
A visibility graph based method for path planning

in dynamic environments

Hrvoje Kaluđer*, Mišel Brezak ** and Ivan Petrović**
* TEB Elektronika d.o.o,

Vončinina 2, 10000 Zagreb, Croatia

hrvoje.kaluder@teb-elektronika.hr
** Faculty of Electrical Engineering and Computing,

University of Zagreb,

Unska 3, 10000 Zagreb, Croatia

Abstract - Computational geometry is very important for

solving motion planning problems. Visibility graphs are

very useful in determining the shortest path. In this work, a

modified Asano's algorithm is implemented for determining

the visibility polygons and visibility graphs. Implementation

is done using the CGAL library. Although the principle for

determining visibility graphs is rather simple, the procedure

is very time and space consuming and the goal is to achieve

lower algorithm complexity. The algorithm consists of two

steps: first, angular sorting of points is done using the dual

transformation, and second, visibility between the points is

determined. Testing of the algorithm is done on two

polygonal test sets. The first is made of squares, uniformly

and densely distributed. The second is made of triangles,

randomly and sparsely distributed. Results show a cubical

complexity of the algorithm, depending on the number of

reflex points. The main advantage of this method is that it

can be applied in dynamical environments (environments

that change in time). It is not required to perform the

calculation for all points on the map. Instead, the graph can

be refreshed locally so it is very practical for online use.

I. INTRODUCTION

Path planning is one of the main problems in robotics.
Goal is to find a collision-free path amidst obstacles for a
robot from its starting position to its destination.

Using visibility graphs for determining the shortest
path is very practical and intuitive. The visibility graph of
a set of nonintersecting polygonal obstacles in the plane is
an undirected graph whose vertices are the vertices of the
obstacles and whose edges are pairs of vertices such that
the open line segment between each two vertices does not
intersect any of the obstacles.

Main problem in designing the visibility graph is
determining the visible portions of map. This operation is
time and space consuming, even for modern computers.
To determine the visibility of polygons many algorithms
have been developed. They all have something in
common - great computational complexity.

Let Q be a polygon with n vertices. Let P ={s1,..,sm} be

a set of m points in Q; the points in P may lie both on the

boundary of Q and in the interior of Q. The visibility

graph of P in Q, denoted VGQ(P), is the graph whose

nodes are the points P and whose edges connect pairs of

nodes that see one another within Q (i.e., the segment

joining the points lies within Q). See Figure 1 for an

example.

Figure 1. Visibility graph VGQ(P) of polygon Q with vertices si

In this paper, the algorithm for designing visibility
graph in two-dimensional configuration space is
implemented. It is based on modified Asano’s algorithm
[1] and implemented using the CGAL Library [4].

Related work. Basic and most intuitive (naive) algorithm

has O(n3) time.. For n polygonal reflex vertices there are

n2 possible visibility connections between them (O(n2)

time). It takes O(n) time for detecting if two points are

intervisible (they see each other).

O(n3) time means that algorithm becomes significantly

time consuming for larger number of vertices. So more

advanced and faster algorithms were developed.

Lee [8] managed to construct the visibility graph

VGQ(V) in O(n2 log n) time, using a radial sweep about

each vertex Q. Welzl [5] and Asano et al. [1] improved

the time bound to O(n2), which is worst-case optimal but

not output sensitive. For general polygons (with holes),

Overmars and Welzl [9] obtained a relatively simple

algorithm running in O(k log n) time and O(n) space,

where k is the number of edges in the visibility graph.

Then Gosh and Mount [2] developed optimal technique of

planar scanning using triangulation and funnel splits

running in O(k + n log n) time and O(k) space.

Dual transformation and algorithms for sorting points

and determining the visibility polygon are presented in
section II. In section III algorithm for determining the
visibility graph with pseudo code is given. In section IV
results of simulation on test polygonal sets and real map
are shown. The paper ends with a conclusion.

II. VISIBILITY POLYGON

A. Dual transformation

In the Cartesian plane, a point has two parameters (x-

and y-coordinates) and a (non-vertical) line also has two

parameters (slope and y-intercept). We can thus map a set

of points to a set of lines, and vice versa, in an one-to-one

manner. This mapping is called dual transformation.

Let p=(px, py) be a point in original plane (x-y plane).

We say that line p* is dual transformation of point p and

described as:

p* : = (y = px x - py).

Let l : y = m x + b be a line in original plane. We say

that point l* is dual transformation of line l as given:

l* := (m, -b).

See Figure 2 for example.

Figure 2 Original and dual plane - dual transformation principle

B. Sorting points using dual transformation

Let q be a point of view and pi (i=1,…,N) points we

want to sort by slope regarding to q. In first step we map

the points pi in original plane to lines in dual plane. These

lines form an arrangement in dual plane. This

preprocessing step takes O(n2) time and space. Insertion

of each new line in dual arrangement takes O(n) time.

Important is to notice that line connecting points p and q

in original plane corresponds to the point of intersection

of two lines, q* and p*, in mapped plane.

Hence, the ordering by slope of the lines connecting q

and pi (i = 1, …, N) corresponds to the ordering by x-

coordinate of the points of intersection of the line q* with

lines pi* (i = 1, …, N) in the mapped plane. Since we

have the arrangement at hand, this ordering can be

obtained in O(n) time.

Procedure is shown in Fig.3.

Figure 3. Sorting points using dual transformation

a) original plane b) dual plane.

C. Determining the visibility polygon

Determining the visibility polygon is done via scan

lines and segment splitting. This method uses polar scan

line to sweep through the sorted list of segments to find

the visible sub-segments.

In first step, we define starting scan line (extending

vertically up from view point q). Then, we place a ray

emerging from q to each of N previously sorted points pi.

We start from point q and move along the ray. If we

encounter a right side segment (segment extending right

of the ray) we store it and move to next ray. Otherwise,

we continue moving along the ray, until there are no more

intersections or we encounter a right side segment. We

repeat this procedure for each of N rays, detecting the

first segment we encounter while moving along the ray

(starting from q). See Figure 4 for example.

Figure 4 Determinig the visibility polygon - procedure in steps

III. VISIBILITY GRAPH

In case of determining the visibility graph algorithm
for determining visibility polygon is slightly modified
because it is not necessary to know which segment or sub-
segment each view point “sees”. Only visibility of edge
points of segments is important.

So upper algorithm is modified in way it doesn’t detect
segment ray encounters; only ray directly encountering
one of pi points matters. For simplification, it is not
necessary to process all points pi, only reflex ones
(vertices at which the internal angle of polygon is grater
then 180 degrees).

The information whether a reflex point is visible or not
is stored in binary visibility matrix (1 - visible, 0 - not
visible) whose dimension is N x N (for n reflex points).
Each row of matrix presents one visibility vector (nth row
presents visibility vector of points viewed from nth point).

Problem is how to store information in proper field of
matrix, because for each query point q points pi are
differently sorted. It is solved using the additional
information added to vertex object in CGAL – pointer to
the exact element in visibility matrix.

 Also, the visibility is bidirectional phenomenon which
means it is required only to check it once per pair of points
(Ex. If point A “sees” B then B “sees” A also). This
means it is not necessary to fill all fields in visibility
matrix (n x n) – only above or below the diagonal (values
on diagonal are equal to 1).

Pseudo code is given below. Input is array of edge
points P (vertices of all polygons on map). Output is
visibility matrix (VG).

Steps 1- 6 are preprocessing steps executed only once

for given input data set. Step 7 is repeated for each reflex

point on map. Functions used above are implemented

using CGAL Library and defined as follows:

DetermineReflexPoints(p): Input parameter is array

of all points on map p and output is array of reflex ones.

DualTrans(p): Input parameter is array of points p

and output is array of lines, which represents dual

mapping of those points.

DetermineSegments(p): Input is array of points p

ordered as follows: counter clockwise for outer polygon

and clockwise for inner polygons. From array of points

an array of segments is formed (segments representing

the polygon edges).

CreateArrangement(s): Input is array of segments or

lines s and output is an arrangement of those. Insertion is

done using the CGAL insert() function.

EnumarateVertices(arr,p): Input is arrangement arr

(type: Arrangement_2) and array of points p. Output is

arrangement with vertices enumerated in order they

appear in array p.

*Locate(arr,S): Input is arrangement arr and line S.

Line is inserted in arrangement and pointer to that line is

returned as output (type: Halfedge_handle).

FindNeighbours(arr,P): Function takes point P and

arrangement arr (map) as input and returns predecessor

and successor of vertex P in arrangement arr.

Sort(arr,he): Function takes pointer on line he and

arrangement arr as input and returns array of sorted

points.

 IsVisible(arr,&VG,P,p): Function takes

arrangement arr (map), pointer to visibility matrix VG,

view point Q and array of points sorted about Q as input.

Row with index corresponding to index of Q (in array of

reflex points) will be modified.

InitVG(): Initialization of visibility matrix (to 0).

Theoretically, shown algorithm runs in O(e n2) time

where e is average number of sorted points (that can be

visible).

Even though sorting is done in O(n) time, the

complexity is increased due to way functions and objects

are implemented in CGAL. They are not optimized for

tasks such as locating and directly accessing vertices and

lines/segments/rays in arrangement, thus one has to locate

them iteratively, by searching through all elements

(points, segments etc.).

IV. RESULTS

Testing of the algorithm is done on two polygonal test

sets. The first is made of squares, uniformly and densely

distributed. The second is made of triangles, randomly

and sparsely distributed. Results are given below.

Figure 5 Visibility graph for polygon made of 16 uniformly distributed

squares

0 BEGIN

1 RP = DetermineReflexPoints(P);

2 RPdual=DualTrans(RP);

3 S = DetermineSegments(P);

4 ArrD = CreateArrangement(RPdual);

5 Arr = CreateArrangement(S);

6 InitVG(); EnumarateVertices(Arr,RP);

7 For i = 1 to length(RP)

a. Qdual = RPdual(i); Q= RP(i);

b. He=*Locate(ArrD,Qdual);

c. [P1,P2] =FindNeighbours(Arr,Q);

d. SortedPoints= Sort(ArrD,he);

e. IsVisible(Arr,&VG,Q,SortedPoints);

8 END

Figure 6 Visibility graph for polygon made of 75 randomly distributed

squares

Execution time has been measured. Data is given in

table below:

TABLE 1 DURATION OF ALGORITHM EXECUTION (SQUARES)

Number of

reflex vertices
Nrp

Preprocessing

time
Tpred [s]

Main loop time
of execution

(sorting and
determining

VG) - Talg [s]

Total time

of execution
Tuk [s]

64 0.294 3.198 3.492

144 1.498 28.924 30.422

256 4.755 160.264 165.019

400 12.524 653.514 666.038

≈11min

TABLE 2 DURATION OF ALGORITHM EXECUTION (TRIANGLES)

Number of

reflex vertices

Nrp

Preprocessing

time

Tpred [s]

Main loop time
of execution

(sorting and

determining
VG) - Talg [s]

Total time

of execution

Tuk [s]

30 0.0793 0.5549 0.6342

75 0.4407 5.2668 5.7075

150 1.7679 29.5604 31.3283

225 3.8039 90.7532 94.6671

300 6.6481 192.98 199.6281

399 11.8844 466.957 478.8414

Results are shown graphically:

Figure 7 Duration of execution of algorithm (square polygons)

Figure 8 Duration of execution of algorithm (triangle polygons)

Results show cubical dependency of time of execution

on number of reflex points (k n3). Even though execution

gets rapidly slower as number of points increase, it is

noticeably faster on sparse maps (for sparsely distributed

triangles).

The algorithm was also tested on real map (Npoints =

740):

Figure 9 Test map

Results are shown in Figure 10.

data

data

Figure 10 Visibility graph of test map

Preprocessing time: 11.1 s.

Total execution time: 630.15 s.

V. CONCLUSION

Results show a cubical complexity of the algorithm,
depending on the number of reflex points. It can be rather
time consuming for larger number of points. The reason
is in using the CGAL Library, which is not optimized for
visibility graphs (problem is in direct accessing objects in
arrangements and moving along the arrangement).

Algorithm is noticeably faster on sparse maps which
can be very useful in using the visibility graph for path
planning on open spaces with sparse objects.

The main advantage of this method is that it can be
applied in dynamical environments (environments that
change in time). It is not required to perform the
calculation for all points on the map. Instead, the graph

can be refreshed locally so it is very practical for online
use.

To reduce execution time it is necessary to write a
library optimized for computing visibility graphs. It
should be designed for direct accessing objects in
arrangements and for standard operations with
arrangements (vertices, segments, rays etc.).

REFERENCES

[1] T. Asano, L. J. Guibas, J. Hershberger, and H. Imai. “Visibility of
disjoint polygons”, Algorithmica, 1:49-63, 1986.

[2] S.K Ghosh and D.M.Mount, “An output sensitive algorithm for
computing visibility graphs”, SIAM Journal on Computing,
Vol.20. No.5, pp. 888-910, 1991.

[3] M. Brezak, “Localization, motion planning and control of mobile
robots in intelligent spaces”, PhD Thesis, University of Zagreb,
Faculty of Electrical Engineering and Computing, 2010.

[4] CGAL Manual, CGAL Open Source Project, release 3.6,
http://www.cgal.org/Manual/3.4/doc_html/cgal_manual/
contents.html, 20th March 2010.

[5] E. Welzl, “Constructing the visibility graph for n-line segments in
O(n2) time, in Information Processing Letters”, vol. 20, pp. 167-
171 , 1985.

[6] J. Kitzinger, “The Visibility Graph Among Polygonal Obstacles :
a Comparision of Algorithms”, University of New Mexico, 1993.

[7] E.W Dijkstra, “A note on two problems in connection with
graphs”, Numerische Mathematik, vol. 1 , pp. 269-271, 1959.

[8] D.T. Lee, “Proximity and reachability in the plane”, Technical
port, Dept. Elect. Engineering, Univ. Illinois, Urbana, IL, 1978.

[9] M. H. Overmars and E. Welzl., “New methods for computing
visibility graphs”, in Proc. 4th Annu. ACM Sympos. Comput.
Geom., pp. 164-171, 1988.

http://www.cgal.org/Manual/3.4/doc_html/cgal_manual/

