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Abstract—In this paper we present a simple and intuitive
approach to teleoperating a 3 or higher degrees-of-freedom
(DOF) robotic arm in Cartesian space. Using an RGBD camera,
we retrieve the position of the user’s palm. This position is
then translated into the desired robotic arm position, which is
then used as an input to a control loop. The entire system is
implemented in the Robotic Operating System, enabling simple
functionality transfer to any compatible robotic arm. The system
was tested on the Kinova Jaco 6DOF robotic arm with the aim of
using it for object manipulation. We use the inverse kinematics for
calculating the joint rotation velocities required for following the
Cartesian path of the human hand. The resulting joint velocities
are then sent to the robotic arm control interface which then
passes commands to the pertaining API. Results corroborate the
validity of the proposed approach for robotic arm teleoperation,
opening the possibility for many potential applications.

Index Terms—Robotic arm, Palm detection, Teleoperation,
Kinect

I. INTRODUCTION

Robotic arms have been used for decades as means of
manipulating objects in dangerous environments, performing
arduous, repetitive tasks, and assisting the disabled. In cases
where robotic arms are not autonomously performing these
tasks, they are usually teleoperated by humans. More often
than not, these methods of teleoperation offer a somewhat
steep learning curve, requiring the user to be familiar with
various modes of control and settings. Some newly developed
methods [1]–[3] are more intuitive, but require the user to wear
certain equipment which is not always practical and requires
a sizeable amount of set up time. On another note, a common
problem with machine learning systems like [1], [2] is that
they require training for each new user since joint mapping
does not scale.

Successful replication of human arm movement with robotic
arms is barred by the complexity of the shoulder and finger
joints. In practice most currently available robotic arms cannot
match human dexterity. For this reason, direct mapping of
human arm joint positions to a robotic arm is still not a viable
option, but is a promising one for the future.

Such considerations have caused researchers to explore
various modes of teleoperation that reduce the dimensionality
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of control required by the operator, giving some control up to
various algorithms in exchange for a more practical system.
Studies in human motor-control have suggested that a low
dimensional representation is feasible at the kinematic level
[4]. The work presented by [1], [2] follows this result, using
electromyography signals corresponding to the activation of
the shoulder muscles to control a robotic arm in 3D space.
We find another interesting approach in [3], where a rig with
a force feedback mechanism is used to map the joints of a
human arm to an anthropomorphic robotic arm.

In this paper we propose a system which produces a simple
and intuitive way of manipulating objects that, once set up,
requires little to none prior knowledge of the system. The
hardware used for detection is easily obtainable and low-cost.
We maintain a focus on making the system generalizable
to a variety of robotic arms, exposing all the important set
up parameters through the Robot Operating System (ROS)
parameter interface. All of the libraries and packages used in
this project are well documented and maintained, hopefully
making our code compatible with future versions of ROS.
Unlike the majority of complex and slow algorithms used
in hand-pose estimation and tracking problems, the main
advantage of the proposed approach is its simplicity and speed
which offers a large bandwidth for possible upgrades.

The paper is organized as follows. In Section II we cover
the theoretical framework for such a system under the Robot
Operating System (ROS) architecture. Section III contains an
overview of the hand-tracking algorithm developed for the
Microsoft Kinect RGBD camera. In Section IV we describe
the proposed system for controlling the Kinova Jaco 6DOF
robotic arm. The system was tested in a variety of situations,
with an accent on prehensile and non-prehensile manipulation
of everyday objects. It is our opinion that these results show
potential for this kind of system in a number of different
applications. In the end, Section V concludes the paper.

II. SYSTEM OVERVIEW

Conceptually, our proposed system takes the form of a
high level control loop (Fig. 1). In this analogy, the detected
human hand and robotic arm positions serve as input and
feedback data, respectively. Before subtraction, both the input
and feedback data are placed in the same reference frame. The
motion planner, serving as the regulator, subtracts the data and
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Fig. 1: Block diagram representing the system. Note that FK
represents the forward kinematics of the robot. The control
and interface blocks compose the motion planner.

converts the resulting difference into joint speeds of the robotic
arm. In this section, we focus on the motion planner and the
various components it utilizes to control the motion of the
robotic arm.

A. Input data

The input data takes the form of a vector in R6 and a
separate scalar in R. The scalar c represents the amount of end-
effector closure, while the values x, y, z, ψ, θ, ρ represent
the positions and rotations in Cartesian space:

k =
[
x y z ψ θ ρ

]T
; c . (1)

We denote the current pose of the end effector in the base
coordinate frame as p and the end-effector closure as cp:

p =
[
x y z ψ θ ρ

]T
; cp . (2)

To make the input data usable, we need to transfer it to a
coordinate frame of the robotic arm. Another thing which we
also have to account for is the difference in range between the
human and robotic arms.

One possible solution for this would be to find a transfer
matrix between the Kinect and robot arm base coordinate
frames, directly mapping k and c to the desired pose of the
end-effector. The downside to this method is that it depends
on the position of the Kinect relative to the robotic arm. This
makes it impractical to set up the system and makes it prone to
outside disturbances. We circumvent this problem by making
the system start only when the human hand is near a certain
position in the Kinect coordinate frame. When the hand is
first detected, its position it then matched with the starting
position of the end effector p0. In this manner we create
a new coordinate system at the center of the human hand.
All movement in this coordinate system is interpreted as the
displacement of the end-effector from the position p0. Now
we can define the modified reference data r:

r = p0 + k . (3)

Now we can also define e as the difference vector between
the current hand position and the starting position displaced
by detection data:

e = r− p = p0 + k− p . (4)

Notice that the end-effector closure variable c is coordinate
system independent, thus allowing us direct mapping:

cp = c . (5)

B. Regulator

The regulator uses the value e to control the robotic arm
path. The path is realized and regulated using the Cartesian
velocity interface of the robot. We have chosen this option
as opposed to a position based approach since it avoids time-
based parametrization and is inherently smooth in most cases.
One of the advantages this gives is the ability to use PID
regulation on the path itself, which determines the inertia with
which the robotic arm follows the human hand.

If we interpret e as the unregulated desired velocity of the
arm then we can define u as the regulated variant. The D and
I functions represent the integral and derivative components,
respectively [5]:

u(k) = Kpe(k) +KiI(e(k), T ) +KdD(e(k), T ), (6)

where T represents the rate at which the system operates. It
is practical to adjust T to values where the distance the robot
hand can move in one interval is strictly lower than u. This
adjustment keeps the movement smooth since it is less likely
that the end-effector will overshoot the target position.

In cases where a Cartesian velocity interface is not available,
one can be constructed given that the robotic arm supports
joint velocity commands. This requires an exposed inverse
kinematics function for the particular robot which is used for
transforming Cartesian positions to joint values. The inverse
kinematics problem is not trivial and can be approached in
a variety of ways. Given the inverse kinematics function IK
and the values of current joint angles q, we can calculate the
required joint velocities:

uq = IK(r)− q . (7)

Another way to transform Cartesian into joint velocity would
be using the inverse Jacobian method [6]:

uq = J−1u . (8)

This method applies to velocities, but instead we use u without
changing any parameters. We use the fact that u is relatively
small because of the high operating frequency, allowing for
this kind of approximation. This method was tested in a sim-
ulated environment using Gazebo, a 3D interactive simulation
system with an in-built ros_control interface.

The inverse kinematics of the Jaco robotic arm is efficiently
calculated by the official API. Moreover, since the official API
also provides Cartesian velocity commands, it was used for
performing the tests described in the results section.

C. ROS implementation

ROS is an open-source, meta-operating system that handles
hardware abstraction, low-level device control, implementation
of commonly-used functionality, message-passing between
processes, and package management. It also provides tools



Fig. 2: Graphical user interface for hand tracking

and libraries for obtaining, building, writing, and running
code supporting distributed computing. At the file system
level, the main organizational component of a ROS system
is the package. A package may contain executables (nodes),
libraries, data-sets and configuration files. In a robot control
system, nodes process data and communicate with each other
through the Computation Graph.

The Computation Graph is the peer-to-peer network of ROS
processes that are processing data together. Communication
is done by nodes subscribing to and publishing standardized
data structures called messages by way of topics. Topics can
be seen as a location for a certain type of message to be
subscribed and published to. Possibly the greatest advantage
ROS has on other similar projects is the community. Most of
the packages are community maintained by a large and active
user base, which makes the process of learning the system
considerably easier.

The system is implemented in ROS Indigo-Igloo, com-
patible with Ubuntu 14.04 OS. It consists of 2 nodes:
the hand_detection node interfaces with Kinect and
runs the hand detection algorithms on the recieved data,
the arm_control node generates the control data u,
which is then sent to the ros_control interface. The
hand_detection node, described in more detail in Sec-
tion III, publishes the processed Kinect data u in the
form of a geometry_msgs\Twist ROS message[] to the
detection_data topic.

The detection_data topic is subscribed to by the
arm_control node, which runs the control algorithm every
time a new message arrives to the topic. From this follows that
we can control the refresh rate T by adjusting the publishing
rate of the hand_detection node.

The arm_control node then sends arm and gripper com-
mands to their respective controllers, spawned and managed
by the ros_control interface. It is important to note that
the gripper is also controlled using joint velocities, so a value c
of 0 would correspond to a maximum velocity closing of the
gripper. This is managed by configuring the controller joint
angle and velocity limits in the configuration files.

III. HAND-TRACKING ALGORITHM

The problem of hand pose estimation is already solved
with some degree of success in classic RGB images using
complex algorithms and large training sets [7], [8], [9]. The
main disadvantages of using that approach lie in its depen-
dency on the light parameters of the image as well as its
complexity. These approaches have problems with real-time
detection which is a requirement for our system. As depth
cameras became more and more available to general public,
an opportunity is provided to use depth data as a more reliable
and robust data source which works well in any provided light
condition.

A. Hand localization

Regardless of the camera being used, the first step in precise
detection of a hand pose is to determine its position in the
image. Various methods have been proposed for solving this
problem, but most of them use some kind of a hint where the
hand might be in the image. Moreover, many of the methods
require users to wear a special non-reflective bracelet or some
sort of marker object that can help estimate the hand location.
This can vastly speed up hand isolation and offer more time
to conquer hand pose estimation.

Qian et al. in their work [10] initially assume that hand is
located closest to camera in relation to other objects in scene.
Moreover, it requires human to wear non-reflective bracelet
and uses flood-filling algorithm to extract part of image that
is closer than the bracelet. Shotton et al. propose a different
initial method, which is used to detect human pose in depth
image [11]. It uses depth invariant features and trained random
forest for binary per-pixel classification whether it is part of
hand or not. Thompson et al. [12] use this method to extract
one of more hands from the image. The method is extremely
efficient and fast, especially on GPU but within this work there
are no possibilities to use cluster of 1000 cores to train random
forest for a few days so we were trying to conquer this problem
using a simpler approach with still satisfying results.

In our work the background subtraction method assumes
that hand is the closest object to the camera (Fig. 2 shows
the user interface of the hand tracking algorithm). Unlike [10]
the bracelet is replaced with simple and fast depth filter at
an empirically determined depth offset of 110mm. Figure 3
shows successful hand isolation invariant to provided palm
incline even when palm is horizontally placed or closed.
This simple but efficient and above all fast filter leaves more
processing time to be spent in the upcoming detection stages.

If the closest point of the palm is on the middle finger, the
carpal part of the palm could be omitted and also if the closest
point is on the wrist, a part of forearm can be included (Fig.
4). Palm location is considered as the center of a contour that
separates the palm from the background. Depth coordinate of
the palm location is calculated in the proximity of that point.
Although some hand poses can lead to the center point being
outside of the palm itself, in practice this scenario is relatively
rare and will be disposed as invalid (depth cameras have issues
with detecting that kind of poses in the first place).



Fig. 3: Successful palm isolation

Fig. 4: Poor palm isolation

B. Hand pose estimation

Qian et al. have modeled an average hand using 48 spheres
and 26 DOF [10]. Extreme points in extracted hand are can-
didates for tips of fingers and wrist. Using inverse kinematics
they try to fit constructed model and best fit is considered as
the current hand pose. Thompson et al. [12] use convolutional
neural network cascade trained on set of 70 000 marked
images. As well as [10] this paper also uses inverse kinematics
to determine current hand pose from the neural network output.
To model the hand this paper uses an open source library
libhand [13]. It is notable to mention that both methods are
able to recognize hand pose from single depth image only.
Once the palm is extracted from the background, further
processing is much simpler. Considering application of this
tracker, precise hand pose estimation using many DOF is
unnecessary. A focus has been made on palm openness as a
binary indicator and some attempts to extract palm orientation
have been made.

Hand openness is relatively abstract concept. We define a
closed palm as a pose where every interphalangeal joint is
flexed to a high degree possible. Everything else is considered
an open palm. This concept emerges from the application of
the tracker. As robot grasping mechanism differs from robot
to robot, a direct correlation between per finger flexion and
extension is not possible so the classifier determines whether
robot will try to grasp something or not. This ensures the
controlling does not depend on grasping type.

Fig. 5: Palm contour and convex hull

Binary classifier is a trained function of only two partly
correlated features, depth invariant palm area and ratio of palm
area and area of its convex hull (Fig. 5). Whilst constructing
the classifier special attention has been made to prefer quality
of classifying palm as closed at the expense of quality of open
palm classification. This is also application specific improve-
ment that assures once the robot has grasped something it will
not release it unintentionally.

Training has been made on a database of 2600 palm images
with the same amount of opened and closed examples. Using
information from sequential images, a major improvement
has been made by canceling noise from the depth camera.
Empirically the best noise cancellation has been made using 7
sequential images and applying a mean filter on the detection
outputs.

C. Results

Using an unoptimized Python script and average personal
computer this method can generate up to 125 images per
second (and even more if optimized and transfered to C++) and
leaves space for possible upgrades. Determining the quality of
detection has been accomplished in two ways. As the detector
uses a single image for detection and sequential images for
noise cancellation, a test has been developed for both single
and sequential images. In both cases, the test consisted of
classifying the palm correctly as opened and classifying it as
closed.

Test has been made on 3108 sequential images of which
1323 with open and 1785 with closed palm. Unlike the
learning process which was developed using a single persons
palm in the testing process multiple persons have been asked
to provide data. As expected, sequential images have proven to
be significantly bettera with over 96% of success rate (Tables I,
II, III, and IV). Closed palm detection is better than open palm
detection which was the goal. The reason why the closed palm
detection should be especially taken care of is the process of
grasping which should be as reliable as possible. For a grasp
to fail, using 30 fps data feed and having in mind robot speed,
approximately 10 sequential detection fails are required. This
makes it unlikely for such an event to occur.



Hit Miss Sum
Example count 1203 120 1323
Percentage 90.9% 9.1%

TABLE I: Classification of open palm state in single image

Hit Miss Sum
Example count 1728 57 1785
Percentage 96.8% 3.2%

TABLE II: Classification of closed palm state in single image

Hit Miss Sum
Example count 1256 67 1323
Percentage 94.9% 5.1%

TABLE III: Classification of open palm in sequential images

Hit Miss Sum
Example count 1740 45 1785
Percentage 97.5% 2.5%

TABLE IV: Classification of closed palm in sequential images

IV. EXPERIMENTAL RESULTS

The system was developed and tested using the 6 DOF
Kinova Jaco robotic arm. The official arm API offers both
velocity and position commands in cartesian and joint space.
This allowed us to construct a cartesian velocity interface for
the robot which can handle position and orientation inputs.

A. Practical Considerations

It is useful to limit the tracking space to a sphere about
1.5 meters wide, centered at a point 1.5 meters away from
the lens. This way the system is only first triggered by the
opperator stepping into the sphere. Such a set up allowed for
maximum movement space of the operators hand and simple
cessation of operation. Leaving the sphere causes the hand to
return to its starting position.

At the time of writing, an effective way of detecting human
hand orientation using the Kinect is still to be developed, so
the orientation of the arm remains constant in our testing. To
implement a hand orientation detecting algorithm, one only
has to publish geometry_msgs\Twist messages to the
topic subscribed to by the control node. Swapping detection
algorithms is made easy by use of the roslaunch system.

B. Simulation

The system proposed in Section II (Fig. 1) was simulated
using the Gazebo robot simulation environment. As mentioned
earlier, Gazebo allows for controlling the robot model using
the ros_control interface. This enables the developed
control algorithms to be easily transferable to a real robot,
provided it also has an ros_control interface.

The inverse velocity kinematics for the robotic arm are
calculated using The Kinematics and Dynamics Library (KDL)
[14]. KDL uses the same robot description file as Gazebo
to construct a kinematic chain describing the robotic arm
it is then possible to solve forward kinematics, construct
a Jacobian matrix and calculate inverse kinematics using
iterative methods. System precision was tested by defining a
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Fig. 6: Top: Desired Cartesian trajectory and the trajectory
performed by the simulated Jaco arm. Bottom: Orientation
of the arm during trajectory execution. In both the upper and
lower images we see that the orientation is near constant.

square trajectory for the arm in the x−z plane with constant
end-effector orientation. The distance between goal trajectory
points is around 0.001 cm, which gives a presumed arm speed
of around 3 cm/s given the Kinects refresh rate. The results
show a relatively low margin of error even with the most basic
form of Jacobian-based inverse velocity kinematics (Fig. 7).

C. Testing

Testing the system consisted of picking up various objects
from the table and placing them in a designated area. In the
first scenario, a bottle was manipulated using the arm and
consecutively moved from one side of the table to the other.
The second scenario consisted of placing a series of objects
inside of a plastic box.

We found that a using only the proportional term of (6)
gives satisfying results, following the human hand effectively
in 3D-space. This simplification gives a small absolute error
when the hand is static, but error build up is avoided since the



Fig. 7: Successful grasp for the first scenario

Fig. 8: Successful grasp for the second scenario

system constructs each new command using the initial position
of the robot.

The first scenario, shown in Fig. 7 resulted in a successful
grasp every time. We noticed that the system is suitable for
grasping bottle-like objects, since the hand tracking algorithm
has better hand detection capabilities when the hand is oriented
towards the camera. It was also found that it is useful to
limit the operation space of the manipulator in a way such
that it corresponds to the free space in front of the user in
order to maintain controllability. When the users hand leaves
the operation space, the manipulator will return to it’s initial
position as defined when the system was started.

In the second scenario, shown in Fig. 8, we attempted
sorting various objects into a plastic box. The lack of end-
effector orientation control made it somewhat difficult to grasp
smaller objects like screws, but grasping and placing non-rigid
objects like sponges proved to be successful. The high refresh
rate makes the system immune to noise when detecting hand
closure, resulting in a very low percentage of failed grasps.

V. CONCLUSION

Visual teleoperation is proven to be a useful tool, but to
make it usable outside of a laboratory setting, it needs to be
made simple and affordable. In our research we have shown

that this is possible by using relatively low-priced detection
hardware and open-source software. The open-source ROS in-
frastructure enabled us to develop high abstraction algorithms,
making the system reusable and adaptable to a variety of
hardware. The hand detection algorithm was developed using
the Microsoft Kinect platform with a focus on performance
rather than precision, since the control loop design of the
system enables efficient error correction. Finally, the tests
performed on the system showed great promise, as the intuitive
control mechanism made it easy to manipulate objects without
much prior knowledge of the system.

A lot of improvement can still be made going towards a
ubiquitous visual teleoperation system. Improving hand detec-
tion on low-priced hardware is inevitable, since it is important
to correctly capture the users commands. With more advanced
tracking systems for human joint positions, a general purpose
algorithm transforming human to robotic arm joint positions
could be developed, thus improving movement mimicking
capabilities.
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