
Efficient Interpolated Path Planning of

Mobile Robots based on Occupancy Grid

Maps

Marija Ðakulović ∗ Mijo Čikeš ∗ Ivan Petrović ∗

∗ University of Zagreb, Faculty of Electrical Engineering and
Computing, Department of Control and Computer (e-mail:

{marija.dakulovic, mijo.cikes, ivan.petrovic}@fer.hr).

Abstract: This paper focuses on interpolation-based path planning algorithms for mobile robot
that use the occupancy grid map of the environment. Such an algorithm produces the path
close to optimal solution in continuous search space, but has computational burden. We discuss
on using heuristics to improve efficiency of the E* algorithm, as the interpolation-based path
planning algorithm, with a trade-off of generating less optimal paths. We compare obtained
paths with the almost optimal solution in continuous search space and also with the path
obtained by the D* algorithm, which is a representative of the classical graph search algorithms
applied on the occupancy grid map. All used algorithms are verified both by simulation and
experimentally on a Pioneer 3DX mobile robot equipped with a laser range finder.

Keywords: path planning, graph search, autonomous mobile robots.

1. INTRODUCTION

This paper considers the problem of path planning for
autonomous mobile robots in dynamic environments. An
important issue for the path planning algorithm is the
shape of obtained path, e.g. the number of points in
which path changes directions, since in these points the
robot must slow down or even stop and turn in place.
Furthermore, the algorithm real-time performance is very
important in changing environments. It means that the
path must be replanned as the environment changes to
prevent collisions with the newly detected obstacles.

The majority of path planning algorithms for mobile
robots use equally-spaced grid of discrete points (cells),
called the occupancy grid map, to represent a continuous
environment (Thrun et al. (2005)). From such a grid
representation a graph can be created, where nodes are
grid cells, edges are connections between neighbor grid
cells, and weights are costs of traversing edges. The path
planning algorithm is then considered as a graph search
algorithm (Russell et al. (1995)). The main representative
is the A* algorithm, which uses the heuristic function to
focus the search on the minimal number of nodes necessary
to find the optimal path (Hart et al. (1968)). Stentz (1994)
developed the D* algorithm as a dynamic version of the
A* algorithm, which is more efficient in environments with
changing or unknown obstacle configuration.

The path obtained by a graph search algorithm is com-
posed of neighboring nodes in the graph (grid points), and
therefore, is constrained to eight directions of path seg-

⋆ This research has been supported by the Ministry of Science,
Education and Sports of the Republic of Croatia under grant No.
036 − 0363078 − 3018 and by the European Community’s Seventh
Framework Programme under grant No. 285939 (ACROSS).

ments. On the contrary, the interpolation-based path plan-
ning algorithms produce paths whose points are interpo-
lated between grid points, e.g. the Field D* algorithm (Fer-
guson and Stentz (2007)) or the E* algorithm (Philippsen
and Siegwart (2005)). The Field D* algorithm uses linear
interpolation to derive path points between grid intersec-
tions. Similarly, the E* algorithm uses interpolation to
produce the approximation of the continuous optimal path
costs at grid points. The path is obtained by following the
gradient descent of calculated path costs. In our previous
work (Ðakulović and Petrović (2011)) we proposed the
algorithm called Two-Way D* (TWD*), which calculates
the shortest possible path in the geometrical space by
connecting certain non-neighbor grid points. Above men-
tioned algorithms produce more natural low-cost paths
through grids with continuous headings, but have about
twofold higher computational time than the basic D* algo-
rithm. However, their efficiency can be increased by using
heuristics to focus the search. Philippsen (2006) states that
heuristics together with interpolation cause different and
more complicated behavior of the algorithm, which has
not been resolved yet for the E* algorithm. Namely, the
optimal interpolated cost is not guaranteed to be found.
For the Field D*, Ferguson and Stentz (2005) state that
the standard Euclidean cost dividing by two has shown
itself as the best heuristics in practice as it is more efficient
and produces solutions that are not noticeably different
from the optimal solutions. Ferguson et al. (2005) present
comprehensive study of heuristic-based search algorithms
without interpolation, but review on incorporating the
heuristics into the interpolation-based path planning al-
gorithms has not been done yet.

Recently, we present comparation of D*, E* and TWD* al-
gorithms (Čikeš et al. (2011)). Here we extend our previous
comparative study by examining heuristics influence on



the E* algorithm. Heuristics is scaled by a varying factor
in order to inspect dependency on path quality. Obtained
paths are compared to the path of the TWD* and D*
algorithm according to certain path characteristics. Addi-
tionally, parameters related to the real-time performance
of all three algorithms are also compared.

The rest of the paper is organized as follows. The problem
formulation is given in section 2, section 3 presents com-
pared algorithms in short, section 4 presents simulations
results and experimental results are given in section 5.

2. THE OCCUPANCY GRID MAP AND SEARCH
GRAPH

An occupancy grid map is created by approximate cell
decomposition of the environment (Thrun et al. (2005)).
The whole environment is divided into squared cells of
equal size ecell, which are abstractly represented as the
set of M elements M = {1, . . . , M} with corresponding
Cartesian coordinates of cell centers ci ∈ R

2, i ∈ M. Each
cell contains occupancy information o : M 7→ R of the
part of the environment that it covers.

In this paper two types of occupancy grid maps are
used: binary occupancy grid maps and weighted occupancy
grid maps. In a binary occupancy grid map occupancy
function o contains only two values, 1 for free and ∞
for occupied cells. In a weighted occupancy grid map
additional occupancy values are used for cells that are
close to obstacles. We use simple procedure of calculating
occupancy values:

o(i) =

{

max{1, (Mc + 2 − min
j∈O

‖ci − cj‖∞)} if i /∈ O

∞ if i ∈ O

(1)
where ‖ ·‖∞ is the infinity norm, Mc is the integer number
of cells defining the size of the safety cost mask around
obstacles, and O is the set of obstacle cells. It is assumed
that all obstacles are enlarged to account for robot’s
dimensions, where the robot can be approximated by a
circle.

Weighted undirected search graph G(N , E , W) is created
from the occupancy grid map in such a way that all
unoccupied cells N = M \ O represent the set of nodes
in the graph. Edges are defined between neighbor nodes
E = {{i, j} | i, j ∈ N , i and j are neighbors}, where two
nodes i, j ∈ N are neighbors if ‖ci − cj‖∞ = ecell.
Weights are the cost of transition between neighbors W =
{wi,j | i, j ∈ N , i and j are neighbors}:

wi,j := ‖ci − cj‖ · max{o(i), o(j)}. (2)
In binary occupancy grid maps there are two values
of transitions between neighbors: straight and diagonal
transition. In weighted occupancy grid maps transitions
between neighbors are additionally weighted according to
their distances to the obstacles.

A path P in the search graph G(N , E , W) is defined as
a succession of neighboring nodes, i.e. the points in the
path are neighboring cell centers (e.g. the path calculated
by the D* algorithm). For the interpolation-based path
planning algorithm a path Pint is composed of points that
are located arbitrary within cells (e.g. the path calculated
by the E* algorithm). The cost of the path in the search

graph P = (n1, n2, . . . , nL) is defined as the sum of weights
of edges along the path, i.e.,

c(P) :=
L−1
∑

i=1

wni,ni+1
. (3)

The cost of the path Pint = (c1, c2, . . . , cLint
) is computed

similarly:

c(Pint) :=
Lint−1

∑

i=1

‖ci − ci+1‖ · max{o(ni), o(ni+1)}, (4)

where nodes ni and ni+1 are determined as cells that
contain coordinates ci and ci+1, respectively. Here is
assumed that two consecutive path coordinates are close
enough so they belong to the same cell or to two neighbor
cells. If ci and ci+1 belong to distanced non-neighbor cells
then equally spaced points lying on the line segment cici+1

need to be included for the path cost calculation.

Figure 1 represents the weighed occupancy grid map with
Mc = 4 cells wide safety cost mask of the section of the
test environment. Free space is colored white (o(·) = 1),
unoccupied space within the safety cost mask is colored
by shades of gray (o(·) ∈ {2, 3, 4, 5}), and obstacles are
colored black (o(·) = ∞), where real obstacle positions
are marked by x. For illustration, two paths are shown,
the path calculated by the D* algorithm and the path
calculated by the E* algorithm. Notice that the number of
cells Mc influence on the distance between the path and
the obstacles.

−24.5 −24 −23.5 −23 −22.5 −22 −21.5 −21 −20.5

−23.4

−23.2

−23

−22.8

−22.6

−22.4

−22.2

5
4

3
2

1o =

robot
representation

D* path

E* path

y 
[m

]

x [m]

Fig. 1. A section of the test environment represented by
the weighted occupancy grid map with the safety cost
mask (Mc = 4).

3. PATH PLANNING

This section briefly restates the algorithms D*, TWD* and
E*. More details can be found in Stentz (1994), Philippsen
and Siegwart (2005) and Ðakulović and Petrović (2011),
respectively.

3.1 The D* algorithm

For every searched node n, the D* algorithm computes
the cost value g(n) of the optimal path from the node n
to the goal node. The algorithm stores the backpointers
for every searched node n, which point to the parent node
with the smallest cost g. A backpointer is noted by the
function b(·), where b(n) = m means that the node n
has the smallest cost because it follows the node m. The
backpointers ensure that optimal path from any searched
node n to the goal node can be extracted according to the
function b(·).



The D* algorithm starts the search from the goal node,
examining neighbor nodes of minimal g value until the
start node is reached. For better replanning performances,
the exhaustive search can be done in the initial phase,
which computes optimal paths and path costs g from every
reachable node in the graph G(N , E , W) to the goal node.

If during the motion robot detects change of occupancy
values, first the weights in the graph G(N , E , W) are
updated according to (2). The backpointers are redirected
locally and the new optimal path from the robot’s current
position is determined. The number of expanded nodes is
minimal and consequently the time of execution. A simple
illustration of the algorithm can be seen in Fig. 2.

start

goal

Fig. 2. Illustration of path planning (left) and replanning
(right) by the D* algorithm.

3.2 The TWD* algorithm

The TWD* algorithm does the exhaustive search of the
graph G(N , E , W) by applying one pass of the D* al-
gorithm executed from the goal node to the start node
(standard D*) and another pass executed from the start
node to the goal node (the reverse D* (RD*)). The sum
of the path costs of both D* passes, costs g for D* pass
and gR for RD* pass give the complete cost of the path
f(n) = g(n) + gR(n).

The set of all nodes n such that f(n) = fmin forms
the geometrical area of minimal cost fmin. The path
is calculated by partitioning the minimal cost area into
smaller convex polygons and by finding the connection of
polygon vertices that form the shortest path in geometrical
space. The shortest path found by the TWD* algorithm
consists of straight line segments with each straight line
segment lying within the area of minimal cost fmin (see
Fig. 3).

3.3 The E* algorithm

The E* algorithm uses the interpolation function, which
assigns numerical value to each cell by the so called
wavefront propagation over the free cells in the grid map.
The wavefront propagation acts like a continuous contour
that sweeps from the goal node outwards and at each cell
record the crossing time. The path cost at each cell can be
calculated by dividing the crossing time by the speed of the
propagation within the cell F (n) = 1 − r(n), where r(n) is
the risk of traversal through the cell n. The risk function
r is normalized to [0, 1] where risk 0 corresponds to free
cells, and risk 1 corresponds to occupied cells. The lower r

160 180 200 220 240 260
50

60

70

80

90

100

110

S5

fmin

start

i

j

Fig. 3. Illustration of the path calculation by the TWD*
algorithm.

implies higher propagation speed. The occupancy function
o given by (1) can be transformed to the risk function r
by normalization

r(i) = min

(

1,
o(i) − 1
Mc + 1

)

(5)

Therefore, for the example in Fig. 1 occupancy values
o(i) ∈ {1, 2, 3, 4, 5, ∞} can be transformed to risk values
r(i) ∈ {0, 0.2, 0, 4, 0.6, 0.8, 1}.

Unlike the D* algorithm, which uses one backpointer for
a node n to represent which node is the next node in
the optimal path (b(n) = m), or on which neighbor
node m the path cost g(n) depends, the E* algorithm
uses backpointers for one or two neighbors that are not
obstacles and are not lying on same axes. For the E*
algorithm, each node has four neighbors in undirected
graph, diagonal cells are omitted. Each node n has two
values – rhs(n) and v(n). Nodes that wait to be expanded
are sorted in the queue called Wavefront by the key
min(rhs(n), v(n)). When the node n is subtracted from
the queue the value v(n) become equal to rhs(n). The path
is obtained by following the gradient descent of calculated
path costs. A simple illustration of the algorithm can be
seen in Fig. 4.

start

goal

Fig. 4. Illustration of path planning (left) and replanning
(right) by the E* algorithm.

Since the E* is based on the D* algorithm which is
capable of focused heuristic search to speed up planning,
heuristics can be incorporated in the key for sorting the
queue Wavefront as min(rhs(n) + k · h(n), v(n)), where h
is heuristic function and k is a scalar factor. The most
common used heuristic function is Euclidean distance to
the goal, which is used in this work.



4. SIMULATION RESULTS

We tested heuristics influence on the E* algorithm by
changing the factor k ∈ {0, 0.25, 0.5, 1} and comparing
obtained paths and execution parameters to the D* and
TWD* algorithms. Tests were performed on three different
occupancy grid maps. The first map is the free space,
i.e. the environment without obstacles shown in Fig. 5,
the second map is the Department map, which is a real
experimental environment of our Department shown in
Fig. 7 and the third map is randomly generated map
shown in Fig. 9. The first two maps are represented by
a binary occupancy grid map, while the third one is
represented by a weighted occupancy grid map. Simulation
results are measured on notebook with Intel Core2Duo
T7500 processor on Ubuntu 10.04 Linux operating system.
Measurements were done in optimization mode (opt) with
-03 flag on GNU C compiler. Path characteristics are: l
- length of the initial path; c - cost of the initial path,
which is the same as the length for calculations in binary
occupancy grid maps; nαinit - the number of points in
which the initial path changes direction (changes less than
5◦ were ignored); Σαinit - the sum of all angles of the initial
path direction changes. The execution parameters for the
initial planning are the number of algorithm iterations
noted by I and corresponding time noted by tinit. On
the Department map we also tested replanning in case of
changes in the environment.

4.1 Free space

The dimension of the map is 165 × 540 cells, ecell = 0.1
m. Numerical results are given in Table 1 and the path
comparison is shown in Fig. 5 and 6. The TWD* path
is the shortest straight line path (nαinit = Σαinit = 0),
and both E* without heuristics and TWD* algorithm give
significantly shorter path then the basic D* algorithm
for about 7%, but the time of execution tinit is worse
for a factor 1.5. Shorthand exh. in Table 1 means that
exhaustive initial search is performed. Executional time is
lowered by using heuristics in the E* algorithm. For all
values of k initial search is performed regularly, i.e., until
sufficient nodes are searched to find the path. For k = 0.5
executional time is lowered for about 24%. The largest
decrease of executional time is for k = 1 for about 80%,
but the path differs significantly from the basic E* path,
as can be seen in Fig. 6, although it is still shorter than
the D* path. The E* for k = 1 has the largest values of
nαinit and Σαinit.

Table 1. Comparison of algorithms in the free
space

Algorithm I tinit nαinit Σαinit l

[ms] [◦] [m]

D* 82150 338 1 45 28.458
TWD* 164300 484 0 0 26.514
E*(exh.) 82150 486 3 31 26.526
E*(k=0) 81069 486 3 31 26.526
E*(k=0.25) 61629 448 3 33 26.527
E*(k=0.5) 46776 370 4 46 26.533
E*(k=1) 10119 86 79 189 27.038

−25 −20 −15 −10 −5 0 5 10 15 20 25

−5

0

5

x [m]

y 
[m

]

 

 

start

goal

D*
TWD*
E*

Fig. 5. Comparison of paths in the free space.

−25 −20 −15 −10 −5 0 5 10 15 20 25

−5

0

5

x [m]

y 
[m

]

 

 

start

goal

k=0
k=0.25
k=0.5
k=1

Fig. 6. Comparison of paths of the E* algorithm for
heuristics factors k ∈ {0, 0.25, 0.5, 1} in the free space.

4.2 Department map

The dimension of the map is 165 × 540 cells, ecell = 0.1 m.
Numerical results for initial planning are shown in Table 2
and the path comparison is shown in Fig. 7 and 8. The
results are similar to the ones obtained on the empty
map. The TWD* algorithm produces the shortest path,
the path is shorter than the basic D* algorithm for about
6 %. The E* algorithm without heuristics has shorter path
for about 4 % than the basic D* algorithm. The time
of execution tinit for the E* with exhaustive search and
TWD* algorithms are worse than the basic D* algorithm
for about 4 times. By using heuristics in the E* algorithm
time of execution can be lowered, as can be seen in Table
2. By using heuristics with a factor k = 1 time of execution
is lowered to the time of the D* algorithm, but the path
grows longer and is shorter than the path obtained by the
basic D* algorithm for about 0.6 %. However, even for
small factor value k = 0.25 the path is very similar to the
path obtained by the E* algorithm without heuristics and
execution time is lowered significantly by a factor 2.

Table 2. Comparison of algorithms in the De-
partment map

Algorithm I tinit [ms] nαinit Σαinit [◦] l [m]

D* 32724 26 15 675 18.81
TWD* 65448 102 11 239 17.65
E*(exh.) 32724 119 20 490 18.03
E*(k=0) 18517 79 20 490 18.03
E*(k=0.25) 14791 63 21 500 18.04
E*(k=0.5) 11736 49 28 719 18.16
E*(k=1) 3860 16 79 848 18.69

4.3 Randomly generated map

The dimension of the randomly generated map is 500×500
cells, with the cell size of ecell = 0.1 m and of about
50% occupied cells. Obstacles were created by drawing the
squares at random places and of random sizes. Numerical



−25 −20 −15 −10 −5 0

−4

−2

0

2

4

6

x [m]

y 
[m

]

 

 

start

goal

D*
TWD*
E*

Fig. 7. Initial paths in the Department map.

−25 −20 −15 −10 −5 0

−4

−2

0

2

4

6

x [m]

y 
[m

]

 

 

start

goal

k=0
k=0.25
k=0.5
k=1

Fig. 8. Initial paths of the E* algorithm for heuristics
factors k ∈ {0, 0.25, 0.5, 1} in the Department map.

results of the algorithms comparison is given in Table 3,
and the path comparison is shown in Fig. 9 and 10. Since
this map is represented by the weighted occupancy grid
map, value l (the length of the initial path) and c (the
cost of the initial path) differ. Expectingly, the TWD*
algorithm has the smallest cost of the path, but E* is
very close to TWD*. The both E* and TWD* algorithm
give significantly shorter path then the basic D* algorithm
for approximately 6 %, but the time of execution tinit is
worse for a factor 2. By using heuristics executional time
is lowered for k = 1 below the executional time of the D*
algorithm, but path parameters nαinit and Σαinit grow to
high numbers.

Table 3. Comparison of algorithms in the ran-
domly generated map

Algorithm I tinit nαinit Σαinit l c

[ms] [◦] [m] [m]

D* 161609 979 46 2070 62.11 63.45
TWD* 323218 2124 27 600 59.44 60.51
E*(exh.) 161609 1575 121 1498 58.75 60.95
E*(k=0) 160761 1551 121 1498 58.75 60.95
E*(k=0.25) 148081 1624 124 1494 58.82 61.02
E*(k=0.5) 122141 1429 160 1920 59.12 61.34
E*(k=1) 56925 561 458 12332 61.21 64.54

4.4 Path replanning

Replanning capability was tested on the Department map.
Simulations were repeated 10 times for each value of the
parameter k and results were averaged. At each simulation
run artificial obstacles were moving through the environ-
ment and blocking passages, as can be seen in Fig. 11.
Table 4 shows times of replanning on the Department
map. tmax

rep denotes the highest time of replanning dur-
ing the robot motion through the environment populated

−20

−15

−10

−5

0

5
−20 −15 −10 −5 0 5 10 15 20

y 
[m

]

x [m]

 

 
start

goal

D*

TWD*

E*

Fig. 9. Path comparison in the randomly generated map
with the safety cost mask.

−20

−15

−10

−5

0

5
−20 −15 −10 −5 0 5 10 15 20

y 
[m

]

x [m]

 

 
start

goal

k=0

k=0.25

k=0.5

k=1

Fig. 10. Path comparison of the E* algorithm for heuristics
factors k ∈ {0, 0.25, 0.5, 1} in the randomly generated
map with the safety cost mask.

by unknown obstacles. The number of iterations of the
highest replanning is denoted by Imax

rep . The sum of all
replanning times is denoted by Σtrep and ΣIrep is the
sum of all iterations during replannings. It can be noticed
that replanning execution times depend on whether the
initial search is performed exhaustively (shorthand exh. in
Table 4), i.e. all nodes are searched regardless the path was
found some iterations ago, or regularly, i.e. only sufficient
nodes are searched to find the path. If regular search is
performed, it can happened that algorithm needs more
time for replanning if some new nodes, which were not
searched initially must be examined. E* with exhaustive
initial search and TWD* have similar times of replanning,
but the basic D* algorithm has the best replanning time
and tmax

rep is better approximately for a factor 2. However,
the replanning times of the heuristic E* algorithm with the
exhaustive initial search and factor k = 1 is very close to
the replanning times of the D* algorithm. Even for small
factor value k = 0.25 replanning times are lowered.

5. EXPERIMENTAL RESULTS AND CONCLUSIONS

The experimental results were obtained with a Pioneer
3DX mobile robot at our Department. The occupancy
grid map with the safety cost mask was used. The laser
range finder SICK LMS200 mounted on the robot was used
for environment perception. The dynamic window based
algorithm, described in our previous work (Seder et al.
(2005)), was used for path following. Two experiments



Table 4. Replanning execution

Alg. tmax
rep Imax

rep Σtrep ΣIrep

[ms] [ms]

D* 11 9567 38 18051
TWD* 20 18885 139 75344
E*(exh.) 22 6676 115 30943
E*(k=0) 64 18684 187 61101
E*(exh. k=0.25) 17 5905 103 18821
E*(k=0.25) 21 6945 109 19006
E*(exh. k=0.5) 16 5801 112 19378
E*(k=0.5) 28 7417 127 24319
E*(exh. k=1) 15 4619 131 31132
E*(k=1) 29 8997 146 39469

−25 −20 −15 −10 −5 0

−4

−2

0

2

4

6

x [m]

y 
[m

]

 

 

start

goal

init. E* path

repl. E* path
robot trajectory

Fig. 11. Initial and replanned paths by the E* algorithm
in the Department map.

were made: the first without heuristics (k = 0) and the
second with heuristics multiplied by a factor k = 0.25
since this factor has shown to produce very similar paths
to the paths obtained by the original E* algorithm and
also to lower the computational time.

Fig. 12 shows the initial and replanned paths calculated
by the E* algorithm, and the robot’s trajectory while
following the path. Laser readings are shown from all
robot’s positions. According to the laser readings it can
be noticed that the door was closing while the robot tried
to pass through it.

−20 −18 −16 −14 −12 −10 −8 −6 −4

−3

−2

−1

0

1

2

3

4

5

6

7

x [m]

y 
[m

]

 

 

start

goal

initial path
replaned path
robot trajectory
static known obstacles
laser data

Fig. 12. The initial and replanned paths calculated by the
E* algorithm and the trajectory driven by the mobile
robot Pioneer 3DX.

Numerical results of the replanning is shown in Table 5.
It can be seen that the sum of all replannings is much
higher comparing to the simulation results, which is due to

incomplete map of the environment. It can also be noticed
that using heuristics multiplied by a factor 0.25 lowered
number of explored nodes and computational times.

Table 5. Replanning execution

Alg. tmax
rep [ms] Imax

rep Σtrep [ms] ΣIrep

D* 17 5286 161 67457
TWD* 23 9618 419 100579
E*(k=0) 14 4197 1217 135190
E*(k=0.25) 14 3842 1072 105600

REFERENCES

Ferguson, D., Likhachev, M., and Stentz, A. (2005). A
guide to heuristic-based path planning. In Proceedings
of the international workshop on planning under uncer-
tainty for autonomous systems, international conference
on automated planning and scheduling (ICAPS), 9–18.

Ferguson, D. and Stentz, A. (2005). The field D* algorithm
for improved path planning and replanning in uniform
and non-uniform cost environments. Robotics Institute,
Pittsburgh, PA, Tech. Rep. CMU-RITR-05-19.

Ferguson, D. and Stentz, A. (2007). Field D*:
An Interpolation-Based Path Planner and Replanner.
Robotics Research: Results of the 12 th International
Symposium ISRR (STAR: Springer Tracts in Advanced
Robotics), 28, 239–253.

Hart, P., Nilsson, N., and Raphael, B. (1968). A formal
basis for the heuristic determination of minimum cost
paths. IEEE transactions on Systems Science and
Cybernetics, 4(2), 100–107.

Philippsen, R. (2006). A light formulation of the E*
interpolated path replanner. Autonomous Systems Lab,
Ecole Polytechnique Federale de Lausanne, Tech. Rep.

Philippsen, R. and Siegwart, R. (2005). An interpolated
dynamic navigation function. In Proceedings of the
IEEE International Conference on Robotics and Au-
tomation (ICRA 2005), volume 4, 3782–3789. Citeseer.

Russell, S., Norvig, P., Canny, J., Malik, J., and Edwards,
D. (1995). Artificial intelligence: a modern approach.
Prentice Hall Englewood Cliffs, NJ.

Seder, M., Maček, K., and Petrović, I. (2005). An in-
tegrated approach to real-time mobile robot control in
partially known indoor environments. Industrial Elec-
tronics Society, 2005. IECON 2005. 32nd Annual Con-
ference of IEEE, 1785–1790.

Stentz, A. (1994). Optimal and efficient path planning
for partially-known environments. Robotics and Au-
tomation, 1994. Proceedings., 1994 IEEE International
Conference on, 3310–3317.

Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic
robotics. Cambridge, Massachusetts: MIT Press.

Čikeš, M., Ðakulović, M., and Petrović, I. (2011). The path
planning algorithms for a mobile robot based on the
occupancy grid map of the environment – a comparative
study. In Information, Communication and Automation
Technologies (ICAT), 2011 XXIII International Sympo-
sium on, 1–8. IEEE.

Ðakulović, M. and Petrović, I. (2011). Two-way D*
algorithm for path planning and replanning. Robotics
and Autonomous Systems, 59(5), 329–342.


