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Real-time Approximation of Clothoids with Bounded
Error for Path Planning Applications
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Abstract—We present a method for real-time computation of clothoid
coordinates that guarantees bounded approximation error over a wide
range of clothoid parameters provided that clothoid’s orientation change
and length are bounded. It is shown that coordinates of clothoid with
any parameters can be computed from those of a single clothoid (with
fixed parameters), using appropriate geometrical transformations. A
comprehensive analysis is given on how to determine a required set of
clothoids and, based on this, how to sample a clothoid in a lookup table
in order to achieve required approximation precision. The algorithm is
computationally very efficient and therefore suitable for real-time path
planning, as well as for other applications that benefit from fast clothoid
computation.

Index Terms—clothoid approximation, Fresnel integrals, path plan-
ning, motion control.

I. INTRODUCTION

Common path-planning methods usually generate obstacle-free
path, but with no or very little concern about path feasibility or
optimality, so that it is usually necessary to apply some kind of
transform algorithm to locally smooth such a path. Various path-
smoothing algorithms are proposed in the literature: cubic splines
[1], intrinsic splines [2], Bezier’s curves [3], quintic Bezier splines
[4] and clothoids. The main advantage of clothoids over other
smoothing methods in path planning applications is linear change
of their curvature, which is of great importance for transportation of
people or heavy and sensitive loads since it prevents abrupt changes
in the centripetal acceleration and forces experienced by a vehicle
increasing driving comfort. Clothoids are very attractive in path
smoothing applications as they are easy to follow due to their linearly
changing curvature. In this way e.g. Shanmugavel et al. use Dubins
paths and smooth them with clothoid arcs in order to perform co-
operative path planning of multiple unmanned aerial vehicles [5].

Clothoids have also advantages over other smoothing techniques
in sense of vehicles optimal motion planning—by applying the Max-
imum Principle from optimal control theory, for forward motion and
differential drive vehicle, one can find that the necessary condition for
trajectory to be time optimal yields clothoids [6]. Further, Boissonnat
et al. [7] studied the shortest plane paths joining two given positions
with given tangent angles and curvatures along which the tangent
angle and the curvature are continuous and the derivative of the
curvature is bounded. They showed that at a point where such a
path is of class C3, it must be locally a piece of a clothoid or a
line segment. Similarly, Fraichard and Scheuer [8] showed that with
requirements of continuous curvature and bounded both curvature
and its derivative, shortest path consist of line segments, circular
arcs and clothoids. Meidenbauer [9] found clothoids useful for path-
planning, as he proved, both theoretically and experimentally, that
clothoid steering model is valid for real Ackermann-steered vehicles.
He obtained that the actual paths driven by the vehicle were generally
a close match to the originally planned theoretical clothoid path. As
roads are usually composed of clothoids, they are a natural choice
for path planning of autonomous cars [10].
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Unfortunately, clothoids are defined in terms of Fresnel integrals
[11], which are transcendental functions that cannot be solved analyt-
ically. This makes clothoids difficult to use in real-time applications,
so that for real-time motion planning many authors resort to curves
with nonlinear curvature, that are easier to compute but whose
curvature is difficult to control, such as Bezier curves [12]. However,
motivated by many advantageous properties of clothoids for path
planning applications, several researchers developed a number of
methods that compute clothoid coordinates approximately. Hereafter,
we briefly review the most advanced methods and introduce the
method proposed in this paper.

A group of methods compute clothoid coordinates iteratively, e.g.
using an iterative method that utilizes power series [13]. How-
ever, in this way error grows with curve length so that power
series are appropriate only for small lengths. Therefore, for large
lengths continued complex fractions are used instead, which are
numerically involved due to complex numbers calculations. Since
clothoid coordinates are computed in terms of Fresnel integrals,
many existing numerical integration algorithms [13] can be utilized.
Starting from some initial point, such methods evaluate numerical
integration algorithm, so that apart from the final point, they also
output a series of coordinates between initial and final point. Due to
numerical complexity, numerical integration methods are not suitable
for real-time single point approximation.

Another group of methods approximate a clothoid at defined
interval with other analytical and easy to compute curves. For
example Wang et al. [14] approximate a clothoid by Bezier curves
or B-spline curves, whereas Sanchez-Reyes and Chacon [15] use s-
power series. Rational function approximations of clothoids, which
are very convenient in computer programs, are given by Heald [16].
Mielenz [17] uses continuous function approximation based on both
Taylor expansion and a formula derived by Boersma [11]. Meek
and Walton [18] use arc splines for this purpose. However, these
methods, while successful in CAD applications, are not suitable
for real-time path planning or smoothing applications due to high
computational burden of high order approximation curves. E.g. [14]
uses a 26th order continuous function, which is unacceptable in
most real-time systems. Montes et al. [19] use rational Bezier curves
that are typically of 11th order to approximate Fresnel integrals,
and are among first authors that successfully use clothoids in real-
time path planning. Nevertheless, many clothoid-based path-planning
algorithms that use iterative search techniques would benefit from
even faster computation of clothoid coordinates. Further, none of
these methods guarantees bounded error of clothoid approximation
over a broad range of clothoid parameters.

In this paper, we propose a new method for real-time approxi-
mation of clothoids, which overcomes existing methods in terms of
computational simplicity and approximation accuracy. It is based on
a property that coordinates of clothoid with any parameters can be
computed from those of a single clothoid (with fixed parameters),
using appropriate geometrical transformations. To enable real-time
approximation of arbitrary clothoids we sample a single clothoid
and store sampled points in a lookup table. By applying circular
interpolation between points of the lookup table we ensure bounded
approximation error for clothoids with any scaling or initial curvature,
provided that clothoid’s orientation change and length are bounded.
The approximation error is of order O(1/n3), where n is the number
of points in the lookup table. The accuracy of approximation can be
tuned simply by resizing the lookup table, without affecting computa-
tional burden. This is not the case with the most existing algorithms,
whose accuracy is increased at the cost of higher execution time.
Moreover, our method is simple to implement, and we have conducted
a careful error analysis that guarantees bounded approximation error
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over a required range of parameter values.
The proposed method could easily be integrated in any of the

algorithms that plan paths based on clothoids, such as [5], [19], [20],
[21] and its efficiency allows to use them in real-time. The computa-
tional simplicity and high approximation accuracy make the proposed
method very suitable for high-demanding real-time path planning
applications. We have already successfully applied it for fast real-
time path planning and replanning in highly dynamic environments,
where a path that consists of straight line segments is smoothed
using clothoids [22]. This application belongs to a class of problems
where computational simplicity is especially important, as it involves
nonlinear equations with clothoids, which due to lack of analytic
form should be solved numerically, requiring high number of clothoid
evaluations. Another example where computational simplicity is of
particularly high importance is for path planning algorithms that
optimize the path by finding many alternative paths and choosing the
best one among them [4]. Computational simplicity of the proposed
method enables that all alternative paths are smoothed in real-time
and that the one which provides the fastest reaching the goal position
is chosen as the best one. Further, the proposed algorithm can be
used for design of other time critical real-time clothoid applications,
e.g. shape completion problem in computer vision [23], where a
nonlinear system of equations involving Fresnel Integrals is solved,
or tracking of road lanes based on clothoids [10], [24]. Application
where algorithm precision is of particular importance include robot
soccer, e.g. in simulator leagues [25] where a small initial robot
position error may multiply by a huge factor and result in a big
error at the end of ball trajectory.

The rest of the paper is organized as follows. Section II introduces
the algorithm for clothoids computations and Section III discusses the
interpolation algorithms. Sections IV and V describe the procedures
for determination of the required set of clothoids and the lookup
table parameters, respectively. Section VI presents the algorithms for
computing and querying the coordinates of the clothoid. Section VII
illustrates the algorithm parameter settings and gives a comprehensive
analysis of the algorithm performances on a mobile robot path
planning problem. The paper ends with a conclusion.

II. APPROXIMATION TO A CLOTHOID

Parametric expressions for coordinates of a general clothoid are

x(s) = x0 +

s∫

0

cos(θ0 + κ0ξ +
1

2
cξ2)dξ, (1a)

y(s) = y0 +

s∫

0

sin(θ0 + κ0ξ +
1

2
cξ2)dξ, (1b)

where (x0, y0) is initial point, θ0 is initial tangent angle, κ0 is initial
curvature, c is parameter called sharpness and s ≥ 0 is parameter that
denotes arc length. Important properties of a clothoid are:

• Curvature: κ(s) = κ0 + cs;
• Tangent angle:

θ(s) = θ0 + κ0s+
1

2
cs2. (2)

Instead of clothoid sharpness, scaling factor C is sometimes used,
which is proportional with clothoid size. Its relation with clothoid
sharpness is C2 = 1/c.

Equations for clothoid coordinates (1) are transcendental functions.
Nevertheless, if sufficient memory is available, the fastest and the
most appropriate solution for online computations is to store clothoid
coordinates in a lookup table.

Instead of storing coordinates of all needed clothoids, as in [26],
we have investigated a more practical solution based on appropriate
numerical transformations that compute coordinates of a clothoid
with any parameters based on a single clothoid stored in the memory.
The clothoid whose coordinates are stored in the lookup table will be
called a basic clothoid, and any other clothoid whose points we want
to compute will be called a general clothoid. To obtain a general
clothoid, a transformation invariance property [27] of the parametric
curves is used. Using this property, it is possible to compute points
of any general clothoid by transforming points of the basic clothoid,
where rescaling, rotation, and translation transformations are per-
formed. Let the basic clothoid be denoted by L. We set all initial
conditions of the basic clothoid to zero and its sharpness to some
constant greater than zero, i.e. xL0 = yL0 = 0, θL0 = 0, κL0 =
0, cL > 0. By using transformation invariance property, we obtain
a relation that finds a general clothoid by using the basic clothoid
coordinates
[

x(s)
y(s)

]
=

[
x0

y0

]
+R

(
−κ2

0

2c
+ θ0

)

·
√

cL
|c|

⎡
⎣ xL

(√
|c|
cL

(
s+ κ0

c

))
− xL

(√
|c|
cL

κ0
c

)

sgn(c)
[
yL
(√

|c|
cL

(
s+ κ0

c

))
− yL

(√
|c|
cL

κ0
c

)]
⎤
⎦ ,

(3)

where (xL, yL) are coordinates of the basic clothoid, and R(θ) is a
rotation matrix defined as

R(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

Our plan is to store coordinates of the basic clothoid in a lookup
table and reuse them later to accelerate calculations with clothoids.
However, it must be considered that the number of points in the table
is limited. Therefore a careful analysis must be conducted in order to
determine: (i) a required set of clothoids that is sufficient for intended
application; and (ii) safe parameters of the lookup-table based on the
required set of clothoids, which guarantee bounded error of clothoid
coordinates retrieved with (3).

The following lookup-table parameters have to be determined: (i)
sharpness cL of the basic clothoid stored in the lookup table; (ii)
length of the basic clothoid sL; and (iii) sampling interval ΔsL—this
is a curve length between the successive points of the basic clothoid.

Note that although relation (3) is exact, the obtained point coor-
dinates will only be approximate. Sources of the error and possible
remedies are as follows:

1) Source: Coordinates xL and yL of the basic clothoid still have
to be computed numerically and therefore contain errors.
Remedy: This error can be easily bounded because coordinates
can be computed offline with any desired accuracy (at least up
to machine precision), and could therefore be neglected.

2) Source: As clothoid curve needs to be discretized in order to
store it in the lookup table, a sampling error is introduced.
Remedy: To answer a query that falls between two successive
points of the lookup table an interpolation is used. Approxima-
tion error will then depend on the sampling interval ΔsL and
the quality of the interpolation.

In the sequel, firstly it is discussed how to best implement the
interpolation and the interpolation error is analyzed. Then a possible
procedure for determining the required set of clothoids for path-
planning application is given. Based on this set, a procedure is
presented for safe lookup table parameters determination for required
precision.
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Fig. 1. Comparison of straight line and circular interpolation of a clothoid.
The lookup table has the parameters cL = 1, ΔsL = 0.2 and sL = 6.
(a) Clothoid interpolated by straight-line interpolation. (Red—exact clothoid,
blue—interpolated.) (b) Clothoid interpolated by circular interpolation. A
difference between exact and interpolated clothoid is hardly visible. (c)
Interpolation error with straight-line interpolation. (d) Interpolation error with
circular interpolation. Note that circular interpolation error is substantially
lower than linear interpolation error.

III. INTERPOLATION

To compute clothoid coordinates that fall between two successive
points of the lookup table an interpolation is used. For real-time
applications it is of crucial importance that interpolation algorithm
is efficient. A simple and efficient option is linear interpolation
where straight line is interpolated between two neighbor points of the
lookup table. Unfortunately, linear interpolation results with higher
interpolation error as length of the clothoid s grows, as it is visible
in Fig. 1(c) (we define interpolation error as the Euclidean distance
between the exact point and the interpolated point). This is because
the curvature grows with s, resulting with larger distance of the
clothoid curve from the interpolation line. As clothoid is a spiral that
converges to a point, the interpolation error reaches its maximum
and then slowly decays to zero at large values of s. Because of high
interpolation error the straight-line interpolation is also a poor choice
when dealing with clothoids, but it can be used in case when high
computation speed is very important.

Interpolation with circle arcs is a better choice, as a clothoid can be
viewed as infinite succession of circular arc segments with linearly
growing curvature. To perform circular interpolation between j-th
and (j + 1)-th point of the basic clothoid, where j ≥ 0, we first
calculate radius of curvature at the middle of the segment as

rj = κ−1
mid = (cL(j + 0.5)ΔsL)

−1 . (4)

Next, using (2), we obtain tangent angle of the basic clothoid in the
j-th point as

θjL =
1

2
cL(jΔsL)

2. (5)

Then the center of the curvature in the j-th point is

xj
c = xj

L + rj cos
(
θjL +

π

2

)
, yj

c = yj
L + rj sin

(
θjL +

π

2

)
,
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Fig. 2. Interpolation error ei for three different values of lookup table
sampling interval ΔsL.
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Fig. 3. Maximum interpolation error for circular interpolation.

from where interpolated coordinates (xLi(s), yLi(s)) at length s are

xLi(s) =xj
L + 2rj cos

(
θjL + Δs

2rj

)
sin Δs

2rj

yLi(s) =yj
L + 2rj sin

(
θjL + Δs

2rj

)
sin Δs

2rj
,

(6)

where Δs = s− jΔsL is distance along the basic clothoid between
j-th point in the lookup table and an interpolated point.

For illustration, comparison of interpolation error for linear and
circular interpolation is given in Fig. 1. It can be seen that for the
circular interpolation maximum approximation error at a sampling
interval decreases with clothoid length. With this kind of circular
interpolation a continuity between segments is not preserved, but with
dense sampling gaps are not notable in real applications.

Remark 1: Note that accuracy can be increased by using a circular
arc that goes through both points therefore avoiding gaps, such as in
[18]. However we found that this decreases efficiency and complicates
estimation of the maximum error as in this case maximum error at a
sampling interval is not monotonically decreasing with s.

To find out how the values of parameters ΔsL and cL are related
with the interpolation error an analysis is conducted. First, we kept
constant sharpness of the basic clothoid cL = 1, and compared
interpolation error for three values of sampling interval ΔsL. The
interpolation error is shown in Fig. 2. One can notice that maximum
interpolation error always occurs between first two points of the basic
clothoid. Further, interpolation error lowers with clothoid length sL
and converges to zero. To perform a more detailed analysis in the
sequel we consider only the maximum interpolation error which we
denoted by eim.

Remark 2: The interpolation error converges to zero because a
clothoid is a spiral that converges to a point (as Fresnel integrals
converge to 1⁄2 [11]).

Next, the sharpness is kept constant at cL = 1 while sampling
interval ΔsL is changed. In Fig. 3(a) maximum interpolation error
eim is displayed, so that it is visible that ratio eim/Δs3L is constant
for this case. This means that halving ΔsL results with lowering
maximum interpolation error by the factor 1/23 (also visible in Fig.
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2). Therefore, if the lookup table has n points, then approximation
error is of order O(1/n3).

This can be verified as follows. The approximation error has its
maximum at the end of the first interpolation interval. For this interval
it is xL = yL = 0. From (4), as j = 0, we have rj = 2

cLΔsL
. Also

from (5), θjL = 0. We substitute these values into (6), and considering
that at the end of the first interval it is Δs = ΔsL, the interpolated
value for x-component becomes

xLi(ΔsL) =
4

cLΔsL
cos

cLΔs2L
4

sin
cLΔs2L

4

=
2

cLΔsL
sin

cLΔs2L
4

=

∫ ΔsL

0

cos
cLΔsLξ

2
dξ.

Using this and (1a), and considering that the x-component of the
maximum error is xim = xLi(ΔsL)− xL(ΔsL), we have

xim =

ΔsL∫

0

(
cos

cLΔsLξ
2

− cos
cLξ2

2

)
dξ (7)

To obtain approximation error, we use the midpoint rule:∫ b

a

f(u)du = hf
(
a+ b

2

)
+O(h3),

where h = b− a. Using this rule and (7), we obtain

xim = ΔsL
(
cos cLΔsL

4
− cos cLΔsL

8

)
+O(Δs3L) = O(Δs3L).

From this, considering that number of points in the lookup table is
n = floor(sL/ΔsL) + 1, we obtain xim = O(1/n3). The same
can be obtained for the y-component of the maximum error. As we
define the interpolation error as Euclidean distance, for maximum
interpolation error eim we also have eim = O(1/n3), which verifies
our statement.

In Fig. 3(b) maximum interpolation error as a function of basic
clothoid sharpness cL is displayed for ΔsL = 0.1, so that it is
visible that ratio eim/cL is constant when cL is changed. In other
words maximum interpolation error is proportional with cL. Thus,
halving cL also halves eim, which is expected because curvature
then grows half as fast. From this analysis, an approximative relation
can be derived that estimates maximum interpolation error of circular
interpolation

eim < 0.084cLΔs3L. (8)

Remark 3: Possible improvement in the interpolation algorithm
could be the use of non-constant sampling interval to better interpo-
late parts where error is higher, however, computational burden would
then increase. One could also use other interpolation curves instead
of circular arcs, e.g. s-power series [15]. However, up to now we have
not found a curve that is better in terms of efficiency, implementation
complexity, and accuracy, until higher order approximations are used,
in which case we lose efficiency.

IV. DETERMINATION OF A REQUIRED SET OF CLOTHOIDS

When working with clothoids, usually a required set of clothoids,
i.e. an allowed range of clothoid parameters, suitable for particular
application can be found. This is important because in this way
a required size and sampling interval of the lookup table can
be bounded. Without loss of generality, in the following sections
only clothoids in the first quadrant will be assumed, unless stated
otherwise. Thus all parameters of a clothoid are nonnegative, i.e.
s ≥ 0, c ≥ 0, κ0 ≥ 0. Clothoid initial point and tangent angle are
assumed to be zero, i.e. x0 = y0 = 0, θ0 = 0.

A. Bounding the Clothoid Orientation Change and Length

In praxis overall orientation change Δθ that occurs along a single
clothoid can be bounded, e.g. in path planning an orientation change
greater than Δθmax = π/2 is rarely required [20]. Thus, assuming
κ0 ≥ 0 and using (2), the length of the clothoid can be upper bounded

s ≤ −C2κ0 + C
√

C2κ2
0 + 2Δθmax. (9)

The maximum length of the clothoid can be additionally limited by
some fixed upper-bound smax, which can be determined e.g. based
on the size of a vehicle. If properly chosen, this is no significant
limitation for the planner, because it can avoid unnecessarily long
clothoids by using lines and circular arcs instead. Using (9), the
clothoid length is now upper bounded by

s ≤ min
(
−C2κ0 + C

√
C2κ2

0 + 2Δθmax, smax

)
. (10)

In the sequel we mostly use the case when κ0 = 0, so that it becomes

s ≤ min
(
C
√

2Δθmax, smax

)
. (11)

Note that (10) is always stronger than (11) (for the first quadrant),
however we use (11) because (10) is more complex and hard to use
in further analysis.

B. Determination of the Minimum Scaling

When using clothoids in path planning, we usually work with some
typical range of clothoid scalings. However, to be on the safe side we
must also consider extreme cases and exactly predict what happens
then in order not to exceed maximum allowed approximation error.
One extreme case occurs when scaling is very low, and therefore
the problem is that argument of the lookup table in eq. (3) can
become very high, possibly higher than the length of the lookup
table. To prevent this, we determine minimum scaling based on the
maximum allowed approximation error. Namely, it can be shown
that every clothoid is a bounded spiral so that it can be fit inside
its bounding circle. As scaling C decreases, this bounding circle
becomes smaller. In the limit case C = 0, a clothoid reduces to
a point. This means that for scaling smaller than some value Cmin

clothoid can be approximated by a point without exceeding specified
maximum approximation error.

We define approximation error e as the Euclidean distance between
an exact clothoid point (xe, ye) and its approximating point (xa, ya)

e =
√

(xe − xa)2 + (ye − ya)2. (12)

For the case of approximating a clothoid by its start point, con-
sidering the worst case when κ0 = 0 and using (1), a corresponding
approximation error ept is the Euclidean distance of the most distant
clothoid point to the origin. It can be expressed as a function of C

ept(C) =
√

xd(C)2 + yd(C)2,

so that

xd(C) =

sd∫

0

cos
ξ2

2C2
dξ, yd(C) =

sd∫

0

sin
ξ2

2C2
dξ,

sd = argmax
s

⎛
⎝

s∫

0

cos
ξ2

2C2
dξ

⎞
⎠

2

+

⎛
⎝

s∫

0

sin
ξ2

2C2
dξ

⎞
⎠

2

,

where (xd, yd) is a point of the clothoid that is most distant from its
start point (the origin), and sd is the length at which this happens.

We can find the minimum scaling Cmin by computing the scaling
at which the approximation error ept is equal to maximum allowed
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error emax, i.e. by solving nonlinear equation ept(Cmin) = emax for
Cmin. This happens when the clothoid just touches, but not intersects
a circle with center (0, 0) and radius emax. It can be shown that sd is
proportional to C, and sd/C can be found by classical optimization
methods, as well as ept(1). Then, ept(C) = Cept(1) and

Cmin = emax/ept(1). (13)

Finally, the queries with extremely low scaling where the argument
in eq. (3) would be out of the range are treated simply by returning
clothoid start point x = x0, y = y0, without exceeding maximum
allowed error emax.

C. Determination of the Maximum Scaling

Another extreme case of a clothoid occurs at very high scaling and
the problem in this case is that the error could grow too high because
approximation error is proportional with scaling. Therefore, scaling
should be upper-bounded, too. First we will notice that when κ0 = 0
and C = ∞, a clothoid does not change the tangent orientation and
is reduced to a straight line. Consequently, in case that clothoid has
extremely high scaling it can be approximated by a straight line.

Using (1) and (12), the error eln of approximating clothoid with
zero initial curvature by a straight line at length s is

eln(C, s) =

√√√√√
⎛
⎝s−

s∫

0

cos
ξ2

2C2
dξ

⎞
⎠

2

+

⎛
⎝

s∫

0

sin
ξ2

2C2
dξ

⎞
⎠

2

.

(14)
Initially, the error grows with clothoid length, because clothoid
departs more from approximating line as length grows, so that we
will consider the worst case at maximum clothoid length s = smax

(due to spiral nature, this is no more true at orientation change higher
than π, however, as we here consider large scalings, we did not find
this to be important in praxis). Now we find the maximum allowed
scaling Cmax by finding the scaling at which (14) is equal to specified
maximum allowed error emax. Therefore, we solve the following
nonlinear equation for Cmax

eln(Cmax, smax) = emax (15)

by using Matlab Optimization and Symbolic toolboxes [28]. We
upper-bound the scaling so that C ≤ Cmax. If there, however, a
query occurs with C > Cmax, we can safely treat it as C = ∞ case
without violating the maximum allowed error emax. Such a query is
answered simply by solving (1) for C = ∞ and κ0 = 0, so that it
reduces to the following straight-line equation[

x(s)
y(s)

]
=

[
x0

y0

]
+

[
cos(θ0)
sin(θ0)

]
s.

D. Determination of the Maximum Initial Curvature

In some applications we need the case when clothoid initial
curvature is nonzero, e.g. when path replanning is required for a
vehicle that currently executes a circular path. In this case yet another
special case occurs when the clothoid has nonzero initial curvature
κ0 �= 0 and scaling C = ∞. Then the clothoid is reduced to a circle
with radius 1/κ0. We introduce a factor K defined as

K = κ0C,

which will serve as a measure of similarity of a clothoid to a circle.
By increasing K, a clothoid becomes more similar to a circle. So
instead of bounding κ0, we will bound K because by upper bounding
K we can control how much a clothoid with initial curvature κ0 and
scaling C departs from a circular arc with radius r = 1/|κ0|. If it
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Fig. 4. Dependency of K on initial curvature κ0, where K is computed so
that the maximum error between clothoid and circular arc is exactly emax, i.e.
by solving (16) so that earc(κ0, C, s′) = emax, where s′ is upper-bounded
by (17). Three values of emax were evaluated. It can be seen that tighter
error tolerance results with higher K and K is at its maximum when both
s = smax and Δθ = Δθmax.

departs less than predefined maximum error emax, the clothoid can
be approximated by a circle without exceeding maximum error.

To express the error, assume κ0 �= 0 and C = ∞. Then, according
to (1), a clothoid reduces to a circular arc of radius 1/|κ0|, whose
point (xa, ya) at length s is

xa(s) =
1

κ0
sin(κ0s), ya(s) =

1

κ0
(1− cos(κ0s)).

From here, according to error definition (12), and using (1), the error
earc of approximating clothoid by a circular arc at length s is

e2arc(κ0, C, s) =

⎛
⎝ 1

κ0
sin(κ0s)−

s∫

0

cos(κ0ξ +
ξ2

2C2 )dξ

⎞
⎠

2

+

⎛
⎝ 1

κ0
(1− cos(κ0s))−

s∫

0

sin(κ0ξ +
ξ2

2C2 )dξ

⎞
⎠

2

. (16)

It could be proved that initially, as approximating circle departs more
from the clothoid, this error becomes higher as length of the clothoid
grows (due to spiral behavior, this is no more true at very large
lengths, however, as allowed error is typically small, we did not
find this case to be important in praxis). Thus the worst case occurs
at maximum clothoid length s = smax or at maximum orientation
change Δθ = Δθmax, whichever case occurs first. Therefore, using
(2), to bound error we upper bound clothoid length by

s ≤ min

(
Δθmax

|κ0| , smax

)
. (17)

To find a maximum value of K so that maximum error is not
exceeded, we change the initial curvature κ0 and search scaling C
such that error (16) is exactly earc = emax for each particular value
of κ0, while keeping length of the clothoid bounded by (17). We
found that K has its maximum at value of curvature:

κ0me = Δθmax/smax,

At this curvature both clothoid length and orientation change are
at its maximum. This is illustrated in Fig. 4. Then K is maximal
because the maximum scaling (relative to initial curvature) is required
in order not to exceed the maximum allowed approximation error. If
we denote this worst-case scaling as Cme, the upper-bound of K can
be expressed as

Kmax = κ0meCme, (18)
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where Cme is found by solving nonlinear equation

earc(κ0me, Cme, smax) = emax, (19)

which can be solved using classical optimization methods [28].
The queries where it is not K ≤ Kmax are answered by solving

(1) for C = ∞, which yields the following circular arc equation:[
x(s)
y(s)

]
=

[
x0

y0

]
+

1

κ0

[
− sin θ0 + sin(θ0 + κ0s)
cos θ0 − cos(θ0 + κ0s)

]
.

V. DETERMINATION OF THE LOOKUP TABLE PARAMETERS

When the required range of clothoid parameters is determined, it
is necessary to find a safe mapping between these parameters and
parameters of the basic clothoid in the lookup table in order not to
exceed the maximum approximation error.

First, to obtain required length of the basic clothoid sL, maximum
possible values of the lookup table arguments, i.e. arguments of xL
and yL in (3), must be found. To do this we rewrite the first argument
in (3) as √

|c|
cL

(
s+

κ0

c

)
= CL

(
s

C
+K

)
, (20)

where CL = 1/
√
cL is scaling of the basic clothoid stored in the

lookup table. The second argument in (3) need not to be examined
because its absolute value is always less than or equal to absolute
value of the first argument.

We examine the maximum value of the first term in (20). By
substituting the worst case bound of the clothoid length (11) it is

s

C
= min

(√
2Δθmax,

smax

C

)
,

whose maximum is[
s

C

]
max

= min
(√

2Δθmax,
smax

Cmin

)
, (21)

where Cmin is the minimum clothoid scaling given by (13).
Regarding the second term in (20), we have already determined

its maximum value by determining the maximum factor K in
(18). Although both terms in (20) cannot be at their maximums
instantaneously, for the simplicity we take the worst case and by
using (21) write the maximum argument of the lookup table as

sLmax = CL
(
min

(√
2Δθmax,

smax

Cmin

)
+Kmax

)
. (22)

Another problem to consider is that interpolation error introduced
in coordinates (xL, yL) returned by the lookup table in (3) can be
increased because of scaling by factor C/CL in (3). Error introduced
in (3) will stem from m queries for basic clothoid coordinates
(xL, yL), where m = 1 if initial curvature κ0 is zero, and m = 2
for κ0 �= 0. We assume the worst case where error is at its maximum
for all queries so that we have the following approximation error

e = m

√
cL
|c| eim = m

C

CL
eim, m = 1, 2 (23)

where eim is the maximum interpolation error. If we substitute the
estimated maximum circular interpolation error (8) into this, bound
the maximum allowed error as e ≤ emax, and consider the worst case
C = Cmax, the following condition on the lookup-table maximum
sampling interval is obtained

ΔsLmax ≈ (0.084m)−
1
3CL 3

√
emax

Cmax
. (24)

With this choice of the maximum sampling interval the maximum
error emax will never be reached, even in the worst case. However,
in praxis the worst case occurs very rarely, if ever. Therefore it is

useful to introduce the approximation error in the typical case. We
define a typical error etyp as the approximation error that occurs at
the typical value of the scaling Ctyp for particular application. In this
way the maximum sampling interval becomes

ΔsLmax ≈ (0.084m)−
1
3CL 3

√
min

(
emax

Cmax
,
etyp
Ctyp

)
. (25)

Further, by dividing the minimum required length of the lookup
table (22) and the maximum sampling interval (25), we obtain
minimum number of points in the lookup table. We can notice that
this number is invariant to the basic clothoid scaling CL. Therefore,
CL is redundant so that any value for it can be chosen. We use
CL = 1 in the sequel.

The final procedure for determination of the lookup table param-
eters can now be summarized in two steps:

1) Based on condition (22), choose the basic clothoid length sL
so that

sL ≥ min
(√

2Δθmax,
smax

Cmin

)
+Kmax. (26)

2) Based on condition (25), choose the basic clothoid sampling
interval ΔsL so that

ΔsL < (0.084m)−
1
3CL 3

√
min

(
emax

Cmax
,
etyp
Ctyp

)
, (27)

where m = 1 if for all queries in (3) initial curvature κ0 is
zero, and m = 2 otherwise.

VI. ALGORITHMS FOR CLOTHOID COMPUTATION

A. Computation of Clothoid Coordinates

There still remains problem of computing the coordinates of
the basic clothoid in the lookup table. Algorithms for numerical
integration are appropriate for this task, since previously computed
results are propagated to obtain new solutions. In this way each
successive call of the integration procedure benefits from the results
obtained in the previous call, as opposed to methods that compute
clothoid points in a single point. For this task e.g. the Runge-Kutta
numerical integration method [13] can be utilized. An alternative
approach is to use a software with built-in procedures for evaluation
of Fresnel integrals, such as Matlab and its Symbolic Toolbox, which
can compute clothoid coordinates with specified accuracy.

Remark 4: Note that for computation of the basic clothoid the
computational efficiency is not of big importance because lookup
table can be computed offline in the initialization stage.

B. Querying the Clothoid Coordinates

In order to query coordinates of the basic clothoid from the lookup
table, a procedure called GETBASICCLOTHOIDCOORDS is designed,
whose pseudocode is enlisted in Alg. 1. Input of the algorithm is
the clothoid length s and outputs are the basic clothoid coordinates
(xL, yL) at this length. Values sL and ΔsL that are used in the
algorithm are parameters of the lookup table.

Normally it should never occur that the length s is greater than
the range stored in the table as the planner uses clothoids of
limited length, however if this occurs the extrapolation is added
for the sake of completeness. In this case the algorithm performs
an extrapolation in function EXTRAPOLATE (we use simple linear
extrapolation algorithm which is not shown here).

Otherwise, the algorithm performs a circular interpolation between
coordinates stored in the table according to (4), (5) and (6). As the
basic clothoid is symmetrical, with the origin (0, 0) as the center of
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Algorithm 1: GETBASICCLOTHOIDCOORDS

Input: s
Output: xL, yL

i = FLOOR(|s|/ΔsL)
if (i ≥ nPoints− 1)

then (xL, yL) = EXTRAPOLATE(s)

else

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

si = i ·ΔsL
ri = (cL · (si + 0.5 ·ΔsL))−1

θiL = 1/2 · cL · s2i
xi
L = L.x(i); yi

L = L.y(i)
ds = |s| − si
xL = xi

L + 2ri cos(θ
i
L + ds

2ri
) sin ds

2ri

yL = yi
L + 2ri sin(θ

i
L + ds

2ri
) sin ds

2ri

if (s < 0)

then

{
xL = −xL
yL = −yL

Algorithm 2: GETGENERALCLOTHOIDPOINT

Input: x0, y0, θ0, κ0, c, s
Output: x, y

C = 1/(|c|)1/2
K = κ0 · C
s1 = CL · (s/C +K)
s2 = CL ·K
if (C < Cmin and (|s1| > sL or |s2| > sL))

then

{
x = x0

y = y0
else if (κ0 == 0 and C > Cmax)

then

{
x = x0 + cos(θ0) · s
y = y0 + sin(θ0) · s

else if (|K| > Kmax)

then

{
x = x0 + 1/κ0 · (− sin(θ0) + sin(θ0 + κ0 · s))
y = y0 + 1/κ0 · (cos(θ0)− cos(θ0 + κ0 · s))

else

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θrot = −κ2
0/2/c+ θ0

r11 = r22 = cos(θrot)
r12 = − sin(θrot); r21 = −r12
(x1, y1) = GETBASICCLOTHOIDCOORDS(s1)
(x2, y2) = GETBASICCLOTHOIDCOORDS(s2)
xz = (x1 − x2) · C/CL
yz = (y1 − y2) · C/CL · sgn(c)
x = x0 + r11 · xz + r12 · yz
y = y0 + r21 · xz + r22 · yz

symmetry, if s is negative a symmetrical point is returned in the last
stage of the algorithm.

Having designed the algorithm GETBASICCLOTHOIDCOORDS for
the basic clothoid coordinates retrieval, it is now easy to design
a higher level procedure that calculates coordinates of a general
clothoid. This procedure is called GETGENERALCLOTHOIDPOINT,
whose pseudocode is enlisted in Alg. 2. Inputs of the procedure are
parameters of the clothoid to be retrieved and outputs are the clothoid
coordinates at length s. The procedure first checks if the parameters

of a general clothoid are in the allowed range of parameters. If the
answer is positive, it calls algorithm GETBASICCLOTHOIDCOORDS

and uses (3) to compute the final coordinates. Otherwise, if the
parameters of a general clothoid are out of range, it approximates a
general clothoid by a point, a line or a circle, depending on values of
the parameters (as explained in Section IV). Note that first condition
could simply be C < Cmin, however, this would result with loss of
precision if the rest of the condition is not fullfiled, as will be shown
in the numerical example in the continuation.

VII. RESULTS

An example of determining the lookup-table for a mobile robot
navigating in indoor environment is given in order to illustrate
parameter settings and performance of the proposed algorithms. We
assume that the robot size can be approximated with a circle of 20 cm
radius and that the precision of the robot position measurement is
approximately 10 cm. Let the typical value of the clothoid scaling that
the path planner uses be Ctyp = 0.5. At this scaling we set the typical
approximation error of the clothoid to etyp = 10−9 m. Regarding the
size of the robot and precision of its position measurement, choosing
the maximum allowed (worst case) clothoid approximation error as
emax = 10−3 m should be satisfactory.

Remark 5: Lower accuracy usually suffices for path planning, how-
ever, in this example we have chosen such high accuracy (10−9 m)
to demonstrate that our algorithm can compete with other algorithms.

Determination of a required set of clothoids: We choose maxi-
mum orientation change of a single clothoid Δθmax = π/2. Maxi-
mum allowed clothoid length is smax = 5 m, which we choose based
on the robot size and size of its workspace. The minimum scaling
is obtained by using eq. (13) that bounds error of approximating
a clothoid by a point. Using Matlab Optimization and Symbolic
toolboxes it is obtained Cmin = 5.9447 · 10−4. The maximum
scaling is obtained using eq. (15) that bounds error of approximating a
clothoid by a line, so that it is obtained Cmax = 144.34. We suppose
that we do not need the case when κ0 �= 0, so that Kmax = 0.

Determination of the lookup-table parameters: Using condi-
tion (26) a required length of the basic clothoid that will be
stored in the lookup table is determined. It is obtained sL ≥
min(1.7725, 8410.8) = 1.7725, and we choose sL = 1.78.
Next, the sampling interval is obtained using (27). It is obtained
ΔsL ≤ 2.2834 · 3

√
min(6.9282 · 10−6, 2 · 10−9) = 0.0028768, and

we choose ΔsL = 0.00285. It can be seen that the typical error
requirement is more significant than the worst case error requirement.

The number of points in the lookup table is n = floor(sL/ΔsL)+
1 = 626, which is perfectly acceptable for modern computers
(≈10 kB if stored in double precision). We also update the length of
the basic clothoid to ensure that it is multiple of the sampling interval,
and we obtain sL = (n−1) ·ΔsL = 1.78125. The complete Matlab
code needed to perform described steps and compute a lookup table
is published online [28].

Execution time: The proposed algorithms are implemented in
C++ programming language using double precision floating-point
arithmetic and tested on a PC with 2 GHz AMD Athlon CPU and
Visual C++ 2005 compiler. We also compared the obtained execution
time with the RBC algorithm [19]. Both algorithms were fairly
optimized, e.g. values of repeatedly used expressions are cached,
and relation cos(x) = (1 − sin2(x))0.5 is utilized. Execution time
was measured as an average time for 1’000’000 calls of particular
algorithm. Measurement was performed five times, and a median
value was taken as a final result.

On the test CPU, for retrieving coordinates of a single point
of a basic clothoid with Alg. 1 execution time was 150 ns. For
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Fig. 5. Approximation error in dependency on clothoid scaling.

comparison, execution time of the RBC algorithm was 1.7 μs, which
means that the proposed algorithm outperforms it for more than 11
times regarding speed, while a precision is comparable. The proposed
algorithm can be further optimized by storing centers of curvature
instead of clothoid points, so that there would be one trigonometric
function call less.

We also measured execution time of higher level Alg. 2 that
computes general clothoid. For case κ0 = 0 the algorithm was opti-
mized so that only one call of Alg. GETBASICCLOTHOIDCOORDS

is performed, as the second call always returns (0, 0) in that case. In
this way execution time for retrieving a single point was 294 ns. For
case κ0 �= 0 it was 469 ns.

If multiple points of the same clothoid are required, we optimized
Alg. 2 by precomputing some parameters that remain constant, such
as the rotation matrix. In this case, for κ0 = 0, execution time for
single point retrieval was 223 ns, and for κ0 �= 0 it was 378 ns.

Approximation error analysis: An approximation error analysis
is conducted to verify that the results meet given specifications.
Maximum error is measured at a broad range of scalings C, while
both orientation change and the clothoid length were bounded accord-
ing to specifications. The analysis is conducted in double-precision
floating-point arithmetic, and values of the lookup table and the exact
clothoid points are obtained using Matlab Symbolic toolbox, which
can compute clothoid coordinates with maximum precision possible
in double precision. The results are shown in Fig. 5. Three curves are
plotted that represent approximation error in case of approximation
with the initial point, the line, and the lookup table with circular
interpolation (cases 1, 2 and 4 in Alg. 2, respectively).

From Fig. 5 we see that approximation with the initial point at
scaling Cmin has error exactly equal to emax, as foreseen by design.
In this particular example this approximation is never actually used
because condition (s1 > sL or s2 > sL) in Alg. 2 is never true,
even when C < Cmin. This means that Alg. 2 never requires values
beyond the end of the lookup table. This is because at very low
scalings the clothoid reaches maximum orientation change rapidly, at
very short length. In Fig. 5 it can also be seen that approximation with
the initial point is never the best option, as even in case C < Cmin

it has the highest error.
Regarding the approximation with line, at scaling Cmax approxi-

mation error has value emax, as specified. Initially, the error is propor-
tional with scaling, and at the scaling where clothoid reaches allowed
maximum length before reaching maximum orientation change, error
begins to decrease. It is important to note that even at C > Cmax

the line approximation error is initially still higher compared to the
lookup table based error. This is because the requirement for typical

error is more stringent than maximum error requirement. However,
for values C > C′

max (see Fig. 5) the line based approximation
becomes lower than the lookup table approximation error. To obtain
lowest approximation error, instead of using original value Cmax in
Alg. 2, we update it so that Cmax = C′

max.
Approximation error with the lookup table is initially propor-

tional with the clothoid scaling. However, after the scaling value
C = smax

ΔsL
= 1754.4, the algorithm uses only the first sampling

interval of the lookup table. Recalling that the approximation error is
zero at the beginning of each sampling interval, and typically reaches
its maximum at the end of the interval (see Fig. 2), we can explain
decrease of the error at big scalings. Note also that at scaling Ctyp

the actual error is approximately equal to the required value etyp.
Finally, the overall approximation error obtained with Alg. 2 will

be the minimum of the three error curves in Fig. 5, in this way
achieving the maximum error of about 3.7 · 10−6 m near C = 2400.
Both typical error and maximum error constraints are satisfied.

Additionally a comparison with the most up-to-date algorithm that
can be found in the literature [19] is undertaken. This algorithm is
based on rational Bezier curve (RBC). We used 11th order RBC as
in the original paper. We tested it in the same conditions (i.e. limited
clothoid tangent angle and length) and the obtained approximation
error is shown in Fig. 5. It can be seen that approximation error
has a similar profile like our proposed algorithm. However, after
approximately C = 400 the error begins to slightly increase, which
may be due to numerical errors at high scalings.

Nonzero initial curvature: Let’s now suppose that clothoids with
nonzero initial curvature are required and let all other parameters re-
main equal as in previous example. Then the maximum K is found by
solving (19) in order to bound the error of approximating a clothoid
by a circular arc. It is obtained Kmax = 44.308. This affects only
the length of the lookup table, so that using (26) a required length of
the basic clothoid is sL ≥ min(1.7725, 8410.8)+44.308 = 46.081.
The lookup table now contains 20183 points, i.e. about 315 kB in
double precision, which is still acceptable for modern computers.

VIII. CONCLUSION

This paper presents a method for computation of clothoid coor-
dinates that guarantees bounded approximation error for clothoids
with any scaling or initial curvature, provided that clothoid length
and orientation change are bounded. It is shown that one can
compute coordinates of clothoid with any parameters from those
of a single clothoid (with fixed parameters), which we store in the
form of a lookup table with circular interpolation between points.



9

It is verified that approximation error for this interpolation is of
order O(1/n3), where n is the number of points in a lookup table.
An analysis on how to determine a required set of clothoids for
path-planning application is conducted, and based on this, how to
determine size and sampling of a lookup table in order not to exceed
maximum approximation error. The main advantages of the method
are easiness of implementation and efficiency. Compared to recent
RBC method [19], our method achieves similar error and 11 times
shorter computation time, so that it can be used to enable online use
of existing clothoid-based algorithms, such as path planning [21], or
for other time-critical real-time clothoid applications [23], [24].
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