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Abstract—Environment perception is a key component of any
autonomous system and is often based on a heterogeneous set of
sensors and fusion thereof, for which extrinsic sensor calibration
plays fundamental role. In this paper, we tackle the problem
of 3D LiDAR-radar calibration which is challenging due to low
accuracy and sparse informativeness of the radar measurements.
We propose a complementary calibration target design suitable
for both sensors, thus enabling a simple, yet reliable calibration
procedure. The calibration method is composed of correspon-
dence registration and a two-step optimization. The first step,
reprojection error based optimization, provides initial estimate
of the calibration parameters, while the second step, fiel of view
optimization, uses additional information from the radar cross
section measurements and the nominal field of view to refine the
parameters. In the end, results of the experiments validated the
proposed method and demonstrated how the two steps combined
provide an improved estimate of extrinsic calibration parameters.

I. INTRODUCTION

Robust environment perception and inference is one of the
essential tasks which an autonomous mobile robot or vehicle
has to accomplish. To achieve this goal, various sensors such
as cameras, radars, LIDAR-s, and inertial navigation units are
used and information thereof is often fused. A fundamental
step in the fusion process is sensor calibration, both intrinsic
and extrinsic. Former provides internal parameters of each
sensor, while latter provides relative transformation from one
sensor coordinate frame to the other. The calibration can
tackle both parameter groups at the same time or assume that
sensors are already intrinsically calibrated and proceed with
the extrinsic calibration, which is the approach we take in the
present paper.

Solving the extrinsic calibration problem requires finding
correspondences in the data acquired by intrinsically calibrated
sensors, which can be challenging since different sensors
can measure different physical quantities. The calibration ap-
proaches can be target-based or targetless. In the case of target-
based calibration, correspondences originate from a specially
designed target, while targetless methods utilize environment
features perceived by both sensors. Former has the advantage
of the freedom of design which maximizes the chance of
both sensors perceiving the calibration target, but requires the
development of such a target and execution of an appropriate
offline calibration procedure. The latter has the advantage of
using the environment itself as the calibration target and can
operate online by registering structural correspondences in the
environment, but requires both sensors to be able to extract the

same environment features. For example, calibration of a 3D-
LiDAR and a camera can be based on line features detected
as intensity edges in the image and depth discontinuities
in the point cloud [1]. In addition, registration of structural
correspondences can be avoided by odometry-based methods,
which use the system’s movement estimated by individual
sensors to calibrate them [2], [3]. However, for all practical
means and purposes limited resolution of current automotive
radar systems eliminates the feasibility of targetless methods,
as the radar is virtually unable to infer the structure of the
detected object and extract features such as lines or corners.
Since an automotive radar is used in the present paper and we
are targeting in situ calibration techniques, our approach will
focus further on target-based methods.

Target-based 3D LiDAR calibration commonly uses flat
rectangles which are easily detected and localized in the
point cloud. For example, extensive research exists on 3D
LiDAR-camera calibration with a planar surface covered by a
chequerboard [4]-[7] or a set of QR codes [8], [9]. Extrinsic
calibration of a 2D LiDAR-camera pair was also calibrated
with the same target [10], while improvements were made by
extracting centerline and edge features of a V-shaped planar
target [11]. Furthermore, an interesting target adaptation to the
working principle of different sensors was presented in [12],
where the authors proposed a method for extrinsic calibration
of a 3D LiDAR and a thermal camera by expanding a planar
chequerboard surface with a grid consisting of light bulbs.
Concerning automotive radars, common operating frequencies
(24 GHz and 77 GHz) result with reliable detections of con-
ductive objects, such as plates, cylinders, and corner reflectors,
which are then used in intrinsic and extrinsic calibration
methods [13]. In [14] authors used a metal panel as the
target for radar-camera calibration. They assume that all radar
measurements originate from a single ground plane, thereby
neglecting the 3D nature of the problem. The calibration is
found by optimizing homography transformation between the
ground and image plane. Contrary to [14], in [15] authors
do not neglect the 3D nature of the problem. Therein, they
manually search for detection intensity maximums by moving
a corner reflector within the field of view (FOV) of the radar.
They assume that detections lie on the radar plane (zero
elevation plane in the radar coordinate frame). Using these
points a homography transformation is optimized between the
radar and the camera. The drawback of this method is that
the maximum intensity search is prone to errors, since the



return intensity depends on a number of factors, e.g., target
orientation and radar antenna radiation pattern which is usually
designed to be as constant as possible in the FOV. In [16] radar
performance is evaluated using a 2D LiDAR as a ground truth
with a target composed of radar tube reflector and a square
cardboard. The cardboard is practically invisible to the radar,
while enabling better detection and localization in the LiDAR
point cloud. These complementary properties were taken as an
inspiration for our target design.

While the above described radar calibration methods pro-
vide sufficiently good results for the targeted applications, they
lack the possibility to fully assess the placement of the radar
with respect to other sensors, such as a 3D LiDAR. Therefore,
we propose a novel method which utilizes a 6 degrees of
freedom (DOF) extrinsic calibration of a 3D LiDAR-radar pair.
The proposed method involves target design, correspondence
registration, and two-step optimization. The first step is based
on reprojection error optimization, while the second step uses
additional information from the radar cross section (RCS)—
a measure of detection intensity. RCS distribution across the
radar’s FOV is used to refine a subset of calibration parameters
that were noticed to have higher uncertainty.

II. 6DOF EXTRINSIC RADAR-LIDAR CALIBRATION

The proposed method is based on observing the calibration
target placed at a range of different heights, both within and
outside of the nominal radar FOV. It requires the 3D LiDAR’s
FOV to exceed the radar’s vertical FOV, which is the case in
most applications. In addition, due to the problems associated
with radars such as ghost measurements from multipath prop-
agation, low angular resolution etc., data collection has to be
performed outdoor at a set of ranges (2 — 10 m) with enough
clear space around the target. The proposed method consist
of a careful target design, correspondence registration in the
data from the sensors, and a two-step optimization procedure
all elaborated in the sequel.

A. Calibration Target Design

Properties of a well-designed target are (i) ease of detection
and (ii) high localization accuracy for both sensors. In terms
of the radar, a target with a high RCS provides good detection
rates. Formally, RCS of an object is defined as the area of
a perfectly conducting sphere whose echo strength would be
equal to the object strength [13]. Consequently, it is a function
of object size, material, shape and orientation. While any
metal will suffice for the material, choosing other properties
is not trivial. Radars typically estimate range and angle of an
object as a centroid in the echo signal. Therefore, in order to
accurately localize the source of detection, the target should
be as small as possible, but which implies a small RCS. Thus,
a compromise between the target size and a high enough RCS
has to be considered. Radar reflectors, objects that are highly
visible to radars, are used not only in intrinsic calibration,
but also as marine safety equipment resulting in numerous
designs. Given the previous discussion, we assert that one of
these designs can be considered as a good compromise and we
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(a) Calibration Target (b) Corner reflector

Fig. 1: Constructed calibration target and the illustration of the
working principle of the triangular trihedral corner reflector

chose the triangular trihedral corner reflector which consists
of three orthogonal flat metal triangles.

The constructed radar calibration target and an illustration
of the working principle is shown in Fig. la. It has an
interesting property that any ray reflected from all three sides
is returned in the same direction a. as illustrated in Fig. 1b.
The reason behind this is that normals of the three sides
form an orthonormal basis. Namely, reflection causes direction
reverse of incident ray’s component parallel to the surface
normal, while the component parallel to the surface tangent
plane remains the same. After three reflections, which form
an orthonormal basis, the ray’s direction is reversed. Due
to this property, regardless of the incident angle, many rays
are returned to their source, i.e., the radar. Unlike a single
flat plate, which has a high RCS but is highly sensitive to
orientation changes, trihedral corner reflector provides a high
and stable RCS. When the axis of the corner reflector, ac,
points directly to the radar, it reaches its maximum value:
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Analytical description of the reflector RCS as a function
of the orientation is nontrivial. However, from experiments
presented in [13], it can be seen that orientation changes
of £20° result in a slight decrease of RCS, which can be
approximated as a constant, while +40° causes a decrease of
—3dBm?. Furthermore, authors in [17] show that all the rays
which go through multiple reflections travel the same length
as the ray which is reflected directly from the corner centre.
This results in a high localization accuracy.

Corner reflector is visible to the LiDAR, but is difficult
to accurately localize at greater distances due to its small
size and complex shape. This problem is solved by placing
a flat styrofoam triangle board in front of the corner reflec-
tor. Styrofoam is made of approximately 98% air resulting
with low permittivity (around 1.10) and nonconductiveness.
These properties make it virtually invisible to the radar, but
still visible to the LiDAR. However, instead of a common
rectangular shape, we choose a triangular shape with which we
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can solve localization ambiguity issues caused by finite LIDAR
resolution. Namely, LiDAR azimuth resolution is commonly
larger than the elevation resolution, which results with the
‘slicing’ effect of an object; thus, translating the rectangle
along the vertical axis would yield identical measurements
until it becomes visible to the next LiDAR layer (which is
not the case for the triangle shape). This effect has a stronger
impact on localization at greater distances which are required
by our method.

Finally, target stand should be able to hold the target at
a range of different heights (0-2m). Additionally, it must
have a low RCS not to interfere with the target detection and
localization. We propose a stand made of three thin wooden
rods which are fixed to a ground wooden plane and connected
with a plastic bridge (Fig. 1a). Target attached to the bridge
can be slided and tilted to adjust its height and orientation.

B. Correspondence Registration

Correspondence registration in the data starts with the
detection of the triangle in the point cloud. The initial step
is to segment plane candidates from which edge points are
extracted. Afterwards, we try to fit these points to the triangle
model. Levenberg—Marquardt (LM) algorithm optimizes the
pose of the triangle by minimizing the distance from edge
point to the border of the triangle model. A final threshold
is defined based on which we accept or discard the estimate.
Position of the corner reflector origin is calculated based on
the triangle pose estimate and the known configuration of the
target.

Radar data consists of a vector of detected objects described
by the detection angle, range, range rate and RCS, which is for
the i-th object in the radar coordinate frame, F,. : ("z,"y,"2),
designated as "'m; = ["¢,; "ry; ", "oy ;). The only structural
property of detected objects is contained within the RCS,
which is influenced by many other factors; hence, it is im-
possible to classify a detection as the corner reflector based
solely on the radar measurements. To find the matching object,
a rough initial calibration is required, e.g., with a measurement
tape, which is used to transform the estimated corner position
from the LiDAR coordinate frame, Fj : (lx,ly,lz), into the
radar coordinate frame F,., and eliminate all other objects that
fall outside of a predefined threshold. The correspondence is
accepted only if a single object is left.

The radar correspondence points are obtained as follows.
The target is observed for a short period while the registered
correspondences fill a correspondence group. Variances of
the radar data ("¢, ;, 74, "0y ;) Within the group are used to
determine the stability of the target. If any of the variances
surpasses a threshold, the correspondence is discarded, since
it is likely that the target detection was obstructed. Otherwise,
the values are averaged. In addition, we create unregistered
groups where radar detections are missing. These groups are
used in the second optimization step where we refine the FOV.

Hereafter, we will refer to the mean values of the groups as
radar and LiDAR measurements.

C. Reprojection Error Optimization

Once the paired measurements are found, alignment of
sensor coordinate frames is performed. To ensure that the
optimization is performed on the radar measurements origi-
nating from the calibration target, we perform RCS threshold
filtering. We choose the threshold (rcs lower than the o,
so that we encompass as many strong and reliable radar
measurements while leaving out the possible outliers.

The optimization parameter vector includes the translation
and rotation part, i.e., ¢, = [p; ©]. For translation, we
choose position of the LiDAR in the radar coordinate frame
"Dy = [Pz Py 2] T - For rotation, we choose Euler angles
representation © = [6, 6, 6] where rotation from F, to F;
is given by:

LR(©) =4 R, (0,)1Ry(0,) R.(0.). )

Figure 2 illustrates the calculation of the reprojection error
for the i-th paired measurement. As discussed previously,
radar provides measurements in spherical coordinates lacking
elevation s, ; = [r,; "¢r; ~J, ie., it provides an arc "a,;
upon which the object potentially resides. On the other hand,
LiDAR provides a point in Euclidean coordinates ‘x; ;. Using
the current transformation estimate, LiDAR measurement lacl,i
is transformed into the radar coordinate frame:

"@i(c,) = LRT(©) ' + 'py, 3)

and then "x;, is converted to spherical coordinates "s;; =
["r1: "d1; "1 4]. By neglecting the elevation angle ")y ;, we
obtain the arc "q;; upon which LiDAR measurement resides
and can be compared to the radar’s. Reprojection error €, ; is
then defined as the Euclidean distance of points on the arc for
which "1, ; = ";; = 0°:

ers(cr) = "rricos ("drg) | [Truicos ("dui) @
e "rrisin ("op ;) "ryasin ("dra) |||
Using the LM algorithm, we obtain the estimate of the
calibration parameters ¢, by minimizing the sum of squared
reprojection errors from N measurements:

N
¢, = arg min(Z ef’i(cr)) ®)
Cr i=1

Optimization of described reprojection error yields un-
equal estimation uncertainty among the calibration param-
eters. Namely, translation in the radar plane and rotation
around it’s normal causes significant changes in the radar
measurements. Therefore, parameters "p; ;,"p,; and 6, can be
properly estimated. In contrast, the change in the remaining
parameters 'p, ;,0, and 6, causes smaller changes in the radar
measurements, e.g. translation of radar along "z introduces
only a small change in the range measurement. Therefore,
these parameters are refined in the next step.

Due to the data filtering in the previous steps, not many
outliers are present in the data. The remaining outliers are
removed from the data set by inspection of the reprojection
error after the optimization. Measurements that surpass a



Fig. 2: Tllustration of reprojection error calculation. Green
indicates LiDAR measurement, blue radar’s, while red shows
reprojection error.

threshold are excluded from the dataset and optimization is
performed again on the remaining measurements.

D. FOV optimization

To refine the parameters with higher uncertainty we propose
a second optimization step which uses additional information
from RCS. We try to fit the radar nominal FOV in the LIDAR
data by encompassing as many measurements with high RCS
as possible. Definition of RCS is such that it does not depend
on the radiation of the radar. However, radar estimates the
object RCS based on the intensity of the echo which is
dependent on the radiated energy. Intrinsic calibration of a
radar ensures that RCS is correctly estimated only within the
nominal FOV where it is fairly constant. As the object leaves
the nominal FOV, less energy is radiated in its direction, which
then results in decrease of RCS until the object becomes
undetectable. This effect is used to estimate the pose of
the nominal FOV based on the RCS distribution across the
LiDAR’s data.

Vertical FOV of width 21); is defined with two planes that
go through the origin of 7., Py and Pp, with elevation angles
£ . We propose an optimization in which we position radar’s
nominal FOV, so that as many as possible strong reflections
fall within it, while leaving the weak ones out. The optimiza-
tion parameter vector consist of a subset of transformation
parameters and an RCS threshold, ¢y = ["p,; 0, 8, Cresl,
whereas other parameters are kept fixed.

After transforming a LiDAR measurement l:cl’i to F,., the
FOV error of i-th measurement €y ; is defined as:

0 if inside FOV and o; > (rcs
d if inside FOV and o; > (rcs
0
d

i\Cf) = 6
€si(es) if outside FOV and o0; < (ros ©
if outside FOV and o0; < (res,
where
d = min{dist(Py, "z;;), dist(Pp, "z;;) }. @)

Error is greater than zero only if the LIDAR measurement falls
inside the FOV when it should not according to the threshold,

(a) Mobile robot

(b) Sensor placement

Fig. 3: Mobile robot and sensors used in the experiment.

and vice versa. Function dist(P, z) is defined as an unsigned
distance from plane P to point x.

An estimate of calibration parameters is obtained by mini-
mizing the following cost function:

N
& = argmin(Ze%i(cf)) (8)
ef i=1
Dependence of the cost function is discrete with respect to the
RCS threshold, since change of the threshold does not affect
the cost function until at least one measurement at the edge
falls in or out of the FOV. This results in many local minima
and the interior points method was used for optimization, since
it was found to be able to converge in majority of analysed
cases.

III. EXPERIMENT RESULTS

An outdoor experiment was conducted to test the proposed
method. A mobile robot Husky UGV, shown in Fig. 3, was
equipped with a Velodyne HDL-32E 3D LiDAR and two
short range radars from different manufacturers, namely the
Continental SRR 20X and Delphi SRR2.

Commercially available radars are sensors which provide
high level information in the form of detected object list.
Raw data, i.e., the return echo, is processed by proprietary
signal processing techniques and is unavailable to the user.
However, from the experiments conducted with both radars,
we noticed that they follow the behaviour as expected from
our calibration method. The only noticed difference is that
the target stand without the target was completely invisible to
Continental, while the Delphi was able to detect it at closer
ranges ("r,; < 5 m). This effect was present because the
Delphi radar accepts detections with lower RCS. However, this
did not present an issue, because the stand has a significantly
lower RCS than the target and it was easily filtered out. Since
the purpose of the experiment is evaluation of the method and
not radar performance, in the sequel we only present results
for the Continental radar.

Continental radar technical properties of interest are given
in Table 1. Based on the analysis of the reprojection error,



TABLE I: Continental SRR 20X specifications

Continental SRR 20X Value
HVOF x VFOV 150° x 12°
Range Accuracy 0.2m
Azimut Accuracy @ HFOV | £2°@+20°; +£4°@460°; +5°@=+°75

radar measurements outside of the azimuth angle range of
+45° were excluded from the reprojection error optimization,
because they exhibited significantly higher reprojection errors
than those inside the range. Considering FOV optimization, we
noticed that outside of the azimuth angle range +60° radar
detections were occasionally missing. Therefore, they were
excluded from the FOV optimization.

The calibration target was composed of a corner reflector
with side length [ = 0.32m which has a maximum RCS of
0. = 18.75dBm?. Based on vertical resolution of the Velo-
dyne HDL-32E LiDAR (1.33°) we used styrofoam triangle
of height 1 = 0.65 m. It ensured extraction of at least two
lines from the target, which is a prerequisite to unambiguously
determine the pose. Data acquisition was done by driving a
robot in the area up to 10 m of range with target placed at
17 different heights ranging from ground up to 2 m height.
In total, 880 registered radar-LiDAR measurements were col-
lected, together with 150 LiDAR measurements unregistered
by the radar.

A. Results

To asses the quality of calibration results we conducted
four experiments. First, we examined the distribution of the
reprojection error after both optimization steps and compared
it to a 2D optimization, which minimizes reprojection error
by optimizing only the calibration parameters with lower
uncertainty, i.e., translation parameters 'p,; and "p,;, and
rotation #,. Secondly, we inspect FOV placement with respect
to the distribution of RCS over the LiDAR’s data. Afterwards,
we examine the correlation between RCS and the elevation
angle. Lastly, we run Monte Carlo simulations by randomly
subsampling the dataset to examine reliability of the estimated
parameters and potential overfitting of data.

Parameters estimated by reprojection error optimization are
¢, = [—0.047,—0.132,0.079m; —2.07, 3.58, —0.02°],
while FOV optimization estimates ér =
[0.191,m; 4.19, —0.84°;12.85dBm?].  In  addition, a
carefully measured translation by hand between the sensors
"B, = [—0.08, —0.14,0.18]7 m is given as a reference.

Figure 4 shows distribution of the reprojection error and is
composed of three histograms, where we can see how the
reprojection error of both steps of calibration is compared
to the case of 2D calibration. We notice that neglecting the
3D nature of the problem causes higher mean and greater
variance of the reprojection error which implies poor calibra-
tion. Furthermore, the FOV optimization is bound to degrade
the overall reprojection error because it is not a part of the
optimization criterium. However, resemblance between the
distributions after the first and the second optimization steps
implies low degradation of reprojection error.

T T T
[ Reprojection error optimization |_|
[ FOV refinement
[ 2D optimization

40

20

0 0.1 0.2 0.3 0.4 0.5 0.6
Reprojection error [m]

Fig. 4: Histogram of reprojection errors for the two steps of
the calibration and the 2D calibration

TABLE II: Monte Carlo Analysis Results

Reprojection Error Optimization | FOV optimization

" | N(—0.047m, 1.53 x 1077)

"pyu | N(—0.132m, 6.12 x 10=°)

. | N(0.078m, 2.53 x 10~2) N(0.174m, 9.10 x 10~%)
0. N (—2.08°, 1.12 x 10~ 2)

0y N(3.59°,9.50 x 10— 1) N(4.00°, 9.93 x 10~2)
0 N(—0.03°, 8.08 x 10~ 1) N(=0.93°,1.44 x 10~ 1)

In Fig. 5, distribution of the RCS across LiDAR’s data
is shown. LiDAR’s measuremenets are color-coded with the
RCS of the paired radar measurement, accompanied with the
black-dyed markers which indicate the lack of registered radar
measurements. We can see that within the nominal FOV, target
produces a strong, fairly constant reflections. As the elevation
angle of the target leaves the radars FOV, the RCS decreases
until the point where it is no longer detectable.

To examine the effect of decrease in the target’s RCS
as a function of the elevation angle after both optimization
steps we use Fig. 6. It shows elevation "y); ; of each LiDAR
measurement transformed into the F,. and RCS of the paired
radar measurement. In the ideal case, i.e. if the transformation
was correct and the axis of corner reflector pointed directly
to the radar in each measurement, the data would lay on the
curve which describes radar’s radiation pattern in respect to
the elevation angle. The dispersion from the curve is present in
the both steps due to the imperfect directivity of the target in
the measurements. In addition, we notice a higher dispersion
using only reprojection error optimization which indicates
miscalibration.

Lastly, Monte Carlo analysis is done by randomly subsam-
pling our dataset to half of the original size and performing
1000 runs of optimization on different subsampled datasets.
The results follow a Gaussian distribution whose estimated
parameters are given by the Table II. As expected, distributions
of parameters "p, ;, "py,; and 6. obtained by the reprojection
error optimization have a significantly lower variance than the
rest. Figure 7 ilustrates how the FOV optimization refines
parameters "p,;, ¢, and 6,. We can see overall decrease
in variance, as well as the shift in the mean. Estimation
of parameter "p,; using reprojection error optimization is
clearly further away from the measured value, unlike the FOV
optimization’s estimate.
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IV. CONCLUSION

In this paper we have proposed an extrinsic calibration
method for a 3D-LiDAR-radar pair. A calibration target was
designed in a way which enabled both sensors to detect
and localize the target within their operating principles. The
extrinsic calibration was found by a two-step optimization:
(i) reprojection error optimization, which was the followed
by (ii) FOV optimization which used additional information
from RCS to refine the estimate of the calibration parameters.
Results of the experiments validated the proposed method
and demonstrated how the two steps combined provide an
improved estimate of extrinsic calibration parameters.
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