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Abstract - Computational geometry is very important for 

solving motion planning problems. Visibility graphs are 

very useful in determining the shortest path. In this work, a 

modified Asano's algorithm is implemented for determining 

the visibility polygons and visibility graphs. Implementation 

is done using the CGAL library. Although the principle for 

determining visibility graphs is rather simple, the procedure 

is very time and space consuming and the goal is to achieve 

lower algorithm complexity. The algorithm consists of two 

steps: first, angular sorting of points is done using the dual 

transformation, and second, visibility between the points is 

determined. Testing of the algorithm is done on two 

polygonal test sets. The first is made of squares, uniformly 

and densely distributed. The second is made of triangles, 

randomly and sparsely distributed. Results show a cubical 

complexity of the algorithm, depending on the number of 

reflex points. The main advantage of this method is that it 

can be applied in dynamical environments (environments 

that change in time). It is not required to perform the 

calculation for all points on the map. Instead, the graph can 

be refreshed locally so it is very practical for online use. 

I. INTRODUCTION 

Path planning is one of the main problems in robotics. 
Goal is to find a collision-free path amidst obstacles for a 
robot from its starting position to its destination. 

Using visibility graphs for determining the shortest 
path is very practical and intuitive. The visibility graph of 
a set of nonintersecting polygonal obstacles in the plane is 
an undirected graph whose vertices are the vertices of the 
obstacles and whose edges are pairs of vertices such that 
the open line segment between each two vertices does not 
intersect any of the obstacles.  

Main problem in designing the visibility graph is 
determining the visible portions of map. This operation is 
time and space consuming, even for modern computers. 
To determine the visibility of polygons many algorithms 
have been developed. They all have something in 
common - great computational complexity.  

Let Q be a polygon with n vertices. Let P ={s1,..,sm} be 

a set of m points  in Q; the points in P may lie both on the 

boundary of Q and in the interior of Q. The visibility 

graph of P in Q, denoted VGQ(P), is the graph whose  

nodes are the points P and whose edges connect pairs of 

nodes that see one another within Q (i.e., the segment 

joining the points lies within Q). See Figure 1 for an 

example. 

  
Figure 1.  Visibility graph VGQ(P)  of polygon Q with vertices si  

 

In this paper, the algorithm for designing visibility 
graph in two-dimensional configuration space is 
implemented. It is based on modified Asano’s algorithm 
[1] and implemented using the CGAL Library [4]. 

Related work.  Basic and most intuitive (naive) algorithm 

has O(n3) time.. For n polygonal reflex vertices there are 

n2 possible visibility connections between them (O(n2) 

time). It takes O(n) time for detecting  if two points are 

intervisible (they see each other).  

O(n3) time  means that algorithm becomes significantly 

time consuming for larger number of vertices. So more 

advanced and faster algorithms were developed. 

Lee [8] managed to construct the visibility graph 

VGQ(V)  in O(n2 log n) time, using a radial sweep about 

each vertex Q.  Welzl [5] and Asano et al. [1] improved 

the time bound  to O(n2), which is worst-case optimal but 

not output sensitive. For general polygons (with holes), 

Overmars and Welzl [9] obtained a relatively simple 

algorithm running in O(k log n) time and O(n) space, 

where k is the number of edges in the visibility graph. 

Then Gosh and Mount [2] developed optimal technique of 



planar scanning using triangulation and funnel splits 

running in O(k + n log n) time and O(k) space. 

 
Dual transformation and algorithms for sorting points 

and determining the visibility polygon are presented in 
section II. In section III algorithm for determining the 
visibility graph with pseudo code is given.  In section IV 
results of simulation on test polygonal sets and real map 
are shown. The paper ends with a conclusion. 

 

 

II. VISIBILITY POLYGON 

A. Dual transformation 

In the Cartesian plane, a point has two parameters (x- 

and y-coordinates) and a (non-vertical) line also has two 

parameters (slope and y-intercept). We can thus map a set 

of points to a set of lines, and vice versa, in an one-to-one 

manner. This mapping is called dual transformation. 

Let p=(px, py) be a point in original plane (x-y plane). 

We say that line p* is dual transformation of point p and 

described as:  

p* : = ( y = px x - py ). 

 

Let l : y = m x + b  be a line  in original plane. We say 

that point l* is dual transformation of line l as given: 

 

l* := (m, -b). 

 

See Figure 2 for example. 

 

 
Figure 2 Original and dual plane - dual transformation principle 

 

 

B. Sorting points using dual transformation 

Let q be a point of view and pi (i=1,…,N) points we 

want to sort by slope regarding to q. In first step we map 

the points pi in original plane to lines in dual plane. These 

lines form an arrangement in dual plane. This 

preprocessing step takes O(n2) time and space. Insertion 

of each new line in dual arrangement takes O(n) time. 

Important is to notice that line connecting points p and q 

in original plane corresponds to the point of intersection 

of two lines, q* and p*, in mapped plane. 

Hence, the ordering by slope of the lines connecting q 

and pi (i = 1, …, N) corresponds to the ordering by x-

coordinate of the points of intersection of the line q* with 

lines pi* (i = 1, …, N) in the mapped plane. Since we 

have the arrangement at hand, this ordering can be 

obtained in O(n) time.  

Procedure is shown in Fig.3. 

 

 
Figure 3. Sorting points using dual transformation                                  

a) original plane   b) dual plane. 

 

C. Determining the visibility polygon 

Determining the visibility polygon is done via scan 

lines and segment splitting. This method uses polar scan 

line to sweep through the sorted list of segments to find 

the visible sub-segments. 

In first step, we define starting scan line (extending 

vertically up from view point q). Then, we place a ray 

emerging from q to each of N previously sorted points pi. 

We start from point q and move along the ray. If we 

encounter a right side segment (segment extending right 

of the ray) we store it and move to next ray. Otherwise, 

we continue moving along the ray, until there are no more 

intersections or we encounter a right side segment. We 

repeat this procedure for each of N rays, detecting the 

first segment we encounter while moving along the ray 

(starting from q). See Figure 4 for example. 

 

 
Figure 4 Determinig the visibility polygon - procedure in steps 

 

III. VISIBILITY GRAPH 

In case of determining the visibility graph algorithm 
for determining visibility polygon is slightly modified 
because it is not necessary to know which segment or sub-
segment each view point “sees”. Only visibility of edge 
points of segments is important. 

So upper algorithm is modified in way it doesn’t detect 
segment ray encounters; only ray directly encountering 
one of pi points matters. For simplification, it is not 
necessary to process all points pi, only reflex ones 
(vertices at which the internal angle of polygon is grater 
then 180 degrees).  



The information whether a reflex point is visible or not 
is stored in binary visibility matrix (1 - visible, 0 - not 
visible) whose dimension is N x N (for n reflex points).  
Each row of matrix presents one visibility vector (nth row 
presents visibility vector of points viewed from nth point).  

Problem is how to store information in proper field of 
matrix, because for each query point q points pi are 
differently sorted. It is solved using the additional 
information added to vertex object in CGAL – pointer to 
the exact element in visibility matrix. 

 Also, the visibility is bidirectional phenomenon which 
means it is required only to check it once per pair of points 
(Ex. If point A “sees” B then B “sees” A also). This 
means it is not necessary to fill all fields in visibility 
matrix (n x n) – only above or below the diagonal (values 
on diagonal are equal to 1). 

Pseudo code is given below. Input is array of edge 
points P (vertices of all polygons on map). Output is 
visibility matrix (VG). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Steps 1- 6 are preprocessing steps executed only once 

for given input data set. Step 7 is repeated for each reflex 

point on map. Functions used above are implemented 

using CGAL Library and defined as follows: 

 

DetermineReflexPoints(p): Input parameter is array 

of all points on map p and output is array of reflex ones. 

DualTrans(p): Input parameter is array of points p 

and output is array of lines, which represents dual 

mapping of those points.  

DetermineSegments(p): Input is array of points p 

ordered as follows: counter clockwise for outer polygon 

and clockwise for inner polygons. From array of points 

an array of segments is formed (segments representing 

the polygon edges). 

CreateArrangement(s): Input is array of segments or 

lines s and output is an arrangement of those. Insertion is 

done  using the CGAL insert() function. 

EnumarateVertices(arr,p): Input is arrangement arr 

(type: Arrangement_2) and array of points p. Output is 

arrangement with vertices enumerated in order they 

appear in array p. 

*Locate(arr,S): Input is arrangement arr and line S. 

Line is inserted in arrangement and pointer to that line is 

returned as output (type: Halfedge_handle). 

FindNeighbours(arr,P): Function takes point P and 

arrangement arr (map) as input and returns predecessor 

and successor of  vertex P in arrangement arr. 

Sort(arr,he): Function takes pointer on line he and 

arrangement arr as input and returns array of sorted 

points. 

 IsVisible(arr,&VG,P,p): Function takes 

arrangement arr (map), pointer to visibility matrix VG, 

view point Q and array of points sorted about Q as input. 

Row with index corresponding to index of Q (in array of 

reflex points) will be modified.  

InitVG(): Initialization of visibility matrix (to 0). 

 

Theoretically, shown algorithm runs in  O(e n2) time  

where e is average number of sorted points (that can be 

visible). 

Even though sorting is done in O(n) time, the 

complexity is increased due to way functions  and objects 

are implemented in CGAL. They are not optimized for 

tasks such as locating and directly accessing vertices and 

lines/segments/rays in arrangement, thus one has to locate 

them iteratively, by searching through all elements 

(points, segments etc.). 

 

IV. RESULTS 

Testing of the algorithm is done on two polygonal test 

sets. The first is made of squares, uniformly and densely 

distributed. The second is made of triangles, randomly 

and sparsely distributed. Results are given below. 

 

 
Figure 5 Visibility graph for polygon made of 16 uniformly distributed 

squares 

 

0 BEGIN 

1 RP = DetermineReflexPoints(P); 

2 RPdual=DualTrans(RP); 

3 S = DetermineSegments(P); 

4 ArrD = CreateArrangement(RPdual); 

5 Arr = CreateArrangement(S); 

6 InitVG(); EnumarateVertices(Arr,RP); 

7 For i = 1 to length(RP) 

a. Qdual = RPdual(i); Q= RP(i); 

b. He=*Locate(ArrD,Qdual); 

c. [P1,P2] =FindNeighbours(Arr,Q); 

d. SortedPoints= Sort(ArrD,he); 

e. IsVisible(Arr,&VG,Q,SortedPoints); 

8 END 

 



 
Figure 6 Visibility graph for polygon made of 75 randomly distributed 

squares 

 

Execution time has been measured. Data is given in 

table below: 

 

  
TABLE 1  DURATION OF ALGORITHM EXECUTION (SQUARES) 

 
Number of 

reflex vertices 
Nrp 

 
Preprocessing 

time 
Tpred [s]  

Main loop time 
of execution  

(sorting and 
determining 

VG) - Talg [s] 

 
Total time  

of execution  
Tuk [s]   

64 0.294 3.198 3.492 

144 1.498 28.924 30.422 

256 4.755 160.264 165.019 

400 12.524 653.514 666.038 

≈11min 

 
TABLE 2  DURATION OF ALGORITHM EXECUTION (TRIANGLES) 

 
Number of 

reflex vertices 

Nrp 

 
Preprocessing 

time 

Tpred [s]  

Main loop time 
of execution  

(sorting and 

determining 
VG) - Talg [s] 

 
Total time  

of execution  

Tuk [s]   

30 0.0793 0.5549 0.6342 

75 0.4407 5.2668 5.7075 

150 1.7679 29.5604 31.3283 

225 3.8039 90.7532 94.6671 

300 6.6481 192.98 199.6281 

399 11.8844 466.957 478.8414 

 

Results are shown graphically: 

 

 
Figure 7 Duration of execution of algorithm (square polygons) 

 

 
Figure 8 Duration of execution of algorithm (triangle polygons) 

 

Results show cubical dependency of time of execution 

on number of reflex points (k n3). Even though execution 

gets rapidly slower as number of points increase, it is 

noticeably faster on sparse maps (for sparsely distributed 

triangles). 

 

 

The algorithm was also tested on real map (Npoints = 

740): 

 

 
Figure 9 Test map 

 

 

Results are shown in Figure 10. 

 

data 

data 



 
Figure 10 Visibility graph of test map 

 

Preprocessing time: 11.1 s.  

Total execution time: 630.15 s. 

 

 

 

V. CONCLUSION 

Results show a cubical complexity of the algorithm, 
depending on the number of reflex points. It can be rather 
time consuming for larger number of points. The reason 
is in using the CGAL Library, which is not optimized for 
visibility graphs (problem is in direct accessing objects in 
arrangements and moving along the arrangement).  

Algorithm is noticeably faster on sparse maps which 
can be very useful in using the visibility graph for path 
planning on open spaces with sparse objects. 

The main advantage of this method is that it can be 
applied in dynamical environments (environments that 
change in time). It is not required to perform the 
calculation for all points on the map. Instead, the graph 

can be refreshed locally so it is very practical for online 
use. 

To reduce execution time it is necessary to write a 
library optimized for computing visibility graphs. It 
should be designed for direct accessing objects in 
arrangements and for standard operations with 
arrangements (vertices, segments, rays etc.).  
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