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Abstract—A receding horizon control (RHC) algorithm for
convergent navigation of differential drive mobile robots is
proposed. Its objective function utilizes a local-minimafree
navigation function to measure the cost-to-goal over the toot
trajectory. The navigation function is derived from the path-
search algorithm over a discretized 2D search space. The pro
posed RHC navigation algorithm includes a systematic proaure
for generation of feasible control sequences. The optimalalue
of the objective function is employed as a Lyapunov function
to prove a finite-time convergence of the discrete-time nomear
closed-loop system to the goal state. The developed RHC ngat
tion algorithm inherits fast re-planning capability from t he D*
search algorithm, which is experimentally verified in changng
indoor environments. The performance of the developed RHC
navigation algorithm is compared to the state-of-the-art ample-
based motion planning algorithm based on lattice graphs with
is combined with a trajectory tracking controller. The RHC
navigation algorithm produces faster motion to the goal wih
significantly lower computational costs and it does not needny
controller tuning to cope with diverse obstacle configuratbns.

Index Terms—Motion planning, Receding horizon control,
Lyapunov function, Path planning, Graph searching, Obstate
avoidance.

|I. INTRODUCTION

states and mathematical model, finds the best control sequen
by optimization, and applies the first control input from the
optimal control sequence to the system [1]. In this paper
we are interested in application of the RHC principle to
navigate a differential drive mobile robot, which is the mos
commonly used type of nonholonomic mobile robots [2].
There are a number of stabilizing RHC methods for navigation
of nonholonomic mobile robots reported in the literatunerf
Brockett's theorem it is well known that a nonholonomic
system can not be stabilized with a continuous control law
[3, 4]. Several methods design piecewise-smooth contved la
with polar representation of the state space variables][5-8
while more recent methods use canonical chained form of
the system to design robust time-varying control laws [9, 10
Besides the stability issue, the receding horizon comrsl|
are computationally expensive and thus not always appécab
for real-time use. Computation times can be lowered while
maintaining the closed-loop stability by shortening thaeti
horizon, by using suboptimal controllers [7] or by reducing
the frequency of the control law computation [11].

All previously mentioned control methods assume that the
robot state space is convex and collision free. However, in
real environments the state constraint set (the configurati
space) is generally non-convex which makes it unsuitable fo
the standard, linear MPC formulation [12]. This problem can
be resolved by splitting the configuration space into convex
parts and optimizing them separately part by part [6, 13].
Another approach is to compute a navigation function, which
is a special case of the classical potential field functictheuit
local minima [14, 15], and employ it as a control Lyapunov

Convergent navigation of a mobile robot refers to a contrénction. In [16] the RHC is combined with the navigation
algorithm that moves the robot from an initial state to a givefunction proposed in [15] to guarantee asymptotic stapbilit
goal state in an environment, while avoiding obstacles, afél@ holonomic mobile robot. Discrete navigation functibns

guaranteeing finite-time convergence of the closed-lostesy

are computationally less demanding, since they are caémlla

to the goal state. The computation time is the main conce?f the cost of the path to the goal on a discrete set of grid
in many real-world applications where a robot needs to avai®ints (occupancy grid map [17]) by a graph search algorithm
slow-moving obstacles, such as people or other mobile sobdf8]- In [19] a convergent dynamic window approach (CDW)
Some examp|es are de"very tasks in offices, hospita|s,r.supj@ith the RHC and an interpolated continuous version of the
markets, shop floors, warehouses, etc. In general, to find fligcrete navigation function as a control Lyapunov funci
optimal control sequence one has to optimize over the whalged to establish asymptotic stability of a holonomic nebil
feasible state-input space, which is defined by the geomet@pot. Inspired by the CDW of [19], in [20] we obtained
of the environment and by the robot dynamics and staf@st and convergent navigation for holonomic anyshape mo-
input constraints. In practice, applying the computedropti bile robots in dynamic environments by employing the RHC
control sequence in an open-loop manner would be unwigdd an interpolated continuous navigation function cikate
(or even infeasible), since such control system could npecooVer the pose configuration spage y, 6). Unfortunately, the
with disturbances (e.g., sudden changes in the envirojraentabove mentioned approaches cannot be applied directly to
discrepancies between the behavior of the model and the r@@nholonomic robots since the gradient of navigation fiomct
system. One solution that introduces feedback in the cbnti® Not guaranteed to be non-zero, except for trivial cases. F
system and allows for quick reaction to the new conditions f®@nholonomic robots one usually utilizes switching colstro
to recompute the optimal control input at each time step ovef combines several different control laws [13, 21, 22].
a shifted horizon, i.e., to use the receding horizon control A complementary problem to the convergent navigation is
The receding horizon control (RHC) (also known as thde trajectory tracking or path-following, which focuses o
model predictive control (MPC)) is an on-line optimizatiorstabilizing a robot to a predefined path independent of time,

algorithm that predicts system outputs based on its curréMfile convergent navigation cares only about reaching the
goal. High quality paths can be obtained by rapidly-expigri
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1in the following, by the termdiscrete navigation function we consider
function whose domain is a discrete set, whi@tinuousnavigation function
will refer to the function that is defined over a continuousnedn.



random tree algorithms such as RRT* [23], kinodynamiconcept of the proposed RHC navigation algorithm based on
RRT* [24], or state lattice graphs built of motion primitse that model.
[25, 26]. Since all these methods search in a high-dimeakion

state space, they are time consuming when used at hjghrobot's Kinematic Model and Constraints

resolutlons, while at lower resolutions they may miss path.SThe kinematic model of the differential drive mobile robot
in very narrow spaces. Moreover, some approaches req

| . . . .
g . : . . {%he discrete-time form assuming that translationgl gnd
additional, computationally intensive, path smoothindghéve 9 nald

. . rotational () velocity control inputs are constant within each
a smooth change of accelerations along the path [27]. Since ©) y P

T L . sampling intervalAt is as follows [29]:
stabilization is in a local vicinity of the computed trajent, piing [29]

motion in changing environments can be inefficient. Some z(t+1) = x(t) +v(t)Atcosb(t)
approaches start with a simple trajectory, which is adapted y(t+1) = y(t)+v(t)Atsinb(t) (1)
in the presence of detected obstacles [28]. However, it neay b O(t+1) = 0(t)+w(t)At.

difficult to maintain collision avoidance guarantees in fooed . .
wheret € Ny, (z,y) are the Cartesian coordinates of the center

and changing environments. H b / h " fth bil bof). #hd
The stabilizing RHC algorithm that we propose in this papéjlft € rot ot ro_tat|on (the posmor! of the mobile ro Ot)’. X
the orientation of the robot with respect to the positive

is based on a fast and efficient method for constructing the! L _ _
navigation function (for the differential drive mobile rof axis. The t_|me-|nvar|ant state space model of the robotaonoti
with the global minimum at the goal state and no loc&?" be written compactly as

minima. We extend the idea of our previous approach for s(t+1) = f(s(t),u(t)), t € Ny, 2
holonomic mobile robots [20] to nonholonomic differential , i

drive mobile robots. Even though the design of the navigatig'here the robotgstatz and control input are deflngdslby
function in [20] is calculated for the pose configurationama (z,y.0) € S CR® andu = (v,w) € U C R, respectivelys
(z,,0), it cannot be used for a differential drive mobildS the state constraint set containing collision free rcitates,
robot since it does not take into account the constraint %'S .the \(elocny c_onstralnt ;et, a_nﬁl: SxU — Sis the
the lateral motion. To avoid local minima caused by thgme—n_'lvananht nonImeTl_r functlon_glvelr;_ by (1)|'(_ . d
lateral motion constraint, here we introduce an additional At ime ¢ the cpntrofmr?ut;z(t) IS subject to kinematic an
cost term in the navigation function that ensures non-zeP§namic constraints of the form

value of the gradient of the navigation function (outside of u(t) € U =10,Vim] X [~Wlim, Wiim]

the goal state). Our navigation algorithm includes gemmmat — w(t) — u(t — 1) . ) } )
scheme of feasible control sequences that are then optimize At € A= [=im, im] X [~@im, Drim]
according to the navigation function. Hence, our approach ®3)

does not require switching controls or combination of saverVhereA is the acceleration constraint set, whilg; ,, denotes

different control, as is the case in [13, 21, 22]. To the beg@wits on velocities and accelerations. Note that the backiw

of authors’ knowledge, this is the first single-control-lavV‘Otion is forbidden because sensors’ field of view is in the
' forward direction.

navigation algorithm for differential drive mobile robois
environments with obstacles (non-convex constraint setse
convergence is proved by applying the stability theory d3. RHC Navigation Algorithm

discontinuous discrete-time nonlinear systems. The mego We exploit the principle of the RHC, cf. [1], to develop
RHC navigation algorithm produces robot trajectories thk¢  an algorithm for convergent navigation of a differentiaiver
less time to reach the goal than the state-of-the-art sampigobile robot modeled with (1)—(3).

based motion planning algorithm based on lattice graphls [26 Let {s;}{’ be the evolution of the robot state over a fixed
with significantly lower computational costs. Furthermorehorizon N (as a function of the control sequen{:ek}év‘l),
opposed to [26], the proposed RHC navigation algorithm dogscording to the model (2), starting with = s(t). At the
not depend on the map resolution, and it considers veloody acurrent timet, and for the current state:= s(t), the receding

acceleration constraints in a systematic manner. horizon control problem is the following:

The paper is organized as follows. Formulation of the RHC . . N N_1
navigation algorithm is given in Section Il. The proposed Pr(s): J¥(s):= {uglﬁl‘]({sk}() Aurto ), )
navigation function is described in Section Ill. A genevati subiect to- ’
scheme of feasible control sequences that are used in the RHC ) N1 ’
optimization is developed in Section IV. Section V gives the {urty " € F, (5)
proof of the finite-time convergence to the goal state, while 50 = s, (6)
Section VI presents simulation and experimental test tesul ka1 = f(swoup), fork=0,....N—1, (7)

¢(5N)S¢(Sk), fOkaO,...,N—l, (8)
II. RECEDING HORIZON CONTROL FORROBOT L . L.
NAVIGATION where the objective functiod is given by

N N—-1
In this Section we briefly review the discrete-time kinemati N N—1
J = 9
model of a differential drive mobile robot and present the ({sndos funko ) kZ:O¢(Sk) te kZ:O il ©



p > 0, J* is the value function and is the navigation function left part of Fig. 1) is not a good choice. In such a case there
measuring the cost-to-goal over states (cf. Section I1jhw would be little distinction, in terms of the values of objeet
the constraint (8) to have that the path cost at the last stataction (9), between two close trajectories. Furthermtre
does not increaseF C R? x ... x R? = R2V is the set of discontinuity of¢ would introduce unreasonable jumps in the
feasible control sequences that is computed to ensuraldact penalty for trajectories that move to cells with higher cdst
on-line optimization (cf. Section IV). Notice that the obfiwse overcome this problem we introduce a continuous simplex-
function encourages faster motion to the goal. based interpolation navigation function (see the right pér
Any control sequence that attains the minimum in (4)—(%ig. 1).
is called an optimal control sequence, and is denoted with
{up}d~'. Without loss of generality we can assume that
{ut}y " is unique. Then, the control applied to the system
at timet is the first element of this sequence:

u(t) = ug. (10) <

The same procedure (4)—(10) is repeated at the timé for
the new states(¢ + 1). Since the model of the system and
objective function are time invariant, this procedure defia

; i i _ ; Fig. 1. 3D view of the cosh assigned to all points within a grid cell (left)
tlme invariant state feedback Comnmt) - K(S(t))’ resultlng and simplex-based interpolated cas{(right). The grid map is drawn in the
with the closed-loop system(t + 1) = f(s(t), x(s(t))). zero cost plane with one cell occupied (gray) and D* pathsotézh with

arrows.

I11. NAVIGATION FUNCTION
In the rest of the paper, without loss of generality, we

assume that the goal state is at the origin, {85, ys,0c) = L d(x,y, 0; + )
(0,0,0). The navigation functiory is derived from the D* e 1¢($7y7 0)
graph search algorithm [30], which computes for every graph e N o |

node the optimal path to the goal and the associated optimal pv > ! h ¢(@9,6:)
cost, h, as the sum of weights along the path. The graph %
that is searched is created from the occupancy grid map p o,

representation of the environment. In particular, the whol
environment, free space and obstacles, is divided intorequaig. 2. Left: Division of a cell into eight triangles. Righthe costg at the
cells of constant size..; (map resolution). For simplicity we Statep = (z,y,0) (0 is denoted with arrow) is interpolated betweer] costs at
. e . . L7 verticesv, m, andi, where only at the cost depends on the robot orientation
describe the mobile robot as a single point in the envirotMep yith the smallest cost for orientation in the direction o th* pointer 6;.

while the real obstacles are enlarged for the integer numiber

cells [r,/ecen], wherer, is the robot radius, to account for  The navigation functions is built in the form of a sim-

the robot’s dimensions. This procedure is common in pract|5|icia| complex composed of 2-simplexes (triangles) glued

bec.agse it allows an easy detection of trajectory/obsta@%ether [32]. Each cell is divided into eight equally shdpe

collisions (see Section IV). _ triangles with common vertex at the cell center (Fig. 2). Let
The set of nodes in the graph, denoted wihth corresponds p = (z,, ) be a state with locatiofr, ) contained in one of

to the set of computed cells. With a slight abuse of the rmtati e eight triangles with vertices at the cell center (21, 1),

in the following we will use index of the node in a graphne cell vertexv = (a2, 42) and the mid point of the cell

also as a shorthand notation for the coordinates of the corggigey, = (z3,y3). The costp(z,y,0) is calculated as the

sponding cell center. The weights; ; between neighboring interpolation of the costs at the verticesy, andm:

nodes: and j are defined asv; ; := ecen max(o(i), o(4)),

whereo > 1 is the occupancy value. Similar to the potentialg(x,y,0) = a1¢1(4,0) + azd2(v) + azpz(m),

field function, as suggested in [314, has small values for

nodes far from obstacles, higher values for nodes close to¢1(i,0) h(i) + Ao(i)dist (6, 6;),

obstacles, and valueo for nodes at obstacles. The optimal  ¢,(v) = min {h(j) + eceno(j) ‘ lv—j| =

path that is calculated on a graph defined in this manner will JEN N ) Coutl

steer away from the obstacle cells, if possible. We chose 4- ¢s(m) = b (1) + =52o(j) [ lIm = jll = =5},

V2ecen }
2 b

connected grid neighbors to avoid difficult maneuvers tgtou _ _ _ _ _ (_11)
diagonally connected cells between obstacles that canaappihered; is the orientation of the D* pointer, which points to
with 8-connected grid neighbors. the next cell on the optimal path (for the goal cell we use the

The next step is to create a continuous navigation functig@sired orientation of the robat; = 6), 0 < dist(0,0;) < 7
¢ : S — [0,00) from the discrete navigation functioncom- is the minimal distance between two orientations, arisl the
puted by the D* search algorithm. A simple, straightforwar@rientation weight defined as
extension where has the same value for every coordinate in

the cell (equal to the cogt of the corresponding node, see the A= 65:1- (12)




The interpolation coefficient8 < a1, a2,a3 < 1 are obtained space is a discrete set of uniformly distributed velocities

by solving the simplex equations around the current robot velocity that accounts for kinéenat
T1 Ty 37 Q1 x and dynamic constraints of the robot. The DWA considers
[yl Y2 y3] agl = lyl (13) constant velocities(v,w) for N time intervals, and thus
1 1 1 as 1 defines circular trajectories. The optimal trajectory isirfd

By construction, the vertices v, andm are not co-linear, by maximizing the objective measure composed of several

hence the matrix in (13) is always invertible. In general, waifferent criteria [34, 35]. The first element of the optimal

can extend the domain @fso that it has valuec at obstacles. rjectory defines the control move® that is applied to
the robot. The search is repeated at each sampling instant.

Lemma 1. The navigation functior, defined by(11)+(13), Therefore, the DWA can be considered as a special case of the
is a continuous real-valued function that has a strict glbbaRHC. However, the constraints in the DWA are not satisfied
minimum at the goal state and no (other) local minima.  for the full horizonN since trajectories can contain collisions.

For brevity, we omit the proof of Lemma 1. We note that the 1h€ Proposed algorithm for creating feasible control se-
lemma statement is equivalent to the claim that at each, stft#€nces ensures that all constraints are satisfied along the
s = (z,y,0) # 0, there exists a feasible trajectory for (initiallyhor'_zf)”N- Each <_:ontro| sequence deflnes_a circular arc shaped
non-moving) differential drive robot that will lower the s Collision-free trajectory, whose velocity is zero at theden
of the navigation functiom. In particular, for a given state Of the prediction horizon (see Fig. 3). Stopping at the end
one first finds a point in the current cell(s) that has the szsall ©f the prediction horizon is necessary for proving the finite
value — the so-calledell exit point denoted withg. If (z,y) time convergence of the closed-loop system, while keeffiag t
belongs to the goal cell then= (0, 0), otherwiseg is one of COMPutational requirements low.
the 8 specific points available for every cell y) belongs to: 4
vertices and 4 mid points of the edges of the cell. Now we can ~ {ur}o A
construct the following sequence of feasible control axtio uw—u_. o 4, I u
i) rotate (from orientatiord) towards g; ii) translate from ' U
(x,y) to g; iii) if g = (0,0) then rotate towardd; and exit
procedure, otherwise deduce the next exit-pajnt,and rotate
towardsg™; iv) make one translational step frognto g™ with
velocity v = min( gl , vimAt). The procedure i)-iv) defines a
finite sequence of feasible control actions — hencefortérrefl Fig. 3. An example of the created control sequencé ifor fixed u and Tp.
to as thecell exit control sequencelenoted with{ v (s)}évﬂ_l. Shaded area represents other trajectorie®".in

This control sequence moves the robot from the initial state h . q fth f feasibl |
to a new state§ in N, steps. In general there is a complex The generation procedure of the set of feasible contro

dependence o, on s and system constraints, but one cafeduences” is given by Alg. 1. The trajectory generation
compute a trivial upper bound depends on the current state= s(¢) and on the last optimal

control sequence at time- 1, noted as{u;°'4}5 !, which is
V2eeen initially filled with zeros. The first element of the last cooit
wlim(At)Q-‘ Drim (AL)2 + 1 (14) sequence, which was applied to the system at timel,
o becomes the current velocity_;, and determines possible
Furthermore, we know that eithéris equal to the goal state, ;gntrol inputs that can be applied at timeaccording to the
or we can can guarantee thats) — ¢(5) > A¢, for some  gynamic and kinematic constraints (3) (Alg. 1, line 4), wer
fixed Ag > 0. Clearly, with a repetitive application of the 4 s yniformly quantized set of accelerations. The first zaro v
above procedure, we can ensure that the robot moves from@y element of the last optimal control sequence defihes t
arbitrary initial states to the goal state ifinite time However, {jme indexZ;g', which determines the stopping tirig of the

we can achieve better closed-loop system performance byntrol sequences at the current tim&ve have constrainett,
considering an extended set of feasible control sequences; four values{ ¢4 —2, Tg!d—1, 791, 791441} assuming that

N <2

the optimal solution will be close to the last optimal sabuti
IV. FEASIBLE CONTROL SEQUENCES AND ROBOT If Ty = Té)ld — 1, we can get a state trajectory completely
TRAJECTORIES aligned with the old state trajectory starting from the néates
To solve the receding horizon control problem one woulsh = s;°'4 and repeating the last state. Willy = T4 — 2
have to carry out the search for the optimal control sequena T, > 7¢' we can get shorter or longer state trajectories,
among all feasible ones of horizoN, which is a highly respectively. WithT, = T§'¢ + 1 we enable extension of
computationally demanding task and thus not suitable fer tthe non-zero control sequence towams Starting with the
real-time implementation. Here this problem is circumeehnt zero trajectory, stopping timé, of the control sequence can
by introducing a reduced set of feasible control sequefiGesincrease from 0 to full horizon lengthV during motion, or
resulting, in general, with a suboptimal solution. again decrease among obstacles to obtain shorter tragsctor
The procedure of creating feasible control sequences isThe control sequenc@uk}é\“1 is calculated such that the
based upon the dynamic window approach (DWA) [33], whicstart velocity is the chosen control input= [v, w], which is
is an efficient trajectory search generation scheme. Thelseabeing held and then ramp down until the velocity reaches zero



Algorithm 1 Generation ofF = traj(s(t), {u*' 4} ™) wheres} = s, and{s; }{’ satisfies (8). Then the control move
Require: Current states(t), the last optimal control sequenceaPplied to the system at timeis the first element of (15),

{uey V=1 (initially w4 =0, for k =0,...,N — 1) i.e., u(t) = £(s) = uj. Assume that at time¢ + 1 the robot
Ensure: The setF of control sequencesuy })’ " moves to the statey, i.e., s™ = f(s, x(s)) = f(s§, u5) = s7.
1 sg < s(t), F < 0 // initialization At time ¢ +1, there exists a control sequenge) }o' ! € F,
2: T «— mink | w4 =0, k=0,...,N—1 // zero-time With starting cqntrol moved = uf, anq the parametefy =
3 u_y + ut*M J/ last applied control input Tg'! — 1 that will produce the state trajectofy; }{ starting
4 for Vu € U such that— =1 ¢ A do from the s} and repeating the last state s (cf. Alg. 1):
5 u=(v,w) " (w3t = {uf, ..., ul_1,0}, (17)
v w .
6:  Tgec max{ lri}limAt—‘ , LlimAJ } I/ decelerating {51 = {s5,. .8, s ) (18)
. old old old rold . - o
7. for VT € {Tg" =2, 15" = 1, 15", T + 1} [ Taee < if trajectory {s;}{’ satisfies (8), it is clear thafs; }{’ also
To < N do < T T satisfies (8). Therefore control sequence (17), and cavrabsp
uT K [k < To = Taee, ing state sequence (18) are feasible for the RHC problem
8: {ur )Vt~ { w2 |To — Taec < k < Ty, Py (st) in (4)—(9) and hence™ € Sy. By this it is shown
. ; - L
- 0 To<k<N-1, trlat_SN is positively invariant for the closed-loop syétem
o: if |uk| < (Av,Aw) for k=0,..., N then sT = [f(s,k(s)).
10: up, = (0,0) // velocity dead zone Theorem 3. Let the systems(t + 1) = f(s(t),u(t)) be
11 end if controlled by the receding horizon algorithi@)—(10), i.e.
12: skt1 = fsk,ux) for k=0,..., N —1 u(t) = r(s(t)) except whens(s(t)) = 0. If x(s(t)) = 0 is
13: if ¢(sk) < oo for 5_21 0,...,N then _ _ detected at time, execute the full cell exit control sequence,
14: F e FU {urty — /I obstacle free trajectories o u(to + k) = ud(s(to)), for k = 0,...,N, — 1, before
15: end if switching back tou(t) = r(s(t)) for t > to + N,. Then the
16:  end for closed-loop system converges to the origin in finite-tinoenfr
17: end for any s in Sy.

For brevity we omit the proof of Theorem 3. It relies on

at the steply. The duration of the ramp down is calculatedhe use of the value functioft* as a Lyapunov function. To
according to the limit deceleration that can be applied @ tprove that the origin is reached in finite-time from ang Sy
robot, and is noted a&u.. (Alg. 1, line 6). Since both and ©ne must show that whenever the RHC control (4)-(10) is
w decrease with the same negative slope, the control seque@d (i.e..x(s) # 0) the Lyapunov function/* satisfies the
produces points on circular arc of radius= 2 (Alg. 1, line following property:

8). By this procedure, all control inputs satisfy constrsifB). Kl TH *
Finally, a sequencéu,,})'~" is inserted into the seF if its T(s) = T (f(s,m(s)) 2 AT (19)
trajectory is without collision with obstacles, which isi¢rif for some fixedAJ* > 0. In particular, we can show that
all trajectory points haved < co (Alg. 1, line 13). J*(s) — J*(f(s,k(8))) > pllus(s)]li. Thus, by limiting
the smallest allowed non-zero value far= (v,w) in the
V. CONVERGENCE OF THENAVIGATION ALGORITHM generation ofF, as is achieved by a velocity dead zone (Alg.
1, line 9), we guarantee thdtJ* > pmin{Av, Aw} > 0.
Lemma 2. Let the setSy be defined asSy = {s €
S | #(s) < oo}. Then,Vs € Sy there exist feasible state
and control sequences for the RHC probléeg (s) in (4 . )
(9). Furthermore, the seSy is positively invariant for the A- Simulations
closed-loop system™ = f(s, r(s)). The proposed RHC navigation algorithm was tested and
compared to the state-of-the-art sample-based motiomjsign
algorithm based on the lattice graph [26] (SBPL package
- . . . : under ROS [36] was used) on different shaped maps U-
beginning of the motion there exists a trajectory in the Bet shaped, Corridor, and S-shaped maps to test the algorithm

with T, = 1 that produces minimal translation or rotation N L A
. . behavior in case of local minima and symmetry, behavior in
We have already shown that rotation or translation in the

direction of the D* pointer lowers the cost (cf. Lemma véry narrow passages, and sharp (slalom) turns, resplgctive

1) and therefore (8) is satisfied. Denote the optimal contr-cl;Pe SBPL algorithm generates a shortest path by combining

) a series ofmotion primitives which are feasible motions with
sequence and corresponding state sequence atttiiorethe : . . ; . .
i constant velocity that satisfy kinematic constraints. phth is
states = s(t) € Sy as follows:

followed by DWA. Both algorithms used higher costs around
{uf (J)Vfl = {ud,ul, ..., uy 1}, (15) obstacles to push the planned path for 0.3 m between the robot
contour and obstacles if possible, where the robot diameter

{si3 = 1{sh, 81, swh (16) is 0.5 m. Limits on translation and rotation velocities and

VI. TEST RESULTS

Proof. We need to show that for any € Sy the setF
contains a trajectory which satisfies the constraint (8)that



accelerations were set tq;,, = 1 m/s, wim = 100 °/s, TABLE |
Oim = 0.6 m/32, Wlim = 100 0/32, and the Iength of horizon COMPARISON OFRHC AND SBPLACCORDING TO THE MAP RESOLUTION
N = 50. Duration of the time step i&t = 0.1 s. The smallest
allowed non-zero velocities were set Aoy = 0.006 m/s and
Aw =1 °/s. We purposely put low acceleration limits to make
maneuvering more difficult. We used mostly default paramete
configurations for the SBPL algorithm: motion primitives fo
unicycle without backward and side motions, 8 samples for
translational velocity space and 20 samples for rotational
velocity space, while in the RHC algorithm we used coarse
velocity sampling: 3 samples for translational and 3 sample
for rotational velocity space, i.e., acceleration set coses
only minimal and maximal values. Coarse sampling is chosen
to keep the computations of control inputs per time step
below 10 ms, while with more velocity samples RHC obtains
slightly faster motion. On the contrary, high sampling for
SBPL iqfluence on better tracking _of the planned path, with SBPL 70 (11,403) 230 (37,554) 820 (117,032)
slightly increased control computations to about 20 ms. The frajectory length [m] (goal reaching time [s])
RHC algorithm is stopped when the robot reaches the goal cell ﬁ RHC 8.34 (12.4) 8.49 (12.7) 8.64 (13.7)
and orients within 8 from the goal orientation. It needsto be ¢ SBPL  7.77 (14.7)  7.44 (12.3) 7.12 (12.4)
mentioned that in all simulation tests and experiments tHER
algorithm never switched to the cell exit control sequence.

Table | presents the results obtained by the RHC algorithm
and the SBPL algorithm on all three map shapes for theim = 100 °/s’. Each update of the occupancy grid map
grid resolution of 10 cm, 5 cm and 2.5 cm. It can be sedhitiates D* calculation for new D* pointers and cost values
that for all three grid resolutions both algorithms generafeeded for the navigation function creation. In case of no
similar trajectory lengths, but RHC gives aroun@ shorter path, the robot follows the chosen trajectory to the end and
goal reaching times. For the sake of visual comparison,troBges again. One such case can be noticed on the way to the
trajectories and velocity profiles on all three map shap&9al 3 (Fig. 6), in which moving obstacle blocked completely
for the grid resolution of 10 cm are shown in Fig. 4 anghe path to the goal (the spot where the trajectory changes
Fig. 5, respectively. In terms of calculation times per timeolor from blue to green). Velocity profile, Lyapunov furasti
step, we compared both algorithms according to the paAd planning times during motion are shown in Fig. 7. The
planning time, since this is the major calculation defininflaximal translational velocity is achieved most of the time
the algorithm behavior in changing environments, while th@ven in turning maneuvers and regardless of re-plannirgscas
rest of computations for control inputs depend only on thEhe changes of costsin the robot vicinity due to re-planning
number of velocity samples used for trajectory generatiol®r obstacle avoidances are reflected in abrupt changes of
RHC algorithm significantly outperforms SBPL algorithm (afincrease or decrease, depending on the change in occypancy
least 20 time¥. The values of planning times clearly showHowever, between re-planning cases the valug/'ofalways
that, contrary to the SBPL algorithm, the RHC algorithm igecreases.
suitable for real-time navigation in changing environnsent
Because of that, we conducted experimental tests on a real

resolution 10 cm 5cm 2.5¢cm

planning time [ms] (expanded nodes [#])
RHC 6 (7,402) 19 (30,648) 48 (123,184)
SBPL 180 (24,713) 420 (54,812) 1,330 (175,368)
trajectory Tength [m] (goal reaching time [s])
RHC 1242 (17.6) 12.21 (17.1) 12.67 (17.1)
SBPL 12.59 (19.0) 12.32(18.9) 12.14 (17.8)

planning time [ms] (expanded nodes [#])
RHC 5 (3,934) 17 (17,438) 38 (69,708)
SBPL 110 (13,461) 370 (54,718) 1,340 (191,728)
trajectory Tength [m] (goal reaching time [s])
RHC 13.91 (23.0) 13.95 (22.4) 14.0 (22.5)
SBPL 13.19 (25.1) 13.25(25.2) 13.18 (24.9)

planning time [ms] (expanded nodes [#])
RHC 1 (1,326) 8 (6,120) 21 (25,022)

aped map Corridor map | U-shaped map|

robot only with the RHC algorithm. z 238 1 goal 1 9o 2 go'
emfl 1
= 0 t t t t

B. EXperimentS = 50 0 20 40 60 80: 100 120 140 160

The experiments were done on the Pioneer P3-DX differ- & o %Mﬁv—a-ﬁw&w—vﬂ&v«&»

ential drive mobile robot in a known environment populated 3 —50

with unknown and dynamically changing obstacles. The exper 15 ;1"

iments were repeated for a long list of randomly chosen goal £ 1 {

states, and three of them were chosen here for the algorithm > 0'3 ;

representation (Fig. 6). The occupancy grid map is created
from the given map with resolution 10 cm, and the laser
range data are used for updating the occupancy grid map
needed for path cost re-calculation. Limits on translatod

rotation velocities and accelerations used in experimepte Fig. 7. Velocity profiles, Lyapunov function and D* plannirignes during

set to vm = 0.5 M/S, wim, = 50 °/S, tum = 0.3 M/, motion between three goals. Jumps of Lyapunov function eamdiiced at
time steps in which re-planning time is not zero.
2planning times were measured in optimization mode (opt va@ighflag on
GNU C compiler) on Intel Core i5-2557M CPU @ 1.70GHz processo

tp« [Ms]

150 20 40 60 80
|
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J

Fig. 4. Robot trajectories in the U-shaped (left), Corri@imiddle), and S-shaped (right) maps with grid resolutiorLl®fcm and magnified part of each map
(down row) with SBPL trajectory (solid black) and path (dedtblue) and RHC trajectory (solid red) and path (dotted.red)

= 100 U-shaped map 100 Corridor map 100 S-shaped map
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Fig. 5. Velocity profiles of the RHC and SBPL trajectory foeth-shaped, Corridor and S-shaped map for grid resolutiobOoém.
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Fig. 6. Robot trajectories during motion between three g@ald accumulated laser readings representing static) (@hededynamic (purple) obstacles.

VII. CONCLUSION function is proposed that integrates a navigation function

and local robot trajectories. It measures the contributbn

We presented a receding horizon control based navigat@®#ch control sequence with respect to the navigation fomcti
algorithm for a differential drive mobile robot. The objiwet Obtained by interpolation of the D* path costs in the grid.



The optimal value of the objective function is employed &gs4]
a Lyapunov function to prove the finite-time convergence
of the closed-loop system to the goal state. The test resqltgi
show good performances of the proposed RHC navigation
algorithm even for a very coarse set of control sequences
and/or robot motion in changing environments. We compargg]
the RHC algorithm to the state-of-the-art SBPL algorithm
with respect to the trajectory lengths and the time needgd!
to reach the goal state. Although the SBPL has somewri@]
shorter trajectories, the RHC has abalit% shorter goal
reaching times and at least 20 times faster path compusatidi®l
Furthermore, SBPL is highly dependent on the DWA scaling
parameters, which a user should tune, and does not hgaog
the finite-time convergence guarantee. On the other haed, th
proposed RHC navigation algorithm uses single critericseda

on the navigation function, without need of any parameter]
tuning, and considers velocity and acceleration conggam

a systematic manner. 22]
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