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Abstract: This paper deals with motion planning for multiple agents by representing the
problem as a simultaneous optimization of every agent’s trajectory. Each trajectory is considered
as a sample from a one-dimensional continuous-time Gaussian process (GP) generated by a linear
time-varying stochastic differential equation driven by white noise. By formulating the planning
problem as probabilistic inference on a factor graph, the structure of the pertaining GP can be
exploited to find the solution efficiently using numerical optimization. In contrast to planning
each agent’s trajectory individually, where only the current poses of other agents are taken into
account, we propose simultaneous planning of multiple trajectories that works in a predictive
manner. It takes into account the information about each agent’s whereabouts at every future
time instant, since full trajectories of each agent are found jointly during a single optimization
procedure. We compare the proposed method to an individual trajectory planning approach,
demonstrating significant improvement in both success rate and computational efficiency.
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1. INTRODUCTION

Motion planning is an indispensable skill for robots that
aspire to navigate through an environment without col-
lisions. Motion planning algorithms attempt to generate
trajectories through the robot’s configuration space that
are both feasible and optimal based on some performance
criterion that may vary depending on the task, robot, or
environment. Motion planning algorithms that can be ex-
ecuted in real time are highly encouraged, mostly because
they allow for fast replanning in response to environment
changes.

A significant amount of recent work has focused on trajec-
tory optimization and related problems. Trajectory opti-
mization methods start with an initial trajectory and then
minimize an objective function in order to optimize the
trajectory. Ratliff et al. (2009) and Zucker et al. (2013),
in their work abbreviated as CHOMP, proposed utiliz-
ing a precomputed signed distance field for fast collision
checking and using covariant gradient descent to minimize
obstacle and smoothness costs. Kalakrishnan et al. (2011)
developed a stochastic trajectory optimization method
(STOMP) that samples a series of noisy trajectories to ex-
plore the space around an initial trajectory which are then
combined to produce an updated trajectory with lower
cost. The key trait of STOMP is its ability to optimize
non-differentiable constraints. An important shortcoming
of CHOMP and STOMP is the need for many trajectory
states in order to reason about fine resolution obstacle rep-
resentations or find feasible solutions when there are many
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constraints. Schulman et al. (2013), Schulman et al. (2014),
in their framwork called TrajOpt, formulate motion plan-
ning as sequential quadratic programming. The key fea-
ture of TrajOpt is the ability to solve complex motion
planning problems with few states since swept volumes
are considered to ensure continuous-time safety. However,
if the smoothness is required in the output trajectory,
either a densely parametrized trajectory or post-processing
of the trajectory might still be needed thus increasing
computation time. In order to overcome the computational
cost incurred by using large number of states, the Gaussian
process motion planning family of algorithms (Mukadam
et al. (2016), Dong et al. (2016), Huang et al. (2017))
use continous-time trajectory representation. Mukadam
et al. (2016) parametrize the trajectory with a few support
states and then use Gaussian process (GP) interpolation
to query the trajectory at any time of interest. Dong
et al. (2016), in their framework called GPMP2, repre-
sent continuous-time trajectories as samples from a GP
and then formulate the planning problem as probabilistic
inference, generating fast solutions by exploiting the spar-
sity of the underlying linear system. A useful property
of GPMP2 is its extensibility and applicability for wide
range of problems (Rana et al. (2017), Mukadam et al.
(2017a), Marić et al. (2018)) and in this paper we also rely
on the aforementioned framework. All mentioned methods
are primarily designed for planning motion of one robot in
static environments. In many challenging problems, such
as warehouse management, delivery and construction, a
single robot may not be able to achieve desired tasks
and therefore multi-robot teams are required. Multi-robot
teams are also more robust to malfunctions, since one



robot can take over the tasks of another robot in case of
failure.

In this paper, we propose using a continous time Gaussian
process trajectory representations in order to plan motion
for every robot in a multi-agent system. We augment
the method proposed in Dong et al. (2016) and consider
multi-agent trajectory optimization from a probabilistic
inference perspective, optimizing all of the trajectories
concurrently. By optimizing the trajectories at the same
time, our method takes into account the information
where each agent will be at every future time instant,
thus working in a predictive manner. We evaluated our
approach in simulation and compared it to planning each
agent’s trajectory indvidually.

The rest of the paper is organized as follows. Section 2
presents Gaussian processes as trajectory representations.
In Section 3, the method for simultaneous multi-agent
trajectory optimization as probabilistic inference is pro-
posed. Section 4 describes implementation aspects of the
proposed method. Section 5 demonstrates the main results
in simulation and Section 6 concludes the paper.

2. GAUSSIAN PROCESSES AS TRAJECTORY
REPRESENTATIONS

A continuous-time trajectory is considered as a sample
from a vector-valued Gaussian process (GP), x(t) ∼
GP(µ(t),K(t, t′)), with mean µ(t) and covariance K(t, t′),
generated by a linear time-varying stochastic differential
equation (LTV-SDE)

ẋ(t) = A(t)x(t) + u(t) + F (t)w(t) (1)

where A, F are system matrices, u is a known control input
and w(t) is generated by a white noise process. The white
noise process is itself a GP with zero mean value

w(t) ∼ GP(0, Qcδ(t− t′)), (2)

where Qc is a power spectral density matrix .

The solution of the LTV-SDE in (1) is generated by the
mean and covariance of the GP:

µ(t) = Φ(t, t0)µ0 +

∫ t

t0

Φ(t, s)u(s)ds (3)

K(t, t′) = Φ(t, t0)K0Φ(t′, t0)T+∫ min(t,t′)

t0

Φ(t, s)F (s)QcF (s)TΦ(t′, s)ds, (4)

where µ0, K0 are initial mean and covariance of the first
state, and Φ(t, s) is the state transition matrix (Barfoot
et al. (2014)).

The GP prior distribution is then given in terms of its
mean µ and covariance K:

p(x) ∝ exp{−1

2
‖x− µ‖2K}. (5)

One major benefit of using Gaussian processes to model
continuous-time trajectory in motion planning is the pos-
sibility to query the planned state x(τ) at any time of
interest τ , and not only at discrete time instants. If the
prior proposed in (5) is used, GP interpolation can be
performed efficiently due to the Markovian property of

the LTV-SDE given in (1). State x(τ) at τ ∈ [ti, ti+1] is a
function only of its neighboring states (Dong et al. (2016))

x(τ) = µ(τ) + Λ(τ)(xi − µi) + Ψ(τ)(xi+1 − µi+1), (6)

Λ(τ) = Φ(τ, ti)−Ψ(τ)Φ(ti+1, ti), (7)

Ψ(τ) = Qi,τΦ(ti+1, τ)TQ−1
i,i+1, (8)

where

Qa,b =

∫ tb

ta

Φ(b, s)F (s)QcF (s)TΦ(b, s)T ds. (9)

The fact that any state x(τ) can be computed in O(1)
complexity can be exploited for efficient computation of
obstacle avoidance costs, as explained in Section 3.

Another major benefit arising from the aforementioned
Markovian property of the LTV-SDE in (1) is the fact
that the inverse kernel matrix K−1 of this prior is exactly
sparse block tridiagonal (Barfoot et al. (2014))

K−1 = A−TQ−1A−1 (10)

where

A−1 =


1 0 ... 0 0

−Φ(t1, t0) 1 ... 0 0

0 −Φ(t2, t1)
. . .

...
...

...
...

. . . 1 0
0 0 ... −Φ(tN , tN−1) 1


(11)

and
Q−1 = diag(K−1

0 , Q−1
0,1, ..., Q

−1
N−1,N ) (12)

with Qa,b given in (9), the trajectory going from t0 to tN ,
and K0 being the initial covariance. As it will be shown in
Section 3, this kernel allows for fast, structure-exploiting
inference.

3. MULTI-AGENT TRAJECTORY OPTIMIZATION
AS PROBABILISTIC INFERENCE

In this section we formulate the multi-agent trajectory
optimization problem as probabilistic inference. The pre-
sented formulation is predicated on the work of Dong et al.
(2016) and it represents the extension of their trajectory
optimization method to multi-robot systems.

To formulate the trajectory optimization problem as
probabilistic inference, we seek to find a trajectory
parametrized by x given desired events e. The posterior
density of x given events e can be computed via Bayes’
rule from a prior and likelihood

p(x|e) = p(x)p(e|x)/p(e) ∝ p(x)p(e|x) (13)

where p(x) represents the prior on x which encourages
smoothness of the trajectory, while p(e|x) represents the
probability of the desired events occuring given x. The
optimal trajectory x is found by maximizing the posterior
p(x|e), using the maximum a posteriori (MAP) estimator

x∗ = arg max
x

p(x)p(e|x), (14)

where
p(e|x) =

∏
i

p(e|xi) (15)

with xi being the configuration at discrete time instant ti.
The conditional distributions p(e|xi) specify the likelihood
of desired events occuring at the configuration xi

L(xi|e) ∝ p(e|xi). (16)



In motion planning context, desired event is avoidance
of collisions and therefore conditional distribution p(e|xi)
specifies the likelihood that the configuration xi is collision
free

Lobs(xi|ci = 0) ∝ p(ci = 0|xi). (17)

In our case, for each agent there are two possible types of
collision; collision with a static obstacle in the environment
and collision with another agent. Since the aforementioned
types of collision are independent events, the likelihood
of trajectory x being free of collisions can therefore be
considered as the product of two likelihoods:

Lobs(x|c = 0) = Lstat(x|cobs = 0)Lmul(x|cmul = 0), (18)

where the first the term specifies the probability of being
clear of collisions with static obstacles and the second term
specifies the probability of being clear of collisions with
other agents.

For each agent j, the likelihood of being free of collision
with static obstacles is defined as a distribution of the
exponential family (Dong et al., 2016):

Lstat(xj |cobs = 0) ∝ exp{−1

2

∥∥h(xj)
∥∥2

Σobs
}, (19)

where h(x) is a vector-valued obstacle cost function and
Σobs a diagonal matrix and the hyperparameter of the
distribution. In the same manner, we define the likelihood
of being collision-free with other agents as a distribution
of the exponential family that is a product of probabilities
of being free of collision with every other agent

Lmul(xj |cmul = 0) ∝
nag∏
j′=1
j′ 6=j

exp{−1

2

∥∥g(xj , xj′)
∥∥2

Σmul
},

(20)
where g(xj , xj′) is a vector-valued function that defines
the cost of two agents j and j′ being close to each other,
nag is number of agents and Σmul is a hyperparameter of
the distribution.

Combining Eq. (19) and Eq. (20), the total likelihood of
agent j being free of collision is obtained

Lobs(xj |c = 0) ∝

exp{−1

2

∥∥h(xj)
∥∥2

Σobs
}
nag∏
j′=1
j′ 6=j

exp{−1

2

∥∥g(xj , xj′)
∥∥2

Σmul
}.

(21)

Deriving the MAP trajectory from Eq. (14), Eq. (5) and
Eq. (21) in a similar manner to Dong et al. (2016), our
maximum a posteriori trajectory for each agent is

x∗j = arg min
xj

{1

2

∥∥xj − µj∥∥2

Kj
+

1

2

∥∥h(xj)
∥∥2

Σobs
+

1

2

nag∑
j′=1
j′ 6=j

∥∥g(xj , xj′)
∥∥2

Σmul
}. (22)

This is a nonlinear least squares problem that can be
solved with iterative approaches, such as Gauss-Newton
or Levenberg-Marquardt.

To obtain the MAP trajectory by solving the aforemen-
tioned optimization problem with iterative approaches, we

need a linearized approximation of (22). Converting the
nonlinear least squares problem to a linear problem around
operating point x̄j , the following expression for the optimal
perturbation δx∗j is obtained

δx∗j = arg min
δxj

{1

2

∥∥x̄j + δxj − µj
∥∥2

Kj
+

1

2

∥∥h(x̄j) +Hjδxj
∥∥2

Σobs
+

1

2

nag∑
j′=1
j′ 6=j

∥∥g(x̄j , xj′) +Gjδxj
∥∥2

Σmul

}
, (23)

where Hj is the Jacobian matrix of h(xj)

Hj =
∂h

∂xj

∣∣∣∣
x̄j

, (24)

and Gj is the partial derivative of g(xj , xj′)

Gj =
∂g

∂xj

∣∣∣∣
(x̄j ,xj′ )

. (25)

The optimal perturbation δx∗j is obtained by solving the
following linear system(

K−1
j +HT

j Σ−1
obsHj +

nag∑
j′=1
j′ 6=j

GTj Σ−1
mulGj

)
δx∗j =

K−1
j (µj − x̄j)−HT

j Σ−1
obsh(x̄j)−

nag∑
j′=1
j′ 6=j

GTj Σ−1
mulg(x̄j , xj′).

(26)

This MAP trajectory optimization can be represented as
inference on a factor graph (Kschischang et al. (2001)).
The fact that the system in (26) is linear and sparse can
be exploited for finding the solution efficiently. In our
case, the posterior distribution given in Eq. (13) can be
factorized similarly to Mukadam et al. (2017b):

P (x|e) ∝
∏
ti

∏
cj

fgpj (xji , x
j
i+1)fobsi,j (xji )

∏
cj′

fmuli,j,j′(x
j
i , x

j′

i )

np∏
τ=1

f intpi,j,j′,τ (xji , x
j
i+1, x

j′

i , x
j′

i+1), (27)

where fgp represents factor corresponding to a GP prior,
fobs represents the cost of collision with static obstacles,
fmul represents the cost of collision with other agents and
f intp represents collision cost calculated for np interpo-
lated states that can be obtained by using (6). The factor
graph defined in (27) is depicted in Fig. 3 for a simple
case of trajectory optimization problem with two agents
and three states.

4. IMPLEMENTATION DETAILS

4.1 GP prior

In our implementation, for dynamics of our robot we
use the double integrator linear system with white noise
injected in acceleration, meaning that the trajectory is
generated by the LTV-SDE in (1) with
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Fig. 1. A simple illustration of the factor graph describing
an example multi-robot trajectory optimization prob-
lem. GP interpolation factors present between states
are omitted for clarity.

A =

[
0 I
0 0

]
, u(t) = 0, F (t) =

[
0
I

]
. (28)

This represents a constant velocity GP prior which is
centered around a zero acceleration trajectory (Barfoot
et al. (2014)). Applying such a prior will minimize actuator
velocity in the configuration space, thus minimizing the
energy consumption and giving the physical meaning of
smoothness. Choosing the noise covarianceQc has an effect
on smoothness, with smaller values penalizing deviation
from the prior more.

4.2 Avoidance of collision with static obstacles

In (19) we defined the likelihood of one agent j being free of
collision with static obstacles which relies upon a vector-
valued obstacle cost function h(xj). In our case, for the
obstacle cost h(xj) we use the hinge loss function with a
precomputed signed distance field similarly to Dong et al.
(2016) and Mukadam et al. (2017b). The pertaining hinge
loss function is defined as:

h(xj) =

{
εobs − ds,j if ds,j ≤ εobs

0 if ds,j > εobs
, (29)

where ds,j is the signed distance, and εobs is the safety
distance indicating the boundary of the danger area near
obstacle surfaces (Mukadam et al. (2017b)).

4.3 Avoidance of collision with other agents

In (20) we defined the likelihood of one agent j being free
of collision with other agent j′. This likelihood relies on a
vector-valued function g(xj , xj′), which we defined as the
hinge loss function:

g(xj , xj′) =

{
εmul − dj,j′ if dj,j′ ≤ εmul

0 if dj,j′ > εmul
, (30)

where dj,j′ denotes d(xj , xj′), the Euclidean distance be-
tween two agents j, and j′ and εmul is a safety distance
indicating the boundary of the area inside which we antici-
pate a collision. If the parameter εmul is set to zero, multi-
agent obstacle cost would always be zero and our planner
would work exactly the same as GPMP2 (Dong et al.
(2016)) for each agent. Higher values of εmul enable robots
to anticipate each other’s future trajectories and to adapt
them accordingly in the next iteration of optimization,
giving our algorithm a predictive property.

To obtain the MAP trajectory in (23), the proposed
method requires Gj , the partial derivative of the hinge
loss function defined in (31). This partial derivative used
in our implementation can be analytically obtained:

∂g(xj , xj′)

∂xj
=


xj′ − xj
d(xj , xj′)

. if dj,j′ < εmul

0.5 if dj,j′ = εmul
0 if dj,j′ > εmul

. (31)

Parameters Σobs and Σmul, needed to fully implement
static and multi-agent obstacle likelihoods in (19) and
(20) are defined by isotropic diagonal matrices Σobs =
σ2
obsI and Σmul = σ2

mulI, where σobs and σmul represent
obstacle cost weights. Reducing the value of σobs causes the
optimization to place more weight on avoiding collision
with static obstacles, while reducing the value of σmul
causes the optimization to place more weight on avoiding
collision with other agents.

4.4 Software implementation

In our experiments we use the GPMP2 C++ library (Dong
et al. (2016), Dong et al. (2017)), and its respective MAT-
LAB toolbox, which is based on the GTSAM C++ library
(Dellaert (2012), Dellaert and Kaess (2006)). Experiments
are performed on a system with a 3.8-GHz Intel Core i7-
7700HQ processor and 16 GB of RAM.

5. EXPERIMENTAL RESULTS

5.1 Formation control

In this section we present the results of our method in
a quantitative manner. We used the proposed approach
to switch the positions of 2D holonomic circular robots
with radius r = 1 m inside a formation in an obstacle free
simulation environment. We did this for every possible
permutation of positions inside a formation for cases of
three, four and five agents and compared the success rate
and computation time of our approach to the GPMP2
framework (Dong et al. (2016)) where each agent’s tra-
jectory is planned individually at every time step. In three
and five robot simulation the formation is a triangle, while
in four robot simulation it’s a square. That means that we
tested and compared algorithms on the total of 150 unique
planning problems. When using the GPMP2 framework,
for every agent the others were incorporated in its signed
distance field (SDF), meaning that at every time step the
SDF had to be changed and the trajectory had to be
replanned.

All trajectories were initialized as a constant-velocity
straight line trajectory in configuration space. Total time
of execution for every case is set as ttotal = 10 s and all
trajectories were parametrized with 10 equidistant support
states such that 9 points are interpolated between any
two states (91 states effectively). The parameters used for
GPMP2 are εobs = 2, Σobs = 0.3, while the parameters
used for our approach are εmul = 15, Σmul = 0.7. It makes
sense to use relatively small εobs in comparison to εmul
since in GPMP2 the agents only react to each other locally,
and in our approach it is desireable that every agent knows
each other’s position at all times in order to calculate



Table 1. Comparison of success rates (per-
centages) for our method and replanning with
GPMP2 for every possible permutation of po-
sitions inside formations of 3, 4 and 5 agents

Number of robots GPMP2 MUL-GPMP

3 100 100
4 87.5 100
5 70.8 100

Table 2. Comparison of average execution
times (ms) for our method and replanning
with GPMP2 for every possible permutation of
positions inside formations of 3, 4 and 5 agents

Number of robots GPMP2 MUL-GPMP

3 196 22
4 264 37
5 457 59
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Fig. 2. Example of switching formation with the proposed
simultaenous optimization and with replanning with
GPMP2. The proposed algorithm produces visibly
smoother trajectories due to its predictive nature.

the trajectories that avoid collisions. The success rates
comparison is showed in Table 1 and the computational
times comparison is showed in Table 2.

Since computing the SDF and replanning the trajectory
is relatively computationally demanding in comparison
to computing the multi-agent factor in (20), it is not
surprising that our approach achieves significantly faster
computational times. Incorporating current positions of
other agents inside an agent’s SDF means that the GPMP2
framework, unlike the proposed method, can only react to
the changes in the environment and not anticipate them.
Thus the better success rates of our approach were also ex-
pected. Our method was able to successfully solve all of the
given 150 motion planning problems, while the GPMP2
failed in total 38 cases. Due to the predictive nature of
the proposed approach, the generated trajectories are also
visibly smoother which is demonstrated in Fig. 2 for one
example of five robot formation change. Note that for
the case of replanning with GPMP2 better results could
be achieved by parameter tuning, possibly using a grid
search, but that is relatively computationally demanding
and possibly unattainable in the real world circumstances.

5.2 Complex static environment

This experiment shows qualitatively the capability of
our approach to generate trajectories that can ensure

successful simultaneous motion of two agents in complex
static environments. Our goal was to switch positions
of two planar holonomic robots that start in two rooms
which are separated by a narrow hallway. The radius of
each robot is r = 1 m, and the width of the hallway is
w = 3.6 m, which is smaller than two robots diameters
combined, meaning that robots cannot pass each other
in the hallway. Since the environment is complex, if the
initial trajectory of each robot is set as a straight line,
the optimization gets stuck in the local minimum and
the collisions are not avoided. To solve that problem, we
set the initial trajectories as the paths obtained by A∗

algorithm with constant velocities. When computing the
path with the A∗ algorithm, we downsampled the grid
representing the environment so that the initial path was
obtained in acceptable time. Since the paths obtained by
the A∗ algorithm are only used as priors in our method,
possible loss of information about small sized obstacles
when downsampling is not concerning.

The described setup represents a challenging task for exist-
ing motion planning algorithms, and most of them would
result in redundant motion; robots would move towards
each other and meet in the middle of the hallway, where
one of them would have to turn back to make way for
the other. In our case, however, due to the fact that the
proposed approach works in a predictive manner, after
exiting the room one robot turns away from its goal and
waits for the other one to enter its destination room
before proceeding to travel to its goal. The downside of
the proposed method is the number of the optimization
hyperparameters that need to be set, for example static
and multi-agent obstacle cost factor covariances Σobs and
Σmul. In this specific example, the optimization hyperpa-
rameters Σobs, Σmul, εobs, εmul were tuned via exhaustive
grid search. The described environment and the result of
the conducted experiment are shown in Fig. 3.

6. CONCLUSION AND FUTURE WORK

In this paper we have presented a fast trajectory op-
timization method for multi-agent motion planning. We
considered each trajectory as a sample from a continuous
time Gaussian process generated by linear time-varying
stochastic differential equation driven by white noise. We
formulated the multi-agent planning problem as proba-
bilistic inference on a factor graph, and thus were able
to exploit the structure of the mentioned GP to find
the solution efficiently using numerical optimization. The
proposed approach works in a predictive manner since
each agent’s trajectory is optimized simultaneously. We
tested our approach in simulation and compared it to
planning each trajectory indvidually, demonstrating signif-
icant improvement in both success rate and computational
efficiency.

In future work, it would be interesting to investigate how
different priors affect the result of optimization. Another
potentially interesting direction would be to explore the
possibility of planning robot’s trajectory in a dynamic
environment. If the trajectory of a dynamic obstacle could
be predicted, the avoidance of such obstacle would be
achieved using the same concepts introduced in the pro-
posed approach.
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Fig. 3. The example of trajectories planned with our approach for two agents in a complex static environment consisting
of rooms with narrow passage between them. Robots anticipate each other’s trajectories and one robot makes way
for the other one.
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