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Abstract

This paper deals with the problem of localizing and tracking a moving speaker over the full range around the mobile robot. The
problem is solved by taking advantage of the phase shift between signals received at spatially separated microphones. The pro-
posed algorithm is based on estimating the time difference of arrival by maximizing the weighted cross-correlation function in
order to determine the azimuth angle of the detected speaker. The cross-correlation is enhanced with an adaptive signal-to-noise
estimation algorithm to make the azimuth estimation more robust in noisy surroundings. A post processing technique is proposed
in which each of these microphone-pair determined azimuths are further combined into a mixture of the von Mises distributions,
thus producing a practical probabilistic representation of the microphone array measurement. It is shown that this distribution is
inherently multimodal and that the system at hand is non-linear. Therefore, particle filtering is applied for discrete representation of
the distribution function. Furthermore, two most common microphone array geometries are analysed and exhaustive experiments
were conducted in order to qualitatively and quantitatively test the algorithm and compare the two geometries. Also, a voice activ-
ity detection algorithm based on the before mention signal-to-noise estimator was implemented and incorporated into the existing
speaker localization system. The results show that the algorithm can reliably and accurately localize and track a moving speaker.

Keywords: Speaker localization, Microphone array, von Mises distribution, Particle filtering.

1. Introduction

In biological lifeforms hearing, as one of the traditional five
senses, elegantly supplement other senses as being omnidirec-
tional, not limited by physical obstacles, and absence of light.
Inspired by these unique properties, researchers strive towards
endowing mobile robots with auditory systems to further en-
hance human–robot interaction, not only by means of commu-
nication but also, just as humans do, to make intelligent analysis
of the surrounding environment. By providing speaker location
to other mobile robot systems, like path planning, speech and
speaker recognition, such system would be a step forward in
developing a fully functional human–aware mobile robots.

The auditory system must provide robust and non-ambiguous
estimate of the speaker location, and must be updated fre-
quently in order to be useful in practical tracking applica-
tions. Furthermore, the estimator must be computationally
non-demanding and possess a short processing latency to make
it practical for real-time systems. The afore mentioned re-
quirements and the fact of an auditory system being placed
on a mobile platform, thus changing the acoustical conditions
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on operating basis, make speaker localization and tracking a
formidable problem.

Existing speaker localization strategies can be categorized
in four general groups. The first group of algorithms refers
to beamforming methods in which the array is steered to var-
ious locations of interest and searches for the peak in the output
power [1–3]. The second group includes beamforming meth-
ods based upon analysis of spatiospectral correlation matrix de-
rived from the signals received at the microphones [4]. The
third group relies on computational simulations of the physio-
logically known parts of the hearing system, e.g. binaural cue
processing [5–7]. The fourth group of localization strategies
is based on estimating the Time Difference of Arrival (TDOA)
of the speech signals relative to pairs of spatially separated mi-
crophones and then using that information to infer about the
speaker location. Estimation of the TDOA and speaker localiza-
tion from TDOA are two separate problems. The former is usu-
ally calculated by maximizing the weighted cross-correlation
function [8], while the latter is commonly known as multilater-
ation, i.e. hyperbolic positioning, which is a problem of calcu-
lating the source location by finding the intersection of at least
two hyperbolae [9–12]. In mobile robotics, due to small mi-
crophone array dimensions, generally hyperbolae intersection
is not calculated, only the angle (azimuth and/or elevation) is
estimated [13–16].

Even though the TDOA estimation based methods are out-
performed to a certain degree by several more elaborate meth-
ods [17, 18], they still prove to be extremely effective due to
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their elegance and low computational costs. This paper pro-
poses a new speaker localization method based on TDOA es-
timation using an array of 4 microphones. The proposed al-
gorithm uses particle filtering and von Mises distribution for
probabilistic modelling of the microphone pair measurements,
which solves the front-back ambiguity, increases the robust-
ness by using all the available measurements, and localizes and
tracks speaker over the full range around the mobile robot. The
main contribution of this paper is the proposed measurement
model to be used for a posteriori inference about the speaker
location.

The rest of the paper is organized as follows. Section 2 de-
scribes the implemented azimuth estimation method and the
voice activity detector. Section 3 analyses Y and square micro-
phone array geometries, while Section 4 defines the framework
for the particle filtering algorithm, introduces the von Mises dis-
tribution, the proposed measurement model, and describes in
detail the implemented algorithm. Section 5 presents the con-
ducted experiments. In the end, Section 6 concludes the paper
and presents future works.

2. TDOA Estimation

The main idea behind TDOA-based locators is a two step
one. Firstly, TDOA estimation of the speech signals relative
to pairs of spatially separated microphones is performed. Sec-
ondly, this data is used to infer about speaker location. The
TDOA estimation algorithm for 2 microphones is described
first.

2.1. Principle of TDOA

A windowed frame of L samples is considered. In order to
determine the delay ∆τi j in the signal captured by two differ-
ent microphones ( i and j), it is necessary to define a coherence
measure which will yield an explicit global peak at the correct
delay. Cross-correlation is the most common choice, since we
have at two spatially separated microphones (in an ideal ho-
mogeneous, dispersion-free and lossless scenario) two identical
time-shifted signals. Cross-correlation is defined by the follow-
ing expression:

Ri j(∆τ) =

L−1∑

n=0

xi[n] x j[n − ∆τ], (1)

where xi and x j are the signals received by microphone i and
j, respectively. As stated earlier, Ri j is maximal when correla-
tion lag in samples, ∆τ, is equal to the delay between the two
received signals.

The most appealing property of the cross-correlation is the
ability to perform calculation in the frequency domain, thus
significantly lowering the computational intensity of the algo-
rithm. Since we are dealing with finite signal frames, we can
only estimate the cross-correlation:

R̂i j(∆τ) =

L−1∑

k=0

Xi(k)X∗j (k)e j2π k∆τ
L , (2)

where Xi(k) and X j(k) are the discrete Fourier Transforms
(DFTs) of xi[n] and x j[n], and (.)∗ denotes complex-conjugate.
We are windowing the frames with rectangular window and no
overlap. Therefore, before applying Fourier transform to sig-
nals xi and x j, it is necessary to zero-pad them with at least L
zeros, since we want to calculate linear, and not circular convo-
lution.

A major limitation of the cross-correlation given by (2) is that
the correlation between adjacent samples is high, which has an
effect of wide cross-correlation peaks. Therefore, appropriate
weighting should be used.

2.2. Spectral weighting

The problem of wide peaks in unweighted, i.e. general-
ized, cross-correlation (GCC) can be solved by whitening the
spectrum of signals prior to computing the cross-correlation.
The most common weighting function is the Phase Trans-
form (PHAT) which, as it has been shown in [8], under cer-
tain assumptions yields Maximum Likelihood (ML) estimator.
What PHAT function (ψPHAT = 1/|Xi(k)||X∗j (k)|) does, is that
it whitens the cross-spectrum of signals xi and x j, thus giving
a sharpened peak at the true delay. In the frequency domain,
GCC-PHAT is computed as:

R̂PHAT
i j (∆τ) =

L−1∑

k=0

Xi(k)X∗j (k)

|Xi(k)| |X j(k)|e
j2π k∆τ

L . (3)

The main drawback of the GCC with PHAT weighting is that
it equally weights all frequency bins regardless of the signal-to-
noise ratio (SNR), thus making the system less robust to noise.
To overcome this issue, as proposed in [1], a modified weight-
ing function based on SNR is incorporated into GCC frame-
work.

Firstly, a gain function for such modification is introduced
(this is simply a Wiener gain):

Gn
i (k) =

ξn
i (k)

1 + ξn
i (k)

, (4)

where ξn
i (k) is the a priori SNR at the i th microphone, at

time frame n, for frequency bin k and ξ0
i = ξmin. The a priori

SNR is defined as ξn
i (k) = λn

i,x(k)/λn
i (k), where λn

i,x(k) and λn
i (k)

are the speech and noise variance, respectively. It is calculated
by using the decision-directed estimation approach proposed in
[19]:

ξn
i (k) = αe[Gn−1

i (k)]2γn−1
i (k) + (1 − αe) max{γn

i (k) − 1, 0}, (5)

where αe is the adaptation rate, γn
i = |Xn

i (k)|2/λn
i (k) is the a

posteriori SNR, and λ0
i (k) = |X0

i (k)|2.
In stationary noise environments, the noise variance of each

frequency bin is time invariant, i.e. λn
i (k) = λi(k) for all n.

But if the microphone array is placed on a mobile robot, most
surely due to robot’s changing location, we will have to deal
with non-stationary noise environments. An algorithm used
to estimate λn

i (k) is based on minima controlled recursive av-
eraging (MCRA) developed in [20, 21]. The noise spectrum
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is estimated by averaging past spectral power values, using a
smoothing parameter that is adjusted by the speech presence
probability. Speech absence in a given frame of a frequency
bin is determined by the ratio between the local energy of the
noisy signal and its minimum within a specified time window.
The smaller the ratio in a given spectrum, more probable the
absence of speech is. Further improvement can be made in (4)
by using a different spectral gain function [22].

To make the TDOA estimation more robust to reverberation,
it is possible to modify the noise estimate λn

i (k) to include a
reverberation term λn

i,rev(k):

λn
i (k) 7→ λn

i (k) + λn
i,rev(k), (6)

where λn
i,rev is defined using reverberation model with expo-

nential decay [1]:

λn
i,rev(k) = αrevλ

n−1
i,rev(k) + (1 − αrev)δ|Gn−1

i (k)Xn−1
i (k)|2, (7)

where αrev is the reverberation decay, δ is the level of re-
verberation and λ0

i,rev(k) = 0. Equation (7) can be seen as mod-
elling the precedence effect [23, 24], in order to give less weight
to frequencies where recently a loud sound was present.

Using just the PHAT weighting poor results were obtained
and we concluded that the effect of the PHAT function should
be tuned down. As it was explained and shown in [25], the main
reason for this approach is that speech can exhibit both wide-
band and narrow-band characteristics. For example, if uttering
the word ”shoe”, ”sh” component acts as a wide-band signal
and voiced component ”oe” as a narrow-band signal.

Based on the discussion above, the enhanced GCC-PHAT-β
has the following form:

R̂PHAT-βe
i j (∆τ) =

L−1∑

k=0

Gi(k)Xi(k)G j(k)X∗j (k)
(
|Xi(k)| |X j(k)|

)β e j2π k∆τ
L . (8)

where 0 < β < 1 is the tuning parameter.

2.3. Voice Activity Detector

At this point it would be practical to devise a way of discern-
ing if the processed signal frame contains speech or not. This
method would prevent misguided interpretations of the TDOA
estimation due to speech absence, i.e. estimation from signal
frames consisting of noise only. Implemented Voice Activity
Detector (VAD) is a statistical model-based one, originating
from methods proposed in [19, 20].

Basically, two hypotheses are considered; Hn
0(k) and Hn

1(k),
indicating respectively, speech absence and presence in the fre-
quency bin k of the frame n. Observing DFT Xi(k) of the signal
at microphone i, the DFT coefficients are modelled as complex
Gaussian variables. Accordingly, the conditional probability
density functions (pdfs) of Xi(k) are given by:
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Figure 1: Recorded speech signal with corresponding scaled
Likelihood Ratio

p(Xn
i (k)|Hn

0(k)) =
1

πλn
i (k)

exp
−
|Xn

i (k)|2
λn

i (k)



p(Xn
i (k)|Hn

1(k)) =
1

π(λn
i (k) + λn

i,x(k))
×

× exp
−

|Xn
i (k)|2

λn
i (k) + λn

i,x(k)

 . (9)

Likelihood Ratio (LR) of the frequency bin k is given by:

Λn
i (k) =

p(Xn
i (k)|Hn

1(k))
p(Xn

i (k)|Hn
0(k))

=
1

1 + ξn
i (k)

exp
(
γn

i (k)ξn
i (k)

1 + ξn
i (k)

)
. (10)

Figure 1 shows recorded speech and its scaled LR. It can be
seen that the algorithm is successful in discriminating between
speech and non-speech regions. The rise in LR value at the
beginning of the recording is due to training of the SNR esti-
mator. Finally, a binary-decision procedure is made based on
the geometric mean of LRs:

1
2L

2L−1∑

k=0

log Λn
i (k)

H1

≷
H0

η, (11)

where a signal frame is classified as speech if the geomet-
ric mean of LRs exceed a certain threshold value η. This
method can be further enhanced by calculating mean of op-
timally weighted LRs [26]. Also, instead of using a binary-
decision procedure, VAD output can be a parameter based on
SNR indicating the level of signal corruption, thus effectively
informing a tracking algorithm to what extent measurements
should be taken into account [27].
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Figure 2: DOA angle transformation

2.4. Direction of Arrival Estimation

The TDOA between microphones i and j can be found by
locating the peak in the cross-correlation:

∆τi j = arg max
∆τ

R̂PHAT−βe
i j (∆τ). (12)

Once TDOA estimation is performed, it is possible to com-
pute the azimuth of the sound source through series of geomet-
rical calculations. It is assumed that the distance to the source is
much larger than the array aperture, i.e. we assume the so called
far-field scenario. Thus the expanding acoustical wavefront is
modelled as a planar wavefront. Although this might not al-
ways be the case, being that human-robot interaction is actually
a mixture of far-field and near-field scenarios, this mathemati-
cal simplification is still a reasonable one. Using the cosine law
we can state the following (Fig. 2):

ϕi j = ± arccos
(

c∆τi j

ai j

)
, (13)

where ai j is the distance between the microphones, c is the
speed of sound, and ϕi j is the Direction of Arrival (DOA) angle.

Since we will be using more than two microphones one must
make the following transformation in order to fuse the esti-
mated DOAs. Instead of measuring the angle ϕi j from the base-
line of the microphones, transformation to azimuth θi j mea-
sured from the x axis of the array coordinate system (bearing
line is parallel with the x axis when θi j = 0◦) is performed. The
transformation is done with the following equation (angles ϕ+

24
and θ+

24 in Fig. 2):

θ±i j = αi j ± ϕi j

= atan2
(

y j − yi

x j − xi

)
± arccos

(
c∆τi j

ai j

)
. (14)

At this point one should note the following:

• under the far-field assumption, all the DOA angles mea-
sured anywhere on the baseline of the microphones are

equal, since the bearing line is perpendicular to the ex-
panding planar wavefront (angles θ−12 and θ+

24 in Fig. 2)

• front-back ambiguity is inherent when using only two mi-
crophones (angles ϕ−34 and ϕ+

34 in Fig. 2).

Having M microphones, (14) will yield 2 ·
(

M
2

)
possible az-

imuth values. How to solve the front-back ambiguity and fuse
the measurements is explained in Section 4.

3. Microphone Array Geometry

The authors find that microphone arrangement on a mobile
robot is also an important issue and should be carefully anal-
ysed. If we constrain the microphone placement in 2D, then
two most common configurations present:

• square array - four microphones are placed on the vertices
of a square. The origin of the reference coordinate system
is at the intersection of the diagonals

• Y array - three microphones are places on the vertices of
an equilateral triangle, and the fourth is in the orthocen-
ter which represents the origin of the reference coordinate
system.

The dimensions of the microphone array depend on the type of
the surface it is placed on. In this paper the two microphone
array configurations will be compared as if they were placed on
a circular surface with radius r (see Fig. 3). Hence, both arrays
are defined by their respective square and triangle side length a,
which is equal to a = r

√
2 and a = r

√
3, respectively.

Estimation of TDOA is influenced by the background noise,
channel noise and reverberation, and the goal of (8) is to make
the respective estimation as insensitive as possible to these in-
fluences. Under assumption that the microphone coordinates
are measured accurately, we can see from (14) that the estima-
tion of azimuth θ±i j depends solely on the estimation of TDOA.
Therefore, it is reasonable to analyse the sensitivity of azimuth
estimation to TDOA estimation error. As it will be shown, this
sensitivity depends on the microphone array configuration.

Figure 3: Possible array placement scenarios

4



0 50 100 150 200 250 300 350
0

1

2

3

4

5

s
ij

0 50 100 150 200 250 300 350
0

1

2

3

4

5

azimuth [◦]

s
ij

aij = r

√

3 aij = r

aij = 2r aij = r

√

2

Figure 4: Error sensitivity of azimuth estimation for Y (upper
plot) and square array (bottom plot)

Firstly, we define the error sensitivity of azimuth estimation
to TDOA measurement, si j, as follows [28]:

si j =
∂θi j

∂(∆τi j)
. (15)

By substituting (13) and (14) into (15) and applying simple
trigonometric transformations, we gain the following expres-
sion:

si j =
c

ai j

1
| sin(θi j − αi j)| . (16)

From (16) we can see that there are two means by which
error sensitivity can be decreased. The first is by increasing
the distance between the microphones ai j. This is kept under
constraint of the robot dimensions and is considered to be fixed.
The second is to keep the azimuth θi j as close to 90◦ relative to
αi j as possible. This way we are ensuring that the impinging
source wave will be parallel to the microphones baseline. This
condition could be satisfied if all the microphone pair baselines
have the maximum variety of different orientations.

For the sake of the argument, let us set c = 1. Furthermore,
both configurations will be analysed for equal dimensions (ra-
dius r will be equal for both configurations). The error sensi-
tivity curves si j, as a function of azimuth θi j, for Y and square
array are shown in Fig. 4.

We can see from Fig. 4 that the distance between the mi-
crophones ai j mostly contributes to the offset of the sensitivity
curves, and that the variety of orientations affects the effective-
ness of angle coverage. For Y array, Fig. 4 shows two groups
of sensitivity curves; one for ai j = r and other for ai j = r

√
3.

Former having the largest error sensitivity value of 2.3 approx-
imately, and latter having the largest error sensitivity value of
1.3 approximately. For the square array, Fig. 4 shows also two
groups of sensitivity curves; one for ai j = r

√
2 and the other
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Figure 5: Error sensitivity of azimuth estimation for Y (upper
plot) and square array (bottom plot) with one microphone oc-
cluded

for ai j = 2r. Former having the largest error sensitivity value
of 2 approximately, and latter having the largest error sensitiv-
ity value of 1.4 approximately. From the above discussion we
can see that the Y-array maximises baseline orientation vari-
ety, while the square array maximises total baseline length (this
length is defined as sum of all the distances between the micro-
phones and is in favour by factor 1.2 for square array). This
type of analysis can also be easily made for bigger and more
complex microphone array systems in order to search for the
best possible microphone placements.

A possible scenario is that one of the microphones gets
occluded and its measurement is unavailable or completely
wrong. For Y array we have selected that one of the micro-
phones on the vertices is occluded, since this is the most prob-
able case, and for the square array it makes no difference, since
the situation is only symmetrical for any microphone. Robust-
ness of error sensitivity with respect to microphone occlusion
is shown in Fig. 5 for both Y and square array, from which it
can be seen that the result is far worse for Y array. This is log-
ical, since we removed from the configuration two microphone
pairs with largest baseline lengths. From the above discussion
we can conclude that the square array is more robust to micro-
phone occlusion.

Since we will be utilising all microphone pair measurements
to estimate azimuth, it is practical to compare joint error sensi-
tivity (JES) curves, which we define as:

JES =
∑

{i, j}
si j, ∀ {i, j} microphone pairs. (17)

Figure 6 shows both JES curves for Y and square array. We
can see that there are two different peaks for both configura-
tions. The peaks for Y array come from the fact that it has
two different baseline lengths. The same applies for square ar-
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Figure 6: Joint error sensitivitiy curves for both Y and square
microphone array configurations

ray, which additionally has the largest peak due to the fact that
baselines of two couples of microphone pairs cover the same
angle.

To conclude, we can state the following; although Y ar-
ray configuration places microphones in such a way that no
two microphone-pair baselines are parallel (thus ensuring max-
imum orientation variety), square array has larger total baseline
length, yielding smaller overall error sensitivity and greater ro-
bustness to microphone occlusion.

Furthermore, when considering microphone placement on a
mobile robot from a practical point of view, square array has
one more advantage. If the microphones are placed on the body
of the robot (as opposed to the top of the robot, e.g. the head),
problem occurs for Y array configuration considering the place-
ment of the fourth microphone (the one in the orthocenter).
However, the advantages of Y-array should not be left out when
considering tetrahedra microphone configurations (see [29], for
e.g.). Also if the two configurations are analysed with both hav-
ing the same total baseline length, Y array would prove to have
superior angle resolution [13].

4. Speaker Localization and Tracking

The problem at hand is to analyse and make inference about
a dynamic system. For that, two models are required: one
describing the evolution of the speaker’s state over time (sys-
tem model), and second relating the noisy measurements to
the speaker’s state (measurement model). We assume that both
models are available in probabilistic form. Thus, the approach
to dynamic state estimation consists of constructing the a poste-
riori pdf of the state based on all available information, includ-
ing the set of received measurements, which are further com-
bined due to circular nature of the data, as a mixture of von
Mises distributions.

4.1. Model of the sound source dynamics
The sound source dynamics is modelled by the well behaved

Langevin motion model [30]:
[

ẋk

ẏk

]
= α

[
ẋk−1
ẏk−1

]
+ β

[
υx

υy

]
,

[
xk

yk

]
=

[
xk−1
yk−1

]
+ δ

[
ẋk

ẏk

]
,

(18)

where [xk, yk]T is the location of the speaker, [ẋk, ẏk]T is the
velocity of the speaker at time index k, υx, υy ∼ N(0, συ) is the
stohastic velocity disturbance, α and β are model parameters,
and δ is the time between update steps.

The system state, i.e. the speaker azimuth, is calculated via
the following equation:

θk = atan2
(

yk

xk

)
. (19)

4.2. The von Mises distribution based measurement model
Measurement of the sound source state with M microphones

can be described by the following equation:

zk = hk(θk, nk), (20)

where hk(.) is a non-linear function with noise term nk, and
zk = [θ±i j, . . . , θ

±
M,M−1]k, i , j, {i, j} = { j, i} is the measurement

vector defined as a set of azimuths calculated from (14). Work-
ing with M microphones gives N =

(
M
2

)
microphone pairs and

2N azimuth measurements.
Since zk is a random variable of circular nature, it is appropri-

ate to model it with the von Mises distribution. The von Mises
distribution with its pdf is defined as [31, 32]:

p(θi j|θk, κ) =
1

2πI0(κ)
exp[κ cos(θi j − θk)], (21)

where 0 ≤ θi j < 2π is the measured azimuth, 0 ≤ θk < 2π is
the mean direction, κ > 0 is the concentration parameter and
I0(κ) is the modified Bessel function of the order zero. Bessel
function of the order m can be represented by the following
infinite sum:

Im(x) =

∞∑

k=0

(−1)k (x)2k+|m|

22k+|m|k! (|m| + k!)2 , |m| , 1
2
. (22)

Mean direction θk is analogous to the mean of the normal
Gaussian distribution, while concentration parameter is analo-
gous to the inverse of the variance in the normal Gaussian distri-
bution. Also, circular variance can be calculated and is defined
as:

ϑ2 = 1 − I1(κ)2

I0(κ)2 , (23)

where I1(κ) is the modified Bessel function of order one.
According to (14), a microphone pair { i, j } measures two

possible azimuths θ+
i j and θ−i j. Since we cannot discern from a

single microphone pair which azimuth is correct, we can say,
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Figure 7: A mixture of several von Mises distributions wrapped
on a unit circle (most of them having a mode at 45◦)

from a probabilistic point of view, that both angles are equally
probable. Therefore, we propose to model each microphone
pair as a sum of two von Mises distributions, yielding a bimodal
pdf of the following form:

pi j

(
θ±i j,k |θk, κ

)
= pi j

(
θ+

i j,k |θk, κ
)

+ pi j

(
θ−i j,k |θk, κ

)

= 1
2πI0(κ) exp

[
κ cos

(
θ+

i j,k − θk

)]
+

+ 1
2πI0(κ) exp

[
κ cos

(
θ−i j,k − θk

)] (24)

Having all pairs modelled as a sum of two von Mises dis-
tributions, we propose a linear combination of all those pairs
to represent the microphone array measurement model. Such a
model has the following multimodal pdf:

p(zk |θk, κ) =
1

2πI0(κ)

N∑

{i, j}=1

βi j pi j

(
θ±i j,k |θk, κ

)
, (25)

where
∑
βi j = 1 is the mixture coefficient. These mixture

coefficients are selected so as to minimise the overall error sen-
sitivity. As it has been shown, the error sensitivity is function
of the azimuth. The goal of the coefficients βi j is to give more
weight in (25) to the most reliable pdfs. Therefore, we propose
the following form of the coefficients:

βi j =
0.5 +

∣∣∣sin(θk−1 − αi j)
∣∣∣

1.5
. (26)

It is obvious that the mixture coefficients are function of the
estimated azimuth and that this form can only be applied af-
ter the first iteration of the algorithm. Also, the coefficients
are scaled so as to never cancel out completely a possibly un-
favourable pdf. A careful reader will note that the origin of the
form of (26) comes from the discussion in Section 3, resulting
with (16).

The model (25) represents our belief in the sound source
azimuth. A graphical representation of the analytical (25) is
shown in Fig. 7. Of all the 2N measurements, half of them
will measure the correct azimuth, while their counterparts from
(14) will have different (not equal) values. So, by forming such
a linear opinion pool, pdf (25) will have a strong mode at the
correct azimuth value.

4.3. Particle filtering

From a Bayesian perspective, we need to calculate some de-
gree of belief in the state θk, given the measurements zk. Thus, it
is required to construct the pdf p(θk |zk) which bears multimodal
nature due to TDOA based localization algorithm. Therefore,
particle filtering algorithm is utilised, since it is suitable for
non-linear systems and measurement equations, non-Gaussian
noise, and multimodal distributions. This method represents
the posterior density function p(θk |zk) by a set of random sam-
ples (particles) with associated weights and computes estimates
based on these samples and weights. As the number of samples
becomes very large, this characterisation becomes an equivalent
representation to the usual function description of the posterior
pdf, and the particle filter approaches the optimal Bayesian es-
timate.

Let {θp
k ,w

p
k }Pp=1 denote a random measure that characterises

the posterior pdf p(θk |zk), where {θp
k , p = 1, . . . , P} is a set

of particles with associated weights {wp
k , p = 1, . . . , P}. The

weights are normalised so that
∑

p wp
k = 1. Then, the posterior

density at k can be approximated as [33]:

p(θk |zk) ≈
P∑

p=1

wp
k δ(θk − θp

k ), (27)

where δ(.) is the Dirac delta measure. Thus, we have a dis-
crete weighted approximation to the true posterior, p(θk |zk).

The weights are calculated using the principle of importance
resampling, where the proposal distribution is given by (18).
In accordance to the Sequential Importance Resampling (SIR)
scheme, the weight update equation is given by [33]:

wp
k ∝ wp

k−1 p(zk |θp
k ), (28)

where p(zk |θp
k ) is calculated by (25), thus replacing θk with

particles θp
k .

The next important step in the particle filtering is the resam-
pling. The resampling step involves generating a new set of
particles by resampling (with replacement) P times from an ap-
proximate discrete representation of p(θk |zk). After the resam-
pling all the particles have equal weights, which are thus reset
to wp

k = 1/P. In the SIR scheme, resampling is applied at each
time index. Since we have wp

k−1 = 1/P ∀p, the weights are
simply calculated from:

wp
k ∝ p(zk |θp

k ). (29)

The weights given by the proportionality (29) are, of course,
normalised before the resampling step. It is also possible to per-
form particle filter size adaptation through the KLD-sampling

7



0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

7
x 10

−3

particles θ
p

k [◦]

p
ar

ti
cl

e
w

ei
gh

t
w

p k

 

 
p(zk|θk, κ)
particles

Figure 8: An unwraped discrete representation of the true
p(zk |θk, κ)

procedure proposed in [34]. This would take place before the
resampling step in order to reduce the computational burden.

At each time index k and with M microphones, a set of 2N az-
imuths is calculated with (14), thus forming measurement vec-
tor zk from which an approximation of (25) is constructed by
pointwise evaluation (see Fig. 8) with particle weights wp

k cal-
culated from (29) and (25).

The θk is estimated, simply, as expected value of the system’s
state (19):

θ̂k = E [θk] = atan2
(

E[yk]
E[xk]

)
= atan2

(
E [sin(θk)]
E [cos(θk)]

)

= atan2


∑P

p=1 wp
k sin(θp

k )
∑P

i=p wp
k cos(θp

k )

 , (30)

where E[ .] is the expectation operator.

4.4. Algorithm summary
As it was stated in section 4, the particle filtering algorithm

follows the SIR scheme. The main idea is to spread the particle
set {θp

k ,w
p
k }Pp=1 in all possible directions, take the measurements

zk, resample the particles with the highest probability and esti-
mate the azimuth θ̂k from their respective weights. After a few
steps, most particles will accumulate around the true azimuth
value and track the sound source following the motion model
given by (18). If at the particular time step k no valid measure-
ments are available (outlier or no voice activity is detected), a
Gaussian noise is added to spread the particles to cover a larger
area. If this state lasts longer than a given time period, the algo-
rithm is reset and the particles are again spread in all possible
directions.

Initialization step: At time instant k = 0 a particle set
{θp

0 ,w
p
0 }Pp=1 (velocities ẋ0, ẏ0 set to zero) is generated and dis-

tributed accordingly on a unit circle. Since the sound source

can be located anywhere around the robot, all the particles have
equal weights wp

0 = 1/P ∀p.
Prediciton step: If there is voice activity detected and the

current measurement is valid, all the particles are propagated
according to the motion model given by (18). Otherwise, all
the particles are corrupted with Gaussian noise, N(µc, σ

2
c). If

this state lasts longer than a certain threshold Ic, the algorithm
resets to initialization step.

Weight computation: Upon receiving TDOA measure-
ments, DOAs are calculated from (14) and for each DOA a
bimodal pdf is constructed from (24). To form the proposed
measurement model, all the bimodal pdfs are combined to form
(25). The particle weights are calculated from (29) and (25),
and normalized so that

∑P
p=1 wp

k = 1.
Azimuth estimation: At this point we have the approximate

discrete representation of the posterior density (25). The az-
imuth is estimated from (30).

Resampling: This step is applied at each time index ensur-
ing that the particles are resampled respective to their weights.
After the resampling, all the particles have equal weights:
{θp

k ,w
p
k }Pp=1 → {θp

k , 1/P}Pp=1. We use the Systematic resampling
algorithm (see [33]), but particle size adaptation is not per-
formed, since we have a modest number of particles required
for this algorithm. When the resampling is finished, the algo-
rithm loops back to the prediction step.

The algorithm testing was performed by simulation with a
constructed measurement vector zk similar to one that would
be experienced during experiments. Six measurements were
distributed close to the true value (θ = 45◦), while the other
six were their counterparts. Fig. 9 show first four steps of the
algorithm execution. The figures show particles before and after
the resampling. We can see that the particles converge to the
true azimuth value.

5. Experiments

The microphone array used for experiments is composed of
4 omnidirectional microphones arranged in either Y or square
geometry (depending on the experiment). The circle’s radius
for both array configurations was set to r = 30 cm, yielding
side length of a = 0.52 cm for Y array and a = 0.42 cm for
square array. The microphone array is placed on a Pioneer 3DX
robot as shown in Fig. 14. Audio interface is composed of
low-cost microphones, pre-amplifiers and external USB sound-
card (whole equipment costing cca. d150). All the experiments
were done in real-time, yielding L/Fs = 21.33 ms system re-
sponse time. Real-time multichannel signal processing for the
Matlab implementation was realised with Playrec1 utility, while
for the C/C++ implementation, RtAudio API2 was used. The
parameter values used in all experiments are summed up in Tab.
2.

The first set of experiments was conducted in order to qual-
itatively asses the performance of the algorithm. In these ex-
periments Y array configuration was used and two scenarios

1http://www.playrec.co.uk/
2http://www.music.mcgill.ca/~gary/rtaudio/
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Figure 9: Simulation results

were analyzed. Figure 10 shows the first scenario in which a
white noise source moved around the mobile robot making a
full circle. Figure 11 shows the results from the second sce-
nario, where a white mnoise source made rapid angle changes
under 0.5 s (Ic = 10 in this case). Both experiments were re-
peated with smaller array dimensions (a=30 cm), resulting in
smaller angle resolution, and no significant degradations to the
algorithm were noticed. Performance in adverse noise condi-
tions was also tested in a way that a loud white noise source
was present simultaneously to speaker uttering. The algorithm
was able to localize the speaker as long as it was louder than
the noise source.

The second set of experiments was conducted in order to
quantitatively asses the performance of the algorithm. In or-
der to do so, a ground truth system needed to be established.
The Pioneer 3DX platform on which the microphone array was

placed is also equipped with SICK LMS200 laser range finder
(LRF). Adaptive Sample-Based Joint Probabilistic Data Asso-
ciation Filter (ASJPDAF) for multiple moving objects devel-
oped in [35] was used for leg tracking. The authors find it
to be a good reference system in controlled conditions. Basi-
cally, a human speaker walked around the robot uttering a se-
quence of words, or carried a mobile phone for white noise ex-
periments, while the ASJPDAF algorithm measured range and
azimuth from the LRF scan.

In this set of experiments three parameters were calculated:
detection reliability, root-mean-square error (RMSE) and stan-
dard deviation. To make comparison possible, the chosen pa-
rameters are similar to those in [1]. The detection reliability is
defined as the percent of samples that fall within ±5◦ from the
ground truth azimuth, RMSE is calculated as deviation from
the ground truth azimuth, while standard deviation is simply

9
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Figure 10: Azimuth estimation for a white noise source making
a full circle

Table 1: Results of the second group of experiments

Y-array Square array

Range W. noise Voice W. Noise Voice

Detection [%]

1.50 [m] 97.43 98.93 99.43 97.71
2.25 [m] 97.71 92.86 98.00 96.0
3.00 [m] 94.57 86.86 96.00 91.43

RMSE [◦]

1.50 [m] 1.90 2.20 1.72 2.19
2.25 [m] 1.61 3.07 1.99 2.83
3.00 [m] 2.38 4.58 1.80 3.95

Std. deviation [◦]

1.50 [m] 0.96 1.59 0.94 1.36
2.25 [m] 1.10 2.78 1.04 2.30
3.00 [m] 1.65 3.85 1.14 3.01

the deviation of the measured set from its mean value.
The experiments were performed at three different ranges for

both the Y and square array configurations, and, furthermore,
for each configuration voice and white noise source were used.
The white noise source was a train of 50 element 100 ms long
bursts, and for the voice source speaker uttered: ”Test, one, two,
three”, until reaching the number of 50 words in a row. In both
configurations the source changed angle in 15◦ or 25◦ inter-
vals, depending on the range, thus yielding in total 4150 sounds
played. The results of the experiments are summed up in Tab.
1, from which it can be seen (for both array configurations) that
for close interaction the results are near perfect. High detection
rate and up to 2◦ error and standard deviation rate at distance of
1.5 m are negligible. In general, for both array configurations
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Figure 11: Azimuth estimation for a speaker source making
rapid angle changes

Table 2: Values of parameters used in the implemented speaker
localization algorithm

Signal processing

L = 1024 rectangular window (no overlap)
Fs = 48 kHz 16-bit precision

SNR Estimation

αrev = 0.85 δrev = 0.8
αe = 0.9

Voice activity detection

η = 1

Cross-correlation

β = 0.8 c = 344 m/s

Particle filter

α = 0.1 β = 0.04
δ = L/Fs P = 360
κ = 20 σ2

v = 0.1 m/s
µc = 0 σ2

c = 0.02
Ic = 50

performance slowly degrades as the range increases. With the
range increasing the far-field assumption does get stronger, but
the angular resolution is lower, thus resulting in higher error and
standard deviation. Concerning different array configurations,
it can be seen that square array shows better results in all three
parameters, on average up to 2.3% in detection, 0.4◦ in RMSE,
and 0.4◦ in standard deviation.

The third set of experiments was conducted in order to asses
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Figure 12: Speaker tracking compared to leg tracking (Y array)

the tracking performance of the algorithm. A speaker made a
semicircle at approximately 2 m range around the robot utter-
ing: ”Test, one, two, three”, while at the same time legs were
tracked using LRF. The experiment was made for both array
configurations. Figures 12 and 13 show the azimuth measured
with the leg tracker and with the microphone array arranged in
the Y and square configurations, respectively. It can be seen that
the square array, in this case, shows bigger deviations from the
laser measured azimuth than the Y array does. In Fig. 13 at 6.3
seconds, one of the drawbacks of the algorithm can be seen. It
is possible that at an occasion, erroneous measurements might
outnumber the correct ones. In this case, wrong azimuths will
be estimated for that time, but as can be seen in Fig. 13 the
algorithm will get back on track in a short time period.

6. Conclusions and Future Works

Using a microphone array consisting of 4 omnidirectional
microphones, an audio interface for a mobile robot that success-
fully localizes and tracks a speaker was developed. The concept
is based on a linear combination of probabilistically modelled
Time Difference of Arrival measurements. The measurement
model uses the proposed von Mises distribution for Direction
of Arrival analysis and for derivation of an adequate azimuth
estimation method. In order to handle the inherent multimodal
and non-linear characteristics of the system, a particle filtering
approach was utilised.

All this resulted with a reliable and elegant algorithm that
was tested in real-time with an accurate and precise ground
truth method based on leg-tracking with a Laser Range Finder.
The implemented Voice Activity Detection algorithm, based on
adaptive noise estimation technique, enables the algorithm to
function under adverse noise conditions.

Furthermore, two most common microphone array geome-
tries were meticulously analysed. They were compared theo-
retically based on error sensitivity to Time Difference of Ar-
rival estimation and the robustness to microphone occlusion.
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Figure 13: Speaker tracking compared to leg tracking (square
array)

Moreover, all the algorithm verification experiments were con-
ducted with both microphone array geometries and the results
are summed up in a tabular form. The analysis and experiments
showed square array having several advantages over the Y ar-
ray configuration, but from a practical point of view these two
configurations have similar performances.

In order to develop a functional human-aware mobile robot
system, future works will strive towards the integration of the
proposed algorithm with other systems like leg tracking, robot
vision etc. The implementation of a speaker recognition algo-
rithm and a more sophisticated voice activity detector would
further enhance the audio interface. Also, by utilising a time
difference of arrival estimation method that is capable of track-
ing multiple speakers, further capabilities of the proposed mea-
surement model could be researched.
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