

The condition (5) can be replaced by [9]: 

1)( ≤
∞

sH ,                                      (6) 

 0)( >th .                                                                      (7) 

The condition 1)( ≤
∞

sH  ensures that 
212 −≤ ii δδ  

which means that the energy in the spacing error signal 



  

decreases as the spacing error propagates towards the tail of 

the platoon. The condition 0)( >th ensures that the steady 

state spacing errors of the vehicles in the platoon have the 
same sign (positive/negative spacing error implies that a 
vehicle is closer/further than desired). 

In chapter four, the conditions (6) and (7) will be used to 
evaluate the spacing policy for the vehicle longitudinal 
control. Moreover, it is much easier to design a system to 
ensure (6) and (7) are satisfied than to design a system to 
ensure (5) is satisfied. 

C. Traffic flow stability 

The conception of the traffic flow stability differs from 
the conception of string stability. While string stability does 
not consider entering/leaving a vehicle in/from the platoon, 
the traffic flow stability does. The difference between string 
stability of a platoon of vehicles and traffic flow stability was 
recognized for the first time by Swaroop [10].  

The concept of the traffic flow stability is illustrated in 
Fig. 3. The perturbation of the nominal traffic flow density 
of the main traffic lane is happening at the exit of the 
secondary traffic lane due to the traffic merging from 
secondary into the main traffic lane. An unstable traffic flow 
means that such a density perturbation feels on every point 
upstream from the source without attenuation. At a stable 
traffic flow the perturbation attenuates upstream. 

 

Figure 3. Traffic flow illustration 

It is obvious that the dynamics of the traffic greatly 
depends on the properties of the longitudinal spacing control 
system. Therefore, when designing the longitudinal spacing 
control system it is necessary to examine its influence on the 
traffic dynamics. For the sake of simplicity, we assume a 
one-lane road (overtaking is impossible) with all vehicles 
having equal spacing controllers.  

The fundamental traffic flow diagram is shown in Fig. 4. 
We divide the various traffic states into traffic regimes 
according to the slope of the characteristics. When traffic 
density lies below the critical density, we speak of free flow 
– slope of the characteristics is positive. During this regime 
vehicles are not impeded by other traffic and they travel at 
maximum speed. This speed is dependent, amongst other 
things, on the design speed of a road, the speed restrictions 
in operation at any particular time and the weather. When 
traffic density lies between the capacity density and the 
maximum density we speak of congested flow - slope of the 
characteristics is negative. It is the regime in which tailbacks 
develop.  

The traffic flow is modeled as a continuum. The most 
elementary continuum traffic flow model was the first order 
model developed by Lighthill & Whitham [11], based 
around the assumption that the number of vehicles is 
conserved between any two points if there are no entrances 
(sources) or exits (sinks). Their results are based on the 
theory of kinematic waves.  

In order to analyze the influence of the spacing control 
policy on the traffic flow dynamics, consider the spacing 
policy S  is a function of the vehicle velocity v , 

)(vgS = .                     (8) 

This relation can be translated as the following equation: 
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Analogous to the flow of a fluid, traffic flow Q  at any 

point is defined as 

)(ρρρ zvQ == .                   (10) 

The evolution of traffic density is determined by the 
conservation of mass equation (it states that if, at a specific 
location, the flow coming in from the left is less than the 

flow going out to the right ( 0>∂ Qx ), then density has to 

decrease at that location ( 0<∂ ρt )): 
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Substituting for Q  from (10), we get 
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Let 0ρ  be a base solution for the density. In order to 

study the stability of the base solution, consider small density 

perturbations, pερ  to the base solution ( 0ρερ <<p ). 

Substituting ),(),( 0 txtx pερρρ +=  into (12) and 

neglecting second-order terms in ε , we come to the 

evolution of  a density perturbation of the traffic flow 

0=
∂

∂
+

∂

∂

x
c

t

pp ρρ
,                   (13) 

were the traveling speed of the small density perturbation 
(kinematic wave speed) is: 
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c  is the tangent slope of the fundamental flow diagram 

(see Fig. 4) at 0ρ . The solution of (13) is traveling wave 

)( ctxAp −=ρ . If 0>c , the solution is forward traveling 

wave. If 0<c , the solution is backward traveling wave. In 

the traffic flow dynamics, when 0<c , small density 

perturbations are propagated upstream without any 



  

attenuation and the traffic flow is unstable. In contrast, the 
traffic flow stability can be ensured when 0>c . 

 

Figure 4. Fundamental flow diagram 

IV. LONGITUDINAL SPACING POLICIES 

A. Constant time-gaps spacing policy 

The most common longitudinal spacing policy used by 
researchers is the constant time-gap (CTG) spacing policy 
[4, 6, 9, 12, 14]. In the CTG spacing policy, the desired 
inter-vehicle spacing for the i-th vehicle varies linearly with 
velocity:  

igi vtLS += ,                    (15) 

where L  is a constant that includes the vehicle length 1−il  of 

the preceding vehicle (see Fig. 2), gt  is the time-gap 

between preceding and following vehicle and iv  is the 

velocity of the i-th vehicle. 

The spacing error for the i-th vehicle under CTG spacing 
policy is given by: 

igiigiii vtLvtLxx ++=++−= − εδ 1 .           (16) 

The control law developed in [12] 

g

ii
desi

t
v

λδε +
−=
&

& _ ,                  (17) 

ensures that the spacing error (16) converges to zero. The 

dynamic of iδ  is set as ii λδδ −=& , where λ  is a positive 

control gain.   

In the presence of the lower controller and actuator 
dynamics (see Fig. 1), the desired acceleration of i-th vehicle 

desia _  is not obtained instantaneously but instead satisfies 

the dynamics approximated by equation [6]: 

desiii aaa _=+&τ ,                   (18) 

where ia  is the actual acceleration of i-th vehicle and τ  is  

time lag describing vehicle dynamics. 

Substituting desia _  from (17) into (18), we get 

g
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t
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+
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&&&&& .                                                  (19) 

Differentiating iδ  twice from (16) and substituting ix&&&  

from (19), we get 

)(
1

iiii λδδ
τ

δε ++= &&&&& .                                               (20) 

Consider (16), the difference between errors of 
successive vehicles can be written as 

igiiii t εεεδδ &+−=− −− 11 .                                        (21) 

Using (20) to substitute in (21), a dynamic relation 

between iδ  and 1−iδ  can be obtained. Transfer function 

relating the spacing errors of consecutive vehicles is: 
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By using the above transfer function, the string stability 
of the CTG spacing policy can be analyzed. In [9] it was 

shown that the condition 1)( ≤
∞

sH  is ensured only if: 

τ2≥gt .                      (23) 

The requirement 1)( ≤
∞

sH  can always be satisfied if we 

choose a sufficient big value of gt  based on condition (23). 

Another condition for string stability is 0)( >th . With the 

chosen values of the parameter according to Table 1,  the 
impulse response of the transfer function (22) is always 
positive (see Fig. 5).  However, there is no direct design 

procedure that ensures that the impulse response )(th  is non-

negative. Only some indirect design tips are given in [11]. 
Two necessary conditions that must be satisfied by the 

transfer function )(sH  in order for impulse response to be 

non-negative are: 

1.  the dominant poles of the system should not be a 
complex conjugate pair; 

2. there should not be any zeros of the system that are 
completely to the right of all poles of the closed-loop 
system. 

B. Proposed spacing policy 

The proposed spacing policy (PSP) considers the 
information of the controlled vehicle's state (inter-vehicle 

constant distance L , velocity v , deceleration d  (always 

negative value), time delay of brake system bt  [15]) and 

safety coefficient k ( 9.06.0 ≤≤ k ), which is relevant to road 

conditions. The value of k  should be bigger if the road 

surface is wet or snowy to maintain safety spacing from 
preceding vehicle: 
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The spacing error for the i-th vehicle under PSP is given 
by:  

2

2
i

i

ibii v
d

k
vTL −++= εδ ,              (25) 

where 1−−= iii xxε . In order to ensure that the error iδ  

converges to zero, the dynamics of iδ  is set as ii λδδ −=& , 

where λ  is a positive control gain. Differentiating (25), the 

desired acceleration can be obtained as: 

T
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TABLE I.  PARAMETERS USED IN SIMULATION 

Description Label Value 

vehicle length  l 4.5 (m) 

inter-vehicle constant distance L 7 (m) 

time-gap tg 2 (s) 

control gain λ 0.5 

time lag of lower-level control system τ 0.5 (s) 

max. deceleration (braking capability) d -7 (m/s2) 

safety coefficient k 0.7 

time delay of brake system tb 0.15 (s) 
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Figure 5. Impulse responses of spacing policies  

In order to examine the string stability characteristic, PSP 
system (24) is linearized around the nominal vehicle velocity 

0v , i.e. 01,0,0 vvv ii == +  and the corresponding spacing is 

01,0,0 SSS ii == +  with 
2
000

2
v

d

k
vTLS

i

b −+= . Assume that 

at a certain time instant the velocity of the preceding vehicle 
is perturbed. This perturbation propagates upstream to the 

tail of the platoon. Let ii vvv ∆+= 0 , ii vv && ∆=  and 

ii SSS ∆+= 0 , ii SS && ∆= , then for linearized system the 

transfer function of spacing error is the same as that of the 
velocity variation [14]: 
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Under the assumptions that deviations from nominal 
spacing and vehicle velocity are small, substituting (26) into 
(18) and differentiating obtained equation we get: 
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Using the relations ii vvv ∆+= 0 , ii vv && ∆=  and taking 

Laplace transforms of the above equation, we get transfer 
function of the velocity variation: 
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In order to ensure the string stability, the conditions (6) 
and (7) should be satisfied. The magnitude of the transfer 
function (26) will be no bigger than 1 only if: 
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For the chosen values of the parameter according to Table 1, 

the condition (30) is satisfied if 5≥iv  (m/s). Another 

condition for string stability is that the impulse response of 

the transfer function (29) is 0)( >th . The impulse responses 

of (29) at different velocities are shown in Fig 5. The 

condition 0)( >th  is satisfied when velocity is higher than 

12.5 (m/s). The final string stability condition is 5.12≥iv  

(m/s). 

We assume that inter-vehicle spacing, relative velocity 
between two vehicles, velocity of the controlled vehicle (all 
those measurements can provide on board radar and sensors) 
and braking capability of controlled vehicle (can be obtained 
from the vehicle manufactures or by experiments) are 
available for upper controller. 

V. INFLUENCE OF SPACING POLICIES ON TRAFFIC FLOW 

A.  Traffic flow stability of constant time-gap spacing policy 

For the CTG spacing policy, the steady traffic density is 
given by 

vtL g+
=

1
ρ .                     (31) 

By solving v  in terms of ρ  from (31) and multiplying 

obtained vehicle velocity v  with traffic density ρ  the 

following equation of the traffic flow is obtained: 
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The condition 0/ >∂∂ ρQ  should be satisfied for stable 

traffic flow. In (32) the variable gtLQ // −=∂∂ ρ  always has 

negative value (see Fig. 6), which means the CTG spacing 
policy is always traffic flow unstable.  

B. Traffic flow stability of the proposed spacing policy 

The traffic density at the steady state for PSP is given by 
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Two solutions are obtained solving (33) for v  in terms of 

ρ . Only positive solution is acceptable: 
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Then we obtain the traffic flow 
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PSP holds a stable traffic flow ( 0/ >∂∂ ρQ ) when the 

traffic density ρ  is below a critical density 065.0≈crρ  

(vehicle/m) (see Fig. 6). 

In Fig. 7, the traffic flow Q is plotted in dependency of 

the traffic velocity v for both spacing policies. It can be seen 
that by lowering the traffic velocity, the traffic flow capacity 
grows with the proposed spacing policy (in the stable region 

– above 5.12≥iv (m/s)) and decreases with the CTG spacing 

policy. For example, at the traffic velocity of 22,2 (m/s), i.e. 
80 (km/h), the PSP ensures about 20% higher capacity of the 
traffic flow than the CTG spacing policy.  

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ρ (vehicle/m)

Q
 (
v
e

h
ic

le
/s

)

 

 

CTG

PSP

ρ
cr

=0.065

dQ/dρ<0

dQ/dρ>0

 

Figure 6. ρ−Q  curves of PSP and CTG spacing policy 
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Figure 7. vQ −  curves of PSP and CTG spacing policy 

 

VI. CONCLUSION 

A nonlinear longitudinal spacing control policy is 
proposed that ensures string stability and traffic stability of 
vehicles in a platoon. It explicitly takes into account the 
vehicle’s braking capability and road conditions and could 
be used for a wide range of vehicle’s velocities. Therefore, it 
is suitable both for highway and urban traffics. Comparing to 
the standard constant time-gap spacing policy, the proposed 
spacing policy ensures increased traffic capacity and stable 
traffic flow. 

The safety coefficient is bounded on 9.06.0 ≤≤ k  

because: (i) if 0=k , proposed spacing policy (24) 

degenerates into a standard constant time-gap spacing policy. 
Nevertheless, the time-gap would then be very short and the 
string stability (according to (27)) and the traffic flow 

stability would no longer be satisfied. (ii) if 1=k , desired 

inter-vehicle distance tends to infinity (because of the second 
term in (24)). 
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