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Abstract—This paper analyzes directional tracking in 2D with
the extended Kalman filter on Lie groups (LG-EKF). The study
stems from the problem of tracking objects moving in 2D
Euclidean space, with the observer measuring direction only,
thus rendering the measurement space and object position on
the circle—a non-Euclidean geometry. The problem is further
inconvenienced if we need to include higher-order dynamics in the
state space, like angular velocity which is a Euclidean variables.
The LG-EKF offers a solution to this issue by modeling the state
space as a Lie group or combination thereof, e.g., SO(2) or its
combinations with Rn. In the present paper, we first derive the
LG-EKF on SO(2) and subsequently show that this derivation,
based on the mathematically grounded framework of filtering
on Lie groups, yields the same result as heuristically wrapping
the angular variable within the EKF framework. This result
applies only to the SO(2) and SO(2)× Rn LG-EKFs and is not
intended to be extended to other Lie groups or combinations
thereof. In the end, we showcase the SO(2) × R2 LG-EKF, as
an example of a constant angular acceleration model, on the
problem of speaker tracking with a microphone array for which
real-world experiments are conducted and accuracy is evaluated
with ground truth data obtained by a motion capture system.

I. INTRODUCTION

In moving object tracking, it is not uncommon to work
with sensors that can provide only direction to the object in
question. The measurement and estimation state space have
a specific geometry of their own, which is different from the
geometry of the true trajectory space. The problem is challeng-
ing, because, although the motion of the object resides either
in 3D or 2D Euclidean space, corresponding measurements
reside either on the sphere or the circle, respectively. Namely,
if we are measuring and estimating only the direction to the
object in 2D, i.e., the azimuth, the state and measurements will
bear the non-Euclidean properties of angles. However, if we
are to extend the state space so that it includes both the angular
velocity and acceleration (which are Euclidean variables), so
that we can apply a higher-order dynamic motion model, we
are faced with constructing a ‘hybrid’ state space consisting
of both the non-Euclidean and Euclidean variables.

There exist Bayesian methods based on the principle of
assumed density filtering with directional distributions on
the circle, namely the von Mises distribution, the wrapped
Gaussian distribution and the Bingham distribution (which
actually models variables with 180◦ symmetry), that capture
intrinsically the non-Euclidean nature of angular random vari-
ables [1]–[6]. The benefit of these approaches is that they
take globally into account the geometry of the state space.

For example, in the case of the von Mises distribution it has
been shown that the filter outperforms the naive Kalman filter,
which treats angles like regular Euclidean variables, and the
modified Kalman filter, which takes into account the nature
of angles by wrapping them on the circle [4], [7]. However,
extending the state space with additional variables of different
geometry, e.g., to analytically model the azimuth with the
von Mises distribution and the range or the angular velocity
with the Gaussian distribution and capture correctly the cross-
correlations, remains a challenge.

The SO(2) group is a set of orthogonal matrices with deter-
minant one, whose elements geometrically represent rotations.
This makes it an interesting candidate for estimation with
angular variables. Furthermore, a filter could be derived not
just for SO(2), but also for combinations of SO(2) with R.
This would enable us to create the aforementioned ‘hybrid’
state vector that would join both non-Euclidean and Euclidean
variables within the same filter and enable a seamless uti-
lization of higher-order system models with constant angular
velocity or acceleration. An extended Kalman filter on matrix
Lie groups was recently proposed in [8]. It provides us with a
mathematical framework for solving the ‘hybrid’ state space
problem. Indeed, the filter can be applied directly for any
state that is a combination of Lie groups, since a Cartesian
product of Lie groups is a Lie group [8]. However, it should
be noted that the LG-EKF is a local approach, in the sense that
it does not take globally the geometry of the state space into
account, but locally captures the geometry of state space via
exponential mapping. Another approach would be to model the
whole state space as a Euclidean vector within the ‘classical’
Kalman filter framework, and wrap the operations involving
angular variables. Indeed, this was performed in [4] to modify
the unscented Kalman filter for angular state estimation, in [9]
to take idiosyncrasies of directional statistics when using polar
or spherical coordinates in the cubature Kalman filter, and in
[7] to modify the Gaussian mixture probabilistic hypothesis
density filter for multitarget tracking on a circle.

In this paper we propose to analyze the LG-EKF for
directional tracking of moving objects in 2D. First, we look
into deriving the LG-EKF on the SO(2), which also serves
as a gentle introduction to the subject matter since the LG-
EKF introduces non-trivial notation. Second, we model the
directional moving object tracking in 2D as an estimation
problem on the Lie group composed of the direct product
SO(2) × R2, i.e., a group that represents the moving object



azimuth, angular velocity and angular acceleration. For the
motion model, we use the constant angular acceleration model.
In the end, we show that the SO(2) LG-EKF filter derivation
based on the mathematically grounded framework of filtering
on Lie groups yields the same result as heuristically wrapping
the angular variables within the extended Kalman filter (EKF)
framework. Since for the case of Rn the LG-EKF evaluates
to EKF [8], this results also extends to SO(2) × R2 LG-
EKF and an R3 EKF when wrapping the angular component.
Please note that this result applies only to the SO(2) filter
and is not intended to be extended to other Lie groups or
combinations thereof. Indeed, given that SO(2) is abelian,
i.e., commutative, the result does not seem unexpected, but
we assert that it gives interesting theoretical perspective on
estimation and tracking with the heuristically modified EKF.
Before we proceed with the filter derivation, we introduce
some necessary formal definitions and operators for working
with matrix Lie groups.

II. MATHEMATICAL BACKGROUND

A. Wrapping the Kalman filter

In this section we shall assume that wrapping operation
amounts to enforcing the angular variable to be in the [−π, π]
interval, and we designate this operation as follows

wπ(x) = mod(x+ π, 2π)− π. (1)

Note that when computing the difference between two angular
variables, the wrapping effect of the circle should be taken into
account, e.g., the difference between 178◦ and −178◦ should
evaluate to 4◦. This is also achieved by (1) when the difference
is given as the argument, i.e., difference between two angles
x and y is computed as wπ(x− y).

Let us assume the following system model

xk+1|k = fk(xk, uk) + nk, nk ∼ N (0, Q) (2)

where xk is the system state, uk is the control input, nk
is process noise, and fk( · ) is the non-linear system state
equation. In the EKF the idiosyncrasies of angular data appear
most prominently in the correction step when calculating the
innovation, which should be computed as

xk+1 = xk+1|k +Kk wπ(zk − hk(xk+1|k)), (3)

where Kk is the Kalman gain, zk is the measurement, and
hk( · ) is the non-linear measurement equation.

To demonstrate this, let us take a simple example of
having an identity measurement equation, xk+1|k = 358◦,
zk = 2◦ and Kk = 0.5. If we would not wrap the innovation,
the updated state would yield a clearly incorrect result of
xk+1 = 180◦ inlieu of xk+1 = 360◦. For practical purposes,
after correction and prediction the system state can be checked
to the required interval by computing xk+1 ← wπ(xk+1). In
the sequel when we refer to the modified Kalman filter, it
entails treating angular variables with the previously intro-
duced operation. Furthermore, we assume that the reader is
familiar with EKF equations, which we will not present or
derive explicitly in order to keep the brevity of the paper.

B. Lie Groups
A Lie group G is a group which is also a smooth manifold

and the group composition and inverse are smooth functions
on the manifold G. A manifold is an object that looks locally
like a piece of Rn and G is ‘smooth’ in the sense that is
has a tangent space, of the appropriate dimension, at each
point. Take for example the circle, a curve in R2 which looks
locally (but not globally) like R1. For a matrix Lie group the
composition and inverse are simply matrix multiplication and
inversion, with the identity element In×n [10].

A Lie Algebra g is an open neighborhood of 0n×n in
the tangent space of G at the identity In×n. The matrix
exponential expG and matrix logarithm logG establish a local
diffeomorphism between Lie groups and Lie algebras [8]

expG : g→ G, logG : G→ g. (4)

The Lie Algebra g associated to a p-dimensional matrix Lie
group G ⊂ Rn×n is a p-dimensional vector space [10]. A
linear isomorphism between g and Rp is given by

[·]∨G : g→ Rp, [·]∧G : Rp → g. (5)

Lie Groups are not necessarily commutative. The following
two operators capture this property
• the adjoint representation of G on Rp

AdG : AdG(X)x =
[
X[x]∧GX

−1]∨
G (6)

• the adjoint representation of Rp on Rp

adG : adG(x)y = [[x]∧G [y]∧G − [y]∧G [x]∧G ]
∨
G (7)

where x, y ∈ Rp. In the sequel, these operators, the exponen-
tial and logarithmic mapping are given concrete form for the
pertinent Lie groups.

C. The SO(2) group
In this example our system state (azimuth of the tracked

object) is modeled as the group G = SO(2), i.e., as the rotation
matrix Xk = Rθk

Rθk =

[
cos θk − sin θk
sin θk cos θk

]
. (8)

The composition and inverse in SO(2) are simply evaluated
as X1X2 = R1R2, X

−1 = RT. For this case the associated
Lie algebra which bridges Xk ∈ G and xk = θk ∈ R1 is
g = so(2), and the following holds

[θk]∧G =

[
0 −θk
θk 0

]
. (9)

The link between SO(2) and so(2) is given by the exponential
and logarithmic mapping

expG([θk]∧G) = Rθk : so(2)→ SO(2), (10)
logG(Rθk) = [θk]∧G : SO(2)→ so(2). (11)

Due to the commutativity of SO(2), the adjoint operators are

adG(θk) = 0, AdG (expG ([θk]∧G)) = 1. (12)

These properties greatly simplify the LG-EKG formulae for
the SO(2) group which will become evident in the sequel.



D. The SO(2)× R2 group

In this section we propose to model the system state as the
Cartesian product of groups G = SO(2)×R2. This is a slight
abuse of notation intended for clarity, since when talking about
R within the group or algebra, we are actually referring to the
group of algebra representation of R, for which the explicit
representation is given further in the paper. The moving object
state Xk will represent the azimuth of the target as a rotation
matrix Rθk ∈ SO(2), angular velocity as a real number ωk ∈
R, and angular acceleration also as a real number αk ∈ R.
The system state Xk can be symbolically represented as

Xk =


Rk [

1 ωk
0 1

]
[
1 αk
0 1

]
 =

Rkωk
αk


G

. (13)

Note that composition and inverse on such a group is evaluated
as follows

X1X2 =

 R1R2

ω1 + ω2

α1 + α2


G

, X−1 =

RT

−ω
−α


G

. (14)

The associated Lie algebra is g = so(2)×R2 which bridges
the state on the Lie group Xk ∈ G with the vector xk =
[θk ωk αk]T ∈ R3, and the following holds

[xk]∧G =

[θk]∧SO(2)

[ωk]∧R
[αk]∧R

 =

[θk]∧SO(2)

ωk
αk


g

,

(15)

where [θk]∧SO(2) is given by (9), while

[ωk]∧R =

[
0 ωk
0 0

]
and [αk]∧R =

[
0 αk
0 0

]
. (16)

The link between the group G and the associated algebra g is
defined by the exponential mapping

expG ([xk]∧G) =

expSO(2)

(
[θk]∧SO(2)

)
ωk
αk


G

=

Rkωk
αk


G

,

(17)

and logarithmic mapping

logG (Xk) =

logSO(2) (Rk)

ωk
αk


g

=

[θk]∧SO(2)

ωk
αk


g

. (18)

Furthermore, since SO(2) and R are abelian and the Cartesian
product of abelian groups is abelian, the adjoint operators are
again trivial

adG(xk) = 03×3, AdG (expG ([xk]∧G)) = I3×3. (19)

III. THE EKF ON MATRIX LIE GROUPS

As in the case of classical Kalman filtering, we need to
begin by defining a motion model by which we will calculate
the prediction. For general filtering on matrix Lie groups, the
system model is defined by the following equation [8]

Xk+1 = f(Xk, uk, nk) = Xk expG

(
[Ω̂k + nk]∧G

)
, (20)

where Xk ∈ G is the system state at time k, G is a
p-dimensional Lie Group, nk ∼ NRp(0p×1, Qk) is white
Gaussian noise and Ω̂k = Ω(Xk, uk) : G × Rw → Rp is
the system state equation which describes how the model
acts on the state and control input in order to calculate the
displacement.

Note that the function of Ω̂k is to take the system state
which resides on G and the control input which resides on Rw,
calculate the displacement by applying the system model, and
then transfer the displacement to the vector space Rp where
additive noise is added. This displacement is then transferred
to the associated Lie algebra by the [ . ]∧G operator and then
exponentially mapped back to the Lie group to be added by
way of composition to the system state Xk. Given that, a
question arises how to implement a specific system model,
since in LG-EKF it operates through a displacement? That is,
how to construct Ω̂k from fk(xk, uk)? The first step would be
to write the system equation as fk(xk, uk) = xk + f̂k(xk, uk)
which can then be practically ‘translated’ to appropriate Ω̂k.
Note that generality is not lost here since −xk can be included
within f̂k(xk, uk),

The prediction step of the LG-EKF is governed by the
following formulae [8]

µk+1|k = µk expG

(
[Ω̂k]∧G

)
(21)

Pk+1|k = FkPkFTk + ΦG(Ω̂k)QkΦG(Ω̂k)T , (22)

where µk ∈ G is the estimated mean value of the system state
Xk, Pk ∈ Rp×p is the estimated covariance matrix, while other
terms are non-trivially calculated matrices

Fk = AdG

(
expG

(
[−Ω̂k]∧G

))
+ ΦG(Ω̂k)Ck, (23)

ΦG(ν) =

∞∑
m=0

(−1)m

(m+ 1)!
adG(ν)m, ν ∈ Rp, (24)

Ck =
∂

∂ε
Ω (µk expG ([ε]∧G) , uk−1)|ε=0 . (25)

The parameter ε ∈ Rp can be seen as a Lie algebraic error
which is approximated as being distributed according to a
classical Euclidean Gaussian distribution ε ∼ NRp(0p×1, Pk).
It is interesting to note that the mean value µk resides on
the Lie group G, while the covariance matrix Pk describes
uncertainty in Rp. Although at first this appears peculiar, it
is a consequence of modeling the uncertainty of states on
Lie groups by the assumption of the concentrated Gaussian
distribution Xk ∼ G(µk, Pk). In essence, the state resides on
the group, but its uncertainty resides on the tangential vector
space. For a more formal introduction of this concept, please
confer [8].



The discrete measurement model on the matrix Lie Group
is given as follows

zk+1 = h(Xk+1) expG′ ([mk+1]∧G′) , (26)

where zk+1 ∈ G′, h : G → G′, and mk+1 ∼ NRq (0q×1, Rk)
is white Gaussian noise. Note that here a different group G′ is
used since the system state and measurements might belong to
different groups. Having the measurement model defined, we
can proceed now to the update step which will first constitute
the calculation of the Kalman gain

Kk+1 = Pk+1|kHTk+1

(
Hk+1Pk+1|kHTk+1 +Rk+1

)−1
,
(27)

where the measurement matrix Hk+1 is calculated via

Hk+1 =
∂

∂ε

[
logG′

(
h(µk+1|k)−1

h
(
µk+1|k expG ([ε]∧G)

))]∨
G |ε=0

.
(28)

Furthermore, the innovation vector multiplied by Kalman gain
is computed as

νk+1 = Kk+1

[
logG′

(
h(µk+1|k)−1zk+1

)]∨
G′ . (29)

Finally, the update of the system state and covariance matrix
can be evaluated as [8]

µk+1 = µk+1|k expG ([νk+1]∧G) (30)

Pk+1 = ΦG(νk+1)
(
Ip×p −Kk+1Hk+1

)
Pk+1|kΦG(νk+1)T .

(31)

We can notice similarities between the LG-EKF and EKF
equations and, indeed, when G and G′ are Euclidean spaces the
LG-EKF reduces to EKF [8]. Furthermore, due to the results
(12) and (19), matrices Fk and ΦG(ν) for both SO(2) and
SO(2)× R2 evaluate to

ΦG(ν) = I, Fk = I + Ck. (32)

In the sequel we derive the LG-EKF for the groups which
we propose to utilize for tracking of moving objects with
angular measurements and show that in this special case the
LG-EKF reduces to the heuristically modified EKF.

A. LG-EKF on SO(2)

In this section we derive the LG-EKF filter for state esti-
mation on G = SO(2). For this group, mathematically dense
LG-EKF equations are simplified and serve well to intuitively
grasp the mechanics of the filter.

1) Prediction: Let us take two examples of system models.
In the first we assume a stationary process, i.e., in the
prediction the mean value will remain unchanged except for
the uncertainty that is added through the process noise (this is
similar to the von Mises filter [1])

xk+1|k = xk + nk, nk ∼ NR1(0, σ2
Q). (33)

This yields the LG-EKF system model Ω(Xk) = 0 with the
same process noise nk, which when inserted in (21) will

evaluate through the exponential as an identity matrix, thus
leaving the mean value unperturbed.

In order to compute the prediction of the covariance matrix
via (22), given the result in (32), we only need to determine
Ck. In this case the Lie algebraic error is ε ∈ R1 and due to
the system model the matrix Ck evaluates to zero, thus leaving
Fk = 1, and the prediction equations are

µk+1|k = µk, Pk+1|k = Pk +Qk. (34)

As we can see, these are the same formulae that an EKF
prediction would yield with (33) as the system model.

As the second example, we take the non-linear system [4]
where the robot rotary joint angle was estimated

xk+1|k = xk + c1 sin(xk) + c2 + nk, (35)

where second and third term account for gravity and velocity,
while the final term is again one-dimensional white Gaussian
noise. This yields the following LG-EKF system model

Ω(Xk) = c1 sin([log(Xk)]∨G) + c2. (36)

Note that [log(Xk)]∨G is necessary to bring the rotation matrix
with parameter µk to a scalar angle in R1. The Lie algebraic
error is again ε ∈ R1 and given the system model (36) matrix
Ck evaluates to

Ck =
∂

∂ε
Ω

([
cosµk − sinµk
sinµk cosµk

] [
cos ε − sin ε
sin ε cos ε

])
|ε=0

=
∂

∂ε
Ω

([
cos(µk + ε) − sin(µk + ε)
sin(µk + ε) cos(µk + ε)

])
|ε=0

=
∂

∂ε
(c1 sin(µk + ε) + c2)|ε=0 = c1 cosµk (37)

This means that Fk = 1 + c1 cosµk, and that the LG-EKF
prediction equations are

µk+1|k = µk expG ([c1 sin([log(Xk)]∨G) + c2]∧G)

Pk+1|k = Pk(1 + c1 cosµk)2 +Qk. (38)

We can see that the covariance prediction formula is identical
to the EKF covariance prediction.

More generally, to demonstrate the equivalence of the
modified EKF and SO(2) LG-EKF prediction steps we need
to show that Fk = 1 + Ck is equal to

Fk =
∂fk(xk, uk)

∂xk |xk=µk

, (39)

where Fk is the state transition matrix, i.e., the EKF system
state Jacobian of (2). By inspecting (37) we can notice that
for SO(2) the argument within Ω will always be the sum of
the mean value and the Lie algebraic error µk + ε. This gives

Fk = 1 +
∂

∂ε
Ω(expG([µk + ε]∧G), uk)|ε=0

= 1 +
∂

∂ε
f̂k(µk + ε, uk)|ε=0

= 1 +
∂

∂ε
(fk(µk + ε, uk)− (µk + εθ))|ε=0

=
∂fk(µk + ε, uk)

∂ε |ε=0
=
∂fk(ξk, uk)

∂ξk |ξk=µk

, (40)



where variable substitution was performed in the last step:
ξk ← µk + ε, ∂ξk ← ∂ε. In the end Fk evaluates to the EKF
Jacobian Fk when the underlying group is SO(2).

2) Correction: Since we are measuring angles, we define
the measurement Lie group as G′ = SO(2) and the measure-
ment function h : SO(2)→ SO(2)

h(Xk+1) = Rk+1, mk+1 ∼ NR1(0, σ2
R), (41)

which is trivial since the measurement and state group are the
same, while the measurement noise is a one-dimensional white
Gaussian noise. As in the prediction step, the associated Lie
algebra is g′ = so(2).

To compute the correction step, we need to evaluate (28)
for the LG-EKF on SO(2). The composition of the predicted
mean µk+1|k and the Lie algebraic error yields

h(µk+1|k expSO(2)([ε]
∧
SO(2))) =[

cos(µk+1|k + ε) − sin(µk+1|k + ε)
sin(µk+1|k + ε) cos(µk+1|k + ε)

]
.

(42)

Since h(µk+1|k)−1 is the transpose of the corresponding
rotation matrix, by inserting these results in (28) we can
calculate the measurement matrix

Hk+1 =
∂

∂ε

([
logG

([
cos ε − sin ε
sin ε cos ε

])]∨
G

)
|ε=0

= 1 (43)

Given this results it is straightforward to see that Kalman
gain and covariance update equation of SO(2) LG-EKF are
equal to the EKF equations. The state correction equations
yield the same result, except that the LG-EKF takes wrapping
into account by composition of rotation matrices, while the
modified EKF computes everything in R1 and would need to
wrap the corrected state with wπ( · ).

B. LG-EKF on SO(2)× R2

In this section we derive the LG-EKF filter for state estimation
on G = SO(2) × R2. Given the demonstrated equality of
the SO(2) LG-EKF and the modified EKF and that LG-EKF
reduces to EKF for Euclidean spaces, it is intuitive to expect
that this result would extend to groups derived by composing
SO(2) with Euclidean spaces. In the sequel we illustrate this
property by deriving a constant angular acceleration model for
tracking with angle-only measurements.

1) Prediction: Given the state representation, we can now
define the system model. For this purpose, we use the constant
angular acceleration model Ω̂k = Ω(Xk) : G→ R3

Ω(Xk) =

Tωk + 1
2T

2αk
Tαk

0

 , nk ∼ NR3(0, Q). (44)

Note that the displacement due to motion is calculated first
in R3 and then according to (21) transferred to Lie algebra
g, exponentially mapped to the group G and then by way of
composition added to the system state Xk.

In this case, the Lie algebraic error is ε = [εθ εω εα]T ∈ R3,
hence the composition of the mean value µk and ε yields

µk expG([ε]∧G) =

 RkRε
ωk + εω
αk + εα


G

, (45)

with RkRε has the same for as the matrix product in (42). By
applying the motion model (44) on this results we get

Ω(µk expG([ε]∧G)) =

T (ω + εω) + 1
2T

2(α+ εα)
T (α+ εα)

0

 . (46)

To compute the prediction step for the covariance matrix, we
need to calculate matrix Fk. Since adjoint operators are trivial,
using (46) we calculate

Fk = I + Ck =

1 T 1
2T

2

0 1 T
0 0 1

 . (47)

We can see that the matrix Fk evaluates to the well known
transition matrix of the classical EKF constant acceleration
motion model.

2) Correction: Since here we track moving objects by
measuring angles, we define the measurement Lie group G′ =
SO(2) and the measurement function h : SO(2)×R2 → SO(2)

h(Xk+1) = Rk+1, mk+1 ∼ NR1(0, σ2
R) (48)

which in this case simply extracts the rotation matrix Rk+1

from Xk+1. Calculation of the matrix Hk+1 is the same as in
(28), except that ε is now a vector

Hk+1 =
∂

∂ε
(εθ)|ε=0 = [1 0 0]. (49)

Again, the same result as we would expect for the EKF
measurement matrix.

IV. EXPERIMENTS

As a practical example of an application of the studied filter
we apply this on the problem of speaker tracking with a micro-
phone array and in the present paper we test the SO(2)×R2

LG-EKF on real-world data. For the sound acquisition we
used the ManyEars framework consisting of an 8-channel
USB sound card [11], while for obtaining measurements we
used the beamforming algorithm for speaker localization [12]
implemented under the Robot Operating Systems [13] within
the same framework. The maximum of the beamforming
energy was picked as the speaker measurement.

The experiments were conducted in a 120 m2 room with
parquet wooden flooring and one side covered with windows.
The speaker was simulated by a loudspeaker playing an
excerpt from Nature’s podcast Audiophile in English. The area
in which the loudspeaker moved was covered by a motion
capture system, which was used to generate ground truth data.
In order to handle outliers, we used validation gating; namely,
the innovation matrix Sk+1 = Hk+1Pk+1|kHT

k+1 +Rk+1 was
calculated and we applied the standard χ2–test

νk+1S
−1
k+1ν

T
k+1 < γ, (50)
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Fig. 1: Performance of the LG-EKF on SO(2)×R2 when tracking a moving
speaker. The solid black line is the ground truth as given by the motion capture
system, the green solid line is the estimated state of the speaker, while the
gray circles represent measurements, i.e. outputs of the beamformer. State
RMSE is given in the title of each of the subfigures.

where the threshold γ was determined from the inverse χ2
p

cumulative distribution at a significance level a = 0.95 and
p degrees-of-freedom. Figure 1 shows the experiment results
and corroborates that the filter successfully manages to track
the moving speaker in spite of the number of outliers. Note
that the modified EKF would yield the same results, except
that in the case of the LG-EKF the system state was defined
on SO(2) × R2 and the idiosyncrasies of angular data were
intrinsically taken care of.

V. CONCLUSION

In this paper we have studied directional moving object
tracking in 2D based on the extended Kalman filter on matrix
Lie groups. First, we have proposed to analyze this estimation

problem by modeling the state to reside on the SO(2) group.
Subsequently, we have shown that the SO(2) filter derivation
based on the mathematically grounded framework of filtering
on Lie groups yields evaluates to heuristically wrapping the
extended Kalman filter. We emphasize that this result applies
only to the SO(2) filter and is not intended to be extended
to other Lie groups or combinations thereof. Second, we have
derived the constant angular velocity SO(2)×R2 filter, where
the system state consisted of azimuth, angular velocity and
angular acceleration. For this filter we showcased a real-world
experiment of a speaker tracking problem with a microphone
array by assessing the accuracy using the ground truth obtained
by a motion capture system.
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