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Abstract. In this paper we present an active SLAM solution with an
active loop closing component which is independent on exploration com-
ponent and at the same time allows high accuracy robot’s pose esti-
mation and complete environment mapping. Inputs to our SLAM algo-
rithm are RGBD image from the Kinect sensor and odometry estimates
obtained from inertial measurement unit and wheel encoders. SLAM is
based on the Exactly Sparse Delayed State Filter for real-time estima-
tion of robot’s trajectory, vision based pose registration and loop closing.
The active component ensures that localization remains accurate over a
long period of time by sending the robot to close loops if a criterion func-
tion satisfies the predefined value. Our criterion function depends on the
number of states predicted without an update between predictions, in-
formation gained from loop closing and the sheer distance between the
loop closing state location and the current robot location. Once a state in
which a loop closure should occur is reached and an update is performed,
the robot returns to its previous goals. Since the active component is in-
dependent on the exploration part, the SLAM solution described in this
paper can easily be merged with any existing exploration algorithm and
the only requirement is that the exploration algorithm is able to stop ex-
ploration at any time and continue the exploration after the loop closing
was accomplished. In this paper, we propose an active SLAM integra-
tion with the 2D laser range finder based exploration algorithm that
ensures the complete coverage of a polygonal environment and therefore
a detailed mapping. The developed Active SLAM solution was verified
through experiments which demonstrated its capability to work in real-
time and to consistently map polygonal environments.

1 Introduction

There are three main tasks that autonomous mobile robot must be able to ac-
complish in order to successfully complete the given tasks. It must be able to
explore the environment, to build its map and to localize itself in that map. The
tasks of localization and mapping must be done simultaneously since the map
landmarks can not be created without knowing their location and localization
can not be performed without a map to localize in. Therefore, these two tasks



are always considered as one problem known as Simultaneous Localization And
Mapping (SLAM). Most solutions to the SLAM problem belong in one of the two
main groups. The first group includes SLAM algorithms who have the motion
model and the measurement model defined in the state space with added white
Gaussian noise (e.g. [1–3]). The second group of SLAM algorithms has models
representation in a form of a set of particles with general non Gaussian distri-
bution (e.g. [4,5]). The distinction in representation also exists dividing them to
feature based and pose based SLAM systems, where the later uses a pose graph
and a set of independent local maps while the former marginalize them out in
order to obtain the robot’s current pose and map.

SLAM is mostly treated as a passive system which means that it does not
send any commands to the robot - it only acquires sensor data and uses that
data to build a map of surrounding environment and to localize the robot in that
map, i.e. it does not decide where the robot must go. Controlling the robot is
crucial in order to autonomously map the complete environment and to ensure
the system observability [6] and mapping accuracy. That is the reason why an
active SLAM with exploration algorithm is required. The exploration algorithm
scans robot’s environment and decides where it must go in order to efficiently
explore the environment. An active SLAM ensures that uncertainty of SLAM
localization and mapping remains within desired boundaries by changing the
robots trajectory. In [7] "localization metric" is introduced which provides the
uniform basis for measuring localization quality. The localization quality over a
trajectory is combined with the navigation cost of the trajectory and information
gained from the environment by following the trajectory in one single criterion.
That criterion is used for determining on which trajectory should the robot
travel on. Numerical method that uses a non-linear Model Predictive Control
(MPC) for estimating the pose and the map error, that will occur by following
one trajectory, is introduced in [8]. In [9] relative entropy is used as a measure for
the information gain. Environment is discretized into grids and optimal trajec-
tories (according to information gain criterion) are planned on the global scale
thus minimizing unnecessary loop closures and noise while ensuring more precise
maps. In [10] information gain is also used as a criterion for choosing the tra-
jectory. The difference is that Rao-Blackwellized particle filter is used for SLAM
and entropy calculation. In [11] global planning is avoided by using attractors in
combination with a local planning strategies. The attractor is placed in the envi-
ronment according to the current robot goal (explore, improve map or improve
localization). The attractor then influences information gain computed by a local
planner which uses MPC. One different approach to minimize localization and
mapping errors is used in [12], where reinforcement learning is used to generate
a robot’s motion in such a way that it minimizes error generation in the map-
ping process. This approach enables the usage of a simple exploration strategy
while maintaining the location and map accuracy. In [13], the Fast SLAM is used
who is independent on the exploration algorithm and planing. When localization
uncertainty reaches the predefined level the exploration task is stopped and pos-
sible previously visited states are considered for loop closing. The state with the



Fig. 1: System integration: Active SLAM with exploration

highest information gain and the easiest reachability is chosen. When the robot
reaches that state it follows its previously traversed path until the uncertainty
drops below a desired level and then the exploration is continued.

The active SLAM solution presented in this paper is similar to [13]. The main
difference is that our SLAM is based on the Exactly Sparse Delayed State Filter
(ESDSF) [14] which makes state choosing for loop closing much easier because of
a more suitable state representation in an information filter opposed to a particle
filter. The particle filter maintains a set of trajectories as particles. Selection of
the most likely movement allowing the robot to follow the previous path requires
the additional processing. The other more important reason to use information
filter is a possibility to reduce trajectory uncertainty almost to the zero because
there will not exist representational pdf loss problem (particle depletion) [15] that
leads to filter divergence. However, we will not use uncertainty as a fixed measure
for cancelling the exploration since it can lead to a longer and repetitive loop
closures that are not necessarily required for the exploration tasks. In contrast
to the local optimal planning strategies, our solution is much simpler and faster
and optimizes trajectory indirectly by searching only for global goals in which
loop closures appear since these are the most informative ones and can provide
a required accuracy even with locally non optimal path planner.

Our exploration cancelling criterion will be dependent on the number of
predicted states without an update, information gain and on a distance to the
state for possible loop closure. The loop will be followed only until the first large
enough loop closure update has been accomplished and then the exploration will
be continued. We have combined this active SLAM with an exploration algorithm
which is used for high detailed 3D thermal mapping [16] and which provides a
capability for complete coverage mapping in polygonal environments. Our active
SLAM maintains high localization accuracy that enables thermal mapping to be
accomplished in fewest possible scans of the environment for the entire area to
be mapped. Developed integrated system is shown in Fig. 1 whose main modules
are described in the rest of the paper.

2 SLAM

The pose based SLAM systems rely on a fact that trajectory estimation and
map building are conditionally independent. This enables the separation of the
active SLAM and exploration algorithms as the local maps are independent when



conditioned on a specific trajectory. The SLAM system employed in this work
is a visual 3D pose based SLAM that estimates the robot’s trajectory as a set
of discrete states with their associated local maps. Local maps are consisted out
of RGBD measurements, i.e. planar features extracted from them.

In Fig. 1 it can be seen that our SLAM system consists out of four main
parts (Server, Image matching, Visual Odometry and SLAM back-end). A server
component is responsible for storing and synchronizing sensor measurements.
Whenever a new state is augmented to the SLAM state vector, a server stores
the current RGBD image. RGB image is sent to an image matching component
which then compares the RGB image of the current state with RGB images
of all other states. If the match is found, a disparity measurements of matched
states are retrieved by Visual odometry. Visual odometry then computes relative
position between those states and sends it to a SLAM back-end. The SLAM
back-end is responsible for trajectory optimization. The filter prediction is done
whenever a robot’s position and a position of the last augmented state differ
more than predefined value while the update occurs whenever visual odometry
sends a relative position between the two states.

2.1 SLAM Back-end

The SLAM back-end algorithm is based upon Exactly Sparse Delayed State Fil-
ter (ESDSF), developed in [17]. ESDSF is used for the estimation of a Gaussian
robot’s trajectory x which consists of n pose samples xi, i = 1, . . . , n:
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where the relation between µ and η is: η = Λµ, and between the covariance
�

and an information matrix Λ: Λ =
�−1. As elaborated in [17], an information

matrix Λ of this system has sparse structure which makes SLAM computation-
ally and memory efficient when implemented to use the sparse algebraic system
solvers and therefore significantly gains an execution speed.

2.2 Image Matching

Image matching is essential for SLAM algorithm since it is used for a loop closing
detection. In our SLAM system the image matching is done using FabMAP2
algorithm [18]. FabMAP2 algorithm compares images by converting them to a
bag of words model and by using the Chow Liu tree [19]. From every received
image features are extracted using e.g. SURF [20], SIFT [21] and those features
are converted to a bag of words. Those words are then compared with the words
contained in a previously learned dictionary. Images are then classified by the



number and type of the words they contain, and that are in dictionary. After the
classification, images can easily be compared based on the classification result.
Additionally to comparing the images using a bag of words FabMAP2 uses Chow
Liu tree to determine whether or not the images are a match.

2.3 Vision Odometry

Vision odometry is used to determine the relative position between two states
that FabMAP2 has found a match for. Visual odometry algorithm used in our
SLAM system is the robot vision library (RVL) developed and presented in [22].
RVL first generates 2.5D triangle mesh grid from disparity recorded by the
RGBD sensor. Planar surfaces are then extracted using the Region merging
and growing algorithm [23] for both views. Finally, modified RANSAC [24] al-
gorithm is used to determine the relative position between states by registration
of extracted planar features.

3 Active SLAM

In our active SLAM solution SLAM is completely separated from the route
planning and exploration. Only when SLAM detects that possible loop closing is
nearby and that too many states have been predicted without an update it begins
to rank all possible loop closing states. If the state for possible loop closure has
a high enough information gain then the SLAM sends command to exploration
algorithm to stop exploring and sends the robot to close the loop. For a loop
closure to be considered, two conditions have to be met:

– condition 1: more than Ns states have been predicted without an update
or an update occurred between states xi and xj and |i− j| < Nij , where Nij

is predefined number of states;
– condition 2: Euclidean distance between the current position and position

of the possible state for loop closing has to be lower than a defined value dm.

The first condition ensures that a loop closing is required in order to maintain
precision of localization and map and the second condition ensures that a robot
will not have to travel long to achieve the loop closing. If both conditions are met
then all the states that satisfy second condition are possible candidates for loop
closing. Additional condition that a state has to satisfy in order to be chosen for
the loop closing is calculated from the topological map of states.

Topological map of states is represented by a n × n matrix G, where n is
a current number of states. Matrix G is a binary matrix (elements are 0 and
1). Matrix element (i,j) is 1 if a state i is connected with the state j. States
are connected if they were predicted one after another or if an update occurred
between them. Topological matrix is used to determine how much would the
update between two states impact the overall map and localization quality. In
general update will impact overall quality more if the two states (i and j) are
farther away from each other. The problem is that the sum of Euclidean distances



between all states from state i to state j would be a wrong measure as it is
illustrated in Fig. 2. Although the sum of Euclidean distances between all states
from C to S is high, since an update occurred between the states 2 and 10, the
overall information gained from an update between states C and S is small. This
is because a lot of information gained from loop closing between C and S was
already gained by loop closing between states 2 and 10. This is why a third
condition is necessary for detecting the good states to initiate a loop closing:

dM (xi, xj) > dt (1)

where dM is topological distance between the states i and j and dt is a prede-
fined topological distance threshold. Topological distance is computed from the
graph Gf generated from the matrix G. Nodes are represented by the states
and connections between nodes i and j exist if the element (i,j) in matrix G
is 1. Weight of connection is Euclidean distance between the states i and j.
Topological distance of states (i,j) is calculated as the shortest path from the
node i to the node j in the graph Gf . The shortest path is calculated using the
A* algorithm since A* is efficient when no replanning is required. For example,
topological distance from the node C to the node S (Fig. 2) would be the sum of
Euclidean distances between the states (S,2),(2,10),(10,11),(11,12) and (12,C). If
topological distance is high enough the state is chosen for a loop closing. When
a robot arrives to that state and an update does not occur a robot continues
to follow the loop until a good enough update occurs. The update is considered
as good enough if it occurred between the states which indexes (i,j) satisfy the
condition |i − j| > Nloop, where Nloop is a predefined number of states. This
condition ensures that the update really occurred between current location and
the state that was augmented when a robot first traversed the loop. If an update
passes this condition the control is transferred to exploration algorithm and a
robot continues to position that was selected by the exploration algorithm before
a loop closing was initiated.

4 Exploration

The aim of the exploration algorithm is to find a minimal number of positions
from where to take scans in order to build a detailed map of the environment. The
algorithm needs to guarantee a complete exploration of the environment within
a finite number of measurements. We used the exploration strategy described
in [16] and [25], which is an extension of Ekman’s exploration algorithm [26]
by removing the rigid constraints on the range sensor and a robot localization.
In [26] was shown that the exploration of polygonal environments guarantees a
complete coverage considering no positional uncertainty and an ideal range sen-
sor. Under the assumption that in our SLAM the uncertainty is lower each time
when active SLAM closes a loop, our exploration strategy completely explores
the environment.

The exploration starts with no a-priori information on the environment and
after the first laser scan in 2D an initial environment model is generated. The



model consists out of lines vectorized from the initial scan. Based on the initial
map and information available from the first scan, the next best robot position
is calculated. The next candidate scan positions are defined 1m in front of the
lines which separate explored and unexplored area, so-called jump edges. The
jump edges are generated by connecting the two adjacent points in one scan
if the distance between points is above some threshold value, i.e. connecting
discontinuities in a range data. For details see [16].

Figure 3 shows generated candidate positions p1 and p2 from the current
position R. The jump edges are marked with red color. Among all jump edges

Fig. 2: Topological distance

R
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Fig. 3: Jump edges from the cur-
rent robot position R

the next best scan position is chosen according to a criterion that maximizes the
area explored in the next scan and minimizes a distance from the current robot
position to the jump edge. Estimation of the explored area in the next step is
done by the angle between potential candidate position p and two jump edge
ends as shown on Fig. 3. Also the angles according to the other jump edges are
taken into account what leads to the following criterion for candidate position
pj :

Ij = k1
1

dj
+ k2

N�

i=1

αij , (2)

where dj represents a path length from the current robot position to the candi-
date position, while αij refers to the angle between candidate position Pi and
Pj , and k1 and k2 are tuning parameters used to treat angles and path distance
equally. In each step the exploration node communicates with a path planning
module, receiving the distance to the all candidates position, i.e. path length.
The best candidate scan position is sent to the planner module which drives the
robot to it to take the scan. The whole procedure is then repeated. As already
explained the exploration activity with a planner has to stop when the loop
closing is active and continues when the loop has been closed.

The final aim of the exploration is to have a dense and precise map. In a case
when a localization is not perfect the environment could be completely explored
but the final map could differ from the real environment edges generating a
non precise final map. The number of scan positions needed to cover the whole
environment could also vary depending on the localization quality. Including an



active SLAM the number of scans can be lower and the map precisely represents
the environment.

5 Experimental Results

All experiments were done using the equipment shown in Fig. 4. Sensors were
mounted on Clearpath A200 (Husky) all terrain mobile platform. Laser scanner
used for obstacle avoidance and exploration was SICK LMS100-1000, which has
a maximum range of 50m. Since Husky has differential drive with four wheels,

Fig. 4: Equipment used
in experiments

Name Value Description
Ns 18 Minimal number of predicted states after
Ns 20 which loop closing starts if no update

occurred or update occurred between states
with index difference smaller than Nij

dm 8m Maximum Euclidean distance between
the robot and the state for the state to be
considered for a loop closing

dt 25m Minimum topological distance between
the robot and the state for the state to be
considered for a loop closing

Nloop 10 Minimum difference between indexes
of the states that update occurred between
required for a loop closing to end.

Table 1: Description of used parameters

a rotation angle estimation using only encoders would produce significant errors
due to the slippage. This would require very frequent loop closures in order for
SLAM to produce a reliable localization. That is why we used encoders only for
estimating robot’s movements in forward/backward direction and why Inertial
Measurement Unit (IMU) was used for estimating the angle of rotation. IMU
sensor used in experiments was Xsense MTi-G-700 GPS/INS. For depth regis-
tration and RGB image acquisition we used Microsoft Kinect. All experiments
were done using Lenovo Thinkpad E531 portable computer with Intel Core i7
4th generation mobile processor and 4GB of RAM.

To test the exploration algorithm in conjunction with an active SLAM, the
robot was put in an environment without any prior knowledge about it. The
main task was to build a map of entire environment. In order to test an active
SLAM performance two experiments were completed: the first one with an active
SLAM turned off and the second one with an active SLAM turned on. In both
experiments parameter values were the same and are listed in table 1.
In both experiments the map was created using the union of point clouds recorded
by a laser at each time step during motion and taken from locations estimated
by the SLAM. The map generated in this way shows localization error because
as error increases the point clouds that should represent a scan of same location
overlap less and less thus creating distortions on the map.



Figure 5 shows the generated map and the robot trajectory when an active
SLAM was turned off. Although the trajectory in the first (left) room robot ex-
plored seems like loop closing should be detected, it was not. The robot’s angle
of rotation was too different and the RGB images did not match. This is a clear
example where an active SLAM would help. Since this large loop closing was
missed, odometry errors that accumulated over time were not corrected. As a
result we have a moderate localization error making distortions of the map of
the first room explored and even more distortions in the second room that was
explored. Figure 6 shows a map of the same area but generated with an active

start location

final location
trajectory

5 m

Fig. 5: Generated map and trajectory without active SLAM (black rectangles
represent the robot footprint at all goals it was sent to).

SLAM turned on. Robot’s trajectory is divided in three main parts. The first
part (marked with magenta color) represents a robot’s motion before an active
SLAM cancelled exploration. Parameter Ns from the section 3 was set to 18.
Since there were no major loop closures up till the state 18 was augmented, an
active SLAM started searching for the possible loop closures immediately after
augmentation. The maximum Euclidean distance (dm), for the second condition,
was set to 8m. We can see that this condition was also met for several states
during the robot’s motion from state 18 to a location marked with red ’x’. The
only condition left to be satisfied, in order for the loop closing process to start,
was minimal topological distance dt. Parameter dt was set to 25m. When a robot
arrived at the position marked with a red ’x’, the state 2 satisfied this condition.
In that moment the exploration was cancelled and the robot was sent to the
state 2. When it arrived at the state 2 it continued to follow the previously tra-
versed path up till the state 29 was augmented. This part of the robot’s motion
is shown in Fig. 6 as the green trajectory. When the state 29 was augmented, a
loop closure was detected between the state 10 and the state 29. Since this was a
large loop closure, the robot exited loop closing process and started going to the
goal previously set by the exploration (marked with purple icon in Fig. 6). As



it can be seen from the last part of the robot’s trajectory, no other location was
suitable for an active SLAM to initiate the loop closing and the robot continued
exploring until the whole area was explored.
The generated map is much better compared to a map from experiment without
an active SLAM. Both rooms have very little deformations. The passage between
the two rooms is clear, scans of objects and walls in the second room that robot
visited are almost completely overlapped and the angle between the two rooms is
correct. These two experiments show that there is a considerable improvement

10
29

2

next scan location

5 m

start location

final location

exploration was canceled

trajectory after loop closing

trajectory while loop closing

trajectory before loop closing

Euclidean distance

Fig. 6: Generated map and trajectory with active SLAM (black rectangles rep-
resent all goals robot was sent to, with the exception of rectangle labelled with
number 29, it represents augmented SLAM state).
in the map accuracy when the active SLAM is used. The overall results would
be even better if we had a possibility to use 3D laser sensor instead of Kinect.
This is because a Kinect has a maximum range for depth images of about 4m.
This is good enough in the small areas but in a larger open space Kinect depth
image is almost useless to RVL since no planes can be extracted. That is a reason
why only just few updates between neighbouring states were detected and that
is why a robot needed to close the loop for a longer time in order to find an
adequate state for a loop closing. If we had a 3D laser on our disposal we are
confident that the overall results would be much better and this is our primary
goal in a future research.

6 Conclusion

In this paper we presented a complete solution for exploring the unknown envi-
ronments while maintaining the localization and map accuracy. Our exploration
algorithm ensures a complete area mapping in finite number of scans while our
active SLAM algorithm ensures that localization remains accurate by sending
the robot to close loop if criterion function satisfies a predefined value.

Our active SLAM system is based on the Exactly Sparse Delayed State Fil-
ter which is an appropriate state representation for motion planning to follow



previous path and fast enough for a real-time execution. The other and more
important reason to use information filter is a possibility to reduce the trajec-
tory uncertainty almost to zero because no representational pdf loss problem
exists which leads to the filter divergence. However, we do not use uncertainty
as a fixed measure for cancelling the exploration since it can lead to a longer
and repetitive loop closures that are not necessary required for the exploration
tasks.

In experiments we have shown that our solution works efficiently and that
indeed an active SLAM is required in order to maintain the localization and map
accuracy but we also encountered some problems. Although the active SLAM
realization, as a module separated from the exploration and planner, benefits
from allowing the simple connection with many different planning and explo-
ration algorithms, it has also a disadvantage because an active SLAM is cut out
from the trajectory planning process. Our future research will be concentrated
on solving that problem. We will include an active SLAM in the exploration
goals selection and path planning in order to minimize the requirement for a
loop closing.
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