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Abstract—A receding horizon control (RHC) algorithm for
convergent navigation of differential drive mobile robots is
proposed. Its objective function utilizes a local-minima-free
navigation function to measure the cost-to-goal over the robot
trajectory. The navigation function is derived from the path-
search algorithm over a discretized 2D search space. The pro-
posed RHC navigation algorithm includes a systematic procedure
for generation of feasible control sequences. The optimal value
of the objective function is employed as a Lyapunov function
to prove a finite-time convergence of the discrete-time nonlinear
closed-loop system to the goal state. The developed RHC naviga-
tion algorithm inherits fast re-planning capability from t he D*
search algorithm, which is experimentally verified in changing
indoor environments. The performance of the developed RHC
navigation algorithm is compared to the state-of-the-art sample-
based motion planning algorithm based on lattice graphs which
is combined with a trajectory tracking controller. The RHC
navigation algorithm produces faster motion to the goal with
significantly lower computational costs and it does not needany
controller tuning to cope with diverse obstacle configurations.

Index Terms—Motion planning, Receding horizon control,
Lyapunov function, Path planning, Graph searching, Obstacle
avoidance.

I. I NTRODUCTION

Convergent navigation of a mobile robot refers to a control
algorithm that moves the robot from an initial state to a given
goal state in an environment, while avoiding obstacles, and
guaranteeing finite-time convergence of the closed-loop system
to the goal state. The computation time is the main concern
in many real-world applications where a robot needs to avoid
slow-moving obstacles, such as people or other mobile robots.
Some examples are delivery tasks in offices, hospitals, super-
markets, shop floors, warehouses, etc. In general, to find the
optimal control sequence one has to optimize over the whole
feasible state-input space, which is defined by the geometry
of the environment and by the robot dynamics and state-
input constraints. In practice, applying the computed optimal
control sequence in an open-loop manner would be unwise
(or even infeasible), since such control system could not cope
with disturbances (e.g., sudden changes in the environment) or
discrepancies between the behavior of the model and the real
system. One solution that introduces feedback in the control
system and allows for quick reaction to the new conditions is
to recompute the optimal control input at each time step over
a shifted horizon, i.e., to use the receding horizon control.

The receding horizon control (RHC) (also known as the
model predictive control (MPC)) is an on-line optimization
algorithm that predicts system outputs based on its current
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states and mathematical model, finds the best control sequence
by optimization, and applies the first control input from the
optimal control sequence to the system [1]. In this paper
we are interested in application of the RHC principle to
navigate a differential drive mobile robot, which is the most
commonly used type of nonholonomic mobile robots [2].
There are a number of stabilizing RHC methods for navigation
of nonholonomic mobile robots reported in the literature. From
Brockett’s theorem it is well known that a nonholonomic
system can not be stabilized with a continuous control law
[3, 4]. Several methods design piecewise-smooth control laws
with polar representation of the state space variables [5–8],
while more recent methods use canonical chained form of
the system to design robust time-varying control laws [9, 10].
Besides the stability issue, the receding horizon controllers
are computationally expensive and thus not always applicable
for real-time use. Computation times can be lowered while
maintaining the closed-loop stability by shortening the time
horizon, by using suboptimal controllers [7] or by reducing
the frequency of the control law computation [11].

All previously mentioned control methods assume that the
robot state space is convex and collision free. However, in
real environments the state constraint set (the configuration
space) is generally non-convex which makes it unsuitable for
the standard, linear MPC formulation [12]. This problem can
be resolved by splitting the configuration space into convex
parts and optimizing them separately part by part [6, 13].
Another approach is to compute a navigation function, which
is a special case of the classical potential field function without
local minima [14, 15], and employ it as a control Lyapunov
function. In [16] the RHC is combined with the navigation
function proposed in [15] to guarantee asymptotic stability
of a holonomic mobile robot. Discrete navigation functions1

are computationally less demanding, since they are calculated
as the cost of the path to the goal on a discrete set of grid
points (occupancy grid map [17]) by a graph search algorithm
[18]. In [19] a convergent dynamic window approach (CDW)
with the RHC and an interpolated continuous version of the
discrete navigation function as a control Lyapunov function is
used to establish asymptotic stability of a holonomic mobile
robot. Inspired by the CDW of [19], in [20] we obtained
fast and convergent navigation for holonomic anyshape mo-
bile robots in dynamic environments by employing the RHC
and an interpolated continuous navigation function created
over the pose configuration space(x, y, θ). Unfortunately, the
above mentioned approaches cannot be applied directly to
nonholonomic robots since the gradient of navigation function
is not guaranteed to be non-zero, except for trivial cases. For
nonholonomic robots one usually utilizes switching controls
or combines several different control laws [13, 21, 22].

A complementary problem to the convergent navigation is
the trajectory tracking or path-following, which focuses on
stabilizing a robot to a predefined path independent of time,
while convergent navigation cares only about reaching the
goal. High quality paths can be obtained by rapidly-exploring

1In the following, by the termdiscrete navigation function we consider
function whose domain is a discrete set, whilecontinuousnavigation function
will refer to the function that is defined over a continuous domain.
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random tree algorithms such as RRT* [23], kinodynamic
RRT* [24], or state lattice graphs built of motion primitives
[25, 26]. Since all these methods search in a high-dimensional
state space, they are time consuming when used at high
resolutions, while at lower resolutions they may miss paths
in very narrow spaces. Moreover, some approaches require
additional, computationally intensive, path smoothing tohave
a smooth change of accelerations along the path [27]. Since
stabilization is in a local vicinity of the computed trajectory,
motion in changing environments can be inefficient. Some
approaches start with a simple trajectory, which is adapted
in the presence of detected obstacles [28]. However, it may be
difficult to maintain collision avoidance guarantees in confined
and changing environments.

The stabilizing RHC algorithm that we propose in this paper
is based on a fast and efficient method for constructing the
navigation function (for the differential drive mobile robot)
with the global minimum at the goal state and no local
minima. We extend the idea of our previous approach for
holonomic mobile robots [20] to nonholonomic differential
drive mobile robots. Even though the design of the navigation
function in [20] is calculated for the pose configuration space
(x, y, θ), it cannot be used for a differential drive mobile
robot since it does not take into account the constraint on
the lateral motion. To avoid local minima caused by the
lateral motion constraint, here we introduce an additional
cost term in the navigation function that ensures non-zero
value of the gradient of the navigation function (outside of
the goal state). Our navigation algorithm includes generation
scheme of feasible control sequences that are then optimized
according to the navigation function. Hence, our approach
does not require switching controls or combination of several
different control, as is the case in [13, 21, 22]. To the best
of authors’ knowledge, this is the first single-control-law
navigation algorithm for differential drive mobile robotsin
environments with obstacles (non-convex constraint set) whose
convergence is proved by applying the stability theory of
discontinuous discrete-time nonlinear systems. The proposed
RHC navigation algorithm produces robot trajectories thattake
less time to reach the goal than the state-of-the-art sample-
based motion planning algorithm based on lattice graphs [26],
with significantly lower computational costs. Furthermore,
opposed to [26], the proposed RHC navigation algorithm does
not depend on the map resolution, and it considers velocity and
acceleration constraints in a systematic manner.

The paper is organized as follows. Formulation of the RHC
navigation algorithm is given in Section II. The proposed
navigation function is described in Section III. A generation
scheme of feasible control sequences that are used in the RHC
optimization is developed in Section IV. Section V gives the
proof of the finite-time convergence to the goal state, while
Section VI presents simulation and experimental test results.

II. RECEDING HORIZON CONTROL FORROBOT

NAVIGATION

In this Section we briefly review the discrete-time kinematic
model of a differential drive mobile robot and present the

concept of the proposed RHC navigation algorithm based on
that model.

A. Robot’s Kinematic Model and Constraints

The kinematic model of the differential drive mobile robot
in the discrete-time form assuming that translational (v) and
rotational (ω) velocity control inputs are constant within each
sampling interval∆t is as follows [29]:

x(t+ 1) = x(t) + v(t)∆t cos θ(t)
y(t+ 1) = y(t) + v(t)∆t sin θ(t)
θ(t+ 1) = θ(t) + ω(t)∆t.

(1)

wheret ∈ N0, (x, y) are the Cartesian coordinates of the center
of the robot rotation (the position of the mobile robot), andθ
is the orientation of the robot with respect to the positivex
axis. The time-invariant state space model of the robot motion
can be written compactly as

s(t+ 1) = f(s(t), u(t)), t ∈ N0, (2)

where the robot state and control input are defined bys =
(x, y, θ) ∈ S ⊂ R

3, andu = (v, ω) ∈ U ⊂ R
2, respectively.S

is the state constraint set containing collision free robotstates,
U is the velocity constraint set, andf : S × U → S is the
time-invariant nonlinear function given by (1).

At time t the control inputu(t) is subject to kinematic and
dynamic constraints of the form

u(t) ∈ U = [0, vlim]× [−ωlim, ωlim]
u(t)− u(t− 1)

∆t
∈ A = [−v̇lim, v̇lim]× [−ω̇lim, ω̇lim]

(3)
whereA is the acceleration constraint set, while(·)

lim
denotes

limits on velocities and accelerations. Note that the backward
motion is forbidden because sensors’ field of view is in the
forward direction.

B. RHC Navigation Algorithm

We exploit the principle of the RHC, cf. [1], to develop
an algorithm for convergent navigation of a differential drive
mobile robot modeled with (1)–(3).

Let {sk}N0 be the evolution of the robot state over a fixed
horizonN (as a function of the control sequence{uk}N−1

0 ),
according to the model (2), starting withs0 = s(t). At the
current timet, and for the current states := s(t), the receding
horizon control problem is the following:

PN (s) : J∗(s) := min
{uk}N−1

0

J({sk}N0 , {uk}N−1
0 ), (4)

subject to:

{uk}N−1
0 ∈ F , (5)

s0 = s, (6)

sk+1 = f(sk, uk), for k = 0, . . . , N − 1, (7)

φ(sN ) ≤ φ(sk), for k = 0, . . . , N − 1, (8)

where the objective functionJ is given by

J({sk}N0 , {uk}N−1
0 ) :=

N
∑

k=0

φ(sk) + ρ
N−1
∑

k=0

‖uk‖1, (9)
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ρ > 0, J∗ is the value function andφ is the navigation function
measuring the cost-to-goal over states (cf. Section III), with
the constraint (8) to have that the path cost at the last state
does not increase,F ⊂ R

2 × . . . × R
2 = R

2N is the set of
feasible control sequences that is computed to ensure tractable
on-line optimization (cf. Section IV). Notice that the objective
function encourages faster motion to the goal.

Any control sequence that attains the minimum in (4)–(9)
is called an optimal control sequence, and is denoted with
{u∗

k}N−1
0 . Without loss of generality we can assume that

{u∗
k}N−1

0 is unique. Then, the control applied to the system
at time t is the first element of this sequence:

u(t) = u∗
0. (10)

The same procedure (4)–(10) is repeated at the timet+1 for
the new states(t + 1). Since the model of the system and
objective function are time invariant, this procedure defines a
time invariant state feedback controlu(t) = κ(s(t)), resulting
with the closed-loop systems(t+ 1) = f(s(t), κ(s(t))).

III. N AVIGATION FUNCTION

In the rest of the paper, without loss of generality, we
assume that the goal state is at the origin, i.e.,(xG, yG, θG) =
(0, 0, 0). The navigation functionφ is derived from the D*
graph search algorithm [30], which computes for every graph
node the optimal path to the goal and the associated optimal
cost, h, as the sum of weights along the path. The graph
that is searched is created from the occupancy grid map
representation of the environment. In particular, the whole
environment, free space and obstacles, is divided into square
cells of constant sizeecell (map resolution). For simplicity, we
describe the mobile robot as a single point in the environment,
while the real obstacles are enlarged for the integer numberof
cells ⌈rr/ecell⌉, whererr is the robot radius, to account for
the robot’s dimensions. This procedure is common in practice
because it allows an easy detection of trajectory/obstacle
collisions (see Section IV).

The set of nodes in the graph, denoted withN , corresponds
to the set of computed cells. With a slight abuse of the notation,
in the following we will use index of the node in a graph
also as a shorthand notation for the coordinates of the corre-
sponding cell center. The weightswi,j between neighboring
nodesi and j are defined aswi,j := ecellmax(o(i), o(j)),
whereo ≥ 1 is the occupancy value. Similar to the potential
field function, as suggested in [31],o has small values for
nodes far from obstacles, higher values for nodes close to
obstacles, and value∞ for nodes at obstacles. The optimal
path that is calculated on a graph defined in this manner will
steer away from the obstacle cells, if possible. We chose 4-
connected grid neighbors to avoid difficult maneuvers through
diagonally connected cells between obstacles that can appear
with 8-connected grid neighbors.

The next step is to create a continuous navigation function
φ : S → [0,∞〉 from the discrete navigation functionh com-
puted by the D* search algorithm. A simple, straightforward
extension whereφ has the same value for every coordinate in
the cell (equal to the costh of the corresponding node, see the

left part of Fig. 1) is not a good choice. In such a case there
would be little distinction, in terms of the values of objective
function (9), between two close trajectories. Furthermore, the
discontinuity ofφ would introduce unreasonable jumps in the
penalty for trajectories that move to cells with higher cost. To
overcome this problem we introduce a continuous simplex-
based interpolation navigation function (see the right part of
Fig. 1).

h φ

Fig. 1. 3D view of the costh assigned to all points within a grid cell (left)
and simplex-based interpolated costφ (right). The grid map is drawn in the
zero cost plane with one cell occupied (gray) and D* paths denoted with
arrows.

p
m

v

i

p
θi

φ(x, y, θi)

φ(x, y, θi + π)

φ(x, y, θ)

Fig. 2. Left: Division of a cell into eight triangles. Right:The costφ at the
statep = (x, y, θ) (θ is denoted with arrow) is interpolated between costs at
verticesv, m, andi, where only ati the cost depends on the robot orientation
θ with the smallest cost for orientation in the direction of the D* pointer θi.

The navigation functionφ is built in the form of a sim-
plicial complex composed of 2-simplexes (triangles) glued
together [32]. Each cell is divided into eight equally shaped
triangles with common vertex at the cell center (Fig. 2). Let
p = (x, y, θ) be a state with location(x, y) contained in one of
the eight triangles with vertices at the cell centeri = (x1, y1),
the cell vertexv = (x2, y2) and the mid point of the cell
edgem = (x3, y3). The costφ(x, y, θ) is calculated as the
interpolation of the costs at the verticesi, v, andm:

φ(x, y, θ) = a1φ1(i, θ) + a2φ2(v) + a3φ3(m),

φ1(i, θ) = h(i) + λo(i)dist(θ, θi),

φ2(v) = min
j∈N
{h(j) + ecello(j)

∣

∣

∣
‖v − j‖ =

√
2ecell
2
},

φ3(m) = min
j∈N
{h(j) + ecell

2
o(j)

∣

∣ ‖m− j‖ = ecell
2
},
(11)

whereθi is the orientation of the D* pointer, which points to
the next cell on the optimal path (for the goal cell we use the
desired orientation of the robot,θi = θG), 0 ≤ dist(θ, θi) ≤ π
is the minimal distance between two orientations, andλ is the
orientation weight defined as

λ =
ecell
3π

. (12)
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The interpolation coefficients0 ≤ a1, a2, a3 ≤ 1 are obtained
by solving the simplex equations

[x1 x2 x3

y1 y2 y3
1 1 1

][ a1
a2
a3

]

=

[x
y
1

]

. (13)

By construction, the verticesi, v, andm are not co-linear,
hence the matrix in (13) is always invertible. In general, we
can extend the domain ofφ so that it has value∞ at obstacles.

Lemma 1. The navigation functionφ, defined by(11)–(13),
is a continuous real-valued function that has a strict global
minimum at the goal state and no (other) local minima.

For brevity, we omit the proof of Lemma 1. We note that the
lemma statement is equivalent to the claim that at each state,
s = (x, y, θ) 6= 0, there exists a feasible trajectory for (initially
non-moving) differential drive robot that will lower the value
of the navigation functionφ. In particular, for a given states
one first finds a point in the current cell(s) that has the smallest
value – the so-calledcell exit point, denoted withg. If (x, y)
belongs to the goal cell theng = (0, 0), otherwiseg is one of
the 8 specific points available for every cell(x, y) belongs to: 4
vertices and 4 mid points of the edges of the cell. Now we can
construct the following sequence of feasible control actions:
i) rotate (from orientationθ) towards g; ii) translate from
(x, y) to g; iii) if g = (0, 0) then rotate towardsθG and exit
procedure, otherwise deduce the next exit-point,g+, and rotate
towardsg+; iv) make one translational step fromg to g+ with
velocityv = min( ecell

2∆t
, v̇lim∆t). The procedure i)–iv) defines a

finite sequence of feasible control actions – henceforth referred
to as thecell exit control sequence, denoted with{ug

k(s)}
Ng−1

0 .
This control sequence moves the robot from the initial states
to a new state,̃s in Ng steps. In general there is a complex
dependence ofNg on s and system constraints, but one can
compute a trivial upper bound

Ng ≤ 2

⌈

π

ω̇lim(∆t)2

⌉

+

⌈ √
2ecell

v̇lim(∆t)2

⌉

+ 1. (14)

Furthermore, we know that either̃s is equal to the goal state,
or we can can guarantee thatφ(s) − φ(s̃) ≥ ∆φ, for some
fixed ∆φ > 0. Clearly, with a repetitive application of the
above procedure, we can ensure that the robot moves from an
arbitrary initial states to the goal state infinite time. However,
we can achieve better closed-loop system performance by
considering an extended set of feasible control sequences.

IV. FEASIBLE CONTROL SEQUENCES AND ROBOT

TRAJECTORIES

To solve the receding horizon control problem one would
have to carry out the search for the optimal control sequences
among all feasible ones of horizonN , which is a highly
computationally demanding task and thus not suitable for the
real-time implementation. Here this problem is circumvented
by introducing a reduced set of feasible control sequencesF ,
resulting, in general, with a suboptimal solution.

The procedure of creating feasible control sequences is
based upon the dynamic window approach (DWA) [33], which
is an efficient trajectory search generation scheme. The search

space is a discrete set of uniformly distributed velocities
around the current robot velocity that accounts for kinematic
and dynamic constraints of the robot. The DWA considers
constant velocities(v, ω) for N time intervals, and thus
defines circular trajectories. The optimal trajectory is found
by maximizing the objective measure composed of several
different criteria [34, 35]. The first element of the optimal
trajectory defines the control moveu∗ that is applied to
the robot. The search is repeated at each sampling instant.
Therefore, the DWA can be considered as a special case of the
RHC. However, the constraints in the DWA are not satisfied
for the full horizonN since trajectories can contain collisions.

The proposed algorithm for creating feasible control se-
quences ensures that all constraints are satisfied along the
horizonN . Each control sequence defines a circular arc shaped
collision-free trajectory, whose velocity is zero at the end
of the prediction horizon (see Fig. 3). Stopping at the end
of the prediction horizon is necessary for proving the finite-
time convergence of the closed-loop system, while keeping the
computational requirements low.

u

u−1

u−u
−1

∆t
∈ A

{uk}
N−1

0

T0T0 − Tdec
0 N − 1 t

Fig. 3. An example of the created control sequence inF for fixed u andT0.
Shaded area represents other trajectories inF .

The generation procedure of the set of feasible control
sequencesF is given by Alg. 1. The trajectory generation
depends on the current states = s(t) and on the last optimal
control sequence at timet−1, noted as{u∗old

k }N−1
0 , which is

initially filled with zeros. The first element of the last control
sequence, which was applied to the system at timet − 1,
becomes the current velocityu−1, and determines possible
control inputs that can be applied at timet, according to the
dynamic and kinematic constraints (3) (Alg. 1, line 4), where
A is uniformly quantized set of accelerations. The first zero ve-
locity element of the last optimal control sequence defines the
time indexT old

0 , which determines the stopping timeT0 of the
control sequences at the current timet. We have constrainedT0

to four values{T old
0 −2, T old

0 −1, T old
0 , T old

0 +1} assuming that
the optimal solution will be close to the last optimal solution.
If T0 = T old

0 − 1, we can get a state trajectory completely
aligned with the old state trajectory starting from the new state
s0 = s∗old1 and repeating the last state. WithT0 = T old

0 − 2
or T0 ≥ T old

0 we can get shorter or longer state trajectories,
respectively. WithT0 = T old

0 + 1 we enable extension of
the non-zero control sequence towardsN . Starting with the
zero trajectory, stopping timeT0 of the control sequence can
increase from 0 to full horizon lengthN during motion, or
again decrease among obstacles to obtain shorter trajectories.

The control sequence{uk}N−1
0 is calculated such that the

start velocity is the chosen control inputu = [v, ω], which is
being held and then ramp down until the velocity reaches zero
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Algorithm 1 Generation ofF = traj(s(t), {u∗old
k }N−1

0 )

Require: Current states(t), the last optimal control sequence
{u∗old

k }N−1
0 (initially u∗old

k = 0, for k = 0, . . . , N − 1)
Ensure: The setF of control sequences{uk}N−1

0

1: s0 ← s(t), F ← ∅ // initialization
2: T old

0 ← min k | u∗old
k = 0, k = 0, . . . , N − 1 // zero-time

3: u−1 ← u∗old
0 // last applied control input

4: for ∀u ∈ U such that
u− u−1

∆t
∈ A do

5: u = (v, ω)

6: Tdec ← max

{⌈

v

v̇lim∆t

⌉

,

⌈ |ω|
ω̇lim∆t

⌉}

// decelerating

7: for ∀T0 ∈ {T old
0 − 2, T old

0 − 1, T old
0 , T old

0 +1} | Tdec ≤
T0 < N do

8: {uk}N−1
0 ←











u |k ≤ T0 − Tdec,

u
T0 − k

Tdec

|T0 − Tdec < k < T0,

0 |T0 ≤ k ≤ N − 1,
9: if |uk| < (∆v,∆ω) for k = 0, . . . , N then

10: uk = (0, 0) // velocity dead zone
11: end if
12: sk+1 = f(sk, uk) for k = 0, . . . , N − 1
13: if φ(sk) <∞ for k = 0, . . . , N then
14: F ← F ∪ {uk}N−1

0 // obstacle free trajectories
15: end if
16: end for
17: end for

at the stepT0. The duration of the ramp down is calculated
according to the limit deceleration that can be applied to the
robot, and is noted asTdec (Alg. 1, line 6). Since bothv and
ω decrease with the same negative slope, the control sequence
produces points on circular arc of radiusr = v

ω
(Alg. 1, line

8). By this procedure, all control inputs satisfy constraints (3).
Finally, a sequence{uk}N−1

0 is inserted into the setF if its
trajectory is without collision with obstacles, which is true if
all trajectory points haveφ <∞ (Alg. 1, line 13).

V. CONVERGENCE OF THENAVIGATION ALGORITHM

Lemma 2. Let the setSN be defined asSN = {s ∈
S | φ(s) < ∞}. Then,∀s ∈ SN there exist feasible state
and control sequences for the RHC problemPN (s) in (4)–
(9). Furthermore, the setSN is positively invariant for the
closed-loop systems+ = f(s, κ(s)).

Proof. We need to show that for anys ∈ SN the setF
contains a trajectory which satisfies the constraint (8). Atthe
beginning of the motion there exists a trajectory in the setF
with T0 = 1 that produces minimal translation or rotation.
We have already shown that rotation or translation in the
direction of the D* pointer lowers the costφ (cf. Lemma
1) and therefore (8) is satisfied. Denote the optimal control
sequence and corresponding state sequence at timet for the
states = s(t) ∈ SN as follows:

{u∗
k}N−1

0 = {u∗
0, u

∗
1, . . . , u

∗
N−1}, (15)

{s∗k}N0 = {s∗0, s∗1, . . . , s∗N}, (16)

wheres∗0 = s, and{s∗k}N0 satisfies (8). Then the control move
applied to the system at timet is the first element of (15),
i.e., u(t) = κ(s) = u∗

0. Assume that at timet + 1 the robot
moves to the states∗1, i.e., s+ = f(s, κ(s)) = f(s∗0, u

∗
0) = s∗1.

At time t+1, there exists a control sequence{u+

k }N−1
0 ∈ F ,

with starting control moveu+
0 = u∗

1, and the parameterT0 =
T old
0 − 1 that will produce the state trajectory{s+k }N0 starting

from thes∗1 and repeating the last state ats∗N (cf. Alg. 1):

{u+
k }N−1

0 = {u∗
1, . . . , u

∗
N−1, 0}, (17)

{s+k }N0 = {s∗1, . . . , s∗N , s∗N}. (18)

If trajectory {s∗k}N0 satisfies (8), it is clear that{s+k }N0 also
satisfies (8). Therefore control sequence (17), and correspond-
ing state sequence (18) are feasible for the RHC problem
PN (s+) in (4)–(9) and hences+ ∈ SN . By this it is shown
that SN is positively invariant for the closed-loop system
s+ = f(s, κ(s)).

Theorem 3. Let the systems(t + 1) = f(s(t), u(t)) be
controlled by the receding horizon algorithm(4)–(10), i.e.
u(t) = κ(s(t)) except whenκ(s(t)) = 0. If κ(s(t)) = 0 is
detected at timet0 execute the full cell exit control sequence,
i.e., u(t0 + k) = ug

k(s(t0)), for k = 0, . . . , Ng − 1, before
switching back tou(t) = κ(s(t)) for t ≥ t0 + Ng. Then the
closed-loop system converges to the origin in finite-time from
any s in SN .

For brevity we omit the proof of Theorem 3. It relies on
the use of the value functionJ∗ as a Lyapunov function. To
prove that the origin is reached in finite-time from anys ∈ SN
one must show that whenever the RHC control (4)–(10) is
used (i.e.,κ(s) 6= 0) the Lyapunov functionJ∗ satisfies the
following property:

J∗(s)− J∗(f(s, κ(s))) ≥ ∆J∗, (19)

for some fixed∆J∗ > 0. In particular, we can show that
J∗(s) − J∗(f(s, κ(s))) ≥ ρ‖u∗

0(s)‖1. Thus, by limiting
the smallest allowed non-zero value foru = (v, ω) in the
generation ofF , as is achieved by a velocity dead zone (Alg.
1, line 9), we guarantee that∆J∗ ≥ ρmin{∆v,∆ω} > 0.

VI. T EST RESULTS

A. Simulations

The proposed RHC navigation algorithm was tested and
compared to the state-of-the-art sample-based motion planning
algorithm based on the lattice graph [26] (SBPL package
under ROS [36] was used) on different shaped maps U-
shaped, Corridor, and S-shaped maps to test the algorithm
behavior in case of local minima and symmetry, behavior in
very narrow passages, and sharp (slalom) turns, respectively.
The SBPL algorithm generates a shortest path by combining
a series ofmotion primitives, which are feasible motions with
constant velocity that satisfy kinematic constraints. Thepath is
followed by DWA. Both algorithms used higher costs around
obstacles to push the planned path for 0.3 m between the robot
contour and obstacles if possible, where the robot diameter
is 0.5 m. Limits on translation and rotation velocities and
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accelerations were set tovlim = 1 m/s, ωlim = 100 ◦/s,
v̇lim = 0.6 m/s2, ω̇lim = 100 ◦/s2, and the length of horizon
N = 50. Duration of the time step is∆t = 0.1 s. The smallest
allowed non-zero velocities were set to∆v = 0.006 m/s and
∆ω = 1 ◦/s. We purposely put low acceleration limits to make
maneuvering more difficult. We used mostly default parameter
configurations for the SBPL algorithm: motion primitives for
unicycle without backward and side motions, 8 samples for
translational velocity space and 20 samples for rotational
velocity space, while in the RHC algorithm we used coarse
velocity sampling: 3 samples for translational and 3 samples
for rotational velocity space, i.e., acceleration set comprises
only minimal and maximal values. Coarse sampling is chosen
to keep the computations of control inputs per time step
below 10 ms, while with more velocity samples RHC obtains
slightly faster motion. On the contrary, high sampling for
SBPL influence on better tracking of the planned path, with
slightly increased control computations to about 20 ms. The
RHC algorithm is stopped when the robot reaches the goal cell
and orients within 5◦ from the goal orientation. It needs to be
mentioned that in all simulation tests and experiments the RHC
algorithm never switched to the cell exit control sequence.

Table I presents the results obtained by the RHC algorithm
and the SBPL algorithm on all three map shapes for the
grid resolution of 10 cm, 5 cm and 2.5 cm. It can be seen
that for all three grid resolutions both algorithms generate
similar trajectory lengths, but RHC gives around10% shorter
goal reaching times. For the sake of visual comparison, robot
trajectories and velocity profiles on all three map shapes
for the grid resolution of 10 cm are shown in Fig. 4 and
Fig. 5, respectively. In terms of calculation times per time
step, we compared both algorithms according to the path
planning time, since this is the major calculation defining
the algorithm behavior in changing environments, while the
rest of computations for control inputs depend only on the
number of velocity samples used for trajectory generation.
RHC algorithm significantly outperforms SBPL algorithm (at
least 20 times2). The values of planning times clearly show
that, contrary to the SBPL algorithm, the RHC algorithm is
suitable for real-time navigation in changing environments.
Because of that, we conducted experimental tests on a real
robot only with the RHC algorithm.

B. Experiments

The experiments were done on the Pioneer P3-DX differ-
ential drive mobile robot in a known environment populated
with unknown and dynamically changing obstacles. The exper-
iments were repeated for a long list of randomly chosen goal
states, and three of them were chosen here for the algorithm
representation (Fig. 6). The occupancy grid map is created
from the given map with resolution 10 cm, and the laser
range data are used for updating the occupancy grid map
needed for path cost re-calculation. Limits on translationand
rotation velocities and accelerations used in experimentswere
set to vlim = 0.5 m/s, ωlim = 50 ◦/s, v̇lim = 0.3 m/s2,

2Planning times were measured in optimization mode (opt with-03 flag on
GNU C compiler) on Intel Core i5-2557M CPU @ 1.70GHz processor

TABLE I
COMPARISON OFRHC AND SBPLACCORDING TO THE MAP RESOLUTION

resolution 10 cm 5 cm 2.5 cm

U
-s

ha
pe

d
m

ap planning time [ms] (expanded nodes [#])
RHC 6 (7,402) 19 (30,648) 48 (123,184)
SBPL 180 (24,713) 420 (54,812) 1,330 (175,368)

trajectory length [m] (goal reaching time [s])
RHC 12.42 (17.6) 12.21 (17.1) 12.67 (17.1)
SBPL 12.59 (19.0) 12.32 (18.9) 12.14 (17.8)

C
or

ri
do

r
m

ap planning time [ms] (expanded nodes [#])
RHC 5 (3,934) 17 (17,438) 38 (69,708)
SBPL 110 (13,461) 370 (54,718) 1,340 (191,728)

trajectory length [m] (goal reaching time [s])
RHC 13.91 (23.0) 13.95 (22.4) 14.0 (22.5)
SBPL 13.19 (25.1) 13.25 (25.2) 13.18 (24.9)

S
-s

ha
pe

d
m

ap planning time [ms] (expanded nodes [#])
RHC 1 (1,326) 8 (6,120) 21 (25,022)
SBPL 70 (11,403) 230 (37,554) 820 (117,032)

trajectory length [m] (goal reaching time [s])
RHC 8.34 (12.4) 8.49 (12.7) 8.64 (13.7)
SBPL 7.77 (14.7) 7.44 (12.3) 7.12 (12.4)

ω̇lim = 100 ◦/s2. Each update of the occupancy grid map
initiates D* calculation for new D* pointers and cost values
needed for the navigation function creation. In case of no
path, the robot follows the chosen trajectory to the end and
tries again. One such case can be noticed on the way to the
goal 3 (Fig. 6), in which moving obstacle blocked completely
the path to the goal (the spot where the trajectory changes
color from blue to green). Velocity profile, Lyapunov function
and planning times during motion are shown in Fig. 7. The
maximal translational velocity is achieved most of the time,
even in turning maneuvers and regardless of re-planning cases.
The changes of costsφ in the robot vicinity due to re-planning
for obstacle avoidances are reflected in abrupt changes ofJ∗

(increase or decrease, depending on the change in occupancy).
However, between re-planning cases the value ofJ∗ always
decreases.
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Fig. 7. Velocity profiles, Lyapunov function and D* planningtimes during
motion between three goals. Jumps of Lyapunov function can be noticed at
time steps in which re-planning time is not zero.
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(down row) with SBPL trajectory (solid black) and path (dashed blue) and RHC trajectory (solid red) and path (dotted red).
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Fig. 6. Robot trajectories during motion between three goals and accumulated laser readings representing static (blue) and dynamic (purple) obstacles.

VII. C ONCLUSION

We presented a receding horizon control based navigation
algorithm for a differential drive mobile robot. The objective

function is proposed that integrates a navigation function
and local robot trajectories. It measures the contributionof
each control sequence with respect to the navigation function
obtained by interpolation of the D* path costs in the grid.
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The optimal value of the objective function is employed as
a Lyapunov function to prove the finite-time convergence
of the closed-loop system to the goal state. The test results
show good performances of the proposed RHC navigation
algorithm even for a very coarse set of control sequences
and/or robot motion in changing environments. We compared
the RHC algorithm to the state-of-the-art SBPL algorithm
with respect to the trajectory lengths and the time needed
to reach the goal state. Although the SBPL has somewhat
shorter trajectories, the RHC has about10% shorter goal
reaching times and at least 20 times faster path computations.
Furthermore, SBPL is highly dependent on the DWA scaling
parameters, which a user should tune, and does not have
the finite-time convergence guarantee. On the other hand, the
proposed RHC navigation algorithm uses single criterion based
on the navigation function, without need of any parameter
tuning, and considers velocity and acceleration constraints in
a systematic manner.
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