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Abstract: Inspired by the Spanning Tree Covering (STC) algorithm of Gabriely and Rimon, a
novel algorithm of complete coverage for known environments is developed. Unlike the original
STC algorithm, we detect dynamic elements of the environment and efficiently update the
solution when changes are observed. The contribution is a path replanning algorithm that
reduces overlapping when the part of the environment is changed. Experiments show that the
proposed algorithm is capable of planning complete coverage robot paths with 70.27% coverage

and without overlapping.
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1. INTRODUCTION

Complete coverage path planning, which focuses on cov-
ering all reachable areas of the given environment, is one
of important tasks for many industrial robots, especially
demining, Dakulovié¢ and Petrovié (2012), floor clean-
ing, Dakulovié¢ et al. (2011), mowing, Weiss-Cohen et al.
(2008), and harvesting robots, Ollis and Stentz (1996).
The most common representation of the continuous mo-
bile robot environment is a two-dimensional occupancy
grid map, which consists of the equally-divided grid of
discrete cells. In the preliminary version of the Spanning
Tree Coverage (STC) algorithm by Gabriely and Rimon
(2002), a coarse grid map is used with completely free
of obstacles cells of size of two diameters of the robot’s
footprint (the robot largest width). These cells are con-
nected by the spanning tree around which the coverage
path is created connecting twice as higher resolution sub-
cells without visiting each sub-cell more than once. The
coverage path planning algorithm that minimizes over-
lapping or coverage redundancy influences on improving
the cleaning efficiency, Gao et al. (2008). The complete
coverage D* (CCD*) algorithm by Dakulovié et al. (2011)
uses a high resolution grid map representation and have in-
creased coverage rate but increased coverage redundancy.
Most coverage path planning algorithms require complete
information of the environment and plan the path that can
not be changed if the part of the environment changes at
some point during the coverage process. Hu et al. (2010)
proposed the concept of "fictitious frontier” to tackle
the problem imposed by unknown and moving obstacles.
Waanders (2011) proposed the efficient update of the
environment decomposition as the environment changes.
Although there exist replanning algorithms for coverage
path planning, the coverage redundancy is increased by
the location of dynamic obstacles.

In this paper, our goal is to use ideas of previous algorithms
to generate an approach that provides an effective solution
to the problem of planning a coverage path in changing
environments. Although the high resolution grid map
enables higher coverage rate, we use coarse grid map like
the STC algorithm to be efficient for large environments
and to have minimal coverage redundancy. Since it is
hard to cover all the area close to obstacles, the simple
wall follower can be applied after the coverage process.
We extend the STC algorithm to changing environments
ensuring minimal number of coverage overlapping. We
compare our results to the CCD* algorithm, which uses
the high resolution grid map representation.

The rest of the paper is organized as follows. In Section
2, we describe the STC algorithm and the CCD* algo-
rithm. In Section 3, we show how efficiently our algorithm
generates the complete coverage path on the occupancy
grid map and how the replanning algorithm works. The
experimental results are given in Section 4. The conclusion
is discussed in the last section.

2. RELATED WORK

A review and challenges of the most successful coverage
path planning algorithms in the last decade can be found
in Galceran and Carreras (2013) and Khan et al. (2017).
Here we shortly present the work by Gabriely and Rimon
(2003) and Dakulovié¢ et al. (2011).

2.1 The STC algorithm

Complete coverage path planning algorithm proposed in
this paper is based on the STC algorithm by Gabriely
and Rimon (2003). The continuous environment is ap-
proximated by a discrete grid of 2D-size cells, where D
is the size of the diameter of the circumscribed circle
around the robot’s footprint. The environment is popu-
lated by static obstacles. The robot must use its sensors



to detect obstacles during the coverage process because it
does not have an a-priori knowledge of the environment.
The first step in the coverage planning is to calculate a
Depth First Search (DFS) spanning tree. This algorithm is
recursive and uses the idea of backtracking. It involves the
exhaustive search of all unvisited nodes by going ahead, if
possible, else by backtracking along the visited nodes until
a new unvisited neighbor is found. The resulting spanning
tree will have a spiral shape, as can be seen in Fig. 1.
Next, each cell is divided into four identical sub-cells of
the size D. The robot follows a path that circumnavigates
the incrementally constructed spanning tree using its on-
board sensors. The goal is to cover every grid sub-cell
while moving along a path. The robot follows the right
side of the spanning tree until it reaches the end of the
tree, which is called a leaf. At the leaf cell, the robot turns
around to cross to the other side of the spanning tree.
The coverage is completed when the robot returns to the
starting cell. It’s worth noticing that STC algorithm never
visits the same sub-cell more than once and thus minimize
the coverage time. However, such a recursive algorithm
does not guarantee coverage completeness if obstacles are
moving in front of the robot.

2.2 The CCD* algorithm

The CCD* algorithm proposed by Dakulovié et al. (2011)
is based on the D* search of the high resolution grid map of
the environment. The robot is represented by the squared
mask in the grid map, within which the robot’s real
footprint can be drawn. The D* search is called from the
start node in the grid, resulting with the calculated path
cost values g from each reachable node in the grid map to
the start node accounting for obstacles in the environment,
i.e., the occupied cells. The complete coverage path is
produced by following the increase of costs g from the
start node taking into account the squared mask of the
robot to avoid overlapping. For visiting the overlapped but
unvisited nodes, e.g. the corners of obstacles, an extra D*
search is executed to compute the path to these nodes. The
CCD* algorithm stops when there are no unvisited nodes.
The replanning process is initiated when the new static or
moving obstacle is detected by the robot’s sensors. Then,
the D* algorithm computes the new cost values g and the
complete coverage path calculation is continued from the
current node.

3. COMPLETE COVERAGE

The proposed complete coverage path algorithm is primar-
ily focused on large environments. It is a modified version
of the STC algorithm by Gabriely and Rimon (2003).
Modifications enable efficient replanning of the coverage
path if changes in the environment are detected. We named
our algorithm as the Replanning Spanning Tree Coverage
(RSTC) algorithm.

3.1 Spanning tree

We use the grid of 2D-size cells created from the a-priori
map of the environment, where each cell that contains the
obstacle is occupied. Every free cell is subdivided into four
equal area sub-cells of size D. Unlike the STC algorithm,
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Fig. 1. Spanning tree example where the size of the sub-cell
D = 0.5 m (robot’s size). The starting cell is noted
for the spanning tree construction.

we do not calculate the spanning tree recursively as the
robot moves and senses the environment, but instead, we
calculate the spanning tree before the robot starts to move
from the initial a-priori map of the environment. Figure.
1 shows an example of the grid map of 2D-size cells and
D-size sub-cells with the spanning tree calculated from the
start node at (2,2). In our application the size of the cell
is 1 m, so the indexes of the nodes correspond to the lower
left coordinates in meters.

3.2 Path planning

After calculating the spanning tree from the starting cell,
the calculation of the coverage path begins. The goal is
to keep the robot circumnavigating around the spanning
tree, always at the right side, until it completely covers all
sub-cells and returns to the starting sub-cell.

The first step is to determine the direction of the spanning
tree for every cell. We use four matrices for encoding each
direction called the north, south, east, and west matrix.
Each matrix contains fields with binary values, where a
value is true if the robot can go in a certain direction from
the current cell following the right side of the spanning
tree, false otherwise. Branching of the spanning tree has
at least three directions, and for each one, a certain matrix
field is true. All leafs of the spanning tree have only one
direction. Example of the direction matrices is shown in
Fig. 2 for the spanning tree presented in Fig. 1. From the
starting cell at (2,2) the robot is allowed to move only to
the cell (3,2) because it is a leaf of the spanning tree and
it needs to follow the right side of the spanning tree. So
the field of the east matrix at (2,2) is set to true and the
same field at all other matrices is false. This principle is
applied for all the cells that are connected in the spanning
tree.

Path planning starts from the starting sub-cell where the
robot is at the beginning. To ensure that the robot follows
the path of the sub-cells that circumnavigates around the
constructed spanning tree, the angles of each branch need
to be calculated. A branch is the straight line segment of
the spanning tree, between two intersections of branches
or orientation changes. The angle of the current branch
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Fig. 2. Four direction matrices that determine the direc-
tions of the spanning tree at each cell in the grid map.
An occupied field (true) in a matrix means that the
robot can go in that direction in the spanning tree,
while an unoccupied field (false) means the opposite.

is denoted as « and can be calculated from the direction
matrices preferring always the right turn. The angle 3 is
shifted for —90° compared to the angle o and it is used
to calculate path that is always on the right side from the
spanning tree, see Fig. 3.
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Fig. 3. An example of the spanning tree and the alpha and
beta angles of some branches.

When angles o and 8 are known, the path can be de-
termined. First, we check the direction matrices. If two
or more matrices are true for the same field, the robot
will go in the direction which ensures the counterclock-
wise circumnavigation around the spanning tree and does
not cross over it. In order to avoid visiting already vis-
ited cells of the spanning tree, the binary matrix vis-
ited_path(i,j)={false, true} is used and its values are
stored for each field. Initially, all fields are set to be non-
visited (false).

The pseudocode of the complete coverage path is given by
Alg. 1. The path is produced from the starting cell. The
algorithm stops when the path reaches the start position.
The robot’s direction and the cell that it needs to visit next
is known from the direction matrix and the spanning tree.
We calculate angles « and 3 for each cell to ensure that the
robot will follow the right side of the spanning tree. When
one of the sub-cells is visited, the value of the field in the
matrix visited_path is set to true. The path is saved as
real coordinates for each cell distanced for D/2 from the
branch to the right. If a dynamic change of the work-area
is detected, the algorithm is interrupted. The field which
is currently visited by the robot is set to non-visited in the
matrix visited_path.

Algorithm 1 Pseudocode for the path planning

calculate branch « and g angles

determine starting position (x4, ys)

while (z,y) # (2, ys)
Find new neighbors of the current cell which are

connected with the spanning tree

5: Go to neighbor cell (z,y) and set the field in the
matrix visited_path to true

6: zp =2+ D/2cos(B)

7: yp =y + D/2sin(B) (Save the path in real coordi-

nates)
8: if (dynamic =1)
9: End the path planning algorithm
10: end if

11: end while
12: End the path planning algorithm

3.8 Path replanning

If the robot detects a dynamic change in the environment,
the replanning algorithm is executed. Dynamic changes
can be detected in neighboring cells of the current cell
on the path, see Fig. 4a for an example. All visited cells
are not considered as nodes for the new spanning tree
calculation and the visited sub-cells are not part of the
new path coverage.

After the new spanning tree is determined for the rest of
the non-visited grid cells, the path planning algorithm is
executed. The path always follows the right side of the
spanning tree until the robot comes back to the cell in
which replanning started, see Fig. 4b for an example. From
this cell, the robot continues to follow the right side of the
spanning tree which is already formed at the previous path
planning. The robot goes through this visited grid cells
by only visiting sub-cells which are not yet visited. The
complete coverage algorithm ends when the robot comes
to the starting sub-cell.
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Fig. 4. Replanning example with the spanning tree (blue),
coverage path (red), and the start cell at (2,2). The
replanning begins at (5,3), and the new obstacle is at
(3,4).

3.4 Path following

The following of the computed coverage path is done
by successive selection of subgoals which are set to the
motion planner and then executed by the robot. These
subgoals are chosen to be the points of the path direction
change and have the goal heading in the direction of the
next path straight line segment. The motion planning
algorithm is used on a much finer occupancy grid map and
it includes constraints on the robot motion. This algorithm
can adapt to dynamic changes in the environment, Seder
et al. (2017). If the selected subgoal is too close to the
detected obstacle, a new subgoal is chosen in the local
vicinity from the critical one. With this procedure, the
robot follows the planned path with a minimal drift and
has an additional collision checking performance.

3.5 Computing the coverage rate

Computation of the coverage information requires follow-
ing parameters to be known: the total area of the envi-
ronment A;, the total area of the obstacles A, and the
total area covered by the robot’s path A,. From these
three measurements the coverage rate percentage can be
computed as:

A
Coverage rate = ﬁ - 100%. (1)

The total area can be found in the image as the number of
all cells. If the image has width w and height A then the
total area is A;=wh. The total area of the obstacles can
be found as a number of occupied cells on the map. The
occupied cells have binary values which denote whether
the robot has visited the cell or not. The total area of the
robot path can be found by summing the number of these
visited cells.

4. EXPERIMENTAL RESULTS

The proposed algorithm was implemented and tested in
Matlab and then Robot Operating System (ROS). To
execute the algorithm and get test results a 3D visualizer
Rviz and a Pioneer 3DX mobile robot was used. A sick
LMS200 laser range finder mounted on the robot was

used for the environment perception. To illustrate the
functionality of the proposed algorithm the results of
the experiment are presented in Fig. 6. - 9. The robot
needs to traverse the room completely with known static
obstacle configuration (walls, tables, chairs, etc.) and some
unknown obstacles that change the environment (humans
or changed position of a chair).

Our algorithm works with a known environment, so the
first step before executing the complete coverage is to
capture the map and detect completely known static
obstacle configuration (walls, boxes, etc.) We used sensors
on the robot to collect data regarding the environment by
the slam_gmapping ROS package. Once the environment
had been explored the map was built and the amcl ROS
package for localization in the built map was used. We
processed the map additionally to align the corridors with
the rectangular grid to have better performance of the
coverage algorithm, see Fig. 5.

!‘”'"““h_ r'— "'““"“—"'*“*“m

P
‘-"'L.-";-T'_..__,ﬂm_a:'s"f"*‘n:jr-i'n"r*t'ﬁrﬂ!n"r-\__r

Fig. 5. Map of the environment for the experiment of the
complete coverage, where white denotes the empty
space, black the obstacles, and gray the unknown
area.

4.1 Simulation results

Each static obstacle from the map in Fig. 5 is re-sampled
to a lower resolution occupied grid cell. The size of the cells
is 1 x 1 m and every cell is subdivided into four sub-cells
of size 0.5 x 0.5 m which is the robot size. The coverage
starts at the cell with the position (7,3). From that cell,
the spanning tree construction algorithm is executed (see
Fig. 6). The spanning tree is represented as a blue line
which connects all center points of each free cell. The path
circumnavigates around the constructed spanning tree and
is represented by a red line. The robot follows the right side
of the spanning tree until it reaches the leaf of the tree. At
that cell, the robot turns around and continues to follow
the right side of the other side of the tree. The coverage
is completed when the robot returns to the starting cell.
By following the path, the robot covers every sub-cell
precisely once and travels a complete coverage path. For
every cell, the algorithm checks all the neighbors of the
next cell the robot needs to go. The replanning algorithm
is called if the sensors on the robot detect any changes
in the environment. This is represented in Fig. 7. The
change in the environment is shown as an occupied cell
at position (11,2). The replanning algorithm is executed
at cell (9,3) and the new spanning tree and the path are
recalculated for the non-visited cells, i.e., without the cells
(7,3) and (8,3). After the new path covers the unvisited
cells, the robot needs to go back to the cell from which
the replanning algorithm started and continue from the
right side of the spanning tree to the starting cell but only
through the sub-cells which were not already visited.

Figure 8 presents how the planned path was followed by
the robot in the simulator stage. A minimal drift from



the planned path can be seen, which resulted with the
complete coverage of every sub-cell precisely once.

4.2 Results on a real robot

The experiment was done on the real robot Pioneer 3DX.
To have a similar scenario to the simulation experiment,
a chair was placed on the exactly same place during
the coverage process. Comparing the simulation results in
Fig. 8 and results on a real robot in Fig. 9, we see a much
bigger drift in the actual path driven by the robot. In a
real environment, we have a significant problem with the
subgoal selection function. Since the sensor readings are
noisy, and also the robot localization, then it can happen
more frequently than the selected subgoal is too close to
the obstacle and a new subgoal is chosen from the vicinity
to avoid selecting the occupied one. Because of this, there
are some deviations between the calculated (black line)
and the real (red line) path in Fig. 9. There were also
problems with imprecise localization of the robot at points
where it rotates in place. So the robot deviates from the
desired path at those points. The ground can also cause
problems while following the path because of the slippage.
We can see that at the cell (27,3) the subgoal was lost since
the corners were occupied and the real path deviates from
the calculated path significantly. In Fig. 8 and Fig. 9 the
calculated path and the spanning tree from the starting
cell to the cell where the replanning algorithm is executed
are not plotted for clarity.

4.8 Comparison to the CCD* algorithm

The calculation of the CCD* algorithm on the same
environment map is given in Fig. 10. The comparison of
CCD* and our RSTC algorithm according to the complete
coverage performance without changes in the environment
is given in Tab. 1. The total area to be covered was
95.35m?. The covered area with RSTC algorithm was
67m? and a coverage rate is 70.27%. With CCD* algorithm
the covered area was 94.2m? and the coverage rate is
98.79 %. The coverage rate was calculated using (1). This
percentage for RSTC algorithm is lower than using CCD*
but can be increased if a wall following post procedure is
applied. The advantage of RSTC algorithm is the length of
the path for the complete coverage which is 138.63m. This
is almost halved comparing to the CCD* algorithm. The
biggest advantage of the RSTC algorithm is the overlap
rate which is 0% and for CCD* is 88.58%. In Fig. 10 visited
cells are noted by different colors according to the number
of visits, so some parts of the map are visited nine times.

Table 1.
RSTC CCD*
Total trajectory length 138.63m  242.76m
Total area to be covered 95.35m? 95.35m?
Covered area 67m? 94.2 m?
Coverage rate 70.27% 98.79 %
Overlap rate 0% 88.58%

5. CONCLUSION

We presented a complete coverage path planning algorithm
based on a low-resolution grid map representation and

spiral motion, which can avoid changes in the environment.
Because we only used completely free cells, the coverage
path is optimal and it doesn’t overlap at all. If we want
a better coverage rate on a finer grid we can use a wall-
following algorithm which will significantly increase the
rate but also increase the overlapping. Further work will
focus on solving the problem of a low coverage rate using
partially-occupied cells and a wall-following algorithm.
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Fig. 6. The complete coverage algorithm execution before dynamic environment change at (11,2).
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Fig. 7. Example of complete coverage algorithm execution after dynamic environment change at (11,2).
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Fig. 8. The simulation of the complete coverage algorithm execution with dynamic change in the environment at (11,2).
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Fig. 9. Experiment of complete coverage on the mobile robot Pioneer 3DX.
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Fig. 10. The complete coverage of the CCD* algorithm with the path and noted redundant numbers of cell visits (from
1t09).



