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Abstract—This paper presents a strategy for deadlock avoid-
ance of mobile robots in narrow passages of environments
populated with other moving objects. The proposed strategy
detects deadlocks in narrow passages only by robot’s perceptive
sensors, i.e., no other communication means with moving
objects is assumed. The strategy is based on the random multi-
access algorithm for the network congestion avoidance. The
strategy is implemented within our existing motion planning
and control system for mobile robots and thoroughly tested
by simulation and experimentally on the Pioneer 3DX mobile
robot equipped with SICK LMS-200 laser range finder. The test

results illustrate the appropriateness of the proposed strategy
for resolving deadlocks in narrow passages.

I. INTRODUCTION

An autonomous mobile robot is expected to perform goal

directed tasks in dynamic environments populated with other

moving objects such as mobile robots, animals and human

beings. The mobile robot motion planning system has to

avoid deadlocks or path conflicts with other moving objects.

A deadlock is a possible situation in path planning in which

a solution cannot be found, even though one exists.

The deadlock avoidance problem is usually solved as the

part of the multi-robot path planning and motion coordination

problem under assumption that the environment is populated

only with multiple autonomous mobile robots. The deadlocks

in such systems are typically caused by robots blocking each

other’s paths, and the planner being unable to find a solution

in which robots move out of each other’s way [1]. The

existing methods for solving the problem of motion planning

for multiple robots can be divided into two categories [2]:

centralized and decentralized approaches.

The centralized approaches combine the configuration

spaces of all individual robots into one composite configu-

ration space, to which classical single-robot path planning

algorithms are applied [3]. However, these planning ap-

proaches require computation time that is exponential in the

dimension of the multi-robot configuration space.

Unlike the centralized approaches, in the decentralized ap-

proaches, the path for each robot is planned individually, fol-

lowed by a certain strategy for resolving possible deadlocks

with paths of other robots. The decentralized approaches are

very efficient since they avoid hard combinatorial planning

problems of centralized approaches, but they suffer from two
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main drawbacks: (1) they are incomplete in the sense that

they do not guarantee finding a solution even if one exists;

and (2) the resulting solutions are often not optimal. The

decentralized approaches can further be classified as coupled

or decoupled, depending on the level of coordination among

the robots in resolving the deadlocks.

The coupled decentralized approaches plan and coordinate

the paths of the robots explicitly in advance. The most

popular are the prioritized planning approaches, which plan

the paths in the configuration time-space for each robot in

prioritized order, considering other robots of higher priority

as moving obstacles at every point in time [4], [5], [6]. How

to assign the priorities to the individual robots has a serious

influence on whether at all a solution can be found and how

long the resulting paths are [7].

The decoupled decentralized approaches relax multi-robot

path planning giving emphasis to the coordination of robots’

motions in real-time using reactive, behavior-based, or

control-theoretic approaches. Approach based on the ant

colony behavior [8] belongs to decoupled decentralized ap-

proaches. The ant colony approach first computes separate

paths for individual robots without considering other robots

paths in path planning. Then, prioritized rules are employed

locally in coordinating the robots during movement to avoid

deadlocks in paths. This approach makes the assumption that

robots can detect each other by sensors and find out their

positions and velocities. Thereupon, the higher priority is

assigned to the robot with the higher velocity. Numerous

behavior-based decoupled decentralized approaches apply

decision theory for obstacle avoidance and deadlocks pre-

venting [9], [10]. In [11] coordination graphs (introduced in

[12]) are used for deadlock avoidance in the narrow passages.

For each narrow passage a coordination graph is created. The

main drawback of this method is high computational cost,

which grows with the number of narrow passages.

The above described multi-robot path planning and coordi-

nation approaches assume that the environment is populated

only with multiple mobile robots, which paths can be some-

how coordinated. Therefore, they do not solve deadlocks

caused by other moving objects such as human beings,

animals and moving objects with unpredictable behaviors.

Research of methods for robot’s navigation among humans

and for human-robot interactions has also been conducted.

For example, the robot RHINO [13] is designed to give

interactive tours through an exhibition in a densely populated

museum. The robot RHINO has a full hierarchical structure

of separate algorithms, which solve individual subtasks.

The problem of deadlocks is solved by selecting alternative
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local path, or if deadlocks are successive and frequent, by

calculating a new global path. Similar behavior has the tour-

guide robot MINERVA [14].

This paper presents a new strategy which resolves dead-

lock problems in narrow passages generally, i.e. for any

type of moving objects causing the deadlocks. In order to

achieve the generality of the proposed strategy it is assumed

that the robot cannot communicate with moving objects

by any means except perceiving their motion by the on-

board perceptive sensors. The proposed strategy for resolving

deadlocks is based on the random multi-access algorithm for

the network congestion avoidance [15]. Test results obtained

with systematic simulations and experimentally with a real

robot illustrate the appropriateness of the proposed strategy

in resolving deadlocks in narrow passages.

The rest of the paper is organized as follows. Section

II reviews used algorithms for environment map and robot

representation, narrow passages detection and the robot mo-

tion planning. Section III presents the proposed deadlock

avoidance strategy and Section IV test results. Section V

concludes the paper.

II. PROBLEM STATEMENT

Here we first present used occupancy grid map and robot

representation. The algorithm for automatic creation of hier-

archies of abstraction presented in our previous work [16] is

used to identify narrow passages in the occupancy grid map.

The part of the algorithm for narrow passages extraction is

here revised. At the end of this section robot motion planning

is shortly described.

A. Used occupancy grid map and robot representation

An occupancy grid map is created by approximate cell

decomposition of the environment [17]. The whole envi-

ronment is divided into squared cells of equal size ecell,
which are abstractly represented as the set of M elements

M = {1, . . . ,M} with corresponding Cartesian coordinates

of cell centers ci ∈ R
2, i ∈M. Each cell contains occupancy

information of the part of the environment that it covers.

We use weighted occupancy grid map introduced in our

previous work [18]. A weighted occupancy function o(i) ∈
{1, 2, . . . ,Mc + 1,∞}, i ∈ M is used for representing the

set of all obstacles in the environment noted as O = {i ∈
M | o(i) =∞} and unoccupied environment is represented

by the set of unoccupied cells noted as N = M \ O.

Occupancy function is defined as follows:

o(i) =

{

max{1, (Mc + 2−min
j∈O
‖ci − cj‖∞)} if i /∈ O

∞ if i ∈ O
(1)

Described procedure generates the so-called safety cost mask

around obstacles with smooth decrease of occupancy values

from the obstacles towards the free space. The size of the

safety cost mask is defined by the predefined integer number

of cells Mc. The weighed occupancy grid map with Mc = 4
cells wide safety cost mask of the section of the experimental

environment is shown in Fig. 1.
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Fig. 1. The occupancy grid map with the safety cost mask (Mc = 4) and
the robot squared mask (MR = 3).

We assume that real shape of the mobile robot can be

approximated by a circle of a radius rr, which is very often

used assumption in the literature. In that case the robot is

represented by a squared mask in the grid map, within which

the robot’s real circular shape can be drawn. To allow the

robot to be located within any unoccupied cell, all obstacles

in the grid map are enlarged for the integer number of cells

MR, i.e. the robot is described by a squared mask of size

2MR + 1. Real shape of the robot and its squared mask in

the occupancy grid map are depicted in Fig. 1. The robot’s

position is considered to be the cell R. The real obstacle

placement is shown by black color.

B. Automatic detection of narrow passages

Narrow passages are extracted from the occupancy grid

map by the algorithm introduced in our previous work [16].

The algorithm is here shortly revised.

Cartesian coordinates of the cell centers (x, y) ∈ R
2 can

be transformed into the integer coordinates of the occupancy

grid map (i, j) ∈ N
2 as (i, j) :=

(⌈

x− x0

ecell

⌉

,

⌈

y − y0
ecell

⌉)

,

where x0 and y0 are the smallest coordinates of the envi-

ronment (the origin is the left bottom corner of the map).

Therefore, the cell n ∈ M has real coordinates of the center

cn ≡ (xn, yn) ∈ R
2, and integer coordinates (in, jn) ∈ N

2.

Occupancy function is considered as a function of two

variables o : N2 7→ {1, 2, . . . ,Mc+2}. Notice that the value

Mc + 2 is used instead of ∞. Three dimensional view of

the function o is given in Fig. 2. Note that according to (1)

occupancy values of two neighbor cells can differ maximally

by one.

The narrow passage is defined as the set of cells in which

local minimum along one axis of the function o is present,

and value of the function o is larger than 1 (see Fig. 2).

The largest width of such defined narrow passage is equal

to 2(Mc + MR). We have chosen for Mc to be equal to

MR+1 and, therefore, the widest narrow passage will enable

two robots to pass through it at the same time if both robots

travels as close to the wall as possible. The candidate cells

of local minima are determined for ∀(i, j) ∈ N
2 according to
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Fig. 2. The part of the environment in 3D view with the values of the
occupancy function o on the x-axes.

the values of the second differential along i and j separately:

o
′′

i (i, j) = o(i − 1, j)− 2o(i, j) + o(i + 1, j) > 0,

o
′′

j (i, j) = o(i, j − 1)− 2o(i, j) + o(i, j + 1) > 0.
(2)

However, the second differential is not sufficient to find

the local minima, i.e., the narrow passage, the following

conditions must be taken into account, for clarity written

only for the local minima along i-axis:

∀n ∈ N with coordinates (in, jn) ∈ N
2

such that o
′′

i (in, jn) > 0 and v ← o(in, jn) > 1
if o(in − 1, jn) = v + 1 and o(in + 1, jn) = v + 1

or o(in − 1, jn) = v + 1 and o
′′

i (in + 1, jn) > 0

or o(in + 1, jn) = v + 1 and o
′′

i (in − 1, jn) > 0
then U ← U ∪ {n},

(3)

where the set of cells U is used to describe all narrow

passages in the grid map, starting from the empty set.

According to the conditions in (3) one or two neighbour cells

are allowed to have minimal value along one axis. The results

of finding narrow passages in the part of the environment

represented by occupancy grid map with cost mask is shown

in Fig. 3.
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Fig. 3. The narrow passages determined in the occupancy grid map with
cost mask.

C. Robot motion planning

The robot motion planning algorithm is composed of path

planning and obstacle avoidance module. A list of global

goals is given, which the robot must visit orderly. The path

from the robot’s position to the given goal is calculated by the

D* algorithm [19] – the well known graph search algorithm

capable of fast path replanning in changing environments.

The path is replanned as the robot moves each time the

robot’s sensors detect nodes with changed occupancy values.

The path is followed by the integration of the D* algorithm

and the dynamic window obstacle avoidance algorithm, as

described in our previous work [20]. It is assumed that the

robot can not communicate with detected obstacles.

III. DEADLOCK AVOIDANCE STRATEGY

The deadlock avoidance strategy searches the local area

around a detected deadlock and by small movements tries to

solve the deadlock. Of course, it is possible that no solution

exists, so it is necessary to limit the number of retries.

The deadlock avoidance strategy is composed of three

steps. The first step of the deadlock avoidance strategy is

to detect a deadlock. To detect a deadlock the robot must

observe the narrow passage by its sensor. In the deadlock

situation the planner will declare that no path is found. The

second step is to select a standstill position from which the

robot will safely view the state of the narrow passage. This

position is called the waiting position. The third step includes

waiting for the random number of time intervals and then

recalculating the path. The random time is chosen to avoid

more robots to retry at the same time causing a possible new

deadlock in their paths. This procedure is taken from the

random multi-access algorithm for the network congestion

avoidance [15]. These three steps of the proposed strategy

are described in the following.

A. Detection of the deadlock situation

The robot by its sensors detects which cells in the grid

map changed its occupancy from empty to occupied. All

new obstacle cells are enlarged for the robot’s dimensions. If

these cells are the elements of the set U , it means that newly

discovered obstacle is in the narrow passage. The deadlock

in narrow passage can occur in two cases:

(1) the obstacle in the narrow passage blocks the global

robot’s path (Fig. 4a).

(2) the robot is in the narrow passage and the obstacle

blocks the global robot’s path (Fig. 4b).

The case (2) describes a special deadlock situation in which

a deadlock is not present in the narrow passages but must be

processed since the robot in the narrow passage can cause

the case (1) to another robot.

B. Selection of the waiting position

When the robot is halted in the deadlock situation it could

block paths to other moving objects. Therefore, the safe

position must be chosen from which the robot can safely

view the position of the blockage in its path and at the same

time allow passing other moving objects. Let assume that the

cell in which the robot is currently positioned is noted by R,

and the closest occupied cell in the blocked path to the cell

R is noted by Z . The waiting cell P is selected according

to two deadlock cases. In the case (1) the waiting cell P
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Fig. 4. The deadlock situation: a) the moving object R2 in the narrow
passage blocks the path of the robot R1 (dashed line from R1 to the goal
G1); b) the robot R1 is in the narrow passage and the moving object R2

blocks the path of the robot R1.

is selected as any cell (at random) from the set of candidate

waiting cells A (Fig. 5a). Starting from the empty set, the set

A is determined by adding the cell n ∈ N if the following

conditions are fulfilled:

∀n ∈ N
if ‖cn − cZ‖∞ ≤ Smax and ‖cn − cR‖∞ ≤ ‖cZ − cR‖∞
and ∀m ∈ U ‖cn − cm‖∞ > MR and visible(cn, cZ),
then A ← A∪ {n}.

(4)

The conditions in (4) say that candidate waiting cell is

distanced from the obstacle cell Z for less than sensor

maximal range Smax and must be at the right side of the

passage (the second condition). Furthermore, it must not be

near the narrow passage (for the robot’s dimensions) and the

cell Z must be visible from the candidate waiting cell, i.e.,

the line connecting cn and cZ must not intersect the real

obstacle (non-enlarged obstacle). Infinity norm is used for

simplicity of determining the area A.

R
R

Z

Z
P

P

a) b)

Fig. 5. The selection of the waiting cell P from the set A (shaded area):
a) the occupied cell Z in the blocked path is in the narrow passage; b) the
robot cell R is in the narrow passage and the occupied cell Z in the blocked
path is not in the narrow passage.

In the case (2) the waiting cell P is selected similarly,

but the set A is determined according to the constraint

‖cn − cZ‖∞ < ‖cZ − cR‖∞ instead of the constraints

‖cn− cZ‖∞ ≤ Smax and ‖cn− cR‖∞ ≤ ‖cZ− cR‖∞ in (4)

(Fig 5b). In very crowded areas it is possible that the cell

P becomes occupied very soon. Then the procedure of the

selection of the waiting cell P is repeated.

C. Waiting and retrying

The new path is calculated to the waiting cell P (this cell

is set as the new local goal for the path planning module)

and the robot is moved to its new local goal position. After

reaching the local goal position the robot rotates until it

achieves the orientation towards the occupied cell Z in the

blocked global path. The robot waits in the waiting cell P for

the random number of time intervals Tz ∈ {0, . . . , Tzmax}.
While the robot is waiting it is constantly viewing the state

of the occupancy of the cell Z . The passage can become free

at the time the robot travels to the waiting cell P . However,

the waiting of random number of time intervals is necessary

for solving a situation in which two robots controlled with

the same algorithm, blocks each other paths. In that case the

robots will move to theirs waiting cells and the passage will

become free. Then, both robots will start moving to their

global goals at the same time, and the deadlock will happen

again.

At the waiting cell P , if the state of the passage is

constantly occupied and there exist alternative global path

to the global goal, after Tz numbers of time intervals the

robot leaves the first global path to the global goal and takes

the new one. If the state of the passage has become free after

Tz numbers of time intervals, the robot calculates again the

global path to the global goal, and start moving towards the

global goal. If there is no alternative global path to the global

goal and if the path is still blocked, after Tz numbers of

time intervals it selects new random number from the twice

as wide set of possible intervals Tz ∈ {0, . . . , 2Tzmax}.
Further, each new try doubles the set of possible intervals.

After maximal preset number of tries N it leaves the first

global path and chooses the next global goal.

IV. TEST RESULTS

Systematic robot simulations and experimental results

obtained with a Pioneer 3DX mobile robot are chosen

to illustrate the appropriateness of the proposed strategy

in solving deadlocks in narrow passages. The laser range

finder SICK LMS200 mounted on the robot was used for

environment perception. It scans the environment in radial

range of ±90◦ with resolution of 1◦ and sends to the robot

181 uniformly distributed distances to the detected obstacles

every 100 ms.

A. Simulation results

The simulation setup of two robots controlled by the

same algorithm is shown in Fig. 6. There are presented

four simulation snapshots. The robots follow their global

paths to the given global goals: the green (light gray) robot

follows the green (light gray) path, and the red (dark gray)

robot follows the red (dark gray) path. When the robots

detect each other by theirs sensors, the new global paths

are calculated around detected obstacle cells (snapshot 1).

Shortly after, the robots block global paths to each other

(due to enlargement of obstacles for robot dimensions in the

occupancy grid map). The details of this moment from the

red and green robots’ points of view are shown in Figs. 7a
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1) 2) 3) 4)

Fig. 6. Avoiding deadlock caused by two robots in the narrow passage.

and 7b, respectively. The initial paths are noted by dashed

lines, and the new blocked paths are noted by solid line. Real

obstacles are noted by black squares, and detected robots by

red/green colored squares with black borders. Obstacles are

enlarged for the robots’ dimensions and safety cost values

are calculated around them. The robot’s position cell is noted

by R and the closest occupied cell in the blocked path to the

robot is noted by Z . The set U is recalculated according

to (3) for the new obstacle configuration and is noted by

small squares in narrow passages. The new candidate waiting

positions are calculated according to (4) and noted by stars.

The chosen candidate position in noted by P . The waiting
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Fig. 7. Deadlock detection and selection of the waiting position in the
occupancy grid map: a) blockage of the red robot’s path; b) blockage of the
green robot’s path.

cells P are determined and given as new local goals (noted

by rhombus in snapshot 2). The orientations of the local

goals are pointed in the direction of the occupied cell in

the blocked path (noted by small lines). After reaching the

waiting positions, each robot waits random time interval. The

result is that the green robot waits shorter time interval than

the red one. Since the state of the passage has become free

the green robot calculates again the global path to the global

goal, and start moving towards the global goal (snapshot 3).

From the red robot point of view, the passage is not free

and it waits another random time interval from the twice

as wider set of time intervals. After second waiting time

interval, the passage becomes free and the red robot moves

along recalculated path to its global goal (snapshot 4).

B. Experimental results

The experiment shows a case of real robot navigation

in an indoor environment among moving objects – the

people are passing through the doors, the doors are opening

and closing. The experimental setup which the deadlock

avoidance strategy must solve is composed of three parts:

choosing the alternative global path, giving up from the

current global path, and passing through the door that was

closed.

The experimental environment is shown in Fig. 8 together

with the robot’s paths and trajectories and sensor readings.

The robot uses the occupancy grid map of the environment in

which all doors are open. During the experimental setup the

passages 1 and 2 remain occupied, and the passage 3 changes

its state from occupied to free, i.e. the closed door becomes

open. Two global goals are given to the robot, named G1 and

G2. The robot will give up from the global goal G1 and will

reach only the global goal G2. The initial robot’s global path

to the global goal G1 passes through the passage 2, which

is blocked by two persons, and there exists the alternative

global path (dashed line) through the passage 3, which has

closed door.

The result of this experimental setup is as follows. The

robot follows the global path P1 until it detects by its sensors

that the passage 2 is closed. Then, it goes to the waiting

position and wait a random time interval. Since the passage

2 is constantly occupied the robot leaves the first global path

and takes the alternative global path P ′
1
. While following

the global path P ′
1
, the robot detects that the passage 3 is

occupied, waits at the waiting position, and chooses again

the first global path P1. This switching of paths P1 and

P ′
1 continues until maximal number of retries N is reached

(N = 4 in the experiment). Then, the robot gives up from

the global goal G1 and chooses the new global goal G2.

The global path to the goal G2 passes through the passage

1, which has closed door. The robot detects that the passage

1 is occupied and waits at the waiting position for a random

time interval. Very soon, the door opens and after the waiting

time interval the robot continues towards the global goal G2.

Traveled path is shown by devious line, and laser range data

from different time instant by different colors, therefore, one

can detect trails of doors opening in the passage 1 and people

movement.
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Fig. 8. Avoiding deadlocks in the real environment.

V. CONCLUSIONS

This paper presents a deadlock avoidance strategy, which

ensures the long term moving of mobile robot in the environ-

ment populated with moving objects. The strategy resolves

deadlocks in situations when the robot and some other

moving obstacle (another robot, person) meet each other

in narrow passages and block each others paths. Assuming

the strictest constraint that the robot can not communicate

with other moving obstacles but can only perceive their

behaviors by its sensors, the proposed strategy based on the

random multi-access algorithm for the network congestion

avoidance, successfully solves deadlocks in narrow passages.

Functionality of the proposed strategy is confirmed both by

simulations and experiments on a real mobile robot in an

office-like environment.
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