
The Path Planning Algorithms for a Mobile Robot

based on the Occupancy Grid Map of the

Environment – A Comparative Study

Mijo Čikeš, Marija Ðakulović and Ivan Petrović

Faculty of Electrical Engineering and Computing

University of Zagreb, Croatia

E-mail: {mijo.cikes, marija.dakulovic, ivan.petrovic}@fer.hr

Abstract—This paper presents a comparative study of three
algorithms that use occupancy grid map of environments to find
a path for a mobile robot from the given start to the goal – the D*,
Two Way D* (TWD*) and E*. All three algorithms have ability of
dynamic replanning in case of changes in the environment. The
D* algorithm produces a path consisted of line segments that
have discrete transitions between cell edges – a multiple of 45◦.
This path is hard to follow by a mobile robot. The TWD* and E*
algorithms produce more natural paths with continuous headings
of the path line segments. The criteria for comparison were the
path characteristics, the time of execution and the number of
iterations of the algorithms’ main while loop. The algorithms
were verified both by simulation and experimentally on a Pioneer
3DX mobile robot equipped with a laser range finder.

Index Terms—path planning, graph search, mobile robots.

I. INTRODUCTION

The task of a path planning algorithm is to compute optimal

path to the given goal and to replan the path in case the

previously planned path is blocked by obstacles. The optimal

path can be calculated by applying a classical graph search

algorithm [8], such as the A* [4], D* [12] or focused D* (FD*)

[13] algorithms. The D* and FD* algorithms are often used in

path planning of mobile robots because of their capabilities of

fast replanning in changing environments. Two-dimensional

(2D) occupancy grid maps are usually used to represent a

continuous environment by an equally-spaced grid of discrete

points [14].

The path obtained by a classical graph search algorithm

based on uniform resolution grid is a zigzag line with sharp

turns, angles of which are limited to increments of 45◦.

A mobile robot can not follow such a path smoothly due

to its kinematic and dynamic constraints. To overcome this

limitation, improved methods have been developed that use

interpolation to produce paths not constrained to a small

set of headings. Gennery in [3] proposed the algorithm that

produces a path composed of long straight line segments

with continuous headings by using the iterative end point fit

method. This algorithm is based on the Witkowski’s algorithm

[15], which searches the undirected graph with equal weights

in forward and backward directions by the breadth first search

(BFS) and determines all optimal paths. Another interpolation

based algorithm is the Field D* algorithm [2]. This algorithm

is based on the D* algorithm and uses linear interpolation to

derive the path cost of points between grid intersections. It

generally produces more natural low-cost paths through grids

with a range of continuous headings. The similar algorithm

to the Field D* algorithm is the E* algorithm [7]. The

E* algorithm extends the standard D* algorithm by using

interpolation based on the Level Set Method [11] to produce

the approximation of the real Euclidean distance from every

cell in the search space to the goal. The E* algorithm gives

the path that is very close to the optimal solution. In our

previous work we proposed the algorithm called two-way D*

(TWD*) algorithm based on the Witkowski’s algorithm, which

calculates the shortest possible path in the geometrical space

[1]. The proposed algorithm also performs well in changing

environments although it is computationally more demanding

than the D* algorithm.

The aim of this paper based on a comparative study of

the D*, TWD* and E* algorithms is two-fold. First, the path

characteristics will be examined since the global geometric

path must be further transformed to a robot trajectory by

taking into account kinematic and dynamic constraints of the

robot. An important issue when producing the trajectory for

the mobile robot is the number of points in which path changes

directions, since in these points the robot must slow down or

even stop and turn in place. The sum of all angles accumulated

in the points of path direction changes indicates how many

turns a robot will have while following the path. Second, the

algorithm real-time performance is very important in changing

environments. It means that the path must be replanned as

the environment changes to prevent collisions with the newly

detected obstacles. The important parameters are the time of

execution and the number of iterations of the algorithms’ main

while loop.

The rest of the paper is organized as follows. The formula-

tion of the occupancy grid map and graph search is given in

section II. In section III the algorithms D*, TWD* and E* were

shortly described. Simulation results are given in section IV

and experimental results in section V. Finally, the conclusion

is given in section VI.

II. PROBLEM STATEMENT

Algorithms D*, TWD* and E* uses undirected graph as the

space of search, which is created from the occupancy grid map



of the environment.

A. Occupancy grid maps

An occupancy grid map is created by approximate cell

decomposition of the environment [6], [14]. The whole en-

vironment is divided into squared cells of equal size ecell,
which are abstractly represented as the set of M elements

M = {1, . . . ,M} with corresponding Cartesian coordinates

of cell centers ci ∈ R
2, i ∈ M. Each cell contains occupancy

information of the part of the environment that it covers. In

this paper two types of occupancy grid maps are used in the

implementation of the algorithms: binary occupancy grid maps

and weighted occupancy grid maps.

A binary occupancy grid map contains only free and occu-

pied cells. Binary occupancy function o(i) ∈ {1,∞}, i ∈ M is

used for representing the set of all obstacles in the environment

noted as O = {i ∈ M | o(i) = ∞} and free environment is

represented by the set of free cells noted as N = M\O, see

Fig. 1. A weighted occupancy grid map contains free cells

−26.5 −26 −25.5 −25 −24.5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

7

robot’s
radius

robot’s
squared
mask

o = ∞

o = 1

x [m]

y
[m

]

Fig. 1. A section of the experimental environment represented by the binary
occupancy grid map. Free space is colored white (o(·) = 1), and obstacles
are colored black (o(·) = ∞), where real obstacle position is marked by x.
The robot’s radius is rr = 0.26 m, and the cell size is ecell = 0.1 m.

−26.5 −26 −25.5 −25 −24.5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

7

o = ∞

1

5
4

3
2

x [m]

y
[m

]

Fig. 2. A section of the experimental environment represented by the
weighted occupancy grid map with the safety cost mask (Mc = 4). Free
space is colored white (o(·) = 1), unoccupied space within the safety cost
mask is colored by shades of gray (o(·) ∈ {2, 3, 4, 5}), and obstacles are
colored black (o(·) = ∞), where real obstacle position is marked by x.

(o(i) = 1), occupied cells (o(i) = ∞) and also cells with

other occupancy values (1 < o(i) < ∞). The cells with other

occupancy values belong to the so-called safety cost mask

which is introduced in the map around the obstacles to push

the path away from the obstacles in order to assure safe robot

motion. The size of the safety cost mask is defined by the

integer number of cells Mc. The number of cells Mc influence

on the distance between the path and the obstacles and can be

determined as in our previous work [10]. Occupancy value

of a cell within the safety cost mask depends on its distance

from the closest occupied cell. The utmost cells of the safety

cost mask obtain the occupancy value for one greater than

unoccupied cells out of the safety cost mask (o(i) = 2), and

occupancy values of inner cells incrementally increase from

the utmost cells to the occupied cells. The safety cost mask

defined in this way does not prevent the robot to pass through

the narrow passages. The occupancy function of the occupancy

grid maps with safety cost masks is defined as follows:

o(i) =

{

max{1, (Mc + 2−min
j∈O

‖ci − cj‖∞)} if i /∈ O
∞ if i ∈ O

(1)

where ‖ · ‖∞ is the infinity norm. Described procedure gener-

ates a smooth decrease of occupancy values from the obstacles

towards the free space. Thus, the safety cost mask acts

similarly as the artificial potential field [5]. Fig. 2 represents

the weighed occupancy grid map with Mc = 4 cells wide

safety cost mask of the same section of the environment as

shown in Fig. 1.

B. The robot representation in the grid map

We assume that real shape of the mobile robot can be

approximated by a circle of a radius rr, which is very often

used assumption in the literature. In that case the robot is

represented by a squared mask in the grid map, within which

the circular shape of the robot can be drawn. Thus, all

obstacles in the grid map are enlarged for the integer number

of cells ⌈rr/ecell⌉, i.e. the robot is described by a squared

mask of size (2 · ⌈rr/ecell⌉+1) ·ecell. Real shape of the robot

and its squared mask in occupancy grid maps are depicted

in Figs. 1 and 2. It can be noticed that at corners the real

obstacles are enlarged
√
2 times more than strictly necessary,

which additionally confirms the safety of trajectories that go

through the free cells. In this way defined squared mask allows

the robot to rotate in place at each point within the free space

of the grid map and consequently the path planning algorithm

needs to plan only the robot positions in the free space.

C. Search graph

Weighted undirected graph G(N , E ,W) is created from

the occupancy grid map in such a way that all unoccupied

cells N represent the set of nodes in the graph. We say

that two nodes i, j ∈ N in the graph are neighbors if

‖ci − cj‖∞ = ecell. The set of edges is defined as E =
{{i, j} | i, j ∈ N , i and j are neighbors}. The set of edge

weights W = {wi,j | i, j ∈ N , i and j are neighbors} is

defined as the cost of transition between neighbors as

wi,j := ‖ci − cj‖ ·max{o(i), o(j)}. (2)



In binary occupancy grid maps there are two values of

transitions between neighbors: straight transition (e.g. 10 cm)

and diagonal transition (e.g. 14 cm). In weighted occupancy

grid maps with safety cost mask transitions between neighbors

are additionally weighted according to their distances to the

obstacles.

III. PATH PLANING

This section briefly restates the algorithms D*, TWD* and

E*. More details can be found in [12], [7] and [1], respectively.

A. The D* algorithm

Stentz in [12] proposed a well known graph search algo-

rithm capable of fast replanning in changing environments. It

is also known as dynamic version of the A* algorithm without

the heuristic function [4].

The execution of the D* algorithm can be divided into initial

planning and replanning phases. Initial planning is performed

if the robot is standstill at the start position and replanning is

performed if the robot detects nodes with changed occupancy

values during its motion.

For every searched node n, the D* algorithm computes the

cost value g(n) of the optimal path from the node n to the goal

node and the value of the key function k(n) for the replanning

process, which stores the minimal value g(n) before changes

of weights in the graph G(N , E ,W) happened. The algorithm

stores the backpointers for every searched node n, which point

to the parent node with the smallest cost g. A backpointer is

noted by the function b(·), where b(n) = m means that the

node n has the smallest cost because it follows the node m.

The backpointers ensure that optimal path from any searched

node n to the goal node can be extracted according to the

function b(·). The D* algorithm uses the so called Open list

for storing the nodes that are examined at each algorithm

iteration. The Open list is sorted by the key k. At each

algorithm iteration the best node o in the Open list is removed

from the list and to all its neighbors n the value g(n) is

calculated as

g(n) = g(o) + wn,o, (3)

and backpointer for the node n is set to b(n) = o, only if the

previous value g(n) is larger than the new value g(o) + wn,o

(initially, all nodes have g(n) = ∞).

In the initial planning phase the D* algorithm starts the

search from the goal node, examining neighbor nodes of

minimal k value until the start node is reached. For better

replanning performances, the exhaustive search can be done

in the initial phase, which computes optimal paths and path

costs g from every reachable node in the graph G(N , E ,W)
to the goal node. The nodes that are not reachable from the

goal node (i.e. no path exists) have values g(n) = ∞. The

node n has optimal value if g(n) = k(n). At the end of initial

planning phase all reachable nodes have optimal values g. The

cost values g in the experimental environment are shown in

Fig. 3 starting from the goal at (155, 57). It can be noticed

that the contours of equal values g are somewhere shaped

as the octagon due to 8 neighbors and 8 different directions

of traversing through the grid. The path obtained from the

backpointers starting at (7, 127) is shown in Fig. 4. The path is

composed only of transitions through the grid in 8 directions.

Fig. 3. Cost values g(n) for exhaustive search of the graph by the D*
algorithm.

−25 −20 −15 −10 −5

−4

−2

0

2

4

6

x [m]

y
 [

m
]

start

goal

Fig. 4. The path calculated by the D* algorithm from the start (7, 127) to
the goal (155, 57).

In the replanning phase due to some nodes change its

occupancy values, first the weights in the graph G(N , E ,W)
are updated according to (2). All changed nodes are inserted in

the Open list and those nodes propagate the change of the cost

g to the parent nodes. The backpointers are redirected locally

and the new optimal path from the robot’s current position is

determined. The number of expanded nodes is minimal and

consequently the time of execution.

B. The TWD* algorithm

The two-way D* algorithm proposed in our previous

work [1] is inspired by the Witkowski’s algorithm. Like the

Witkowski’s algorithm it also searches the graph in forward

and backward passes. The difference is that the TWD* algo-

rithm uses the D* algorithm for graph search in these two

passes instead of the breadth first search algorithm used in the

Witkowski’s algorithm. The usage of forward and backward

passes of the D* algorithm through the graph enables the

TWD* algorithm to find optimal paths also in weighted

graphs, i.e. in the weighted occupancy grid maps with the

cost mask.

TWD* like D* operates in two phases – initial and replan-

ning phases. In the initial phase, the TWD* algorithm does the

exhaustive search of the graph G(N , E ,W) by applying one



pass of the D* algorithm executed from the goal node to the

start node (standard D*) and another pass executed from the

start node to the goal node (the reverse D* (RD*)). For every

node n in the graph G(N , E ,W), D* calculates cost g(n) to

the goal node as well as k(n) needed for path replanning and

the backpointer b(n) needed for reconstruction of the optimal

path to the goal node. Analogously, RD* calculates cost h(n)
to the start node and kR(n) needed for path replanning and

the backpointer bR(n) needed for reconstruction of the optimal

path to the start node. At the end of both D* passes, costs g
and h for every expanded node n give the complete cost of

the path calculated as the sum, f(n) = h(n) + g(n). Value

f(n) is the cost of the path from the start node to the goal

node that passes through the node n and which is composed

of two optimal paths: from the start node to the node n and

from the node n to the goal node. The smallest value f is in

all optimal paths from the start node to the goal node and is

equal to fmin = f(start) = f(goal).
The set of all nodes n such that f(n) = fmin forms the

geometrical area of minimal cost fmin. The path is calculated

by partitioning the minimal cost area into smaller convex

polygons and by finding the connection of polygon vertices

that form the shortest path in geometrical space. The shortest

path found by the TWD* algorithm consists of straight line

segments with each straight line segment lying within the area

of minimal cost fmin. The cost values f are shown in Fig. 5

calculated in the same experimental environment as shown in

Fig. 3 with the goal at (155, 57) and the start at (7, 127). The

area of equal values f = fmin connects the start and the goal

points. The contours of higher values of f are also shaped

as octagon due to 8 neighbors and 8 different directions of

traversing through the grid. The path calculated by the TWD*

algorithm is shown in Fig. 6. The path is composed of straight

line segments with arbitrary orientations.

Fig. 5. Cost values f(n) for the exhaustive search of the graph by the TWD*
algorithm.

The replanning phase is initiated if nodes in vicinity of the

moving robot change their occupancies. The TWD* algorithm

replans the path by sequential execution of the D* and RD*

searches of the changed graph G(N , E ,W) and by the recal-

culation of the shortest path from the robot’s current position

(node R) to the goal node. Then, by calculating f(n), the

new minimal cost area is determined. In most cases the node

R stays in the new minimal cost area, but, the change in the

environment can be such that the node R is not in the new

minimal cost area. That is due the fact that the value of f is

−25 −20 −15 −10 −5

−4

−2

0

2

4

6

x [m]

y
 [

m
]

start

goal

Fig. 6. The path calculated by the TWD* algorithm from the start (7, 127)
to the goal (155, 57).

optimal according to the start node and the goal node, but not

according to the robot’s current position and the goal node.

The new path is then composed of the part of the new D*

path until the point which is both in the D* path and in the

minimal cost area, and then, connected to the shortest part of

the path to the goal node. This is the main drawback of the

algorithm, since in some cases the replanned path is not the

shortest possible path in the geometrical space, but is definitely

shorter than the D* path.

C. The E* algorithm

The E* algorithm uses the interpolation function, which

assigns numerical value to each grid map cell by the so called

wavefront propagation over the free cells in the grid map [7].

The wavefront propagation acts like a continuous contour that

sweeps from the goal node outwards and at each cell record

the crossing time. Therefore, the crossing time at cells can

be considered as samples of continuous navigation function.

The path cost at each cell can be calculated by dividing the

crossing time by the speed of the propagation.

The E* algorithm was described in grid map that stores

information about the traversal risk at each cell. The risk

function r is normalized to [0, 1] where risk 0 corresponds

to empty cells, and risk 1 corresponds to occupied cells. The

lower r implies higher propagation speed. The occupancy

function o given by (1) can be transformed to the risk function

r by normalization

r(i) = min

(

1,
o(i)− 1

Mc + 1

)

(4)

Therefore, for the example in Fig. 2 occupancy values

o(i) ∈ {1, 2, 3, 4, 5,∞} are transformed to risk values r(i) ∈
{0, 0.2, 0, 4, 0.6, 0.8, 1}.

The E* algorithm calculates the crossing times based on

the robust interpolation by the Level Set Method [11]. Unlike

the D* algorithm, which uses one backpointer for a node n to

represent which node is the next node in the optimal path

(b(n) = m), or on which neighbor node m the path cost

g(n) depends, the E* algorithm uses backpointers for one or

two neighbors that are not obstacles and not lying on same

axes. It has to be noted that the E* algorithm uses different



definition for neighbors. Two nodes i, j ∈ N in the graph are

neighbors if ‖ci − cj‖ = ecell. In other words, each node has

four neighbors in undirected graph, diagonal cells are omitted.

Each node n has two values – rhs(n) and v(n). Initially,

values of nodes are set to infinity. The one step looking ahead

value is noted by rhs(n) and the estimated value is noted

by v(n). Nodes that wait to be expanded are sorted in the

queue called Wavefront by the key min(rhs(n), v(n)). When

the node n is subtracted from the queue the value v(n) become

equal to rhs(n), and the node n is called locally consisted.

Each node n has assigned the set B(n), which contains nodes

used in the computation of the node n and the set D(n), which

consists of nodes successors. The set D(n) is used in the

replanning phase, which is very similar to the D* algorithm.

The interpolation function that calculates the crossing times

of the node n is given by

(rhs(n), B(n)) = ComputeValueLSM(n,Q(n)), (5)

where the set Q(n) contains neighbor nodes of the node n that

fulfills ∀n ∈ Q(n) | v(n) < ∞. The expression (5) calculates

the backpointers as

B =

{

{Q1} if TC − TA ≥ ecell/F (n)
{Q1, Q2} otherwise

(6)

where the nodes Q1, Q2 ∈ Q(n) are the best two neighbor

nodes of the node n according to the value v. The values TA

and TC are given by

TA = v(Q1),

TC =

{

∞ if Q = {Q1}
v(Q2) otherwise

The expression (5) calculates the rhs value as rhs(n) = T ,

where the crossing time T is given by

T =

{

TA + ecell/F (n) ⇐ TC − TA ≥ ecell/F (n)
1

2
(−β +

√

β2 − 4γ) otherwise
(7)

where

{

β = −(TA + TC)
γ = 1

2
(T 2

A + T 2

C − e2cell/F (n)2)

The propagation speed F at the node n is calculated as F (n) =
1− r(n), with the risk function given by (4).

In case of binary occupancy grid map the estimated value

v(n) presents approximation of the shortest (Euclidean) dis-

tance from the node n to the goal node. The cost values

v are shown in Fig. 7 calculated in the same experimental

environment as shown in Figs. 3 and 5 with the goal at

(155, 57) and the start at (7, 127). The contours of equal values

of v are here shaped as circles since the cost estimates real

shortest distance to the goal. The path calculated by the E*

algorithm is shown in Fig. 8. The path is calculated as the

gradient descent over the estimated cost v.

Fig. 7. Estimated values v(n) for the exhaustive search of the graph by the
E* algorithm.

−25 −20 −15 −10 −5

−4

−2

0

2

4

6

x [m]
y
 [

m
]

start

goal

Fig. 8. The path calculated by the E* algorithm from the start (7, 127) to
the goal (155, 57).

IV. SIMULATION RESULTS

We tested the D*, TWD* and E* algorithms on three dif-

ferent binary occupancy grid maps. The first map is randomly

generated environment shown in Fig. 9, the second map is the

free environment shown in Fig. 10 and the third map is real

experimental environment of our Department shown in Fig.

11. Simulation results are measured on notebook with Intel

Core2Duo T7500 processor on Ubuntu 10.04 Linux operating

system. Measurements were done in optimization mode (opt)

with -03 flag on GNU C compiler. Path characteristics are

l, nαinit and Σαinit which denote lengths of the initial

paths, the number of points in which the initial path changes

direction, and the sum of all angles of the initial path direction

changes, respectively. The execution parameters for the initial

planning are the number of algorithm iterations noted by I
and corresponding time noted by tinit. On the Department

map we also tested dynamic planning in case of changes in

the environment. On the same map we also tested behavior

of algorithms when cell size changes. Finally, we tested

algorithms in weighted occupancy grid map of the Department

map.

A. Randomly generated map

The dimension of the randomly generated map is 500×500
cells, with the cell size of ecell = 0.1 m and of about 50%

occupied cells. Obstacles were created by drawing the squares

at random places and of random sizes. Numerical results

of the algorithms comparison is given in Table I, and the

path comparison is shown in Fig. 9. Expectingly, the TWD*



algorithm has the shortest path, but E* is very close to TWD*.

E* gives approximation of the shortest (Euclidean) distance,

as TWD* gives exactly Euclidean distance. The both E* and

TWD* algorithm give significantly shorter path then the basic

D* algorithm for approximately 6 %, but the time of execution

tinit is worse for a factor 2.

TABLE I
COMPARISON OF ALGORITHMS IN THE RANDOMLY GENERATED MAP

Algorithm I tinit [ms] nαinit Σαinit [◦] l [m]

D* 217636 1331 23 1035 57.43
TWD* 435272 2424 7 69 53.41
E* 217636 2154 22 236 53.68

−25 −20 −15 −10 −5 0 5 10 15 20 25
−25

−20

−15

−10

−5

0

5

10

15

20

25

x [m]

y
 [

m
]

 

 

start

goal
D*

TWD*

E*

Fig. 9. Path comparison in the randomly generated map.

B. Free space

The dimension of the map is 165*540 cells, ecell = 0.1 m.

Numerical result are given in Table II and the path comparison

is shown in Fig. 10. The results are similar to the ones obtained

on the randomly generated map. The TWD* path is the

shortest, and both E* and TWD* algorithm give significantly

shorter path then the basic D* algorithm, but the time of

execution tinit is worse for a factor 1.5. The minimal nαinit

TABLE II
COMPARISON OF ALGORITHMS IN THE FREE SPACE

Algorithm I tinit [ms] nαinit Σαinit [◦] l [m]

D* 82150 338 17 675 28.46
TWD* 164300 484 11 100.2 26.513
E* 82150 486 26 290.01 26.526

and Σαinit has TWD* algorithm. The E* has the largest

nαinit, but in Σαinit is smaller than basic D* algorithm.

−25 −20 −15 −10 −5 0 5 10 15 20 25

−5

0

5

x [m]

y
 [

m
]

 

 

start

goal

D*
TWD*
E*

Fig. 10. Comparison of paths in the free space.

C. Department map

The dimension of map is 165*540 cells, ecell = 0.1 m.

Numerical results for initial planning are shown in Table III

and the path comparison is shown in Fig. 11. The results are

again similar to the ones obtained on the random and empty

map. The TWD* algorithm produces the shortest path, the path

is shorter than the basic D* algorithm for about 6 %. The E*

algorithm has shorter path for about 4.5 % than the basic D*

algorithm.

TABLE III
COMPARISON OF ALGORITHMS IN THE DEPARTMENT MAP

Algorithm I tinit [ms] nαinit Σαinit [◦] l [m]

D* 32724 26 15 675 18.81
TWD* 65448 102 11 239 17.65
E* 32724 119 22 530 17.95

−25 −20 −15 −10 −5 0

−4

−2

0

2

4

6

x [m]

y
 [

m
]

 

 

start

goal

D*
TWD*
E*

Fig. 11. Initial paths in the Department map.

Influence of the changing cell size are numerically shown

in Table IV. When the cell size goes to zero, the path length is

more appropriate and become very similar to the path given by

the TWD* algorithm. The basic D* and the TWD* algorithms

do not significantly change path length by changing the cell

size. Paths given by the E* algorithm for different cell size

are shown in Fig. 12.

Table V shows times of replanning in the Department map.

tmax
replan denotes the highest time of replanning during the

robot motion through the environment populated by unknown

obstacles. The number of iterations of the highest replanning is

denoted by Imax
replan. The sum of all replanning times is denoted

by Σtreplan and ΣIreplan is the sum of all iterations during

replannings. E* and TWD* have similar times of replanning.



TABLE IV
COMPARISON OF ALGORITHMS FOR THE CELL SIZE ecell = 0.05 AND

ecell = 0.025.

Algorithm I tinit [ms] l [m]

D*(ecell = 0.05 m) 138162 218 18.68
TWD*(ecell = 0.05 m) 276324 448 17.46
E*(ecell = 0.05 m) 138162 672 17.61

D*(ecell = 0.025 m) 596148 2732 18.53
TWD*(ecell = 0.025 m) 1192296 4501 17.30
E*(ecell = 0.025 m) 596148 5097 17.37

−25 −20 −15 −10 −5 0

−4

−2

0

2

4

6

x [m]

y
 [

m
]

 

 

start

goal

ecell = 0.1 m

ecell = 0.05 m

ecell = 0.025 m

Fig. 12. Initial paths of the E* algorithm in the Department map for the
different cell sizes.

E* has slightly better sum of all replanning times than TWD*.

The basic D* algorithm has the best replanning time and

tmax
replan is better approximately for a factor two. Fig. 13 shows

path lengths at each step of replanning. The TWD* algorithm

is not always optimal in the replanning process. The TWD*

algorithm gives the shortest path until the step 55. At the step

55 the TWD* algorithm is not optimal and the E* algorithm

has the shortest path. This case is illustrated in Fig. 14.

TABLE V
REPLANNING EXECUTION

Alg. tmax
replan

[ms] Imax
replan

Σtreplan [ms] ΣIreplan

D* 11 9567 18 18051
TWD* 20 18885 139 75344
E* 22 6676 115 30943

0 10 20 30 40 50 60
8

10

12

14

16

18

20

 

 

D*
TWD*
E*

p
at

h
le

n
g
th

s
[m

]

replanning steps

Fig. 13. Path lengths at each step of replanning.

−25 −20 −15 −10 −5 0

−4

−2

0

2

4

6

x [m]

y
 [

m
]

 

 

start

goal

D*
TWD*
E*

Fig. 14. The path lengths in the replanning process at the step 55.

Finally, the comparison of algorithms in the Department

map with safety cost map is shown in Table VI. Here the E*

algorithm produces the shortest path, but nαinit and Σαinit

are considerably higher than for TWD*. The path is smoother

and slightly distanced from the obstacles for the safety cost

mask. The paths are shown in Fig. 15.

TABLE VI
COMPARISON OF ALGORITHMS IN THE DEPARTMENT MAP WITH SAFETY

COST MAP

Algorithm I tinit [ms] nαinit Σαinit [◦] l [m]

D* 32727 46 27 1215 19.88
TWD* 65456 141 22 593 19.12
E* 32727 150 61 1151 19.09

−25 −20 −15 −10 −5 0

−4

−2

0

2

4

6

x [m]

y
 [

m
]

 

 

start

goal

D*
TWD*
E*

Fig. 15. Initial paths in the Department map with the safety cost mask.

V. EXPERIMENTAL RESULTS

The experimental results were obtained with a Pioneer 3DX

mobile robot at our Department. The occupancy grid map with

the safety cost mask were used. The laser range finder SICK

LMS200 mounted on the robot was used for environment

perception. The dynamic window based algorithm, described

in our previous work [9], was used for path following.

Fig. 16 shows the initial and replanned paths calculated by

the E* algorithm, and the robot’s trajectory while following

the path. The comparison of the path lengths of all three

algorithms at each replanning step is shown in Fig. 17. It can

be seen that the path calculated by the E* algorithm is the

shortest in all replanning steps.

Numerical results of the initial planning is shown in Table

VII, and of the dynamical planning is shown in Table VIII.



Fig. 16. The initial and replanned paths calculated by the E* algorithm and
the trajectory driven by the mobile robot Pioneer 3DX.

0 20 40 60 80 100 120 140 160 180
2

4

6

8

10

12

14

16

18

20

 

 

TWD*

D*

E*

p
at

h
le

n
g
th

s
[m

]

replanning steps

Fig. 17. Comparison of the path lengths at each replanning step.

It can be seen that the sum of all replannings is much

higher comparing to the simulation results, which is due to

incomplete map of the environment.

TABLE VII
COMPARISON OF ALGORITMHS IN DEPARTENT MAP WITH SAFETY COST

MAP.

Algorithm I tinit [ms] nαinit Σαinit [◦] l [m]

D* 32727 37 15 675 8.27
TWD* 65456 138 9 300 8.10
E* 32727 129 21 422 8.06

TABLE VIII
REPLANNING EXECUTION

Alg. tmax
replan

[ms] Imax
replan

Σtreplan [ms] ΣIreplan

D* 17 5286 161 67457
TWD* 23 9618 419 100579
E* 14 4197 1217 135190

VI. CONCLUSION

This paper presents a comparative study of three graph

based search algorithms implemented in the occupancy grid

map of the environment – the D*, two-way D* and the

E* algorithm. The criteria for comparison were the path

characteristics, the time of execution and the number of

iterations of the algorithms’ main while loop. The analysis

of path characteristics shows that the E* and the TWD*

algorithms are more appropriate to follow by the mobile robot

since they produce more natural and low cost paths than the

D* algorithm. The analysis of the time of execution shows

that the E* and TWD* algorithms are more computationally

demanding than the D* algorithm. When changing the grid

size the E* path becomes more similar to the Euclidean

shortest path, while the D* and the TWD* paths remain almost

the same. Using the weighted occupancy grid map with the

safety cost mask has shown to be very appropriate for the E*

algorithm, which calculate the shortest paths. The experiments

on the real robot shows that all three algorithms have good

real-time performances.

ACKNOWLEDGMENT

This research has been supported by the Ministry of Sci-

ence, Education and Sports of the Republic of Croatia under

grant No. 036− 0363078− 3018.

REFERENCES

[1] M. Dakulovic and I. Petrovic. Two-way D* algorithm for path planning
and replanning. Robotics and Autonomous Systems, 59(5):329–342,
2011.

[2] D. Ferguson and A. Stentz. Field D*: An Interpolation-Based Path
Planner and Replanner. Robotics Research: Results of the 12 th Inter-

national Symposium ISRR(STAR: Springer Tracts in Advanced Robotics

Series Volume 28), 28:239–253, 2007.
[3] D. B. Gennery. Traversability analysis and path planning for a planetary

rover. Autonomous Robots, 6(2):131–146, 1999.
[4] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic

determination of minimum cost paths. IEEE transactions on Systems

Science and Cybernetics, 4(2):100–107, 1968.
[5] O. Khatib. Real-Time Obstacle Avoidance for Manipulators and Mobile

Robots. The International Journal of Robotics Research, 5(1):90–98,
1986.

[6] J.C. Latombe. Robot Motion Planning. Kluwer Academic Publishers,
Dodrecht, Netherlands, 1991.

[7] R. Philippsen and R. Siegwart. An interpolated dynamic navigation
function. In Proceedings of the 2005 IEEE International Conference on

Robotics and Automation (ICRA), volume 4, pages 3782–3789. Citeseer,
2005.

[8] S.J. Russell, P. Norvig, J.F. Canny, J. Malik, and D.D. Edwards. Artificial
intelligence: a modern approach. Prentice Hall Englewood Cliffs, NJ,
1995.

[9] M. Seder, K. Maček, and I. Petrović. An integrated approach to real-time
mobile robot control in partially known indoor environments. Industrial
Electronics Society, 2005. IECON 2005. 32nd Annual Conference of

IEEE, pages 1785–1790, 2005.
[10] M. Seder and I. Petrović. Dynamic window based approach to mobile

robot motion control in the presence of moving obstacles. Robotics and
Automation, 2007 IEEE International Conference on, pages 1986–1991,
2007.

[11] JA Sethian. A fast marching level set method for monotonically
advancing fronts. Proceedings of the National Academy of Sciences,
93(4):1591–1595, 1996.

[12] A. Stentz. Optimal and efficient path planning for partially-known
environments. Robotics and Automation, 1994. Proceedings., 1994 IEEE

International Conference on, pages 3310–3317, 1994.
[13] A. Stentz. The focussed D* algorithm for real-time replanning. In

International Joint Conference on Artificial Intelligence, volume 14,
pages 1652–1659, 1995.

[14] S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. Cambridge,
Massachusetts: MIT Press, 2005.

[15] CM Witkowski. A parallel processor algorithm for robot route planning.
Int. Joint Conf. on Artificial Intelligence (IJCAI), Karlsruhe, West

Germany, pages 827–829, 1983.


