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Abstract: A fast robot pose tracking algorithm based on planar segments extracted from range images is 

presented. A range image obtained from a 3D sensor is transformed to a 2.5D triangle mesh from which 

planar segments are extracted. Using information provided by each planar segment based on its size and 

orientation, a directed search hypothesis generation algorithm using a tree structure is presented. The 

presented approach is experimentally evaluated using 3D data obtained by a Kinect sensor mounted on a 

mobile robot. Results indicate that the proposed method is much faster than similar previously proposed 

methods. 
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1. INTRODUCTION 

The robot localization problem is considered to be one of the 

fundamental problems of autonomous mobile robotics (Thrun 

et al. 2000). This problem can be divided into two sub-tasks: 

local position tracking and global localization. Local position 

tracking, or pose tracking, compensates small, incremental 

errors in a robot’s odometry given the initial robot’s pose 

thereby maintaining the robot localized over time. Global 

localization, on the other hand, is the ability to determine the 

robot's pose in an a-priori or previously learned map, given 

no other information than that the robot is somewhere on the 

map.  

The most common approach in vision-based robot 

localization systems is to use point features with assigned 

descriptors as landmarks (Harris & Stephens 1988, Se, Lowe 

& Little 2005). Alternatively, line features (Kosaka & Kak 

1992, Vlassis, Motomura & Krose 2000) can be used. 

Methods implementing planar features are the least common 

(Weingarten & Siegwart 2006, Pathak et al. 2010). 

In this paper, the application of 3D planar surfaces as features 

in pose tracking is considered. There are several advantages 

to using planar surfaces as features in localization compared 

to point or line features. Computational efficiency is 

improved and storage requirements are minimal since much 

less features are generated per scene. On the other hand, 

despite the fact that fewer features per scene are generated, a 

lot more information of the scene is available and it is also a 

lot easier to visualize the scene. Localization systems based 

on point or line features are impaired in both poorly and 

highly textured environments since: in the former, little or no 

features are generated, while in the latter, a lot of features are 

generated requiring a lot of processing time.  
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We, however, consider the most important advantage to be 

the inherent saliency each planar feature holds. The larger the 

plane, the more significant the plane is as a feature. Larger 

planes are obtained from larger objects in the scene and the 

probability of such objects being moved or modified is rather 

low. Hence, large 3D planar surface features can be 

considered to be “stable” features which can be used in 

global localization.  

A fast vision-based localization system based on 3D planar 

surfaces obtained from 2.5D images is proposed in this paper. 

First, the point cloud obtained by a 3D sensor is transformed 

to a 2.5D triangle mesh. Region growing is then applied to 

detect large 3D planar surfaces in the scene. These planar 

surfaces are used for local position tracking of a mobile 

robot. The experiments reported in this paper are performed 

using a commercially available low cost 3D sensor Kinect 

mounted on a mobile robot Pioneer 3DX. This paper is 

structured as follows. In Section 2 an overview of the related 

work is given. The proposed pose tracking algorithm is 

described in Section 3 and its experimental evaluation is 

given in Section 4. 

2. RELATED WORK 

Detecting planar surfaces from 2.5D images falls into the 

category of range image segmentation. Range image 

segmentation is the process of dividing, or segmenting, a 

range image such that all the points of the same surface 

belong to the same region. Basically, range images can be 

segmented into planar surfaces using either RANSAC 

(Fischler & Bolles, 1989), 3D Hough transform (Okada et al., 

2001), Region growing or merging (Hoover et al., 1996) or 

Iterative Delaunay triangulation (Schmitt & Chen, 1991).  

Ayache & Faugeras (1989) provide a framework for robot 

localisation using 3D lines and planes. They provide 

geometrical constraints to be used in the registration process. 

However, experimental validation is performed for 3D lines 



 

 

 

only. Actual implementation of 3D planar surfaces used in 

image registration can be found in Weingarten & Siegwart, 

(2006) and Pathak et al. (2010).  

The work by Pathak et al. (2010) is most related to ours. 

Surfaces are extracted from range images by implementing 

the region-growing algorithm mentioned in Poppinga et al. 

(2008). The plane parameter covariance matrix computed 

during plane extraction and the covariance of the registration 

solution play a central role in the plane matching. The 

hypotheses are generated using an algorithm which 

maximizes the overall geometric consistency within a search-

space. A consensus approach similar to RANSAC is used but 

with two major differences: there is no random sampling 

involved and the solution is not based entirely on consensus 

maximization but also on the uncertainty volume of 

hypotheses. In the pre-processing step, the planes in both sets 

are initially sorted in descending order of evidence (the 

determinant of the pseudo-inverse of the covariance matrix of 

the plane) and a top fixed percentage is used only. This initial 

search-space is then pruned by finding all consistent two 

pairs of correspondences using six geometric constraints: 

size-similarity test, overlap test, cross-angle test, parallel 

consistency, and if available, rotation and translation 

agreement with odometry. In the main search step, each of 

these pairs is considered in turn and their largest rotation and 

translation consensus sets are built. For each of these 

consensus sets, the least-squares rotation and translation are 

determined, along with the volume of uncertainty given by 

the pseudo-determinant of the covariance matrix of the 

estimated pose. The pose corresponding to the consensus set 

with the minimum uncertainty volume having at least four 

pairs is selected as the chosen hypothesis. Finally, the authors 

show that their algorithm outperforms three other previously 

proposed algorithms: point-to-point ICP (Besl & McKay, 

1992), point-to-plane ICP (Chen & Medioni, 1991) and 3D 

NDT (Magnusson, Lilienthal & Duckett, 2007).  

3. POSE TRACKING ALGORITHM 

In this section, details of the fast pose tracking algorithm will 

be provided. Initially, a formulation of the problem of pose 

tracking using planar surfaces is given followed by a short 

explanation of how the planes are generated and represented. 

A description of the geometrical constraints used for surface 

matching is then given. Finally, descriptions of the 

hypothesis generation and hypothesis evaluation stages of the 

algorithm are given. 

3.1 Problem Formulation 

Let us consider a set of planar surfaces observed by a 3D 

sensor from two different views. Let the pose of the 3D 

sensor corresponding to the first view be represented by 

reference frame SA and the pose of the sensor corresponding 

to the second view by reference frame SB. By processing the 

3D sensor data acquired from each of these two views, two 

surface sets are obtained. The problem considered in this 

paper is to estimate the pose of SA relative to SB given two 

sets of surfaces obtained from the two views. Let this pose be 

represented by vector 
T

T T =  w tφφφφ , where the vector 

[ ], ,
T

α β θ=φφφφ represents the orientation of SA relative to 

SB defined by 3 angles α, β and θ and the vector 
3∈t �  

represents the position of SA relative to SB. Assuming that the 

surface parameters are obtained by a 3D sensor, the 

measurement uncertainty must be taken into account. 

3.2 Detection and Representation of Planar Surfaces 

2.5D images acquired by a 3D camera are segmented into 
sets of 3D points representing approximately planar surfaces 

using a similar split-and-merge algorithm as in Schmitt & 

Chen (1991), which consists of an iterative Delaunay 

triangulation method followed by region merging. This 

method provides a fast detection of planar surfaces as 

demonstrated in Section 4. At the end of the procedure, a set 

of planar surfaces is obtained, where each planar surface F is 

defined by: the unit normal n; the offset of the plane ρ 

(distance of the plane from the origin in the direction of the 

normal); the centroid of the points supporting the surface tF; 

covariance matrix Cq defining the uncertainty of the plane 

parameters n and ρ and covariance matrix CF representing 

the distribution of the points belonging to the surface in the 

plane defined by n and ρ. 

In order to define the uncertainty model of F, we introduce 

the surface reference frame SF with the origin in tF, z-axis 

perpendicular to F and x- and y-axis defined by the 

eigenvectors of CF. Let us describe the uncertainty of the 

plane containing F by a disturbance vector [ ]1 2

T
s s r=q  

representing the deviation of the true plane parameters n and 

ρ from the estimated parameters n̂  and ρ̂ . Vector q is defined 

by 
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xF and yF represent x- and y-axis of SF. The 

components of q are illustrated in Fig. 1.  
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Fig. 1. Plane uncertainty model, where N represents the true 

plane normal. 

Vector q is considered to be a random variable with zero 

mean and covariance matrix Cq = diag(σs,1, σs,2, σr), where 



 

 

 

( ),s i r r iσ σ σ λ= + , i = 1, 2, σr is the estimated uncertainty of 

the surface centroid position in the direction of the surface 

normal and λ1,2 are the eigenvalues of CF. 

3.3 Geometrical Constraints for Surface Matching 

In this sub-section, two geometric constraints used for surface 

matching in the proposed pose tracking algorithm are 

discussed. Let the pose of the reference frame SA relative to 

the reference frame SB be represented by the vector w 

described in Section 3.1. A surface pair (F, F') is considered 

to represent a correct match, if the parameters of the planes 

supporting these two surfaces are consistent with the pose w 

and if the overlapping of the point sets supporting these two 

surfaces is sufficient according to a predefined overlapping 

measure.  

The first criterion is evaluated by transforming the plane 

supporting surface F into the reference frame SF' of surface F' 

using the pose w. In case of a perfect match, the projections 

of the normal of F onto the x- and y-axis of SF' as well as the 

offset of the transformed plane relative to SF' should be 0. 

Hence, the Mahalanobis distance between these 3 values and 

a zero-vector is taken as the measure of geometrical 

consistency of the match (F, F') with the pose w. Let us 

denote this distance by d(F, F'; w). Thus, a surface pair (F, 

F') is considered to be consistent with the pose w if d(F, F'; 

w) ≤ τ1, where τ1 is a predefined threshold which can be 

chosen according to the chi-square distribution for 3 DoF. 

The Mahalanobis distance is computed using the covariance 

matrices Cq of both surfaces as well as the covariance matrix 

describing the uncertainty of the pose w.  

The second criterion is related to the overlap between the 

surface F transformed to SB using the pose w and the surface 

F'. The measure of overlapping is the Mahalanobis distance 

between the centroids of surface F' and the transformed 

surface F computed using the covariance matrices CF of both 

surfaces as well as the covariance matrix describing the 

uncertainty of the pose w. 

3.4 Selection of Representative Surfaces 

The computation time needed for registration of two surface 

sets can be significantly reduced by considering only a subset 

of all surfaces detected in a scene. This subset should be as 

small as possible but at the same time it should contain 

sufficient information for accurate estimation of the robot's 

motion. A straightforward criterion for selection of a 

representative surface set would be to sort the surfaces in 

descending order according to the number of supporting 

points and to take a certain number or a percentage of 

surfaces from the top of this list. In some cases, however, 

relatively small surfaces can contain information crucial for 

motion estimation, as explained in the following. 

General rigid body motion has 6 degrees of freedom (DoF). 

In order to estimate all 6 DoF, at least three non-parallel 

plane pairs or correspondences are needed. With two non-

parallel plane correspondences, 5 DoF are completely 

defined. A typical indoor scene contains at least 2 dominant 

non-parallel planar surfaces, e. g. the floor surface and a wall, 

as shown in Fig. 2a. In many cases, however, a scene is 

deficient in information needed to estimate the last DoF of 

the robot's motion. A typical example is the corridor shown 

in Fig. 2a, where the floor and the walls provide sufficient 

information for accurate estimation of 5 DoF of the robot's 

motion, while it lacks the surfaces perpendicular to the last 

DoF, i.e. the horizontal movement direction parallel to the 

walls. A rather small surface perpendicular to this direction 

(e.g. surface “A” marked in Fig. 2b) would have much 

greater importance then a much larger surface parallel to the 

floor or the sides of the corridor.   

  

a) b) 

Fig. 2. Sample images of different indoor scenes. 

Hence, in this paper we propose using a surface ranking 

criterion based on the information content factor defined in 

the following. The distribution of the information available 

for motion estimation in a set of N surfaces can be 

represented by the matrix 

  1

N
T

i i i

i

w
=

= ⋅ ⋅∑Y n n

  

(2) 

where N is the number of considered surfaces, ni is the 

normal of the i-th surface and wi is the number of points 

supporting this surface. For a given surface, the value n
T⋅Y⋅n 

represents a measure of the total information provided in the 

direction of the surface normal n and the value  

  
T

w
ω =

⋅ ⋅n Y n
 (3) 

represents a measure of the contribution provided by the 

surface to the total information in the direction of the surface 

normal. The strategy proposed in this paper is to rank the 

surfaces according to the value (3) and to consider only the 

first m surfaces in the registration process. 

3.5 Hypotheses Generation 

Due to the lack of descriptors, there is a high ambiguity in the 

feature correspondences in the initial correspondence set. 

Hence, standard RANSAC approach to hypothesis generation 

will not be effective. One approach would be to employ 

GCRANSAC approach as proposed in Cupec et al. (2009). 

GCRANSAC proved to be more reliable especially in the 

case of multiple possible correspondences and a high 

ambiguity in the initial correspondence set. 

The general idea of the GCRANSAC approach is to update 

the pose and decrease the uncertainty at each step using more 

‘consistent’ pairs which are selected randomly. Implementing 

this basic idea of GCRANSAC, and in a desire to speed up 

the hypothesis generation step, we propose a new method 

which does not select pairs randomly, but rather sequentially 
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selects each pair in a given manner taking into account the 

inherent saliency of each plane i.e. plane-pair. Our method is 

similar in idea to the one proposed by Pathak et al. (2010), 

but has 2 main differences: 

1. Instead of generating hypotheses from only 2 pairs of 

corresponding surfaces, our method builds a hypothesis 

by pairs one after another until the estimated orientation 

uncertainty becomes sufficiently low. Thereby, it allows 

for a case where none of 2 pairs of corresponding surfaces 

has sufficient information for accurate orientation 

estimation. 

2. The hypothesis generation process is designed to generate 

more probable hypotheses before the less probable ones, 

allowing the algorithm to stop long before all possible 

hypotheses are considered. Thereby the necessary 

computation time is significantly reduced.  

Let M represent the list of m planar surfaces obtained from 

the current scene and M′ the list of m′ planar surfaces 

obtained from the previous scene. The planar surfaces within 

each list are sorted in descending order of the information 

content factor, as explained in Section 3.4. Hence, the index 

of a surface in the list reflects its importance. The list of 

initial correspondences Q is created by finding surface pairs 

from M and M′ which satisfy both geometrical constraints 

described in subsection 3.3. The matching candidates in the 

list Q are sorted in ascending order based on the sum of the 

indices of the surfaces in each pair. Thereby, the pairs with 

greater information content factor are positioned closer to the 

top of the list.  

We propose a hypothesis generation algorithm, where each 

hypothesis is generated in two stages. The first stage involves 

using a tree structure to determine 5 DoF of the robot's 

motion: all 3 DoF defining the rotation and 2 DoF of the 

translation. In the second stage, the last DoF is estimated.  

In the first stage, the hypothesis generation algorithm utilizes 

a tree structure. Each node in this tree structure is assigned   

pose information together with its uncertainty. The root node 

is assigned the initial pose. Apart from the root node, all other 

nodes on the tree correspond to a surface pair from the initial 

correspondence set, Q. The path from any node V to the root 

node represents a pose hypothesis and the pose assigned to 

node V is computed from the information contained in the 

matches corresponding to the nodes along this path.  

The discussed tree structure is built by taking the first surface 

pair (F, F') from the list Q, and attaching a node V to every 

node V' in the tree for which the following conditions are 

satisfied. 

1. Neither F nor F' is included in the pair corresponding to 

any node along the path from V' to the root node.  

2. The pair satisfies the constraints given in Section 3.3 for 

the pose assigned to the node V'. 

After including a new node in the tree, this node is assigned 

the pair (F, F') as well as the pose computed by updating the 

pose assigned to its parent node V' with the information 

provided by the pair (F, F') using an Extended Kalman Filter 

approach. If the estimated orientation uncertainty after the 

EKF update falls below a predefined threshold, the node is 

marked as an end node, i.e. it is not expanded and the second 

stage of the hypothesis generation algorithm is activated. A 

surface pair once taken from the list Q is removed from the 

list. The described procedure is repeated until either a 

predefined number of hypotheses nhyp or a predefined number 

of surface matching operations nmatch is reached. Since 

surface matching is the most time consuming operation in the 

hypothesis generation process, limiting the number of these 

operations has shown to be a good method for limiting the 

overall computation time of the algorithm.  

The second stage of hypothesis generation begins with the 

pose estimated during the first stage. This pose is estimated 

with a rather low uncertainty in orientation and 2 translational 

DoFs. The eigenvector corresponding to the maximum 

eigenvalue of the covariance matrix describing the 

uncertainty of the estimated translation defines the direction 

of the last DoF which is to be determined in the second stage 

in order to complete a hypothesis. A set T of surface pairs 

which provide sufficiently reliable information for estimation 

of the last DoF is selected from the list Q. This selection is 

performed using the angle between the surface normals and 

the last DoF. Smaller angles indicate more reliable 

information. For each surface pair in the set T, a candidate 

value s of the last DoF is computed as the value which 

translates the surface F onto the position where it overlaps 

with the surface F'. Each pair is also assigned the variance σ 
describing the estimated uncertainty of s. For each pair (F, 

F') from T, the following consensus measure is then 

computed 

 { }
2| |

1

( )1
( , ; ) exp min | |,| |

22

T

i

i ii

s s
F F T F F

σσ=

 −
′ ′ ′ℑ = − ⋅ 

 
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where |T | denotes the number of pairs in T, |F| denotes the 

number of points in the range image supporting the surface F, 

s is the candidate value of the last DoF computed from the 

pair (F, F') and si and σi are the candidate value of the last 

DoF computed from the i-th pair in T and its estimated 

uncertainty respectively. Finally, the pose hypothesis is 

updated using EKF approach by the information provided by 

the surface pair from T with the highest consensus measure.  

3.6 Hypotheses Evaluation 

The result of the hypothesis generation procedure described 

in Section 3.5 is a set of hypotheses about the pose w. For 

each hypothesis, the consensus set Ω(w) ⊆ Q is identified 

containing all surface pairs satisfying the matching criteria 

described in Section 3.3. Each hypothesis is evaluated 

according to the following consensus measure 
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where d is the Mahalanobis distance explained in Section 3.3 

and P is the probability that the Mahalanobis distance of two 

surfaces representing a correct match is ≥ d(F, F'; w) 

assuming that it is distributed according to the chi-square 

distribution with 3 DoF. The pose w with the highest 



 

 

 

consensus measure ( )ℑ w  is taken as the final result of the 

pose tracking algorithm. 

4. EXPERIMENTAL EVALUATION 

In this section, the results of the experimental evaluation of 

the proposed pose tracking method are reported. The pose 

tracking algorithm described in Section 3 is implemented in 

C++ programming language and executed on a 3.40GHz Intel 

Pentium 4 Dual Core CPU with 2GB of RAM. The algorithm 

is experimentally evaluated using 3D data provided by a 

Kinect sensor mounted on a mobile robot Pioneer 3DX. The 

Kinect sensor is a 3D camera which produces 640 × 480 

depth image with maximum 11-bit values which corresponds 

to 2048 levels of depth. In the experiments reported in this 

section, the depth images are subsampled to resolutions of 

320 × 240 and 160 × 120.  

The robot was teleoperated to move up and down in a straight 

line in two different hallways. Every 0.5m, the RGB image 

and depth image from the Kinect sensor and the robot 

odometry readings were automatically collected and stored. 

A total of 112 data readings were obtained. The algorithm 

proposed in this paper was tested offline using this database 

of images. The following parameters were used during the 

pose tracking experiment: nhyp = 20; nmatch = 1000 and m = m′ 

= 20. The height and pitch of the Kinect sensor relative to the 

ground plane are considered constant since the sensor is 

mounted on a wheeled robot. An example of an image along 

with its point cloud and the extracted planar patches is given 

in Fig. 3. 

In order to evaluate the pose tracking method, the 

translational pose obtained using vision was compared to that 

obtained using odometry. The pose data obtained using 

odometry cannot be assumed to represent exact ground truth 

values due to drift and slippage. However, the precision of 

the odometry is rather high at short distances. Hence, the 

variance of the error between the odometry pose and pose 

obtained by vision is used in this evaluation as a conservative 

estimate of the variance of the pose obtained by vision. The 

histograms of this pose error obtained using images of 

resolution 320 × 240 and 160 × 120 are shown in Fig. 4a. It 

can be noticed that there was only one sample with pose error 

greater than 100mm for images with a resolution of 160 × 

120 while three such samples were obtained for images with 

resolution of 320 × 240. The range image registration time 

and the normalized cumulative histograms of the surface 

detection time are displayed in Fig. 4b. and Fig. 4c. – 4d. 

respectively.  

As expected, the surface detection time depends on the image 

resolution, while the range image registration time is 

independent of the screen resolution since it depends on the 

predefined values of m, nhyp and nmatch. Statistical details of 

the pose error, surface detection time, range image 

registration time and total time are given in Table 1. The pose 

error was on average approximately 30 mm with a standard 

deviation of about 20 mm for both image resolutions. On 

average, for images with a resolution of 320 x 240, 

approximately 95ms was needed for surface detection while 

25ms was needed for images with a resolution of 160 x 120. 

On the other hand, an average of 5ms was needed for image 

registration irrespective of the image resolution. Thus, on 

average, it took a total time of approximately 104ms for 

images with a resolution of 320 x 240 (the maximum was 

about 210ms) and approximately 34ms for images with a 

resolution of 160 x 120 (the maximum was about 90ms).  

Apart from the fact that several parameters need to be set 

beforehand, we noticed that the proposed pose tracking 

algorithm had difficulties in situations where the scene had 

only 2 dominant non-parallel planar surfaces i.e. was 

deficient in information needed to estimate the last DoF of 

the robot's motion. 

  

 
 

Fig. 3. Camera image (top left); depth image obtained by 

Kinect (top right); extracted planar patches (bottom left); 

extracted dominant planar patches shown in perspective 

(bottom right). 

 
a)  b) 

 c) 
 

d) 

Fig. 4. Histograms of the pose error for both image 

resolutions (a); normalized cumulative histograms of the 

range image registration time for both image resolutions (b); 

normalized cumulative histogram of the planar surface 

detection time for images with resolution c) 160 × 120 d) 320 

× 240. 

 



 

 

 

Generally, depending on the dataset and hence the resolution 

of the images taken, the computation time for the surface 

detection varied from 0.43s on average for images with a 

resolution of 176 × 144 to 3s for images with a resolution of 

541 × 361. The computation time for image registration 

varied from 0.04s to 4.7s depending on the percentage of the 

total number of planar surfaces obtained that were used in 

image registration. The experiments were performed on a 

1.6GHz AMD Turion 2 × 64 laptop with 960MB of RAM. A 

comparison of our results to those obtained by Pathak et al. 

(2010) for images of similar resolution is summarized in 

Table 2.  Considering these results, it can be concluded that 

the method proposed in this paper clearly outperforms their 

algorithm with respect to computational time.   

Table 1. Statistical details of the pose error, surface 

detection time, image registration time and total time. 

 Avg. Std. Min. Max. 

320 × 240 

Pose error (mm) 30.90 23.43 4.76 163.57 

Surface detection time (ms) 93.13 25.12 51.82 189.30 

Registration time (ms) 4.40 3.70 0.87 29.20 

Total time (ms) 103.20 26.97 58.23 208.60 

160 × 120 

Pose error (mm) 31.93 21.19 2.40 134.96 

Surface detection time (ms) 24.88 9.80 11.72 64.78 

Registration time (ms)  6.30 3.70 2.60 32.10 

Total time (ms) 33.17 11.97 16.88 89.60 

Table 2. Comparison of experimental results. 

 Pathak et 

al. (2010) 

Proposed 

method 

Image resolution 176×144 160×120 

No. of samples 5 108 

Mean surface detect. time (ms) 430 24.88 

Mean registration time (ms) 159.8* 6.30 

*Mean image registration time is calculated for the situation 

where 50% of the total number of planar surfaces obtained 

was used in image registration. 

Although the reported experiments were performed using a 

wheeled mobile robot, the odometry data was used only for 

evaluation of the pose tracking results and not for the motion 

estimation. Hence, the presented approach can also be used 

with a hand-held camera. Nevertheless, odometry or data 

obtained by an inertial sensor (Božek & Suriansky 2011), can 

be used to improve the speed and the robustness of the 

algorithm. 
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