
Proceedings of the RAAD 2013
22nd International Workshop on Robotics in Alpe-Adria-Danube Region

September 11-13, 2013, Portorož, Slovenia

Learning control for positionally controlled manipulators

Domagoj Hercega, Dana Kulićb and Ivan Petrovića

aDepartament of Computer and Control Engineering
Faculty of Electrical and Computer Engineering

University of Zagreb, Unska 3, 10000 Zagreb, Croatia
E-mail: {domagoj.herceg,ivan.petrovic}@fer.hr

bDepartment of Electrical and Computer Engineering
University of Waterloo, Ontario, Canda

E-mail: dana.kulic@uwaterloo.ca

Abstract. The majority of the widely available robotic arms employ the joint position control
paradigm. Additionally, these kind of arms are usually closed architecture, meaning that the
user has little knowledge or control over the inner workings of the controller. The user can only
specify a position trajectory that the arm needs to follow. In the unstructured environment this
can be a serious drawback. By exploiting the knowledge of the system, the performance of the
closed architecture robotic arm system can be improved. Recently, nonparametric regression
methods have been shown to improve performance of torque controlled arms. In this paper, we
investigate the effectiveness of those methods in the case of closed architecture robotics arms.
We apply Gaussian Process Regression (GPR) to learn the dynamic model between the input
and the output signal, including the dynamics of the robot plant and controller. We also consider
a sparse variant of GPR, called Sparse Spectrum Gaussian Process Regression, which enables
faster training and prediction times. It is demonstrated by simulation that the proposed approach
significantly enhances the trajectory following performance of closed architecture robotic arms.

Keywords. Robot Manipulators, Learning Control, Gaussian Process Regression

1. Introduction

Robots are prevalent in industrial settings, where the
operating workspace of the robot is highly structured
and known in advance. This implies that most of the
robot’s actions can be accurately planned in advance
with little or no disturbance. With such reliable
plans, robot tasks can be pre-programmed. To ensure
positioning accuracy, rigid links and joints are utilized,
using geared motors with a high gearing ratio. Simple
decentralized proportional derivative (PD) control can
be employed where a PD controller for every joint
acts independently of the other joints (Siciliano and
Khatib, 2008). This control strategy is suboptimal as
the dynamics of the joints are coupled, which the PD
controller treats as a disturbance. Furthermore, robots
in use are subject to wear and tear of inner mechanisms
which can change the properties of the robot.

A dynamics model is needed when striving for pre-
cise control during high velocity trajectories. Having
a model of the robot can provide for safer trajectories,

decreased power consumption, improved accuracy and
compliance control. In the setting of robotic arm
control, model-based controllers apply the dynamic
equation of the robotic arm to cancel out nonlinearities
and coupling effects.

Traditionally, controllers which utilize the dy-
namic model of the system have relied on either off-
line identification of the dynamic parameters (Arm-
strong et al., 1986; Radkhah et al., 2007) or adaptive
control (Craig et al., 1986). These approaches require
that the structure of the dynamic model is known;
the model parameters are then estimated. The needed
information can also be extracted from CAD models if
available. However, even the detailed CAD models do
not account for some nonlinearities such as backlash
or elasticity, etc. As we plan to learn the dynamics
of closed architecture robotic arms, such CAD models
are not available, and the dynamic structure of the
complete system may not be known.

Recently, enabled by research in machine learning,
there have been a number of attempts to learn nonpara-

metric dynamic models for robot control. Examples
include Gaussian Process Regression (GPR) (Ras-
mussen and Williams, 2006), Support Vector Regres-
sion (SVR) (Smola and Schlkopf, 2003) and Locally
Weighted Projection Regression (LWPR) (Vijayaku-
mar et al., 2005).

Recent applications of the above methods include
(Nguyen-Tuong et al., 2008) where the authors com-
pare GP and LWPR methods for inverse dynamics
learning. The authors show that learning methods can
substantially improve over PD control with gravity
compensation. In (Droniou et al., 2012), the authors
compare different methods to learn the visuo-motor
relationship for visual servoing. The tests are carried
out on a humanoid platform and it is shown that the
robot is able to achieve better performance than a
model derived from the CAD description. Learning
models for control have also been applied directly in
operational space by (Peters and Schaal, 2008). None
of the above works exploit prior knowledge of the
CAD model of the robots.

Although these methods are able to learn the
nonlinear dynamics of robotic arms, they suffer from
some drawbacks. The first is the unfavorable cubic
scaling of the GPR algorithm with the number of data
samples. Sparse Spectrum GP (Lzaro-gredilla et al.,
2010) is a variant which makes the scaling linear in
the number of data points and square in the number
of spectral frequencies that are used to approximate
the full GPR. Another approach developed with the
robotic application in mind is Local Gaussian Process
Regression (Nguyen-Tuong and Peters, 2008). Data
points are partitioned into local regions and a separate
GPR model is learned for every region. Prediction
is done by averaging over weighted local models.
To handle the continuous data stream from the robot
sensors, the authors provide a method for on-line
incorporation of new data points into each local model.
The second significant problem of the learned models
is that performance can degrade rapidly for the predic-
tions outside the region in which the model has been
trained. To address this issue (de la Cruz et al., 2012)
propose to take advantage of the prior knowledge of
the rigid body equation as a globally valid model.

While many works in this area exploit torque
control capabilities of high performance robotic arms,
in this paper, we investigate the effectiveness of non-
parametric regression methods for closed architecture
robotics arms. Our work is partially inspired by
the position to torque transformer of (Khatib et al.,
2008), but with an important advantage. Namely,
while their approach is based on detailed knowledge
of the mechanics of the joints, our approach does not
assume any knowledge of the structure of the robot,
i.e. apply nonparametric regression methods to learn
a model without a-priori knowledge of the mechanism
structure or inner controller parameters.

2. Problem formulation

The equation of motion describing the robot dynamics
is a function of the robot state and the unknown
dynamical parameters. Let us denote with q a state
vector of robot joint positions. This vector consists
of nJ elements, where nJ is the number of joints of the
robot arm. With q̇ and q̈ we denote joint velocities and
accelerations, i.e. the first and second time derivatives
of the joint positions. The vector (q, q̇, q̈) is referred
to as the robot state. Assuming a rigid body robot, the
equations of motion can be stated as:

τ = M(q)q̈+C(q, q̇)+G(q)+ ε(q, q̇, q̈), (1)

where M(q) is the nJ×nJ inertia matrix, C(q, q̇) is the
nJ×1 centripetal and Coriolis torque vector and G(q)
is the gravity loading vector. τ is the nJ sized vector of
joint torques. The term ε(q, q̇, q̈) accounts for motor
dynamics, backlash and other nonlinearties generally
not captured by the rigid body model.

High performance robot arms usually come with
torque control capabilities, meaning that it is possible
to directly control the torque the motors exert at every
joint. This is possible due to torque sensors in every
joint which allows for a high frequency control loop
based on the deviation from the desired torque. How-
ever, robotic manipulators with direct torque control
capabilities are not very common.

In contrast, most of the cheaper and widely avail-
able robotic arms are position controlled. When con-
trolling the arm in this manner, there is a PD controller
for every joint that compensates for the positional error
in a particular joint. The current or voltage reference
for the joint motor is based on a linear combination
of the positional and velocity errors, i.e. we cannot
directly control motor voltage or current. Positional
feedback is provided by encoders in the joints. It is
worth noting that the parameters of the PD controller
are usually constant.

Our goal is to investigate possibilities for en-
hancing performance of closed-architecture position
controlled robotic manipulators. In closed architecture
robotic arms the inner controller is hidden form the
user. Manufacturers usually provide the user with
the input interface (desired position) and the encoder
output (measured position). This is depicted in Fig-
ure 1. The manner in which a trajectory is followed
is completely hidden from the user. In this paper,
we propose to learn the inverse function between the
control input and system output, and use the model to
improve trajectory tracking performance.

In the closed architecture case, the torque is a func-
tion of the positional reference qref, the robot’s current
state and the unknown dynamics of the combined inner
controller and robot system. The inverse model can be
described as the nonlinear mapping from the full state
space to the positional input.

refq
RobotController

q

Closed architecture robot

Fig. 1. Schematics of a closed architecture robotic arm

qref = fn(q, q̇, q̈). (2)

Equation (2) is a standard regression model and our
goal is to infer the unknown function fn(.).

3. Gaussian Process Regression

Gaussian Process Regressions is a relatively new tech-
nique in the machine learning community. It falls
into the category of nonparametric Bayesian methods.
The applicability of GPR and its derivatives has been
demonstrated for learning the inverse dynamics of
manipulators as discussed in Section. 1. To briefly
introduce GPR, let us consider a regression task of
mapping an input vector x to an output scalar y. The
model for the regression can be stated as follows:

y = f (x)+ ε, (3)

where f (x) is the latent function that we are trying to
infer and ε is a noise therm distributed as ε∼N (0,σ2

n)
and independent of the latent function. In GPR a
Gaussian prior is assumed over the possible latent
functions. The definition of a Gaussian Process (GP)
states that a GP is a collection of random variables,
any finite number of which have a joint Gaussian
distribution. For any number N of input vectors xi and
a vector of evaluations f = [f (xi), . . . , f (xN)] we have:

p(f|xi, i ∈ 1, . . . ,N) = N (f |0,K). (4)

K is the covariance matrix between input points where
each element is calculated as Ki j = k(xi,x j). The
choice of the covariance function k(., .) is not arbitrary,
it has to be positive a definite function in order to have
a valid covariance matrix. For the sake of convenience
we will aggregate the input data into matrix X and out-
put into vector Y. Assuming a test point x∗, we would
like to infer the unknown output y∗, i.e. we would
like to know the distribution p(y∗|x∗,X,Y). Having in
mind the basic definition of GP, the estimation model
can be rewritten as follows:

[
y
y∗

]
∼N

(
0,
[

K+σ2
nI K∗

K∗T k∗∗+σ2
n

])
,

where k∗∗ is prior variance of f (x∗), K∗ is a vector of
covariance between f (x∗) and training values.

By conditioning on the observed values we have
for the predictive mean and variance:

p(y∗|x∗,X,Y) = N (µ∗,σ2
∗), (5)

where
µ∗ = k∗(K+σ

2
nIn)

−1y, (6)

σ
2
∗ = σ

2
n +k∗∗−k∗(K+σ

2
nIn)

−1)k∗T . (7)

The properties of the latent function f are governed
by the covariance function, which in turn depends on
a set of hyperparameters. These can be estimated
using gradient based optimization of the log marginal
likelihood:

log p(Y|X)=

data fit︷ ︸︸ ︷
−1

2
yT Kf

−1y−

complexity penalty︷ ︸︸ ︷
1
2

log |Kf| −
n
2

log2π,

(8)
where Kf = K+σnI. Equation (8) provides a built in
regularization mechanism as the first term encourages
a fit to the data, while the second term penalizes
complex models.

In the rest of the paper we will use the automatic
relevance determination (ARD) kernel function:

k(xi,x j) = σ f exp
(
−1

2
(xi−x j)

T M(xi−x j)

)
, (9)

where diagonal matrix M contains Mii = l−2
i . Hyper-

paramethers li are usually called lengthscales and by
growing they diminish the relevance of the ith input
dimension. A downside of the GPR is the inversion of
the covariance matrix of size n× n, which is O(n3).
This is unpractical for large n. However, once the
inversion is known each subsequent prediction is O(n)
for the mean and O(n2) for the variance.

3.1. Sparse spectrum Gaussian Process Regression
To decrease the computational complexity of GPR,
several simplifying approximation methods have been
proposed. Some of the more popular include Snelson
and Ghahramani (2006) and Csató and Opper (2002).

Rahimi and Recht (2007) show that shift invariant
kernels can be approximated to an arbitrary precision
using random feature mapping. A kernel is shift in-
variant if it only depends on the difference of its inputs,
i.e. k(x,y) = k(x− y). Lzaro-gredilla et al. (2010)
show that this approach can be successfully used in the
GPR case, yielding a new class of sparse GPR methods
called Sparse spectrum Gaussian Process Regression
(SSGPR). Using the Bochner theorem one can write:

k(xi−x j) =
∫
Rn

e−iωT (xi−x j)µ(ω)dω

= Eω[zω(xi)
T zω(x j)],

(10)

where zω(x) = [cos(ωT x),sin(ωT x)]T . If the spectral
frequency ω is drawn according to the measure µ, the
inner product gives the unbiased estimate of the shift
invariant kernel. The accuracy of the approximation
can be made arbitrarily good by drawing more samples
and averaging over them. We then have a feature
mapping:

φ(x) =
1√
m
[zω1(x)

T , . . . ,z0ωm(x)
T]T , (11)

where m is the number of spectral frequencies drawn
form the distribution. For big enough m we have

k(xi,xi)≈ 〈φ(xi),φ(x j)〉. (12)

Finally, for the ASE kernel used in this paper, the
feature mapping is as follows:

φ(x) =
σ f√

m
[sin(ωT

1 x),cos(ωT
1 x), . . .

,sin(ωT
mx),cos(ωT

Dx)].
(13)

Building on the previous results, Gijsberts and
Metta (2013) implement an incremental version of
SSGPR called Incremental SSGPR (ISSGPR). By us-
ing a rank one update to the covariance matrix they
show that it can be incrementally updated practically
forever. Hyperparameters tuning has to be done off-
line. The number of random features can be chosen
to address the trade-off between accuracy and com-
putational requirements. Another practical side of
the ISSGPR is that the algorithm is very predictable.
A breakdown of arithmetic operations in each step
can be stated precisely as is given in Gijsberts and
Metta (2013). The complexity of SSGPR is O(nm2)
per conjugate gradient step for training, O(m) and
O(m2) for predictive mean and variance respectively.
ISSGPR enables updating the covariance matrix with
a new data sample in O(m2), with the predictive
complexity the same as in SSGPR.

4. Proposed method

To learn the model for control of the robot we collect
the data from the robot and perform regression on
it. In every discrete instance two different values are
recorded from the simulated robot. The input to our
inverse model is the state vector (qk, q̇k, q̈k) at each
discrete instance k. The state vector is 3× nJ with
nJ being the number of joints. The output of the
model is a scalar positional command given to the
inner PD controller at the same instance - qk

re f . In

total N data pairs
(

qk
re f ,(q

k, q̇k, q̈k)
)

are recorded with
k ∈ 1,2, . . . ,N. From the recorded data we identify the
underlying function that describes the robot dynamics
with respect to the issued positional command. We
are interested in the unknown mapping fn(.) that maps
input to output as given in Eq. 2

Fig. 2. Unimate’s Puma 560 (picture taken form
http://www.robotics.tu-berlin.de/)

The manipulator used for testing is the simulated
Puma 560 model, whose dynamics parameters have
been identified in (Corke and Armstrong-Helouvry,
1994). The Puma 560 is a 6 degree of freedom
manipulator with revolute joints. A picture of the
physical arm can be seen in Fig 2. In the simulation,
the Puma arm input interface is a vector of torques
acting on every joint. The output is the complete
state vector. To simulate a positional controller, we
introduce a feedback signal based on positional error
and another one based on the velocity error. Our PD
controller has the following parameters: Kp = 2500,
Kv = 50 and the torque reference is calculated as
follows:

τre f = Kp (qref−q)−Kvq̇ (14)

The torque reference τref is then passed on to the
robot’s interface. The simulation is implemented using
the Robotics Toolbox software by (Corke, 2011).

To collect the data we use the motor babbling
technique as described by (Peters and Schaal, 2008).
A number of random joint position set points is gener-
ated for the arm to reach. Points are connected by 5th

order polynomials to have a smooth trajectory with a
duration of 1 second for every interval between two
adjacent set points. Data points are sampled every
0.01 seconds, while the inner control loop is running
at 1 kHz. We collect data samples from the positional
reference, which is the output for our regression task,
and the joint state, which is the input vector. This
can be seen in Fig. 3. A model is identified from the
recorded data. Afterwards, the model is used to control
the robotic arm.

Prediction from the model is used to control the
robot. The desired joint state vector (qref, q̇ref, q̈ref) is
fed into the inverse model, which outputs the pseudo
reference qps. To handle the remaining modeling error
and any unmodelled disturbances, an outside loop with
a small gain is added in order to compensate for small
deviations from the desired trajectory. The outside
loop control signals are denoted by qfb. The control

q

Memory

qq

Robot
refq

Fig. 3. Data collection procedure

Tab. 3. One-step prediction errors for different trajectories.
Trajectories are ordered by how much they differ
from the training state space with trajectory 3 being
the most different

Method GPR SSGPR ISSGPR
Trajectory 1 7.9×10−9 0.0011 3.2×10−4

Trajectory 2 6.5×10−8 0.0016 8.7×10−4

Trajectory 3 369.1862 0.1985 0.0036

signal passed on to the inner controller is qc = qps +
qfb. This is depicted in Figure 4. The ratio of the
contribution from the outside loop and the output of
the model indicates if the inverse model is providing
satisfactory accuracy. A large magnitude of the control
signal from the outside loop indicates that the learned
model is not sufficient.

5. Simulation results

Regression results for the first joint are reported in
Tab. 1. The Recorded data is partitioned into n data
points used for training, and ntest data points used for
testing. The number of spectral points used in the
SSGPR is denoted by m. The mean and standard
deviation are reported for the predictive absolute error
of the model. Root mean square (RMS) error is also
reported. GPR is used as the baseline method. We can
see that the SSGPR method approaches the full GPR
in modeling accuracy, while being much faster both in
the optimization and the prediction stage.

To verify that the proposed solution works in
closed loop in a realistic setting, simulations are
carried out emulating the real operating conditions
of a robotic arm. Trajectories used in testing the
closed loop control are a finite sum of sine and cosine
functions. This type of trajectory allows for analytic
differentiation to obtain velocity and acceleration ref-
erences. For the ith joint we have:

qi(k) =
Ni

∑
l=1

(
ai

l sin(ω f lkTs)−bi
l sin(ω f lkTs)

)
, (15)

where l is the number of elements of the finite Fourier
series, ai

l and bi
l are the amplitudes of the sine and

cosine functions. The behavior of the trajectory can be
controlled by modifying the free parameters ω f , Ni, ai

l
and bi

l .
As the output of our model is a scalar, we use

a separate model for every joint, i.e. 6 models for
the Puma 560 arm. The input vector is the same for
every model, because the joint dynamics is coupled,
but a different positional command is issued to every
joint controller. The learned controllers are all used in
nonlinear feedforward control as depicted in Fig. 4.

The Performance of FF control with SSGPR and
decentralized PD control are shown in Figs. 5 to
10. It can be seen from the figures that the learned
controllers significantly enhance the performance of
the trajectory tracking. We can observe that the first
two joints are the most difficult to learn. A statistical
evaluation is given in Tab. 2. The free parameters
of Eq. 15 are randomly generated to obtain different
test trajectories. In total, closed loop performance for
two different control strategies was evaluated on 100
random trajectories. RMS of tracking error is used as a
measure of performance. RMS is calculated for every
trajectory and mean and variance are reported for this
measure over all of the test trajectories. It is worth
noting that the test trajectories were not used in the

training procedure. Additionally, a measure ∑k q f b(k)2

∑k q f f (k)2

was used to verify that feedback loop in nonlinear
FF control is only marginally contributing to overall
control signal. Summation over k indicates summation
over all discrete instances for a single trajectory. The
ratio was below 10−6 for all the joints on all of the
test trajectories, indicating that our model is accurate
enough.

Another important criterion for the closed loop
usage of learned models is the ability for on-line
adaptation. To show on-line adaptation performance
we will use one-step ahead prediction. A PD controller
is assigned to track a certain trajectory. Afterwards,
prediction is made by incorporating the previous sam-
ple from the trajectory in the model, hence the name
one-step ahead prediction. Three trajectories are
generated which are the same except for the offset
in the joint positions. We have already stated that
prediction with GPR is very sensitive to deviations
from the training state space and we are interested
if the ISSGPR method can alleviate this problem, by
incorporating new training data on-line. Trajectory
1 has all of the joint values well inside the training
region of the position state space. By position training
state we mean just the 6 position variables, in contrast
to the full training state space of 18 variables for the
Puma 560 robot. Trajectory 2 has an offset in the
first joint so that the first joint position is outside the
training space approximately half the time. Finally,
trajectory 3 is offset in such a manner that all of the
joints are outside of the training region approximately
half of the time.

In total, three methods are compared. The results

Tab. 1. Inverse model identification for the simulated Puma 560 robotic manipulator. Two variations of SSGPR method are
presented. SSGPR fix means that only the hyperparameters are optimized, while SSGP full means that spectral
frequencies are optimized as well

Method m n ntest Mean Std. dev. RMS error Training time
GPR - 15000 5000 0.0003 0.0007 0.0008 12 [h]
SSGPR fix 100 15000 5000 0.0103 0.0462 0.0173 92 [s]
SSGPR fix 300 15000 5000 0.0069 0.0310 0.0129 495 [s]
SSGPR fix 500 15000 5000 0.0038 0.0250 0.0167 742 [s]
SSGPR fix 800 15000 5000 0.0016 0.0126 0.0089 1444 [s]
SSGPR fix 1000 15000 5000 0.0009 0.0181 0.0056 18029 [s]
SSGPR fix 2000 15000 5000 0.0002 0.0089 0.0014 51054
SSGPR full 100 15000 5000 0.0094 0.0125 0.0156 142 [s]
SSGPR full 500 15000 5000 0.0006 0.0020 0.0021 1624 [s]

Tab. 2. Closed loop performance of PD and Feedforward control approaches. A SSGPR learned model with 500 spectral
points was used. Mean and variance of the RMS of the tracking performance over 100 runs are reported

Value Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6
FF mean 2.599e−3 2.556e−3 645.168e−6 112.460e−6 98.753e−6 101.983e−6
PD mean 28.775e−3 35.688e−3 22.342e−3 20.979e−3 20.845e−3 20.430e−3
FF std. dev 1.674e−3 1.996e−3 409.393e−6 77.7326e−6 77.433e−6 80.513e−6
PD std. dev. 5.717e−3 6.381e−3 3.828e−3 2.799e−3 2.859e−3 3.125e−3

refq

refq

refq
q

psq

fbq

-

Learned Model Robot
+

+

+

K

Fig. 4. Nonlinear feedforward control strategy

are reported in Tab. 3. The baseline method is the
GPR learned model. The other two methods include
models learned by SSGPR and ISSGPR. The hyper-
parameters of the ISSGPR are the same as with the
SSGPR method, but in each time step we include the
measured input-output pair into the covariance matrix
via rank one update. As covariance updates are made
for ISSGPR, results for the ISSGPR model is bound
to give better performance. Incorporating a single
new sample into GPR model would only result in the
increase the covariance matrix and is not practical for
real time control. Results for the GPR and SSGPR are
presented just to give insight into the performance gain
that is achieved by ISSGPR. The measure used for
comparing different methods is the normalized mean
square error, i.e. squared error divided by variance
of the target vector. For the first trajectory the GPR
method is superior as expected. Similar results are
obtained for the second trajectory. The third trajectory
is the most illustrating. GPR performs poorly because
it is very sensitive to training state, SSGPR preforms
much better, but it can be seen that ISSGPR is able
to achieve superior performance by incorporating the

data on-line.

6. Conclusion

In this paper we investigate methods for learning an
input-output model for control of closed architecture
robotic manipulators. To achieve this goal, GPR
methods were used to learn the mapping between
the reference position input and the joint positions,
velocities and accelerations. To avoid the exponential
scaling of the computational complexity of the GPR
method with the training data size, we also investigate
a sparse approximation of the GPR called SSGPR.
The regression is performed offline, but the learned
model is used on-line in a nonlinear feedforward

0 1 2 3 4 5 6 7 8
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

time [s]

T
ra

c
k
in

g
 e

rr
o
r

[r
a
d
]

PD control

FF with SSGPR model

Fig. 5. Joint 1 tracking error comparison

0 1 2 3 4 5 6 7 8
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

time [s]

T
ra

c
k
in

g
 e

rr
o
r

[r
a
d
]

PD control

FF with SSGPR model

Fig. 6. Joint 2 tracking error comparison

0 1 2 3 4 5 6 7 8
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

time [s]

T
ra

c
k
in

g
 e

rr
o
r

[r
a
d
]

PD control

FF with SSGPR model

Fig. 7. Joint 3 tracking error comparison

0 1 2 3 4 5 6 7 8
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

time [s]

T
ra

c
k
in

g
 e

rr
o
r

[r
a
d
]

PD control

FF with SSGPR model

Fig. 8. Joint 4 tracking error comparison

0 1 2 3 4 5 6 7 8
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

time [s]

T
ra

c
k
in

g
 e

rr
o
r

[r
a
d
]

PD control

FF with SSGPR model

Fig. 9. Joint 5 tracking error comparison

0 1 2 3 4 5 6 7 8
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

time [s]

T
ra

c
k
in

g
 e

rr
o
r

[r
a
d
]

PD control

FF with SSGPR model

Fig. 10. Joint 6 tracking error comparison

control approach. The proposed approach is tested
in simulation on the Puma 560 robot model. The
results presented suggest that the proposed method
can be used to control the robot arm. A significant
performance boost in comparison to decentralized PD
control is observed. Additionally, the SSGPR method
can be extended to ISSGPR, an incremental version,
so that the learned model can be adapted in an on-line
manner. This is useful to decrease computation effort
and improve closed loop accuracy, particularly in the
face of changing plant parameters, e.g., increasing
friction due to wear and tear.

7. Future work

For future work, our priority will be to perform an
experimental evaluation of the results presented in this
paper. State estimation is going to play a major role,
because our robot (Schunk Powerball Lightweight
Arm LWA 4.6) is currently only equipped with posi-
tional encoders. We also plan to investigate the state
estimation problem more closely in the simulation
environment to simulate real operating conditions such
as sensor noise and quantization.

8. Acknowledgments

This work has been supported by the European Com-
munity’s Seventh Framework Programme under grant
agreement no. 285939 (ACROSS) and is also funded
in part by the Natural Sciences and Engineering Coun-
cil of Canada.

9. References

Armstrong, B., Khatib, O., and Burdick, J. (1986). The
explicit dynamic model and inertial parameters of
the puma 560 arm. In Robotics and Automation.
Proceedings. 1986 IEEE International Conference
on, volume 3, pages 510–518.

Corke, P. and Armstrong-Helouvry, B. (1994). A search for
consensus among model parameters reported for the
puma 560 robot. In Robotics and Automation, 1994.
Proceedings., 1994 IEEE International Conference
on, pages 1608–1613 vol.2.

Corke, P. I. (2011). Robotics, Vision & Control: Fundamen-
tal Algorithms in Matlab. Springer.

Craig, J., Hsu, P., and Sastry, S. (1986). Adaptive con-
trol of mechanical manipulators. In Robotics and
Automation. Proceedings. 1986 IEEE International
Conference on, volume 3, pages 190–195.

Csató, L. and Opper, M. (2002). Sparse on-line gaussian

processes. Neural Comput., 14(3):641–668.
de la Cruz, J., Owen, W., and Kulic, D. (2012). Online learn-

ing of inverse dynamics via gaussian process regres-
sion. In Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on, pages 3583–
3590.

Droniou, A., Ivaldi, S., Padois, V., and Sigaud, O. (2012).
Autonomous online learning of velocity kinematics
on the icub: a comparative study. In Proceedings
of the IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pages 1–6.

Gijsberts, A. and Metta, G. (2013). 2013 special issue:
Real-time model learning using incremental sparse
spectrum gaussian process regression. Neural Netw.,
41:59–69.

Khatib, O., Thaulad, P., Yoshikawa, T., and Park, J. (2008).
Torque-position transformer for task control of posi-
tion controlled robots. In Robotics and Automation,
2008. ICRA 2008. IEEE International Conference
on, pages 1729–1734.

Lzaro-gredilla, M., Quionero-candela, J., Edward, C., Engi-
neering, R. D., Figueiras-vidal, A. R., and Jaakkola,
T. (2010). Sparse spectrum gaussian process regres-
sion.

Nguyen-Tuong, D. and Peters, J. (2008). Local gaussian
process regression for real-time model-based robot
control. In Intelligent Robots and Systems, 2008.
IROS 2008. IEEE/RSJ International Conference on,
pages 380–385.

Nguyen-Tuong, D., Seeger, M., and Peters, J. (2008). Com-
puted torque control with nonparametric regression
models. In American Control Conference, 2008,
pages 212 –217.

Peters, J. and Schaal, S. (2008). Learning to control in
operational space. International Journal of Robotics
Research, pages 197–212.

Radkhah, K., Kulic, D., and Croft, E. (2007). Dynamic
parameter identification for the crs a460 robot. In
Intelligent Robots and Systems, 2007. IROS 2007.
IEEE/RSJ International Conference on, pages 3842–
3847. IEEE.

Rahimi, A. and Recht, B. (2007). Random features for large-
scale kernel machines. In NIPS 2007 - Advances in
Neural Information Processing Systems.

Rasmussen, C. E. and Williams, C. (2006). Gaussian
Processes for Machine Learning. MIT Press.

Siciliano, B. and Khatib, O., editors (2008). Springer
Handbook of Robotics. Springer.

Smola, A. J. and Schlkopf, B. (2003). A tutorial on support
vector regression. Technical report, STATISTICS
AND COMPUTING.

Snelson, E. and Ghahramani, Z. (2006). Sparse gaussian
processes using pseudo-inputs. In Advances in
Neural Information Processing Systems 18, pages
1257–1264. MIT press.

Vijayakumar, S., D’souza, A., and Schaal, S. (2005). Incre-
mental online learning in high dimensions. Neural
Comput., 17(12):2602–2634.

