This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Path Planning for Active SLAM Based on the D*
Algorithm With Negative Edge Weights

Ivan Maurovi¢, Member, IEEE, Marija Seder, Member, IEEE, Kruno Lenac, Member, IEEE,
and Ivan Petrovi¢, Member, IEEE

Abstract—In this paper, the problem of path planning
for active simultaneous localization and mapping (SLAM) is
addressed. In order to improve its localization accuracy while
autonomously exploring an unknown environment the robot
needs to revisit positions seen before. To that end, we propose
a path planning algorithm for active SLAM that continuously
improves robot’s localization while moving smoothly, without
stopping, toward a goal position. The algorithm is based on
the D* shortest path graph search algorithm with negative edge
weights for finding the shortest path taking into account local-
ization uncertainty. The proposed path planning algorithm is
suitable for exploration of highly dynamic environments with
moving obstacles and dynamic changes in localization demands.
While the algorithm operation is illustrated in simulation exper-
iments, its effectiveness is verified experimentally in real-world
scenarios.

Index Terms—Active SLAM, dynamic environment, explo-
ration, negative edge weight in a graph, path planning,
simultaneous localization and mapping (SLAM).

I. INTRODUCTION

HE simultaneous localization and mapping (SLAM)

problem has been widely researched in the last two
decades and many different variations exist. Considering
SLAM as a passive system the robot’s path is not chosen by
taking into account the localization uncertainty improvement.
Thus, SLAM algorithm does not control the robot motion in
any sense. If SLAM algorithm steers the robot to the areas
which lower the pose uncertainty it becomes the active SLAM
algorithm. In general, the idea is that the robot chooses a path
which maximizes the information gain by moving to the areas
already visited from the previous navigation actions where it
can take measurements of already known landmarks (objects
in the environment used for localization like points, lines,
planes, and others). This is called loop closing in SLAM.
Active SLAM minimizes localization and map uncertainty. It

Manuscript received November 28, 2016; accepted February 1, 2017.
This work was supported in part by the Unity through Knowledge
Fund (Cooperative Cloud-Based Simultaneous Localization and Mapping in
Dynamic Environments) under Grant 25/15, and in part by the Ministry
of Science, Education and Sports of the Republic of Croatia (Centre of
Research Excellence for Data Science and Cooperative Systems) under
Grant 533-19-15-0007. This paper was recommended by Associate Editor
S. Nahavandi.

The authors are with the Faculty of Electrical Engineering and Computing,
Department of Control and Computer Engineering, University of Zagreb,
10000 Zagreb, Croatia (e-mail: ivan.maurovic@fer.hr; marija.seder @fer.hr;
kruno.lenac @fer.hr; ivan.petrovic @fer.hr).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMC.2017.2668603

is always combined with a higher priority module which sets
the goal positions for the robot. Very often it is the exploration
module where the robot builds a map of an unknown environ-
ment by visiting unknown areas what increases localization
uncertainty since there are no landmarks and areas visited
before [1]-[4]. We consider a moving sensor for exploration
(sensor placement problem) where the sensor is mounted on
a moving robot base, unlike static sensors for localization
in indoor environments [5], or exploration performed with a
sensor mounted on a manipulator with a fixed base [6].

Active SLAM solutions are implemented by minimizing a
certain criterion consisting of information gain. In [1], the next
velocity input applied to the robot is obtained from a crite-
rion which combines localization uncertainty and the amount
of unexplored area in the next robot step. The authors use
extended Kalman filter (EKF) as a basic method. A variant
of model predictive control (MPC) with EKF where the robot
velocity inputs are obtained as a multi step optimization for
active SLAM is demonstrated in [7]. The landmarks for the
localization are fixed on the optimization horizon meaning that
no new landmarks are expected while the robot is moving.
The problem with prediction in active SLAM is that we do
not have future measurements prediction. The authors assumed
that innovation in Kalman filter is Gaussian with zero mean.
Simulation results show a comparison between one step and
multi step ahead optimization and a benefit of the later one.
Leung et al. [2] incorporated exploration strategy in active
SLAM using MPC where the exploration areas of interest are
included as artificial landmarks for SLAM what forces the
active SLAM path planning to explore the environment. MPC
formulation of active SLAM for line-feature-based SLAM can
be found in [8]. Dellaert and Kaess [9] used iSAM instead
of EKF SLAM. Kontitsis et al. [10] introduced an interest-
ing idea of multiple robots active SLAM with relative entropy
optimization where the cost function consists of the trace of
the covariance matrix at the terminal state as a measure of the
uncertainty. From the space of trajectory samples the optimal
one is chosen. The EKF-based SLAM is used as a simula-
tion example. However, no real-time applicability discussion
is given. Carrillo et al. [11] discussed a cost function used as
a measure of the localization uncertainty.

If the mobile robot path is planned only a few steps ahead
there is no guaranty that the robot will reach the goal posi-
tion. There are also papers dealing with a complete path of
the robot. Stachniss er al. [12] used Rao—Blackwellized par-
ticle filter to solve SLAM problem with the exploration task.

2168-2216 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:ivan.maurovic@fer.hr
mailto:marija.seder@fer.hr
mailto:kruno.lenac@fer.hr
mailto:ivan.petrovic@fer.hr
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Sensor
data
IMU
3D Lidar
Encoders

SLAM |
SLAM|__Robot)[Actlve]
pose SLAM
Y

c “Goal Path Path
{ Exploration ’M’[Plannin Executing

Navigation

Control inputs
to the robot

Fig. 1.

Overall scheme of exploration incorporating active SLAM.

Defining exploration and place revisiting goal positions they
evaluate the path to each of the goal position by estimating the
change of the entropy of the particle filter caused by moving
the robot to a certain goal position. Sim and Roy [13] intro-
duced a global path planning based on the robot’s position
variance minimization using breadth first search over all robot
positions. However, the exploration task might not be optimal
as there is no exhaustive search of the space of all trajec-
tories. Additionally, approaches where each of the potential
trajectories from the robot position to the set of goal positions
(specific for exploration tasks) are evaluated and the best tra-
jectory according to SLAM criterion is chosen usually have a
limited trajectory space from which the best trajectory comes
from.

In some active SLAM approaches uncertainty improvement
is considered when the uncertainty of the robot pose is above
a certain threshold [14], [15]. Since SLAM is often com-
bined with exploration, in these methods the robot movements
switch between exploration and SLAM tasks in a discrete
way depending on the uncertainty criterion value. Active
SLAM problem with multiple robots is considered, where
Pham and Juang [16] used predefined threshold for the switch-
ing between exploration and localization improvement. The
multiple robot active SLAM is also used in [17]. A procedure
of taking a fixed threshold for the loop closing is limited since
it stops the robot from accomplishing the main task and con-
trol the robot to the loop closing position causing time delay
in the main task. The opportunity for loop closing perhaps
was better in some previous robot positions when the robot
did not have a problem with localization uncertainty but the
detour could have been much shorter and smoother. On the
other hand, setting a subgoal for the localization would cause
double path planning: from the robot position to the subgoal;
from the subgoal to the goal, what is not preferable due to
computation and time demands of the main task.

All mentioned methods suffer from the problem of replan-
ning a trajectory/path in the scenario with moving obstacles
where the robot needs to quit executing the planned trajec-
tory and replan a new one in real time. In approaches like
in [1], [2], and [7] the robot’s path is only locally optimal
where the path is planned only few steps ahead. The advan-
tage of here proposed algorithm is a complete path from the
robot position to the goal position. Active SLAM approach
presented in [10] do not consider obstacles while the robot
is moving, i.e., it is necessary to calculate the path from the
beginning if obstacles appear, unlike in our approach where
the path is efficiently recalculated in the presence of obstacles.
Other common approach to active SLAM includes switching

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

between exploration and SLAM like in [12], [14], and [15]
what would interrupt the robot motion toward a goal in order
to improve localization. To address this problem we propose a
path planning algorithm that is able to continuously improve
localization without interrupting the main task. Together with
fast trajectory replanning in dynamic environment it represents
the main contribution of this paper. The algorithm is based
on the modified D* path planning algorithm [18]. Here it is
adopted for use with negative edge weights and negative cycles
in a graph. Additionally, the path planning algorithm can
replan the shortest path in case of change of the localization
demands.

II. OVERALL PROBLEM FORMULATION

The active SLAM is often combined with exploration mod-
ule which gives a goal position where to go next. The map of
the environment is unknown in the beginning and the robot is
given the task to explore the environment. Typical exploration
problem incorporating SLAM, path planning and path exe-
cuting is shown in Fig. 1. Connections between modules are
represented with the arrows. The sensors mounted on the robot
provide information about the robot and the environment like
obstacles and odometry measurements. Sensor used for the
exploration is a 3-D lidar mounted on top of the autonomous
mobile robot platform measuring distance to obstacles in the
environment. The same sensor is also used for SLAM, together
with inertial measurement unit (IMU) and encoders. In our
setup we also used a 2-D laser range sensor mounted in front
for obstacle avoidance. Based on the sensor data SLAM mod-
ule builds a map and localize the robot inside the map while
exploration module calculates the next goal position. SLAM
module consists of two submodules: one is SLAM, giving the
robot pose in the map according to sensors’ data and the other
is active SLAM giving a discrete set of points that should be
preferable to visit in order to increase the localization uncer-
tainty. Navigation module generates robot trajectories which
take into account exploration regarding the goal position and
SLAM demands regarding preferable localization points. It
consists of the path planning and path executing part respon-
sible for generating robot trajectories. Active SLAM is also
considered as a part of navigation module since it can redirect
the robot path into the localization preferable area. The output
signal from the navigation module is calculated by the path
executing module by which the robot follows the given path
and takes into account the model of the robot. The proposed
contribution—path planning for active SLAM algorithm—is
affecting active SLAM and path planning module colored red
in the figure. The rest of the modules are briefly described
bellow.

A. Exploration

The robot starts with an unknown map of the environment
and takes an initial laser scan. Based on the first laser scan it
builds an initial polygonal map of the environment and cal-
culates the next positions from where to take the next scan
to maximize the amount of unexplored area which can be
seen from the next scan. The exploration is finished when the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MAUROVIC er al.: PATH PLANNING FOR ACTIVE SLAM BASED ON THE D* ALGORITHM WITH NEGATIVE EDGE WEIGHTS 3

whole environment is covered by the laser sensor. The algo-
rithm gives a goal positions in front of the lines which divide
known and unknown areas. In our previous work, we tested
the algorithm on a complex 3-D environment. Details of the
exploration method can be found in [19].

B. SLAM

We have used graph-based SLAM algorithm developed
within our group [20]. It is based on exactly sparse delayed
state filter (ESDSF) [21]. ESDSF is used for estimation of
Gaussian vehicle’s trajectory X which consists of n pose
samples X; = [g; 517, i=0,...,n—1

Xo
X

L X~ N, D) =N"1m, A (1)

Xn—1

where ¢g; represents mobile robot’s orientation in the global
frame in the form of quaternion and #; its position in the frame.
The relation between u and 7 is: n = Au, and between covari-
ance) and information matrix A: A = Zfl. Since our robot
moved through one building with flat floor for the simplic-
ity we used 2-D motion model (#; = [x;, yil, ¢i = [si, g3,i])
described as nonlinear first order Markov process

X, + Ax
Xn+1 Yn l_'_ Ay
—5 A
Vit Sn—=343,n Y
ol ol Byl R @)
n+1 + 4A
5
q3,n+1 Bt ’12 r

2
VI+4-

where Ax, Ay, and Ay are changes in robots position and ori-
entation in every step obtained from IMU and wheel encoders
measurements and w,, is the white noise with mean value 0
and the covariance Q.

As the robot moves through the environment new states are
added to the trajectory X when the pose difference f. between
the last added state X,,_; and the current robot pose X, is
larger than the predefined threshold. Cost function f. takes
into account both angle and distance differences between two
states X;, X; and is calculated as

Jeli) = d(Xi, Xj) + o] Avaw (X, X)) | 3)

where d(X;, X;) is the Euclidean distance between the states
X; and Xj, and Avyay is the difference of the angle between
those states and « is a scaling factor. Whenever a new state is
added, the current measurements from the robot’s sensors are
recorded and associated with the state. Update of the trajectory
occurs by calculating relative pose between two states from
the associated measurements. In order to calculate the relative
pose between two states the associated measurements need
to contain enough similar landmarks which means they need
to be taken from approximately the same location. This is
why for a successful trajectory update the robot has to visit
already traversed areas and achieve loop closing. The question

Possible
loop closing

Fig. 2. Topological distance as a measure of information gain.

is in which state should the loop closing points be placed.
Although every loop closing would increase accuracy of the
trajectory, SLAM update and the afterwards global map update
are performance costly operations that should not be executed
if the impact on the accuracy is too small. Moreover in order to
close the loop, the robot will need to diverse from the shortest
path planned to the exploration goal. This is why loop closing
points should be placed only in states in which loop closing
with high enough impact on the overall trajectory accuracy
can be achieved.

Whenever a new state is added to the trajectory X, the active
SLAM algorithm begins to search for possible loop closings
between newly added state X; and all other states Xj, j # i,
in the trajectory. The state X; is chosen for the loop clos-
ing if it satisfies two conditions. First condition is that the
Euclidean distance from X; has to be lower than a predefined
value dpip. This condition imposes high probability of regis-
tration between states X; and X; since it is likely that there are
enough similar landmarks (planar surface segments) between
local maps assigned to them. Second condition that the state
X; has to satisfy, in order to be chosen for the loop closing is
that the resulting SLAM update will have high enough impact
on the trajectory accuracy. In general, update impact on the
trajectory accuracy is proportional to the sum J of the cost
functions f. between all neighboring states in the trajectory
moving from the state X; to the state X;. The sum of cost
functions between states X; and X; is calculated as

i—1
J=> felm,m+1). 4)

m=j

However, the problem with using sum of all cost functions
between neighboring states to calculate the trajectory accuracy
impact of the loop closing, arises if there were previous loop
closing detections. For example, let us consider situation illus-
trated in Fig. 2, where we want to measure the accuracy impact
of loop closing between states X; and Xg. Although the sum
of cost functions between all states from X9 to X; is high,
since an update occurred between states X7 and X», the overall
impact on the trajectory accuracy from closing loop between
states X9 and X; is small. This is because a lot of informa-
tion that would be gained from loop closing between states
X1 and X9 was already gained by loop closing between states
X5 and X7. This is why we use approach similar to [14] as a
measure of accuracy impact of loop closing. Accuracy impact
is determined using topological distance. Topological distance
is calculated from the graph ”g generated from the pose graph

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

incidence matrix 71. Pose graph incidence matrix 77 is n x n
matrix, where n is the number of states in the trajectory, whose
elements are given by

r, _ |1, if state X; is connected with state X;
lij = &)

0, otherwise.

States are connected if they are neighboring states (i.e., state X;
is connected with states X;+1 and X;_1) or if the pose constraint
was formed between them (i.e., loop closing was detected and
trajectory update executed). Nodes in the graph Tg are rep-
resented by the states and connections between nodes i and
j exist if the element (i,;) in matrix 77 is 1. Weight of the
connection w; ; between states 7 and j is

Wi — JeG p), if li—jl=1
W), otherwise

(6)

this ensures that connections made by the previous loop clos-
ing have 0 weight and will not increase measured topological
distance between two states. Topological distance between
states (X;,X;) is calculated as the shortest path from the node
i to the node j in the graph Tg. The shortest path is calculated
using the A* algorithm. For example, topological distance
from the nodes 1-9 (Fig. 2) would be the sum of cost func-
tions between the states (X, X»), (X7, Xg), and (Xg, X9). Now
when we can calculate topological distance between two states
(Xi, Xj), we can form the second condition that states have to
satisfy in order to be chosen for the loop closing

"d(Xi, X;) > Diax (7

where 7d is the topological distance between the states X; and
X;, and D,y is a predefined topological distance threshold. For
all states that satisfy both conditions, the state with the highest
topological distance from X; is selected for loop closing.

1) Path Planning: When the robot has all information about
the static and dynamic obstacles in its surrounding it obtains
a shortest, obstacle free path to reach the goal. In the pro-
posed method the additional input to the path planning module
are loop closing points from the active SLAM module. If the
cost of the detour the robot takes to reach localization points
is acceptable according to localization accuracy increase, the
path will be planned through the localization point. The path
planning module is based on the D* path planning algorithm
and it is the main contribution of this paper. It is explained in
detail in the next section.

2) Path Executing: Path executing module receives planned
path from the path planning module and brings signals to con-
trol the robot’s wheels to reach the goal position. The outputs
are linear and angular velocities of the robot in each time
step. We used our receding horizon control approach for the
trajectory execution based on the planned D* path [22].

III. D* WITH NEGATIVE EDGE
WEIGHT PATH PLANNING

There has been a large amount of approaches on plan-
ning the robot trajectories, path planning, and path follow-
ing [23], [24]. In this paper, we use a graph representation
of the environment as a collection of nodes and edges,
GW,E, W) with N representing nodes and £ representing

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

edges and WV referring to edge weights. The environment is
represented by a discrete grid where each grid cell is occu-
pied or empty, representing nodes N in the graph. Such a
grid is called the occupancy grid map created by approximate
cell decomposition of the environment [25], [26]. The current
robot position is denoted with x = [xy 017,

Besides standard cells in a grid map with occupied and
empty status for the purpose of active SLAM we add the local-
ization improvement cells £ C A as a loop closing points
from active SLAM and consider them as a special status of
the cell.

Search for a shortest path in a graph uses the criterion as
a sum of all edge weights from the robot position to the goal
position. The edge weight of the empty, i.e., the cost of enter-
ing to an empty cell is set to the Euclidean distance between
two adjacent cells depending on the cell size while the edge
weight of an occupied cell is set to co. The localization cells
should attract the robot to go through the localization cell thus
the edge weight or the cost to enter the localization cells has
to be lower than the other cells in the grid. Setting the edge
weight to 0 is not giving anything to attract the robot. Actually
the edge weight needs to have a negative value. The edge
weight of the localization cell compensates a detour the robot
takes from the shortest path on the way to the goal position
what can be done only using negative cell edge weight.

A standard graph search in robotics like A*, D* or simple
Dijkstra algorithm cannot be used since we have negative edge
weights in the graph. Adding a negative edge weight cell in the
graph causes problems with finding a shortest path using com-
mon graph search algorithms in robotics, especially since there
are also negative cycles where shortest path does not exist. The
shortest path problem with the negative edge weights is used
in [27], where the problem is solved using dynamic program-
ming Bellman—Ford algorithm for the shortest path planning.
Bellman-Ford algorithm can solve the problem with the nega-
tive edge weights but has higher complexity than Dijkstra and
it is not suitable for dynamic environment [28]. If something
changes in the environment or dynamic obstacle appears the
whole computational process has to be repeated. The nega-
tive cycle problem with the shortest path still remains since
Bellman—-Ford can only detect a negative cycle but it does not
solve it in any way. Therefore, we proposed an extension of
the D* algorithm which solves the shortest path problem with
negative edge weights.

A. Graph Creation and Search

Weighted undirected graph G(N, £, W) is created in the
occupancy grid map. Two nodes i,j € A in the graph are
neighbors if corresponding Cartesian coordinates of cell cen-
ters ¢;, ¢j € R? have L distance equal to the length of the cell
width e, i.e., [lci — ¢jlloo = ecent. The set of edges is defined
as & ={ejj=={i,j} | i,j € N,iandj are neighbors}. The set
of edge weights W = {w;; | i,j € N, i and j are neighbors}
is defined as the cost of transition between neighbors.

In standard binary occupancy grid maps there are two val-
ues of transitions between neighbors: straight and diagonal
transition what could present real Euclidean distance, i.e.,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MAUROVIC er al.: PATH PLANNING FOR ACTIVE SLAM BASED ON THE D* ALGORITHM WITH NEGATIVE EDGE WEIGHTS 5

wij = llci — ¢jll2. For the purpose of active SLAM negative
cost transitions between the negative cell from £ and a free
cell from N\ £ is introduced in the graph. The negative value
is a function of the expected localization gain from the SLAM
update at a certain negative cell position. For the problem, we
solve the edge weight has the following structure:

wij = e = i, ®)

where A = 1 for empty cells, oo for occupied cells and A < 0
for localization (negative) cells. For the negative values, A is
a function of a topological distance Td(Xn,Xj) between the
current robot’s state X, in SLAM and the state X; in SLAM.
State X; in SLAM is represented with the negative cell in the
graph

r=f("d(X,, X))). ©)

Assume that the start node and the goal node are specified
in the graph G(N, £, W). The search for the shortest path
from the start node to the goal node has to be performed. A
path P = P(start, goal) is in the graph G(N/, £, W) is defined
as

‘P[1] = start, P[|P|] = goal
Plile N,i=1,...,|P|
{PHLPli+1]} e&j=1,....IP -1
Pl #PUl, ij=1,....IPLi#]
where |P| represents the path length in the number of cells.

The cost of the path P is defined as the sum of weights of
edges along the path, that is

(10)

IPI—1
h(P) =) WPl Plit1)- (1
i=1
Let m(start, goal) be the set of all possible paths between the
start node and the goal node in the graph G(N, £, W). The
optimal cost of the path from the start node to the goal node
that has to be searched for is defined as

h*(start, goal) := rrgn h(P)

s.t. P € m(start, goal) (12)

with implicit assumption that A*(start, goal) = oo if
7 (start, goal) = @. The shortest path from the start node to
the goal node is the path (or more than one path) that has the
optimal cost i*(start, goal).

B. D* Algorithm

The D* algorithm is a well known graph search algorithm
capable of fast replanning in dynamic environments [18]. It
is also known as the dynamic version of the Dijkstra’s algo-
rithm or dynamic version of the A* algorithm without the
heuristic function [23]. The D* algorithm finds the shortest
path in graphs in which weights change during the time, i.e.,
occupancy values become higher or lower due to obstacles
movement.

For every searched node Z, the D* algorithm computes the
cost value h(Z) of the path from the node Z to the goal node

and the value of the key function k(Z) for the replanning
process, which stores the old values h(Z) before changes of
weights in the graph happened.

The execution of the D* algorithm can be divided into
initial planning and replanning phases. Initial planning is per-
formed if the robot is standstill at the start position (R = start)
and replanning is performed if the robot detects nodes with
changed occupancy values during its motion. D* uses the
set OPEN as a temporary storage for the currently examined
nodes. Details can be found in [18].

C. Negative Edge Weight D* Algorithm—ND* Algorithm

The proposed algorithm is given in Algorithm 1 where the
main differences from the original D* algorithm are high-
lighted and explained in this section. We named the proposed
graph search algorithm the negative edge weight D* algo-
rithm (ND* algorithm) the main D* function is renamed as
PROCESS-STATE-NEG-EDGE().

In PROCESS-STATE-NEG-EDGE() algorithm lines 5-7 are
different from the standard D* algorithm. Before the initial
search the set of all graph nodes with negative edge weight is
created, called NEGATIVE_CELL.

The algorithm starts by adding the goal node to the OPEN
list. Every node Z has associated tag #(Z) with a value NEW
if the node has never been on the open list, OPEN if it is
currently on the OPEN list and CLOSED if the node was
on the OPEN list. In the initial step #(Z) for all nodes is set
to NEW. PROCESS-STATE-NEG-EDGE() function is invoked
repeatedly until OPEN list is empty. The rest of the embedded
functions are MIN-STATE() which returns the node with min-
imum k value on the OPEN list, DELETE(Z) which removes
the node from the OPEN list and INSERT(Z,h(Z)) which
inserts the node Z on the OPEN list and computes h(Z).
INSERT(Z,h(Z)) is given in Algorithm 2. At the end of ini-
tial path planning process every node has a parent node, i.e.,
b(Y) = Z, where Y is a parent node of Z or we can say Y
is pointing at Z. The shortest path for the node Y is obtained
following pointers through parents nodes to the goal node.

Executing CREATE-BLACKLIST() in Algorithm 1 enables
handling negative edge weights in the graph. If the negative
cell is on the OPEN list and has minimum k value among
the other cells on the list, the BLACKLIST is created by the
following backpointers starting from the negative edge weight
node. Creating the BLACKLIST on a such way it actually
represents the shortest path from the negative edge weight cell
to the goal node. In the standard D* algorithm with no negative
cells the initial step is the Dijkstra shortest path search. Only
line segment from 15-19 is executed. Dijkstra algorithm does
not work with negative edge weights, i.e., does not guaranties
optimality with negative cells. In the proposed algorithm when
condition Z € NEGATIVE_CELL is true the path from the
negative cell to the goal position is the shortest path. We use
that path fixed during the rest of the ND* search. Creating
BLACKLIST we do not allow nodes on the list to change the
pointer while the rest of nodes will be changed and redirected
according to negative cell node. By this we prevent the loop
cycles, or the negative cycles in the graph.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

Algorithm 1 PROCESS—STATE—NEG—EDGE()

Algorithm 2 INSERT(Z)

1: Z=MIN—-STATE(O)
if Z=NULL then
return -1
end if
if Z € NEGATIVE_CELL then
CREATE—BLACKLIST()
end if
koia=GET—KMIN(); DELETE (Z2)
if koi0 < h(Z) then
for each neighbor Y of Z
if h(Y) < koiq and h(Z) > h(Y) + wyz and (Y ¢
BLACKLIST) then

R e A A R o

—_— —
—_ o

12: bZ)=Y; h(Z) =hY)+wyz
13: end if
14: end if

15: if koiq = h(Z) then

16: for each neighbor Y of Z:

17: if 1(Y) = NEW or (b(Y) =Z and h(Y) # h(Z) +wz.y)
or (b(Y) # Z and h(Y) > h(Z) + wzy) and (Y ¢
BLACKLIST) then

18: b(Y) = Z; INSERT(Y, h(Z) + wzy)
19: end if
20: else

21: for each neighbor Y of Z

22 if1(Y)=NEW or (b(Y)=Z and h(Y) # h(Z)+wzy)
and (Y ¢ BLACKLIST) then

23: b(Y) = Z; INSERT(Y, h(Z) +wz.y)

24: else if b(Y) # Z and h(Y) > h(Z) + wzy and (Y ¢
BLACKLIST) then

25: INSERT(Z, h(Z))

26: else if b(Y) # Z and h(Z) > h(Y) + wy z and 1(Y) =
CLOSED and h(Y) > kg and (Y ¢ BLACKLIST)

then
27: INSERT(Y, h(Y))
28: end if
29: end if

When initial phase calculates the shortest path from each
node to the goal the robot starts to execute the path fol-
lowing task. When the change of the map is detected with
sensors on the robot the function MAP-CHANGE() is called.
The part of the proposed algorithm is given in Algorithm 3.
Map change could be caused by a dynamic obstacle, creating
a new localization point or removing already visited local-
ization point. The function MAP-CHANGE() changes edge
weights and enters affected cell on the open list. The dif-
ference from the standard D* is that it also checks if the
modification in the map is on the shortest path from the neg-
ative cell to the goal position, i.e., on the BLACKLIST. If
that happens all cells with the shortest path going through the
BLACKLIST are reset by invoking RESET_BLACKLIST().
Status of the cell is set to NEW, their A& value is set to
obstacle and pointers are deleted. Also, all cells on the
BLACKLIST are set on the OPEN list while deleting the
BLACKLIST.

. if t(Z)=NEW then

2: k(Z)=h,

3: else if t(Z)=OPEN then

4. k(Z)=min(k(Z),h,)

5: else if t(Z)=CLOSED then
6

7

8

9

—_

. k(Z)=min(h(Z),h,)
. end if

- h(Z)=h,

: t(Z)=OPEN

Algorithm 3 MAP—CHANGE(Z,w_val)
1: for each neighbor Y of Z do

wz y=w_val

: end for

. if t(Z)=CLOSED then
INSERT(Z,h(Z))

end if

. if Z € BLACK_LIST then

RESET_BLACKLIST()

. end if

« I |

-— e — — — — —
—_— e — | —— — —— —
—5—5—514—4—4—4—4—4—4—
—v—>—>1<—<—<—v—<—<—

—P—D—’—P—P

Fig. 3.

Beginning of initial step.

D. Illustration of Operation

In this section, we illustrate how the algorithm operates
in a simple environment. Starting from the initial step where
the map of the environment and the robot’s goal position is
given. The algorithm starts by putting a goal node on the open
list and expanding it with its neighbor cells. The number of
neighbor cells depends on a realization of the graph from the
occupancy grid map. Here we use four neighbors due to sim-
plicity but the algorithm works independently from the number
of neighbors. Fig. 3 represents the map showing pointers at
the moment when the negative cell has been expanded and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MAUROVIC ez al.: PATH PLANNING FOR ACTIVE SLAM BASED ON THE D* ALGORITHM WITH NEGATIVE EDGE WEIGHTS 7

4
1
4
1
4
I
1

— el ——

g— — e —— — —

v

— — —DI — e — — — —
'y

v
— g —
— — —45"

v

Fig. 4. Final path planning of the initial step.

Fig. 5.

Reset the map after obstacles on the blacklist.

removed from the open list. The robot’s start and goal posi-
tion are denoted with R and G, respectively. The obstacles are
colored gray while negative edge weight cells are green. Each
cell which has been examined at that moment would have the
shortest path if there was no negative cell in the map. When
the algorithm reaches the negative cell (line 5) it activates and
generates the blacklist to fix the shortest path from the nega-
tive cell to the goal position. The pointers from the blacklist
remain unchanged during the path planning while the other
cells change the pointers after the negative cell is detected.
This way the graph cycles are avoided. Line 17 in Algorithm 1
with condition b(Y) # Z AND h(Y) > h(Z)+c(Z, Y) activates
and redirect the cells. This is not the case with the standard
D* algorithm where in the initial step the cells with CLOSED

v

r‘

AN AN b

— — — —1»1

v

1

— g —— — —

DT‘_
— g — k-“
ry

1
|

LT

v

1
1=

lq»— -— — -
ld— e e a—

— e — —— —

—t s el s =l —

—

»

— — —-i__—————

— — —DI — g —— — — —
»

— — —r I

I R

Fig. 7. Two negative cells in the map.

status already have the shortest path and are not considered.
In Fig. 4, the final, initial path planning with the shortest path
with thicker arrows is shown. As it can be seen in Fig. 4 all
cells in the upper part of the map are attracted by the negative
cell. For the simulation purpose negative edge weight is set to
—15 where the other cells’ edge weight is set to 1.

When the robot has the shortest path it starts to follow the
path. If nothing changes on the way the whole pointer struc-
ture remains the same and the robot reaches the goal. Since the
dynamic environment is highly expected where the robot has
any kind of interaction with humans or other moving obstacles
the algorithm begins with replanning phase when a change in
the environment is detected. Three typical map change scenar-
ios are possible. When a dynamic obstacle is in the map area

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

y [m]

y [m]

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

x[m]

Fig. 8.
localization points.

not affected by the negative cell or cells on the blacklist the
algorithm performs as it is expected from standard D* algo-
rithm. The second scenario appears when the obstacle is on
the blacklist which forces the algorithm to allow changes on
the blacklist and the third scenario that activates replanning
is when a new localization point appears or when an already
existing localization point is removed from the map. The latest
two are considered in the next example since the first one is
standard as in the D* algorithm.

1) Obstacle on the Blacklist: When an obstacle is on the
blacklist the pointers on the blacklist need to be changed what
would cause cycles in the graph with negative edge weight. To
avoid cycles in the graph we implemented a special care for
that case in the function MAP-CHANGE() in line 7. Calling
RESET_BLACKLIST() resets only cells for which the short-
est path goes through the blacklist, i.e., cells affected by the
obstacle on the blacklist. Fig. 5 shows the map after MAP-
CHANGEY) in line 8 execution. The robot starts moving and at
the position denoted with C detects the obstacle on the black-
list. It can be seen that complete upper part of the map is reset
since the negative edge value is set to —15 and attracts rela-
tively large area in that example map. In real scenarios affected
area are usually local cells around the negative cell what is
more acceptable from the algorithm complexity point of view.
Path planning continue with setting the obstacle cell on the
open list and invoking PROCESS-STATE-NEG-EDGE(). The
result is shown in Fig. 6, where the robot position is denoted
with C.

2) New Localization Cell: The number of localization cells
considered in the map depends on the area where the robot
is expected to go. Thus, when the robot moves it enters a
new area where new localization cells appear. All cells with
changed status are set on a OPEN list with calling MAP-
CHANGE(). In order to guaranty absence of negative cycles

x[m]

Experimental results—exploration with the loop closing. Red line is the planned robot path, green line is the executed path and red x are the

the shortest path from the negative cell to the goal needs
to be found to create the blacklist. When a new localiza-
tion cell appears it already has the shortest path to the goal
position due to the initial planning. Following the shortest
path the blacklist is created and replanning executes invoking
PROCESS-STATE-NEG-EDGE(). Some nodes redirect their
pointer so that path goes through the new localization cell.

Fig. 7 shows the situation when two negative cells are active
in the environment. A new negative cell edge weight is set to
—10 what results with the shortest path going through the both
negative cells. Note that the blacklist consists of the shortest
path with both negative cells inside. In a different arrangement
of the negative cell it could happen that the shortest path goes
only through one cell what would create two blacklists for
each of the negative cell. The same scenario happens if there
are more than two negative cells. On the other hand, when the
robot closes the loop the negative cell needs to be removed and
not used any more. The edge weight is set to positive value
and the cell is put on the OPEN list. The blacklist is deleted
for that cell and PROCESS-STATE-NEG-EDGE() recalculates
the path.

IV. EXPERIMENTAL RESULTS

The proposed algorithm was tested experimentally on a dif-
ferential drive mobile robot Husky equipped with 2-D SICK
LMS100-10000 laser and 3-D Velodyne LiDAR. The main
task was exploration of the environment based on the 2-D
data available from the laser. The exploration algorithm used
in the experiment can be found in [19] and is shortly described
in Section II-A. The next robot goal positions are chosen to
maximize unexplored area which can be seen from the next
robot’s positions. The overall system was implemented under
the robot operating system.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MAUROVIC er al.: PATH PLANNING FOR ACTIVE SLAM BASED ON THE D* ALGORITHM WITH NEGATIVE EDGE WEIGHTS 9

We did experiments under various conditions including no
obstacles and dynamic obstacles on the robot’s path, appearing
a group of the people around the robot, varying with obstacles
size, etc. The negative cells were added dynamically when
the robot entered in the vicinity of the loop closing points.
However, not all negative cells were part of the robot’s path
to the goal. Fig. 8 shows a few typical exploration steps from
one of the experiments. The polygon shown in each figure rep-
resents the explored environment from the beginning until the
current step labeled in the figure. The robot’s current position
is denoted by a rectangular shape object. Two paths con-
necting consecutive goal points represent planned path and
executed path colored red and green, respectively. The local-
ization points are marked with red x inside the exploration
polygon. The robot starts exploring the environment and makes
an initial map of the explored area and chooses the next explo-
ration goal. On the way to the next goal, what is shown in
step 2, the planned and executed paths are similar. The differ-
ence in the beginning is due to path executing module which
takes into account the mobile robot dynamics and initial ori-
entation. As can be seen in step 2 there are no localization
points on the way since the robot has entered a new area for
the first time and the loop closing cannot be achieved if the
robot has not been there before. Step 3 brings the robot back to
the area visited before and shows the ND* algorithm steering
the robot from the planned trajectory to lower the localiza-
tion uncertainty. While the robot moves following an already
planned path the localization points appear one by one since
the robot was already moving in that area. The area in which
we search for a loop closing position is a circle with a radius
of 4 m around the robot. Negative value A for the current
robot’s SLAM state X, used in the experiment is calculated
using the following equation:

Td(Xn, X;)
500

where Td(X,,, X;) refers to a topological distance for the SLAM
state X, explained in Section II-B, while X; is SLAM state
inside 4 m radius circle. We used —500 to scale the topological
distance to use it as a edge weight in the graph. The value
was chosen experimentally so the topological distance of 500
means the negative cell attracts only one cell around. The new
negative cell points are accepted for ND* path planning only
if the negative value of a new points is smaller than the current
active point or when there is no negative cell in the graph. The
first point that appeared is the middle one with the negative
value of —15 and the robot was attracted by the negative cell
and loop was closed. As can be seen the robot did not go
exactly through the marked negative point because we set the
loop closing tolerance to 1 m since the robot can successfully
close the loop when it is inside the circle with radius of 1 m
around the loop closing point. The next localization point was
the left one with the negative value of —25 and the robot also
went through that negative point to improve the localization.
When the loop was closed the most right loop closing points
appeared with the negative edge weight of —21 but the path
planning did not change the trajectory since the point was far
away from the current robot position.

A(X) = (13)

/¥

L, 400+ § i
£ 200}]
0 ; ‘ ‘ ‘ ‘ ‘ 4
400 450 500 550 600 650 700
Discrete time step
/
50F— ‘ ¥ ‘ ‘ ‘]
2 o
<
-50 Py ‘ : ‘ ‘ ¥
400 450 500 550 600 650 700
Discrete time step
(a)
*
400
2]
~§ 200
0
2750 2800 2850 2900 2950 3000 3050 3100

Discrete time step

50

deg/s
(=}

=50 ‘ : ; ; ;
2750 2800 2850 2900 2950 3000
Discrete time step

(b)

3050

Fig. 9. Velocity comparison. (a) ND* active SLAM—Iinear velocity (top)
and angular velocity (bottom). (b) Switching active SLAM—Ilinear velocity
(top) and angular velocity (bottom).

Steps 5 and 7 show longer paths where can be seen how the
active SLAM affected robot’s path according to the initially
planned path. In step 5, one localization point was on the
robot’s initial path while the others were not chosen by the
ND* algorithm as a good enough to take a detour to close the
loop. Step 7 of the exploration process clearly shows deviation
from the initially shortest path due to negative cells appeared
close to the robot’s path. The exploration algorithm finished
in 13 steps and the whole environment was explored.

The algorithm was implemented on a ThinkPad P50 with
Intel Core i7 2.60 GHz processor and 8 GB of RAM. The
algorithm processing time is shown in Fig. 10. For each step
of the ND* algorithm, i.e., for each call of the ND* algorithm,
the processing time is presented in ms. It can be seen that all
calculations were done within 26 ms.

We have explored the same environment with a switch-
ing active SLAM concept from our previous work described
in [15]. Fig. 9 shows robot’s angular and linear velocity com-
parison for the switching active SLAM and ND* active SLAM
proposed in this paper. For both algorithms the velocities are

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10
251 T
20 # I
151
» .
I P |
10+
5,
03 ‘ ‘ ey ‘ . ‘ 1 . Tmm
1500 1600 1700 1800 1900 2000 2100
Discrete time step
Fig. 10. Processing time for ND* algorithm.

taken at the point when the robot decides to turn from the
planned path to close the loop. The arrows are pointing at the
moment when the localization point appears. x-axis represents
discrete time where each time step corresponds to a period of
100 ms. It can be seen that with the proposed algorithm the
robot has continuous and smooth movements in comparison
to the switching SLAM algorithm where the robot needs to
stop, set velocity to zero and then continue toward the loop
closing point. For each of the velocity profile two loop closing
points appear while the robot was moving to the goal position.
Besides the velocity profile difference the path planning for the
switching active SLAM is done from the beginning when a
new localization point appears while with ND* we have only
replanning. The average velocity is higher with ND* what
brings faster robot’s movement and together with less time
needed for path planning implies faster exploration. With ND*
algorithm we had more often loop closing what keeps localiza-
tion uncertainty inside boundaries unlike in switching SLAM
where the localization uncertainty rapidly drops when the loop
is closed.

V. CONCLUSION

In this paper, we presented the path planning for active
SLAM loop closing. The path planning is based on the D*
algorithm modification where we introduced negative edge
weights in a graph for the shortest path planning. Standard
graph search algorithms in robotics cannot handle negative
edge weights due to negative cycles which would appear as
a shortest path solution. The active SLAM solution presented
in this paper can effectively deal with dynamic changes in
the environment including moving obstacles and localization
demands which can appear while robot is moving. Throughout
a simple environment simulation it was shown how negative
cycles are handled with a modification of the D* algorithm.

In the experiment we have shown in a real-world scenario
with exploration task that the proposed path planning algo-
rithm for active SLAM efficiently closes a loop planning the
path which goes through already visited area. The robot’s
path is continuous and when a localization point appears the

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

robot’s speed does not rapidly change what gives faster robot
motion and faster exploration while simultaneously improv-
ing the localization uncertainty. The shortest path is changed
only locally when the dynamic obstacle or dynamic localiza-
tion pose appears thus the time needed to travel to the goal
position is decreased.

REFERENCES

[1] Y. Liu, F. Sun, T. Tao, J. Yuan, and C. Li, “A solution to active simul-
taneous localization and mapping problem based on optimal control,”
in Proc. Int. Conf. Mechatronics Autom. (ICMA), Harbin, China, 2007,
pp. 314-319.

[2] C. Leung, S. Huang, and G. Dissanayake, “Active SLAM using model
predictive control and attractor based exploration,” in Proc. IEEE Int.
Conf. Intell. Robots Syst., Beijing, China, 2006, pp. 5026-5031.

[3] J. Vallvé and J. Andrade-Cetto, “Active pose SLAM with RRT*)
in Proc. IEEE Int. Conf. Robot. Autom., Seattle, WA, USA, 2015,
pp. 2167-2173.

[4] R. Valencia, J. V. Mir6, G. Dissanayake, and J. Andrade-Cetto, “Active
pose SLAM,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2012,
pp. 1885-1891.

[5] 1. Vlasenko, I. Nikolaidis, and E. Stroulia, “The smart-condo:
Optimizing sensor placement for indoor localization,” IEEE Trans. Syst.,
Man, Cybern., Syst., vol. 45, no. 3, pp. 436453, Mar. 2015.

[6] S. Salan, E. Drumwright, and K.-I. Lin, “Minimum-energy robotic
exploration: A formulation and an approach,” IEEE Trans. Syst., Man,
Cybern., Syst., vol. 45, no. 1, pp. 175-182, Jan. 2015.

[71 S. Huang, N. M. Kwok, G. Dissanayake, Q. P. Ha, and G. Fang,
“Multi-step look-ahead trajectory planning in SLAM: Possibility and
necessity,” in Proc. IEEE Int. Conf. Robot. Autom., Barcelona, Spain,
2005, pp. 1091-1096.

[8] C. Leung, S. Huang, and G. Dissanayake, “Active SLAM in structured
environments,” in Proc. IEEE Int. Conf. Robot. Autom., Pasadena, CA,
USA, 2008, pp. 1898-1903.

[9] F. Dellaert and M. Kaess, “Square root SAM: Simultaneous localization

and mapping via square root information smoothing,” Int. J. Robot. Res.,

vol. 25, no. 12, pp. 1181-1203, 2006.

M. Kontitsis, E. A. Theodorou, and E. Todorov, “Multi-robot active

SLAM with relative entropy optimization,” in Proc. Amer. Control

Conf. (ACC), Washington, DC, USA, 2013, pp. 2757-2764.

H. Carrillo, Y. Latif, M. L. Rodriguez-Arevalo, J. Neira, and

J. A. Castellanos, “On the monotonicity of optimality criteria during

exploration in active SLAM,” in Proc. IEEE Int. Conf. Robot. Autom.,

Seattle, WA, USA, Jun. 2015, pp. 1476-1483.

C. Stachniss, G. Grisetti, and W. Burgard, “Information gain-based

exploration using Rao—Blackwellized particle filters,” in Proc. Int. Conf.

Robot. Sci. Syst. (RSS), vol. 1. Cambridge, MA, USA, 2005, pp. 65-72.

R. Sim and N. Roy, “Global a-optimal robot exploration in SLAM,”

in Proc. IEEE Int. Conf. Robot. Autom., Barcelona, Spain, Apr. 2005,

pp. 661-666.

C. Stachniss, D. Hahnel, and W. Burgard, “Exploration with active loop-

closing for FastSLAM,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots

Syst. (IROS), vol. 2. Sendai, Japan, 2004, pp. 1505-1510.

K. Lenac, A. Kitanov, I. Maurovié¢, M. Dakulovié, and I. Petrovi¢, “Fast

active SLAM for accurate and complete coverage mapping of unknown

environments,” in Proc. 13th Int. Conf. Intell. Auton. Syst., Padua, Italy,

2014, pp. 415-428.

V.-C. Pham and J.-C. Juang, “An improved active SLAM algorithm

for multi-robot exploration,” in Proc. SICE Annu. Conf., Tokyo, Japan,

2011, pp. 1660-1665.

K. K. Leung and G. Gallagher, “Multi-robot localization and mapping

strategy: Utilizing behavior based dynamic tree structure and observer-

explorer routine,” in Proc. 3rd IEEE Int. Conf. Autom. Sci. Eng. (CASE),

Scottsdale, AZ, USA, 2007, pp. 881-886.

A. Stentz, “Optimal and efficient path planning for partially-known envi-

ronments,” in Proc. IEEE Int. Conf. Robot. Autom., San Diego, CA,

USA, 1994, pp. 3310-3317.

D. Borrmann et al., “A mobile robot based system for fully automated

thermal 3D mapping,” Adv. Eng. Informat., vol. 28, no. 4, pp. 425-440,

2014.

A. Kitanov and I. Petrovi¢, “Exactly sparse delayed state filter based

robust SLAM with stereo vision,” in Proc. 4Ist Int. Symp. 6th

German Conf. Robot. (ISR) Robot. (ROBOTIK), Munich, Germany,

2010, pp. 1-7.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MAUROVIC er al.: PATH PLANNING FOR ACTIVE SLAM BASED ON THE D* ALGORITHM WITH NEGATIVE EDGE WEIGHTS 11

[21]

[22]

[23]

[24]

[25]
[26]

(27

(28]

M. R. Walter, R. M. Eustice, and J. J. Leonard, “Exactly sparse extended
information filters for feature-based SLAM,” Int. J. Robot. Res., vol. 26,
no. 4, pp. 335-359, 2007.

M. Seder, M. Baoti¢, and I. Petrovi¢, “Receding horizon control for
convergent navigation of a differential drive mobile robot,” IEEE Trans.
Control Syst. Technol., vol. 25, no. 2, pp. 653-660, Mar. 2017.

S. M. LaValle, Planning Algorithms. New York, NY, USA: Cambridge
Univ. Press, 2006.

A. Konar, I. G. Chakraborty, S. J. Singh, L. C. Jain, and A. K. Nagar,
“A deterministic improved Q-learning for path planning of a mobile
robot,” [EEE Trans. Syst, Man, Cybern., Syst., vol. 43, no. 5,
pp. 1141-1153, Sep. 2013.

J.-C. Latombe, Robot Motion Planning. Dordrecht, The Netherlands:
Kluwer, 1991.

S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge,
MA, USA: MIT Press, 2005.

W. A. Kamal and R. Samar, “A mission planning approach for UAV
applications,” in Proc. IEEE Conf. Decis. Control (CDC), Cancun,
Mexico, 2008, pp. 3101-3106.

J. Kleinberg and Eva Tardos, Algorithm Design. Boston, MA, USA:
Pearson, 2006.

Ivan Maurovié¢ (M’11) received the B.Sc. and M.Sc.
degrees in electrical engineering from the University
of Zagreb, Zagreb, Croatia, in 2008 and 2010,
respectively.

He joined the Department of Control and
Computer Engineering, University of Zagreb, in
2010, as a Research Assistant of SEE-ERA.NET
PLUS Project ThermalMapper, where he has been
a Researcher of ACROSS Project, since 2012, and
is currently a Researcher with the LAMOR Research
Group. His current research interests include mobile

robotics, exploration of unknown environmets, path planning, and localization.

Marija Seder (M’05) received the M.Sc. and
Ph.D. degrees in electrical engineering from the
University of Zagreb, Zagreb, Croatia, in 2004 and
2010, respectively.

She was a Visiting Researcher with the
Autonomous Intelligent System Group, University
of Freiburg, Freiburg im Breisgau, Germany,
from 2012 to 2013, under the supervision of
Prof. W. Burgard. She is currently an Assistant
Professor with the Faculty of Electrical Engineering

" and Computing, Department of Control and

Computer Engineering, University of Zagreb. Her current research interests
include mobile robotics, especially motion planning, path planning, coverage
planning, obstacle avoidance, and environment exploration.

i

Kruno Lenac (M’13) received the M.Sc. degree
in electrical engineering from the University of
Zagreb, Zagreb, Croatia, in 2013.

He is a Doctoral Research Fellow with the
Faculty of Electrical Engineering and Computing,
Department of Control and Computer Engineering,
University of Zagreb. His current research inter-
ests include mobile robotics with a focus on
robot localization and map building of unknown
environments—SLAM, problem of connecting
SLAM with path planning process, known as active
SLAM.

Ivan Petrovi¢ (M’97) received the B.Sc., M.Sc.,
and Ph.D. degrees in electrical engineering from
the University of Zagreb, Zagreb, Croatia, in 1983,
1989, and 1998, respectively.

He was an Research and Development Engineer
with the Institute of Electrical Engineering, Koncar
Corporation, Zagreb, from 1985 to 1994. Since
1994, he has been with the Faculty of Electrical
and Computing Engineering, University of Zagreb,
where he is currently a Full Professor. He teaches a
number of undergraduate and graduate courses in the

field of control systems and mobile robotics. He has published over 40 journal
and 160 conference papers, and results of his research have been implemented
in several industrial products. His current research interests include various
advanced control strategies and their applications to control of complex sys-
tems and mobile robots navigation.

Dr. Petrovi¢ is the Editor-in-Chief of the Automatika Journal. He is a
member of the IFAC Technical Committee on Robotics, the FIRA Executive
Committee, and the Croatian Academy of Engineering.

