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aUniversity of Zagreb, Faculty of Electrical Engineering and Computing,
Unska 3, 10000 Zagreb, Croatia

Abstract

This paper presents a systematic approach for component number reduction
in mixtures of exponential families, putting a special emphasis on the von
Mises mixtures. We propose to formulate the problem as an optimization
problem utilizing a new class of computationally tractable composite dis-
tance measures as cost functions, namely the composite Rényi α-divergences,
which include the composite Kullback-Leibler distance as a special case. Fur-
thermore, we prove that the composite divergence bounds from above the
corresponding intractable Rényi α-divergence between a pair of mixtures.
As a solution to the optimization problem we synthesize that two existing
suboptimal solution strategies, the generalized k-means and a pairwise merg-
ing approach, are actually minimization methods for the composite distance
measures. Moreover, in the present paper the existing joining algorithm is
also extended for comparison purposes. The algorithms are implemented
and their reduction results are compared and discussed on two examples of
von Mises mixtures: a synthetic mixture and a real-world mixture used in
people trajectory shape analysis.
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Marković), ivan.petrovic@fer.hr (Ivan Petrović)
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1. Introduction

Many statistical and engineering problems [1–3] require modelling of
complex multi-modal data, wherein mixture distributions became an in-
evitable tool. In this paper we draw attention to finite mixtures of a specific
distribution on the unit circle, the von Mises distribution. Starting from
1918 and the seminal work of von Mises [4], where he investigated hypoth-
esis on integrality of atomic weights of chemical elements, the proposed
parametric density plays a pertinent role in directional statistics with wide
range of applications in physics, biology, image analysis, neural science and
medicine — confer monograms [5–7] and references therein.

Estimation of complex data by mixture distributions may lead to models
with large or, in applications like target tracking, ever increasing number of
components. In lack of efficient reduction procedures, such models become
computationally intractable and lose their feasibility. Therefore, component
number reduction in mixture models is an essential tool in many domains like
image and multimedia indexing [8, 9], speech segmentation [10], and it is an
indispensable part of any tracking system with mixtures of Gaussian [11–13]
or von Mises distributions [3]. The subject matter is particularly relevant to
the information fusion domain since it relates to the following challenging
problems in multisensor data fusion [14]: data dimensionality, processing
framework, and data association. These problems are related to component
reduction by the fact that measurement data as quantity of interest can be
preprocessed (compressed) prior to communicating it to other nodes (in a
decentralized framework) or the fusion center, thus effectively saving on the
communication bandwidth and power required for transmitting data. For
example, consider the problem of people trajectory analysis with von Mises
mixtures [2] in a distributed sensor networks where the mixtures might need
to be communicated between the sensor nodes. Motivated by [2, 3], in this
paper we study methods and respective algorithms for component number
reduction in mixtures of von Mises distributions, but due to the general
exposition of the subject in the framework of exponential family mixtures,
the methods and findings easily extend to other examples like mixtures of
Gaussian distributions, von Mises-Fisher distributions [5] etc.

Existing literature on mixture reduction schemes is mostly related to
Gaussian mixture models. A reduction scheme for Gaussian mixtures in
the context of Bayesian tracking systems in a cluttered environment, which
succesively merges the closest pair of components and henceforth referred
to as the joining algorithm, was proposed in [11]. The main drawback of the
scheme is its local character, which gives no information about the global
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deviation of the reduced mixture from the original one. In [15] the mix-
ture reduction was formulated as an optimization problem for the integral
square difference cost function. A better suited distance measure between
probability distributions is the Kullback-Leibler (KL) distance [16], but it
lacks a closed form formula between mixtures, what makes it computation-
ally inconvenient. Several concepts have been employed to circumvent this
problem. A new distance measure between mixture distributions, based
on the KL distance, which can be expressed analytically was derived in
[17], and utilized to solve the mixture reduction problem. In [12] an upper
bound for the KL distance was obtained and used as dissimilarity measure
in a successive pairwise reduction of Gaussian mixtures — henceforth we re-
fer to it as the pairwise merging algorithm. Unlike the joining algorithm,
this procedure gives a control of the global deviation of the reduced mix-
ture from the original one. Introducing the notion of Bregman information,
the authors in [18] generalized the previously developed Gaussian mixture
reduction concepts to arbitrary exponential family mixtures. Further devel-
opment of these techniques for exponential family mixtures can be found
in [19–24]. Finally, we mention the variational Bayesian approach [25, 26]
as well as [27] as alternative concepts of mixture reduction developed for
Gaussian mixtures.

Contributions of the present paper are as follows. Firstly, we formulate
the problem of component number reduction in exponential family mixtures
as an optimization problem utilizing a new class of composite distance mea-
sures as cost functions. These distance measures are constructed employing
Rényi α-divergences as ground distances, and it is shown that the compos-
ite distance bounds the corresponding Rényi α-divergence from above (see
Lemma 1 below). This inequality is very important since it provides an in-
formation on the global deviation of the reduced mixture from the original
one measured by the Rényi α-divergence. Secondly, we synthesize previously
developed reduction techniques [12, 18, 24] in the sense that they can all be
interpreted as suboptimal solution strategies to the proposed optimization
problem. For the purpose of computational complexity and accuracy com-
parisons, the joining algorithm is extended using the scaled symmetrized KL
distance as a dissimilarity measure between mixture components. Thirdly,
special attention is given to von Mises mixtures for which we present analyt-
ical expressions for solving the component number reduction problem and
analyze them on two examples: a synthetic 100-component mixture with
several dominant modes and a real-world mixture stemming from the work
on people trajectory analysis in video data [2].

Outline of the paper is as follows. The general framework of exponential
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family mixtures is introduced in Section 2 together with a brief survey on
distance measures between probability distributions and definition of com-
posite distance measures. Section 3 presents the component number reduc-
tion in exponential family mixtures as a constrained optimization problem.
In Section 4 we discuss two suboptimal solution strategies and additionally
consider the joining algorithm. Numerical experiments on two examples of
circular data are performed and obtained results are discussed in Section 5.
Finally, Section 6 concludes the paper by outlining main achievements and
commenting on possible extensions.

2. General background

In this section we introduce exponential family distributions and the von
Mises distribution as their subclass, we recall the notion of finite mixture
distributions and discuss variety of distance measures between probability
distributions emphasizing on composite distance measures between mixtures.

2.1. Exponential family distributions

A parametric set of probability distributions defined on a sample space
X and parametrized by the natural parameter θ ∈ Θ ⊂ Rd is called ex-
ponential family if their probability densities admit the following canonical
representation

pF (x; θ) = exp(T (x) · θ − F (θ) + C(x)), x ∈ X . (1)

Map T : X → Rd is called the minimal sufficient statistics, and functions F
and C denote the log-normalizer (or log-partition) and the carrier measure,
respectively. It can be proved that Θ = Dom(F ) is a nonempty convex set,
and F is convex and unique up to an additive constant [28]. Moreover, if
the exponential family is regular (i.e. Θ is open), then F is strictly convex
and differentiable on Θ [18]. In further, the exponential family accompanied
with the convex function F will be denoted by EF .

Many well known parametric distributions, like Gaussian, Poisson, Ga-
mma, Dirichlet, etc., are exponential families [6]. For the reader’s conve-
nience, recall the simplest example of the univariate Gaussian distribution

p(x;µ, σ2) =
1√
2πσ

exp
(
−(x− µ)2/2σ2

)
,

with standard parameters (µ, σ2), which is an exponential family with natu-
ral parameter θ = (µ/σ2, 1/2σ2) ∈ R2, sufficient statistics T (x) = (x,−x2),
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log-normalizer F (θ) = θ2
1/4θ2 + log(π/θ2)/2, and C(x) = 0. Canonical

parametrizations (1) for other exponential families can be found in [29], and
in the sequel we focus on our study example — the von Mises distribution.

2.1.1. Von Mises distribution

The von Mises distribution is a probability distribution defined on the
unit circle, or equivalently on the interval [0, 2π), with density function given
by

p(x;µ, κ) =
1

2πI0(κ)
exp {κ cos(x− µ)} , 0 ≤ x < 2π, (2)

where µ ∈ [0, 2π) denotes the mean angle, κ ≥ 0 is the concentration pa-
rameter, and I0 is the modified Bessel function of the first kind and of order
zero [5]. Recall, the modified Bessel function of the first kind and of order
n ∈ N is defined by

In(κ) =
1

2π

∫ 2π

0
exp(κ cos ξ) cos(nξ) dξ. (3)

In many ways von Mises distribution is considered as the circular analogue
of the univariate Gaussian distribution: it is unimodal, symmetric around
the mean angle µ, and the concentration parameter κ is analogous to the
inverse of the variance. Furthermore, it is characterized by the maximum
entropy principle in the sense that it maximizes the Boltzmann-Shannon
entropy under prescribed circular mean [5].

From (2) it can be readily derived that von Mises distribution with stan-
dard parameters (µ, κ) is an exponential family parametrized by the natural
parameter θ = (κ cosµ, κ sinµ) ∈ Θ = R2. The minimal sufficient statistics
is the standard parametrization of the unit circle T (x) = (cosx, sinx), the
log-normalizer is given by

F (θ) = log
(

2πI0

(√
θ2

1 + θ2
2

))
, (4)

and the carrier measure is trivial, C(x) = 0.

2.2. Exponential family mixtures

A finite exponential family mixture distribution is a weighted normalized
sum of distributions belonging to the same exponential family EF . Its density
function is given by

p(x) =

K∑
i=1

wipF (x; θi), x ∈ X , (5)
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where K denotes the number of (different) parameters θi ∈ Θ representing
the mixture components and wi are the corresponding weights which sum
up to unity.

2.3. Distance measures

In order to analyze and approximate distributions one needs the notion
of distance, either in proper or in generalized sense. There are numerous
distance measures between distributions, but we will concentrate on those
which are appropriate for finite mixtures, both from practical and theoretical
aspects. Standard integral distances [15] between distributions do not take
into account their key properties: the nonnegativity and normalization, what
makes them often unsuitable in statistical analysis.

Statistically and information theoretically motivated distance measure is
the Kullback-Leibler (KL) distance [16], also known as the Kullback-Leibler
divergence or the relative entropy, defined by

DKL(p, q) =

∫
X
p(x) log

(
p(x)

q(x)

)
dx.

The KL distance is a generalized distance functional, which is not sym-
metric nor it satisfies the triangle inequality, but it is positive definite, i.e.
DKL(p, q) ≥ 0 and DKL(p, q) = 0 only when p = q. It belongs to a wider
class of distance measures called f -divergences or Ali-Silvey distances [30],
which have numerous applications in statistics and information theory [31].
Another statistical and information theoretical class of generalized distances,
particularly addressed in this paper, are Rényi α-divergences [32]

DRα(p, q) =
1

α− 1
log

∫
X
p(x)αq(x)1−αdx

parametrized by the real parameter α 6= 1. Using the l’Hospital’s rule when
α → 1, one obtains the KL distance at the limit. For further reading on
generalized distance measures, their rich mathematical structure, wide range
of information theoretical applications, as well as their intimate relations
to exponential family distributions, we refer to a recent study in [33] and
references therein.

Next, we present closed form expressions for the above defined distance
measures between given exponential family distributions. Let p = pF (·; θp)
and q = pF (·; θq) ∈ EF , then straightforward calculations reveal the explicit
formula

DKL(p, q) = BF (θq, θp), (6)
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where BF denotes the Bregman divergence [34] generated by the convex
log-normalizing function F ,

BF (θ1, θ2) = F (θ1)− F (θ2)−∇F (θ2) · (θ1 − θ2), θ1, θ2 ∈ Θ.

Equation (6) is valuable in the sense that translates the KL distance be-
tween exponential family densities to the Bregman divergence between the
respective natural parameters, but in reversed order. Concerning Rényi α-
divergences, they also admit a closed form expressions between exponential
family distributions when α ∈ (0, 1), and are given by

DRα(p, q) =
1

1− α
J

(α)
F (θp, θq), (7)

where J
(α)
F denotes the Jensen α-divergence (or Burbea-Rao) [35] generated

by the convex function F ,

J
(α)
F (θ1, θ2) = αF (θ1) + (1− α)F (θ2)− F (αθ1 + (1− α)θ2), θ1, θ2 ∈ Θ.

Specifically, let p and q be von Mises distributions with standard parameters
(µp, κp) and (µq, κq), respectively. Using the log-normalizing function (4) in
(6), direct calculations reveal

DKL(p, q) = log
I0(κq)

I0(κp)
+A(κp)(κp − κq cos(µp − µq)), (8)

where A(κ) = I1(κ)/I0(κ). Similarly, for α ∈ (0, 1) (7) gives Rényi α-
divergences

DRα(p, q) =
α

1− α
log I0(κp) + log I0(κq) +

1

α− 1
log I0(κ(α)

pq ), (9)

where κ
(α)
pq =

√
α2κ2

p + (1− α)2κ2
q + 2α(1− α)κpκq cos(µp − µq). Direct ap-

plication of the above distances on mixture distributions does not give such
closed form expressions depending on mixture parameters, which makes
them typically impractical from computational viewpoint. However, the
notion of composite (transport) distances, motivated by the optimal trans-
portation theory [36], renders the aforementioned problem soluble.

2.3.1. Composite distance measures

Let p =
∑K

i=1wipi and q =
∑L

j=1w
′
jqj be given exponential family

mixtures, where pi and qj are abbreviations for pF (·; θi) and pF (·; θ′j), re-
spectively. Let D(·, ·) denote an f -divergence or Rényi α-divergence, then
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the composite D-distance [37] between mixtures p and q is defined by

dD(p, q) = inf
u∈Γ(w,w′)

∑
i,j

uijD(pi, qj), (10)

where Γ(w,w′) = {u ∈ RK×L : uij ≥ 0,
∑K

i=1 uij = w′j ,
∑L

j=1 uij = wi}
denotes the set of couplings between vectors w and w′. The infimum in (10)
is always achieved, since one optimizes a linear function over the compact
set Γ(w,w′) ⊂ RK×L. In fact, computation of the composite distance dD
corresponds to solving a linear programming problem. It is easily seen that
dD is a generalized distance measure, i.e. dD(p, q) ≥ 0 and dD(p, q) = 0
only if p = q. Main accomplishments of using the composite distances as
distance measures between mixtures are twofold. First, their computation
depends only on mixture parameters, and second, they give upper bounds
on the corresponding ground distance between mixtures, as discussed in the
following lemma.

Lemma 1. Let p and q be finite mixtures, and let D be f -divergence or
Rényi α-divergence with α ∈ (0, 1), then

D(p, q) ≤ dD(p, q). (11)

Proof. Let p =
∑K

i=1wipi and q =
∑L

j=1w
′
jqj be given mixtures. The case

when D is f -divergence has been proven in [37]. Thus, let D = DRα for
some α ∈ (0, 1), and we write

DRα(p, q) =
1

α− 1
log

∫
X
p(x)φα

(
q(x)

p(x)

)
dx

with φα(u) = u1−α. Since (1 − α) ∈ (0, 1), then φα is concave, and conse-
quently ψα := −φα is convex. Following the lines of the proof for composite
f -divergences in [37], for arbitrary u ∈ Γ(w,w′) we calculate∫

X
p φα

(
q

p

)
dx = −

∫
X
p ψα

(
q

p

)
dx ≥ −

∑
i,j

uij

∫
X
pi ψα

(
qj
pi

)
dx

=
∑
i,j

uij

∫
X
pi φα

(
qj
pi

)
dx. (12)

Taking the logarithm of (12), using the Jensen’s inequality, and multiplying
by 1/(α− 1) < 0 we obtain

1

α− 1
log

∫
X
p φα

(
q

p

)
dx ≤

∑
i,j

uij
1

α− 1
log

∫
X
pi φα

(
qj
pi

)
dx.
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The left-hand side in the last inequality is exactly DRα(p, q). Since the
inequality holds for any u ∈ Γ(w,w′), we can take the infimum over Γ(w,w′)
on the right-hand side, which finishes the proof.

If D is the KL distance, the composite KL distance dKL(p, q) can be
interpreted as the total cost of coding data generated by p under the model
q [17]. Note as well that in the above lemma there is no requirement on p
and q being exponential family mixtures and that the statement holds true
for general finite mixtures.

3. Problem formulation

Having defined suitable distance measures from the previous section, we
formulate the problem of reduction of the number of components, described
in Section 1, as follows. Let p =

∑K
i=1wipi be the given starting exponential

family mixture and letD denote the chosen ground distance, the KL or Renyi
α-divergence with α ∈ (0, 1). The optimization problem

min
q′∈ML

dD(p, q′) (13)

aims to find a mixture q′ having at most L components, which is the best
approximation of p with respect to the composite D-distance. If we denote

D
(α)
F (θi, θ

′
j) =


1

1− α
J

(α)
F (θi, θ

′
j), α ∈ (0, 1),

BF (θ′j , θi), α = 1,
(14)

then according to the definition of composite distance and having in mind
explicit formulae (6)–(7), the above problem amounts to a constrained (non-
linear) optimization problem

min
θ′, w′, u

K∑
i=1

L∑
j=1

uijD
(α)
F (θi, θ

′
j) (15)

over unknown natural parameters θ′ = (θ′1, . . . , θ
′
L) ∈ ΘL, its weights w′ =

(w′1, . . . , w
′
L) ∈ [0, 1]L and optimal couplings u ∈ Γ(w,w′). Associated

constraints are given by linear equations

L∑
j=1

uij = wi, i = 1, . . . ,K;

K∑
i=1

uij = w′j , j = 1, . . . , L;

L∑
j=1

w′j = 1,

(16)
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and the nonnegativity conditions uij ≥ 0 for all i = 1, . . . ,K and j =
1, . . . , L. The last two equations in (16) imply

∑
i,j uij = 1, which is triv-

ially fulfilled by the first equation in (16) due to the normalizing condition∑K
i=1wi = 1. Hence, the only equality constraints left are

L∑
j=1

uij = wi, i = 1, . . . ,K. (17)

Due to nonlinearities in natural parameters, globally optimal solution to the
problem (15) and (17) seems to be out of reach. Instead, we will present
two suboptimal solution strategies in the forthcoming section, but first we
derive necessary conditions for optimality.

3.1. Necessary conditions for local minimizers

Fixing α ∈ (0, 1], the Lagrange function of the optimization problem
(15) with constraints (17) equals

L(θ′,w′, z,λ) =
∑
i,j

z2
ijD

(α)
F (θi, θ

′
j) +

K∑
i=1

λi

(
wi −

L∑
j=1

z2
ij

)
(18)

where λ = (λ1, . . . , λK) are Lagrange multipliers and the change of variables
uij = z2

ij substitutes the nonnegativity conditions uij ≥ 0.
Taking gradients with respect to θ′j and equating with zero yields the set

of equations

w′j∇F (θ′j) =
K∑
i=1

z2
ij∇F (αθi + (1− α)θ′j), j = 1, . . . , L. (19)

Partial derivatives with respect to zij give conditions

zij(D
(α)
F (θi, θ

′
j)− λi) = 0, i = 1, . . . ,K; j = 1, . . . , L. (20)

Now we determine λ. Let z = (zij) be a stationary point of (18). If zij 6= 0
for some i and j, then according to (20)

λi = D
(α)
F (θi, θ

′
j).

The same holds true for fixed i and arbitrary j such that zij 6= 0, hence λi
is well defined only when all θ′j (with j such that zij 6= 0) lie on the same

D
(α)
F -distance from θi. Therefore,

λi = min
j∈Ni

D
(α)
F (θi, θ

′
j), i = 1, . . . ,K,
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where Ni = {j ∈ {1, . . . , L} : zij 6= 0}. So far, for given stationary z
we have equations for θ′j (given by (19)), and prescribed relations for the

corresponding weights w′j =
∑K

i=1 z
2
ij . One still needs to determine optimal

z = (zij). Applying conditions (17) and the above discussion about λ reveals
that z = (zij), defined by

zij =


√
wi, j = arg min

l∈{1,...,L}
D

(α)
F (θi, θ

′
l),

0, otherwise,

(21)

is a stationary point. However, this definition depends on the stationary
θ′. Consequently, we will need to employ iterative procedures to solve the
stationary problems (19) and (21).

In the case of univariate Gaussian mixtures, necessary conditions (19),
in terms of standard parameters, reduce to the following system of algebraic
equations:

w′jµ
′
j =

K∑
i=1

z2
ij

ασ2
ijµi + (1− α)µ′j
ασ2

ij + 1− α
,

w′j(σ
′2
j + µ′2j ) =

K∑
i=1

z2
ij

(
σ′2j

ασ2
ij + 1− α

+
(ασ2

ijµi + (1− α)µ′j
ασ2

ij + 1− α

)2
)
,

where σij = σ′j/σi. Note that if α = 1, they become explicit formulae

for mean values µ′j and variances σ′2j . Similarly holds true for multivariate
Gaussian mixtures (cf. [11, Eq. (3)]).

In general, system (19) is heavily nonlinear, for instance in the von Mises
case it involves the ratio of Bessel functions (see below). However, if α = 1,
the right hand side in (19) depends only on coupling z and the original set of
parameters. A unique solution is asserted by strict convexity of the function
F and can be obtained by applying the Newton method. If α ∈ (0, 1), solving
system (19) requires an iterative convex-concave optimization scheme, which
eventually converges to the unique solution of (19) — see [24] for a detailed
analysis of such systems.

3.2. The case of von Mises mixtures

In light of the above discussion on exponential families, in this subsection
we highlight the problem of component number reduction (15) in case of the
von Mises mixtures and eventually express the necessary conditions (19)
and (21) in terms of the standard parameters of von Mises mixtures. Using
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the relation ∇F (θ) = A(κ)(cosµ, sinµ) between the natural and standard
parameters, equation (19) translates (componentwise) to

w′jA(κ′j) cosµ′j =
K∑
i=1

z2
ijA(κ

(α)
ij ) cos(µ

(α)
ij ), j = 1, . . . , L, (22)

w′jA(κ′j) sinµ′j =

K∑
i=1

z2
ijA(κ

(α)
ij ) sin(µ

(α)
ij ), j = 1, . . . , L, (23)

where κ
(α)
ij and µ

(α)
ij are defined by

κ
(α)
ij =

√
α2κ2

i + (1− α)2κ′2j + 2α(1− α)κiκ′j cos(µi − µ′j),

tanµ
(α)
ij =

ακi sinµi + (1− α)κ′j sinµ′j
ακi cosµi + (1− α)κ′j cosµ′j

.

Dividing (23) by (22) we implicitly express µ′j , while squaring (22), (23) and
summing them yields expressions for κ′j as follows:

tanµ′j =

∑K
i=1 z

2
ijA(κ

(α)
ij ) sinµ

(α)
ij∑K

i=1 z
2
ijA(κ

(α)
ij ) cosµ

(α)
ij

, j = 1, . . . , L,

wj
′2A2(κ′j) =

K∑
i=1

z4
ijA

2(κ
(α)
ij ) (24)

+ 2
K∑

i,k=1
i<k

z2
ijz

2
kjA(κ

(α)
ij )A(κ

(α)
kj ) cos(µ

(α)
ij − µ

(α)
kj ), j = 1, . . . , L.

Note again that for α = 1 the right hand side in (24) depends only on the
coupling z and the known parameters µi and κi, while α ∈ (0, 1) makes
(24) a heavily nonlinear problem in µ′j and κ′j , which can be solved by the
previously mentioned iterative convex-concave optimization [24]. Using (8)
or (9) we also obtain explicit formulae for the stationary couplings z in (21),
which, in other words, tell us which components we need to merge, while
(24) tells us exactly how to calculate the merging.

4. Component reduction schemes

In this section we present three different approaches for solving the com-
ponent number reduction problem. The first two approaches: (i) generalized
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k-means clustering, and (ii) a gradual pairwise merging scheme, present so-
lution strategies which aim to solve the optimization problem (15), i.e. to
minimize the composite distance between the original and the reduced mix-
ture. The third approach, the joining algorithm, is a heuristic reduction
scheme which successively merges a pair of components with the lowest mu-
tual distance, and is considered here for comparison purposes.

4.1. Minimizing the composite distance

(i) Generalized k-means clustering
A natural iterative procedure for solving (19) and (21) is the Lloyd’s

algorithm [38] or the generalized k-means clustering. Depending on the
choice of parameter α ∈ (0, 1], the clustering algorithms are known in the
literature as Bregman clustering for α = 1 [18], and α-Jensen (or Burbea-
Rao) clustering when α ∈ (0, 1) [24]. However, the fact that these algorithms
optimize the composite distance between mixtures and consequently provide
the upper bound on the ground distance (cf. Lemma 1), is to the best of our
knowledge novel.

Let p =
∑K

i=1wipi denote the original mixture with natural parameters
θi, i = 1, . . . ,K, let the number of components of the reduced mixture L
be given, and let q =

∑L
j=1w

′
jqj denote the reduced mixture represented by

natural parameters θ′j , j = 1, . . . , L, which needs to be determined. The
first step of the algorithm requires initialization of parameters θ′j . This can
be done for example by taking random L points from the set {θi}, or in
a genuine way discussed below. For the moment, assume we are given an

initial set of parameters {θ′(0)
j }. The generalized k-means clustering is a

two step iterative scheme which consists of the assignment step and and the
recalculation of parameters.

First, in the assignment step the coupling z(1) = (z
(1)
ij ) is computed

according to (21) using initial parameters θ
′(0)
j :

z
(1)
ij =


√
wi, j = arg min

l∈{1,...,L}
D

(α)
F (θi, θ

′(0)
l ),

0, otherwise.

Definition of z(1) gives a set of clusters C(1) = {C(1)
j : j = 1, . . . , L} which

partition the original set {θi}, such that θi ∈ C(1)
j exactly when z

(1)
ij 6= 0. In

the second step — recalculation of parameters — for given z(1), equations in

13



(19) need to be solved to obtain new parameters θ
′(1)
j :

w
′(1)
j ∇F

(
θ
′(1)
j

)
=

K∑
i=1

(z
(1)
ij )2∇F

(
αθi + (1− α)θ

′(1)
j

)
, j = 1, . . . , L, (25)

where w
′(1)
j =

∑K
i=1(z

(1)
ij )2. In the next iteration, coupling z(2) is calculated

using parameters θ
′(1)
j from the first step, and the algorithm continues with

calculation of new parameters θ
′(2)
j . The above described procedure iterates

between those two steps until z(k+1) = z(k) for some k ≥ 1, and the stopping
criteria is guaranteed by the finitness of the set of all possible couplings.
The scheme monotonically decreases the cost functional, i.e. the composite
distance, in (15) (cf. [18]) for k ∈ N∑

i,j

(z
(k)
ij )2D

(α)
F (θi, θ

′(k)
j ) ≥

∑
i,j

(z
(k+1)
ij )2D

(α)
F (θi, θ

′(k)
j )

≥
∑
i,j

(z
(k+1)
ij )2D

(α)
F (θi, θ

′(k+1)
j ),

where these inequalities follow from the assignment step and recalculation

of parameters, respectively. The obtained parameters θ′j = θ
′(k)
j and the

coupling z = z(k), for some k ∈ N, satisfy the necessary conditions (19)
and (21), hence, they are a local minimum of (15), and the mixture q =∑L

j=1w
′
jqj is a suboptimal solution to the component number reduction

problem. Nothing can be said about the global optimality of the obtained
solutions. Algorithm 1 summarizes the above presented scheme.

Due to their local optimality, evident drawback of the k-means scheme
is strong dependence on initial conditions. A random choice of the initial
guess might yield suboptimal solution very far from the globally optimal. In
[39] a clever way to construct an initial guess was proposed which typically
gives better results. The construction consists of repetitive sampling of
a parameter from the set of original parameters {θi} according to a non-
uniform discrete probability distribution defined by

P (θi) =
wi min

θ
(0)
j ∈Q0

D
(α)
F (θi, θ

(0)
j )∑K

i′=1wi′ min
θ
(0)
j ∈Q0

D
(α)
F (θi′ , θ

(0)
j )

, i = 1, . . . ,K, (26)

where Q0 denotes the set of already sampled parameters. From (26) we see
that sampling probabilities are proportional to the parameter weights and
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Algorithm 1 Generalized k-means clustering

Require: Component parameters {θi : i = 1, . . . ,K} ⊂ Θ with correspond-
ing weights {wi : i = 1, . . . ,K}, distance parameter α ∈ (0, 1]

Ensure: Reduced component parameters {θ′j : j = 1, . . . , L} ⊂ Θ with
corresponding weights {w′j : j = 1, . . . , L}.

1: Parameter initialization: {θ′(0)
j : j = 1, . . . , L} ⊂ Θ

2: k = 1
3: z(0) = ∅
4: repeat
5: # Assignment step
6: for i = 1, . . . ,K do

7: j∗ = arg min
j=1,...,L

D
(α)
F (θi, θ

′(k−1)
j )

8: z
(k)
ij = (j == j∗) ?

√
wi : 0, j = 1, . . . , L

9: end for
10: # Recalculation step
11: for j = 1, . . . , L do

12: w
′(k)
j =

∑K
i=1(z

(k)
ij )2

13: Solve (19) for θ
′(k)
j

14: end for
15: k = k + 1
16: until z(k−1) = z(k−2)

to the distance from Q0. In that way the construction takes into account
importance of each parameter θi and its relative position to the set of already
sampled parameters. Parameters that are already sampled have probability
zero for being sampled again. In Algorithm 2 we summarize the initialization
procedure.

(ii) Pairwise merging scheme
Unlike the previous strategy which minimizes the composite distance

by iterative clustering of the original set of parameters, in this section we
discuss another scheme which gradually reduces the number of components
by pairwise merging such that in each step the pair of components of the
lowest cost (see (27) below) is merged. The scheme was first introduced
in [12] for the case of Gaussian mixtures using the “Kullback-Leibler cost”
(α = 1 in (27)). Here we extend the idea to the case of exponential family
mixtures and “Rényi cost functions”. Moreover, we discuss how this scheme
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Algorithm 2 Parameter initialization

Require: Component parameters P = {θi : i = 1, . . . ,K} ⊂ Θ with corre-
sponding weights {wi : i = 1, . . . ,K}, distance parameter α ∈ (0, 1]

Ensure: Initial guess Q0 = {θ′(0)
j : j = 1, . . . , L} ⊂ Θ for k-means iterations

1: Q0 ← ∅
2: Sample a point θi ∈ P according to the discrete (non-uniform) distribu-

tion w = (w1, . . . , wK)
3: Q0 ← {θi}
4: while |Q0| < L do
5: Sample θi ∈ P according to (26), Q0 ← Q0 ∪ {θi}
6: end while

is related to minimization of the composite distances.
Since in this scheme each subsequent step follows the same lines, we will

concentrate on the first step of the procedure. Again let p =
∑K

i=1wipi
denote the original mixture, which we now want to reduce to a (K − 1)-
component mixture q. Naive application of the k-means algorithm would
first require to sample K − 1 elements from the original set {θi}. Then the
assignment step would clearly result a simple clustering C(1) where K − 1
original elements are assigned to itself, and only one (the non-sampled)
element is assigned elsewhere. Instead of proceeding with k-means, the
idea is to consider all possible simple clustrings C(1), which partition the
original set of parameters into K−1 subsets, and are described by couplings
z = (zij) ∈ RK×(K−1) of the form (21). There are exactly K(K − 1)/2 such
couplings, and for each we can compute the corresponding cost in (15). Since
each coupling fixes K − 2 parameters (components) from p and exactly two
parameters are to be merged, the optimization problem (15) simplifies to

min
θ′∈Θ

min
i,k

{
wiD

(α)
F (θi, θ

′) + wkD
(α)
F (θk, θ

′)
}
. (27)

For each pair of indices (i, k) ∈ {1, . . . ,K}2, merged parameter θ′ must
satisfy the necessary conditions

w′∇F (θ′) = wi∇F (αθi + (1− α)θ′) + wk∇F (αθk + (1− α)θ′), (28)

with w′ = wi + wk. A pair (i∗, k∗) ∈ {1, . . . ,K}2 with the minimal cost in
(27) will be merged to reduce one component of the mixture. The procedure
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is repeated until the desired number of components L is reached. The pair-
wise merging scheme gains global optimality in each reduction step. How-
ever, that does not guarantee the overall global optimality of the reduction
procedure after N − L steps. Moreover, due to additional nonlinearity in
the right hand side of (28) in case of α ∈ (0, 1), the obtained set of parame-
ters {θ′j} does not satisfy the necessary conditions (19). Hence, in order to

improve the reduced parameters, the final coupling z ∈ RK×L between the
original and reduced mixture has to be reconstructed from the history of all
consecutive pairwise couplings, and the convex-concave optimization needs
to be performed to solve (19) taking the above obtained {θ′j} as an initial
guess.

4.2. The joining algorithm

Here we outline a heuristic approach, the joining algorithm, for solving
the problem of component number reduction in finite mixtures. First pro-
posed in [40], and later revised and extended in [11], this was one of the
first approaches for component number reduction in mixtures of Gaussian
distributions. The joining algorithm relies on finding a pair of components
with the smallest mutual distance, and then merging that pair into one
component.

In Section 2.3 we mentioned several distance measures between prob-
ability distributions, which, in order to be utilized here, need to be cus-
tomized for weighted (unnormalized) distributions, and additionaly sym-
metrized. For the purpose, we consider the scaled symmetrized KL distance
[41], defined by

DsKL(wipi, w
′
jqj) =

1

2
(wiDKL(pi, qj) + w′jDKL(qj , pi)) +

1

2
(wi − w′j) log

wi
w′j
,

(29)
where wi, w

′
j > 0. Scaled symmetrized Rényi α-divergences [32] could

be also introduced at this point, but they are not appropriate since they
neglect the respective weights of components, namely it can be shown that
DsRα(wipi, w

′
jqj) = (DRα(pi, qj) + DRα(qj , pi))/2. The final goal of the

joining algorithm is then to find the pair of components with the smallest
mutual DsKL distance and calculate the corresponding merged parameters
according to (28) with α = 1. The process is outlined in Algorithm 3.

Using an implementation which stores mutual distances between those
components that do not change between two reduction steps, it is stright-
forward to calculate that the number of distance evaluations is of order
O(K2 − L2/2), while the number of comparisons in finding the minimum
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Algorithm 3 The joining algorithm

Require: Component parameters P = {θi : i = 1, . . . ,K} ⊂ Θ with corre-
sponding weights {wi : i = 1, . . . ,K}.

Ensure: Reduced component parameters Q = {θ′j : j = 1, . . . , L} ⊂ Θ with
corresponding weights {w′j : j = 1, . . . , L}.

1: dij ← ∅
2: while |P| > L do
3: for all {i, j} with unknown dij do
4: dij ← DsKL(wipi, wjpj)
5: end for
6: {i∗, j∗} = arg min

i,j
dij

7: To get {θ′, w′} solve (19) for {θi∗ , wi∗}, {θj∗ , wj∗} and α = 1
8: P ← P \ {θi∗ , θj∗}
9: P ← P ∪ {θ′}

10: end while
11: Q ← P

distance value is O(K3−L3) [11]. Hence, the algoritham is computationally
demanding for K big and L relatively small. A simplification of the joining
algorithm can be done by first sorting the components according to their
weights and then calculating the distance between the component with the
smallest weight and all other components of the mixture. Once the compo-
nents with the smallest distance are merged, the new component is inserted
according to its resulting weight. The process is repeated until the required
number of components is reached. The idea behind is that in each step we
merge the component which brings the least information to the mixture.
This approach known as the West’s algorithm is one of the computationally
most efficient and it was proposed in [42] for component number reduction
of mixtures of Gaussian distributions.

5. Results and discussion for von Mises mixtures

To test and compare the reduction algorithms for von Mises mixtures
we utilized two examples. The first is a synthetic mixture consisting of 100
components chosen in a random manner, but with two components having
a dominant weight in order to ensure a couple of dominant modes in the
mixture. The second mixture is a real-world example steming from a people
trajectory analysis dataset [2].
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Figure 1: k-means and pairwise merging of the synthetic mixture to 10
components by minimization of composite Rényi α-divergence.

5.1. Synthetic mixture

In this example a synthetic 100-component von Mises mixture constructed
in a random manner, but with two dominant modes, needs to be reduced to
a 10-component mixture.

In order to perform the component number reduction, as proposed in
Section 3, we first choose an appropriate distance measure. According to
the literature, standard choices for the ground distance measure are the KL
and the Rényi 1

2 -divergence (Bhattacharyya distance), which then lead to
the composite KL distance and the composite Rényi 1

2 -divergence (α = 1
and α = 1

2 in (14)), utilized in this particular example. Fig. 1 shows the orig-
inal mixture and its reductions to 10 components by applying the pairwise
and k-means algorithms for minimizing: (a) the composite KL distance and
(b) the composite Rényi 1

2 -divergence. In Figs. 2 and 3 we analyze gradual
reduction of the number of components, in steps of 5 components start-
ing with 50 and ending with 10 components, using the k-means algorithm
and the pairwise merging scheme for both composite distance measures. In
Fig. 2 we show: (a) the optimized composite KL distance and (b) the com-
posite Rényi 1

2 -divergence, along with the corresponding ground distances,
respectively. Fig. 2 shows that, indeed, the composite distance is an upper
bound on the ground distance and, moreover, that the pairwise merging,
which is the more exhaustive scheme, shows better performance yielding a
suboptimal solution closer to the global minimum. Figure 3 resolves the re-
sults from Fig. 2 in more detail by depicting only the corresponding ground
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Figure 2: Composite distance and final Rényi α-divergence for the mini-
mization via k-means (red) and pairwise (blue) methods.
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Figure 3: Reduction results with respect to the corresponding Rényi α-
divergence for the composite distance minimization methods along with the
E-M with 5000 samples.

distances between the original and reduced mixtures. Again we can see that
on average the pairwise merging approach to composite distance minimiza-
tion showed better results. Also, for comparison purposes and a reduction
quality assessment, the results of the E-M algorithm using 5000 samples are
presented.

For all the algorithms and for each component number the reduction was
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Figure 4: KL distance of the component reduction with the joining algo-
rithm, West’s algorithm, and the pairwise composite distance minimization.

repeated 50 times in order to get an average performance of the reduction
and the execution time. We find it important for reliable measurement of
not just the performance of algorithms with stochastic elements, like the
k-means and E-M due to initialization and random sampling, but also for
the execution time of all the algorithms.

Furthermore, for this example we also employed the heuristic approaches
of joining and West for the component number reduction presented in Sec-
tion 4.2, where we used the symmetrized KL distance for similarity compar-
ison between components. Obtained results for gradual component number
reduction as above, along with the pairwise minimization of composite KL
distance, are compared in Fig. 4, from which we can see that for most compo-
nents and notably 10 components the pairwise merging minimization keeps
the best performance measured by the KL distance. Although the West’s
algorithm showed the lowest performance, it should not be dismissed lightly
since it has the lowest execution time as discussed in the sequel.

Table 1 shows the execution time of the algorithms utilized for the re-
duction of the synthetic mixture. From the table we can draw several con-
clusions. As expected, the computationally least expensive algorithm is the
West’s algorithm, then followed by the k-means algorithm. The most expen-
sive reduction scheme is the pairwise merging approach since in each step it
requires solving a nonlinear problem with the nonlinearity being the ratio of
Bessel functions. Furthermore, the methods utilizing the Rényi 1

2 -divergence
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Table 1: Reduction time of tested algorithms for the synthetic mixture of
von Mises distributions.

Reduction time[s]

comp. KL comp. Rényi 1
2 -div. symm. KL

k-means pairwise k-means pairwise joining West

C
om

p
. 30 11.33 50.88 12.31 177.81 10.30 3.65

20 7.35 51.29 8.21 180.65 10.36 3.78
10 4.09 51.49 4.50 182.44 10.44 3.86

Results were obtained on an Intel R© Core
TM

i7 CPU running at 1.6 GHz

are even more expensive than their KL counterparts since they additionally
have to employ the iterative convex-concave optimization scheme to cal-
culate the components parameters. For comparison purposes, we ran the
pairwise merging method minimizing the composite KL distance on a 100-
component univariate Gaussian mixture. For reductions to 30, 20, and 10
components the reduction time was 3.97 s, 3.99 s, and 4.05 s, respectively.
This example enlightens the computational demand of working with von
Mises mixtures due to special functions and numerical procedures involved.

5.2. People trajectory dataset mixture

Second example is a real-world mixture coming from people trajectory
shape analysis. Raw data is taken from the webpage of authors from [2]
and original 18-component von Mises mixture was obtained by employing
the standard E-M algorithm to provided samples. The task is to reduce the
original mixture to a 6-component mixture of von Mises distributions.

Here, the strategy was similar as for the synthetic mixture. First, we
chose the composite distances as above and minimized them using again
both the k-means and the pairwise merging minimization procedures. The
original mixture and its reductions to 6 components using the pairwise merg-
ing and k-means algorithm is shown in Fig. 5 from which we can see that for
this particular example the composite Rényi 1

2 -divergence minimization ap-
proach captures slightly better all the dominant modes of the mixture. The
analysis of gradual reduction of the original 18-component mixture, in steps
of 3 components starting with 15 and ending with 6 components, is shown in
Fig. 6, where we can observe a similar situation as for the synthetic mixture,
namely, calculating the ground distances between the original and reduced
mixtures the pairwise merging approach showed better performance than the
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Figure 5: Pairwise and k-means reduction of the people trajectory example
by minimization of composite Rényi α-divergence
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Figure 6: Reduction results for the people trajectory example with respect
to the corresponding Rényi α-divergence for the composite distance mini-
mization methods along with the E-M with 5000 samples

k-means. For the reference, the E-M with 5000 samples is also employed.
Again all the algorithms and for each component number the reduction was
repeated 50 times in order to get average performance.
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6. Conclusion

In this paper we have presented a novel systematic approach to the re-
duction of the number of components in the mixtures of exponential families,
with special emphasis on the mixtures of von Mises distributions for which
explicit formulae have been presented in Section 3.2. The component num-
ber reduction problem has been formulated as an optimization problem uti-
lizing newly proposed composite distance measures, namely the composite
Rényi α-divergences, as cost functions. The benefits of using the composite
Rényi α-divergences are twofold: they are computationally tractable since
their value depends only on mixture parameters, and they provide an upper
bound on the Rényi α-divergence itself. To solve the minimization prob-
lem we have utilized two suboptimal approaches, the generalized k-means
and the pairwise merging approach. Apart from these approaches which
aim to minimize the distance on the scale of the whole mixture, two lo-
cal techniques were also analyzed, the joining and the West’s algorithm.
The presented techniques were tested and compared on a synthetic mixture
and a real-world example of people trajectory shape analysis by calculating
respective distances between the original and the reduced mixture and by
measuring the execution time. The West’s algorithm provided the most ef-
ficient approach in terms of the execution time, while the joining algorithm
was more accurate in the KL distance sense. The pairwise merging scheme
is a very accurate method, but computationally the most exhaustive. The
k-means is computationally one of the least demanding methods, but offers
variable results which depend strongly on the initial conditions. In con-
clusion, the results suggest that the rationale for selecting an appropriate
algorithm and distance measure is an interplay between the allowable exe-
cution time, deterministic nature of the algorithm (are we willing to tolerate
a variability depending on the initial conditions) and the desired accuracy
of the reduction. For future work we plan to analyze such distances between
mixtures of distributions to serve as an efficient criteria in measurement-
to-track and track-to-track association in data association problems, and to
study optimal fusion techniques of mixture distributions in state estimation
problems.
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[3] I. Marković, I. Petrović, Bearing-only tracking with a mixture of von
Mises distributions, in: IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), 2012, pp. 707–712.

[4] R. von Mises, Uber die ‘Ganzzahligkeit’ der Atomgewicht und Ver-
wandte Fragen, Physikalische Zeitschrift 19 (1918) 490–500.

[5] K. V. Mardia, P. E. Jupp, Directional statistics, Wiley, 1999.

[6] S. R. Jammalamadaka, A. Sengupta, Topics in Circular Statistics,
World Scientific, 2001.

[7] N. Fisher, Statistical Analysis of Circular Data, Cambridge University
Press, 1995.

[8] N. Vasconcelos, Image indexing with mixture hierarchies, in: Proceed-
ings of the 2001 IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition, Vol. 1, 2001, pp. 3–10.

[9] A. Nikseresht, M. Gelgon, Gossip-based computation of a Gaussian
mixture model for distributed multimedia indexing, IEEE Transactions
on Multimedia 10 (3) (2008) 385–392.

[10] J. Goldberger, H. Aronowitz, A distance measure between GMMs based
on the unscented transform and its application to speaker recognition,
in: Proceedings of Interspeech, 2005, pp. 1985–1989.

[11] D. J. Salmond, Mixture reduction algorithms for point and extended
object tracking in clutter, IEEE Transactions on Aerospace and Elec-
tronic Systems 45 (2) (2009) 667–686.

[12] R. Runnalls, Kullback-Leibler Approach to Gaussian Mixture Reduc-
tion, IEEE Transactions on Aerospace and Electronic Systems 43 (3)
(2007) 989–999.

[13] L.-L. S. Ong, Non-Gaussian Representations for Decentralised Bayesian
Estimation, Ph.D. thesis, The University of Sydney (2007).

25



[14] B. Khaleghi, A. Khamis, O. K. Fakhreddine, N. R. Saiedeh, Multisensor
data fusion: A review of the state-of-the-art, Information Fusion 14 (1)
(2013) 28–44.

[15] J. L. Williams, P. S. Maybeck, Cost-function-based Gaussian mixture
reduction for target tracking, in: Proceedings of the 6th International
Conference of Information Fusion, 2003, Vol. 2, 2003, pp. 1047–1054.

[16] S. Kullback, Information Theory and Statistics, Dover Publications,
Inc. New York, 1997.

[17] J. Goldberger, S. Roweis, Hierarchical clustering of a mixture model,
in: NIPS, MIT Press, 2005, pp. 505–512.

[18] A. Banerjee, S. Merugu, I. S. Dhillon, J. Ghosh, Clustering with Breg-
man divergences, J. Mach. Learn. Res. 6 (2005) 1705–1749.

[19] F. Nielsen, Closed-form information-theoretic divergences for statistical
mixtures, in: 21st International Conference on Pattern Recognition
(ICPR), 2012, pp. 1723–1726.

[20] O. Schwander, F. Nielsen, Learning mixtures by simplifying kernel den-
sity estimators, in: F. Nielsen, R. Bhatia (Eds.), Matrix Information
Geometry, Springer Berlin Heidelberg, 2013, pp. 403–426.

[21] V. Garcia, F. Nielsen, Simplification and hierarchical representations of
mixtures of exponential families, Signal Process. 90 (12) (2010) 3197–
3212.

[22] V. Garcia, F. Nielsen, R. Nock, Levels of details for Gaussian mixture
models, in: H. Zha, R.-i. Taniguchi, S. Maybank (Eds.), Computer
Vision ACCV 2009, Vol. 5995 of Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 2010, pp. 514–525.

[23] P. L. Dognin, J. R. Hershey, V. Goel, P. A. Olsen, Restructuring ex-
ponential family mixture models, in: INTERSPEECH’10, 2010, pp.
62–65.

[24] F. Nielsen, S. Boltz, The Burbea-Rao and Bhattacharyya centroids,
IEEE Transactions on Information Theory 57 (8) (2011) 5455–5466.

[25] P. Bruneau, M. Gelgon, F. Picarougne, Parameterbased reduction of
Gaussian mixture models with a variational-Bayes approach, in: 19th
International Conference on Pattern Recognition, 2008.

26



[26] P. Bruneau, M. Gelgon, F. Picarougne, A low-cost variational-Bayes
technique for merging mixtures of probabilistic principal component
analyzers, Information Fusion 14 (3) (2013) 268 – 280.

[27] C. Hennig, Methods for merging Gaussian mixture components,
Adv. Data Anal. Classif. 4 (1) (2010) 3–34.

[28] O. E. Barndorff-Nielsen, Information and Exponential Families in Sta-
tistical Theory, Wiley Publishers, 1978.

[29] F. Nielsen, V. Garcia, Statistical exponential families: A digest with
flash cards, arXiv: 0911.4863.

[30] I. Csiszár, Why least squares and maximum entropy? an axiomatic
approach to linear inverse problems, The Annals of Statistics 19 (1991)
2032–2066.

[31] S. Amari, H. Nagaoka, Methods of Information Geometry, American
Mathematical Society, 2001.
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