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Abstract. In this paper we present a concept of an assistive robotic system for the people with
disabilities. Since the target users most likely have difficulties using standard user interfaces,
e.g. keyboard and mouse as input devices for a graphical user interface, we propose brain-
computer interface (BCI) to be used for controlling the system. Novelty of our approach lays
in the integration of the entire system using an intrabody communication (IBC) network. Using
the IBC network reduces the need of superfluous wiring and reduces the time needed to setup
the system for use, i.e. it greatly simplifies the use of the system from the user perspective.
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1. Introduction

A brain-computer interface (BCI) is an alternative
way of communication and control that is independent
of normal neuromuscular pathways (Wolpaw et al.,
2002). This technology has many possible applica-
tions, like hands-free gaming, rehabilitation, detection
of cognitive load or alertness in specific professions,
etc. One of the most challenging applications of
BCIs is the restoration of communication and control
for disabled people, that is, people suffering from
paralysis due to different neuromuscular diseases (e.g.
amyotrophic lateral sclerosis) or due to a brain or a
spinal cord injury.

Although latest development in BCI systems has
demonstrated that high-performance neuroprosthetic
control is possible using intracortical microelectrodes
(Collinger et al., 2012), and that somewhat similar
results can be obtained by less invasive methods like
electroencephalography (EEG) as shown by McFar-
land et al. (2010), there is a trend of coupling sim-
ple BCIs with intelligent systems (shared control)
to achieve more complex behavior (Carlson et al.,

2012) without the need for a complex BCI which
implies longer training, increased user workload, etc.
Therefore, we have envisioned an BCI object manipu-
lation system where a user would use different mental
strategies to communicate his/her intentions on objects
in his/her surroundings, and a robotic system which
can execute the intended actions autonomously.

Novelty of our proposed system is in the use
of intrabody communication in order to connect the
individual system components, namely the brain-
computer interface and the robotic manipulator into
a complete assistive robotic system. Intrabody com-
munication (IBC) is relatively new type of commu-
nication, first described by Zimmerman (1995), in
which the human body represents a signal transmis-
sion medium. The body itself is used to connect
different electronic devices (such as sensor nodes)
placed on, inside or near the human body, that be-
come a part of the same Body Area Network (BAN).
The most important advantages of IBC technology
over conventional RF communication systems are the
reduction of electromagnetic interference, low power
consumption, high data rate, and health safety.



(a) Block diagram of the proposed system (b) Proposed system overview

Fig. 1. Proposed system

2. System arhitecture

In the envisioned assistive robotic system, after the
acquisition, each measured EEG signal is digitized,
modulated and transmitted via the user’s body, using
intrabody communication. The overall number of the
channels depends on the number of EEG electrodes.
The received signal is demodulated and delivered to
the central control unit, where the signal processing is
performed. After the extraction of useful information
from EEG signal (this depends on the BCI paradigm
used), a decision is made and the appropriate action is
undertaken by the robotic system.

The block diagram of the proposed system is
shown in Fig. 1a, and the overview of the proposed
system is given in Fig. 1b. The numbers in these
figures refer to the following parts of the system: 1
to the LCD display with LED, 2 to sensor nodes
consisting of EEG amplifier and IBC transmitter, 3
to IBC receiver, 4 to EEG signal processing unit, and
5 to robotic arm. Individual parts of the system are
described in greater detail in the following subsections
(2.1, 2.2 and 2.3)

2.1. BCI
The goal of a BCI is to detect specific patterns in
brain electrical activity, e.g. in EEG, and use them
as a control signal for computers and other devices.
There are different brain patterns that can be used for
this purpose and among the most popular ones are
steady-state visual evoked potentials (SSVEPs), the
P300 wave and changes in neural oscillations during
mental tasks, e.g. motor imagery as shown in Fig. 2.

SSVEPs emerge in EEG when a person is pre-
sented with a fast train of visual stimuli, occurring
with a frequency greater than 4 Hz. Neurons in the vi-
sual cortex synchronize their firing with the frequency
of the stimuli, and we can detect a prominent peak
in a frequency spectrum of EEG at the stimulation

frequency and its harmonics. SSVEPs are among the
most robust signals used for BCIs, but there is a great
performance variability between different users. To
compensate for this variability, careful selection of
stimulation parameters for each user is critical (Wang
et al., 2006; Byczuk et al., 2012). These parameters
are numerous, but the most important ones are the
frequency of stimulation and the channel location.

There are many ways of generating SSVEP stimuli
(Zhu et al., 2010). Very often used SSVEP stimuli are
alternating checkerboards, stimuli taken from clinical
practice. When presenting stimuli on a computer
monitor, reliable presentation depends on the refresh
rate of the monitor, so only frequencies with periods
that are multiples of the monitor’s refresh period can
be considered (Cecotti et al., 2010). We use E-Prime
software (Psychology software tools) for obtaining
reliable stimuli. A disadvantage of using the monitor
to present stimuli is the limited number of frequencies
that can be reliably implemented. Therefore we devel-
oped an SSVEP stimulator that can control flickering
of LEDs in a wide range of frequencies. Before the
online usage of the SSVEP BCI, we are performing
a detailed scanning for each user where we present a
user with a range of frequencies between 5 and 35 Hz
in order to detect frequencies that are more suitable
for a particular user. Another purpose of the scanning
session is to detect optimal channels for the SSVEP
detection. There are many methods for choosing a
relevant subset of electrodes (Friman et al., 2007;
Prueckl and Guger, 2010), and one of the most popular
is using a single bipolar channel. Using only two
active electrode sites has an explanation in the effort
of using the smallest number of electrodes possible for
the detection of reliable control signals. This reduces
a discomfort caused by placing a large amount of EEG
electrodes on a user’s head and applying electrode gel
on many head sites.

The other popular choice of the control signal –
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Fig. 2. Examples of signals used in BCIs, in all cases
signals are the result of averaging over several trials;
P300 response shows a positive ERP component
emerging around 300 ms after target stimuli; SSVEP
response shows a peak at the frequency of
stimulation and its first harmonic; ERDS map shows
ERD in mu frequency band first and ERS in beta
band afterwards

Fig. 3. P300 speller matrix

the P300 wave – is a component of a cognitive event
related potential (ERP). It manifests as a positive de-
flection in the EEG that peaks around 300 ms after the
presentation of a rare and task-relevant stimulus. This
neural mechanism is usually triggered in an “oddball”
paradigm: the user is presented with two types of
stimuli – infrequent target stimuli and frequent non-
target stimuli. The P300 response is more prominent
with more distinct and rare target stimuli (Polich,
2007).

The most commonly used paradigm that utilizes
the P300 for BCI control is the P300 matrix speller
by Farwell and Donchin (1988). In this paradigm
the user is presented with 36 symbols arranged in
a 6 by 6 matrix (Fig. 3). The user is instructed to
focus his attention on the desired symbol. Next, the
rows and columns are flashed one by one, with target
row/column flashes eliciting P300 responses in the
user’s EEG. The sequence of 12 distinct stimuli (6
for rows and 6 for columns) is repeated several times
because robust detection of P300 usually requires
averaging of multiple responses. Sequences of 12
stimuli are randomly permuted between repetitions.
The symbol that is contained both in the predicted row
and predicted column is output by the system.

In the preliminary studies we have focused on
offline analyses of publicly available data collected
according to the described P300 matrix paradigm,
namely the data set IIb from the BCI Competition
2003 (Blankertz et al., 2004). The BCI algorithm that
we have implemented gives results that are better than
those of the contestants, even though it uses simpler
methods as shown in (Melinščak et al., 2013). We
intend to continue this line of inquiry by using bigger
data sets and implementing online analysis.

When a person is performing a movement, this



changes the amplitude of certain neural oscillations,
namely mu rhythm, in brain regions associated with
movement planning and execution (Pfurtscheller and
Lopes da Silva, 1999). These changes occur even
before a movement starts, in a form of event-related
desynchronization (amplitude attenuation) in a fre-
quency range of about 8-12 Hz. After movement ex-
ecution event-related synchronization (amplitude en-
hancement) in a higher frequency range of about 20-
30 Hz occurs. These changes are movement specific,
which means that different areas of the brain are
affected during different movements. Therefore we
can distinguish movements of a left or a right hand,
or feet. For BCI applications an interesting fact is that
these brain patterns can be obtained even with motor
imagery and therefore can be used as control signals
for the paralyzed (Pfurtscheller et al., 1997, 2005).

2.2. IBC
There are two main methods of signal transmission
through the body: galvanic and capacitive (Lučev
et al., 2010b). In the galvanic coupling method
the transmission of electrical signal is obtained by
injecting the alternating electric current into the human
body (Pun et al., 2011; Chen et al., 2012). On
the contrary, in the capacitive coupling method the
induced electrical signal is controlled by an electric
potential (Lučev et al., 2010a, 2012). In the intrabody
communication at least two pairs of electrodes are
used, namely transmitter (TX) and receiver (RX) elec-
trode pairs, which both consist of a signal and a ground
electrode. Both signal electrodes are placed on the
surface of the body. Unlike the galvanic coupling, in
the capacitive coupling approach transmitter (TX-G)
and receiver (RX-G) ground electrodes do not have to
be in contact with the body – they are placed either on
the body or above the associated signal electrodes. The
gain of the received signal depends on the electrode
arrangement, and is the highest if the transmitter and
receiver ground electrodes are placed above the signal
electrodes and remain disconnected from the body
(Lučev et al., 2012), as in Fig. 4. The signal forward
path is closed through the body between transmitter
(TX-S) and receiver (RX-S) signal electrodes. The
signal return path between receiver and transmitter
ground electrodes is closed through the surrounding
environment. Thus, the electric properties of the
environment, as well as dielectric properties of the
human body, dimensions and position of electrode
pairs, have significant effect on the quality of signal
transmission.

2.3. Robotic Manipulator
For the autonomous robotic system, we decided to
leverage existing approach that is agnostic to the
specific robotic platform used, and has been success-
fully demonstrated on Willow Garage’s PR2 robot and
Fraunhofer IPA’s Care-o-Bot (Chitta et al., 2012). The

Fig. 4. Schematic diagram of an intrabody communication
system utilizing capacitive coupling
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Fig. 6. System architecture of the motion planning and
execution component

high level diagram of the system is shown in Fig. 5.
Aforementioned system also leverages many other
existing approaches for different subtasks. E.g. for
the grasp planning, the system can augment a cluster
based grasp planner with GraspIt! grasp simulator and
a database (Ciocarlie et al., 2011).

Furthermore, the motion planning and execution
component, depicted in Fig. 6, uses Kinematics and
Dynamics Library (Smits, 2013) to provide numeric
inverse kinematics calculations for a general robotic
arm. Motion Planner itself is not much more than an
interface to the Open Motion Planning Library (Şucan
et al., 2012) which includes many randomized motion
planners.

To this end, our system consists of a Kinect sensor,
Schunk PowerBall 6-DOF robotic arm, a WSG-50
1-DOF gripper and an SSVEP based BCI system
utilizing LEDs for visual stimuli generation.

User interface of the BCI system is a combination
of the LCD display and visual stimuli generating
LEDs. LEDs are placed at the bottom corners and
top center of the display, where the objects segmented
by the perception system are presented, as shown in
Fig. 7. This amounts to three simultaneous stimuli,
and may require using one of those places as a listing
element, e.g. a Next button utilized in other typical
user interfaces, to enable selection among more than
three segmented objects. Once the desired object is
picked up by the robotic system, the same BCI system
can be used for inputting the desired action. Actions
can be represented using pictograms.

System uses Kinect sensor for scene understand-
ing, e.g. to segment objects on a tabletop. To this
end, depth camera data is used exclusively. On the
other hand, when presenting segmentation results to
the user, color camera is used.

After segmentation, BCI system is invoked for the
user to select the desired object. When the user makes
the selection, system starts object pickup planning and
execution procedures.

Firstly, grasp poses are calculated and tested for the

Fig. 7. BCI user interface

Fig. 8. Object pickup demonstration in Gazebo

selected object. Although we have modeled WSG-50
gripper for the GraspIt! simulator, we have decided
to use the simpler point cluster based grasp planner
from (Chitta et al., 2012). While GraspIt! is much
more advanced, one has to have extensive object mesh
database optionally complemented with an extensive
object—gripper grasp database. In the end the per-
formance of such a system depends on the object
recognition performance, which has a lot of room for
improvement.

After potential grasp poses have been obtained,
they are tested by an inverse kinematics (IK) module,
to see if the arm can position the gripper in the desired
pose. We used (Smits, 2013) for solving the IK
problem, but one can simply plug in a symbolic IK
solver module for the arm in question when avail-
able. Grasp poses that pass this test, are checked for
collisions using the model of the arm, gripper and
the environment. First found grasp that is collision
free is planned using (Şucan et al., 2012), filtered and
executed.

Finally, after the gripper has been placed in a grasp
pose, grasp execution can commence. Our WSG-50
gripper is equipped with a force sensor in one of it’s
fingers, making it suitable for implementation of the
reactive grasp execution.

System was simulated using Gazebo, and the result
of picking up object is shown in Fig. 8.



3. Conclusion and Future Work

Of our conceptual system, we have implemented its
individual parts to a certain extent. E.g. we have
implemented an LED based SSVEP BCI, capacitive
coupling IBC and a semi autonomous robotic arm.
Apart from integrating all these parts into a complete
system, we have some ideas on improving those indi-
vidual parts for future work.

Each kind of BCI suffers in a certain extent from
the BCI illiteracy (Allison and Neuper, 2010). Also,
performance of a user on different tasks can vary in
time. Therefore, it is very appealing to have a system
that integrates different mental strategies and adapts
to the current user and user’s current mental state.
Our goal is to use aforementioned mental strategies
to obtain signals for controlling robotic manipulator
(robotic arm can be mounted on a mobile platform,
e.g. an autonomous wheelchair) in different scenar-
ios. For example, the P300 speller can be adapted
for a robot control in a way that the matrix shows
pictograms of different high level commands that a
robot can perform, instead of letters and numbers
in the original P300 matrix. Since both proposed
(SSVEP and P300 based) BCI user interfaces assume a
display/monitor is used, the same could be employed
for mobile platform teleoperation. That way, instead
of overseeing the environment, the user could be
laying in bed in another room.

Connecting other physiological sensors (like ECG,
breathing or blood pressure sensors) to IBC transmit-
ters would allow continuous monitoring of the user’s
health status. Also, the whole user experience could
be further improved by strategically placing more IBC
receivers in other commonly used equipment (like
wheelchair or bed) or embedding them in the clothes
(smart textiles), thus increasing user’s mobility while
keeping full functionality of a developed intrabody
networked BCI-controlled assistive robotic system.

We intend to pursue these suggestions as to achieve
the final goal of obtaining a BCI controlled assistive
robotic system which is adaptable, mobile and user
friendly.
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Lučev, Ž., Krois, I., and Cifrek, M. (2010b). Intrabody
communication in biotelemetry. In Wearable and
Autonomous Biomedical Devices and Systems for
Smart Environment, pages 351–368. Springer.
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