
Exactly Sparse Delayed State Filter on
Lie groups for Long-term Pose Graph
SLAM

The International Journal of Robotics
Research
XX(X):1–27
©The Author(s) 2017
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

Kruno Lenac, Josip Ćesić, Ivan Marković and Ivan Petrović1

Abstract
In this paper we propose a SLAM back-end solution called the exactly sparse delayed state filter on Lie groups
(LG-ESDSF). We derive LG-ESDSF and demonstrate that it retains all the good characteristics of the classic
Euclidean ESDSF—main being the exact sparsity of the information matrix. The key advantage of LG-ESDSF in
comparison to the classic ESDSF lies in the ability to respect the state space geometry by negotiating uncertainties
and employing filtering equations directly on Lie groups. We also exploit the special structure of the information
matrix in order to allow long-term operation while the robot is moving repeatedly through the same environment.
To prove the effectiveness of the proposed SLAM solution, we conducted extensive experiments on two different
publicly available datasets, namely the KITTI and EuRoC dataset, using two front-ends: one based on the stereo
camera and the other on the 3D LIDAR. We compare LG-ESDSF with the general graph optimization framework
(g2o) when coupled with the same front-ends. Similarly to g2o the proposed LG-ESDSF is front-end agnostic and
the comparison demonstrates that our solution can match the accuracy of g2o, while maintaining faster computation
times. Furthermore, the proposed back-end coupled with the stereo camera front-end forms a complete visual SLAM
solution dubbed LG-SLAM. In the end, we evaluated LG-SLAM using the online KITTI protocol and at the time of
writing it achieved the second best result among the stereo odometry solutions and the best result among the tested
SLAM algorithms.

Keywords
SLAM, exactly sparse delayed state filter, Lie groups, graph optimization

1 Introduction

Mobile robots are about to become omnipresent.
Starting from our homes, where they could help us in
everyday chores, to search and rescue operations where
they could replace us in dangerous tasks, and finishing
with factories where, even nowadays, they increase
safety, production speed, and performance. Majority of
these robots will be capable to autonomously complete
complex tasks without human intervention in changing
and unknown environments. Regardless of the given task,
every autonomous mobile robot must have at its disposal
(i) a map of the environment, and (ii) its location within
the map. Since fully autonomous mobile robots should
not rely on a pre-built environment map, they should be
able to simultaneously build the map of the environment
and localize within the same map. This problem is
known in mobile robotics as simultaneous localization and
mapping (SLAM) and was one of the most intensively
researched problems during the past two decades. For more
information on the fundamentals of the SLAM the reader

is referred to Durrant-Whyte and Bailey (2006); Bailey
and Durrant-Whyte (2006), while a more detailed analysis
of SLAM observability and convergence can be found in
Dissanayake et al. (2011).

From the first solutions to the SLAM problem until
today, a large number of different SLAM algorithms has
been presented Cadena et al. (2016). In general, a SLAM
algorithm can be divided in two main parts: (i) the SLAM
front-end and (ii) the SLAM back-end. The SLAM front-end
is responsible for dealing with sensor data abstractions, e.g.,
extracting features and constraints, while the SLAM back-
end is responsible for estimation and optimization of both

1University of Zagreb Faculty of Electrical Engineering and Computing,
Croatia

Corresponding author:
Kruno Lenac, University of Zagreb, Faculty of Electrical Engineering
and Computing, Unska 3, 10000 Zagreb, Croatia.
Web: www.fer.unizg.hr/en/kruno.lenac
Email: kruno.lenac@fer.hr

Prepared using sagej.cls [Version: 2016/06/24 v1.10]

2 The International Journal of Robotics Research XX(X)

robot and map landmarks poses based on the SLAM front-
end constraints. In most SLAM algorithms, the SLAM
back-end is independent of the SLAM front-end, thus
allowing for the same front-end to be used with different
SLAM back-ends and vice-versa, depending on the system
requirements and available sensors. In the sequel we focus
our discussion to SLAM back-ends, more specifically on
the pose graph approaches, since the major part of this paper
and its contributions focus on this subject.

SLAM back-ends can be divided in two groups
depending on the approach to state optimization:
(i) filtering based (e.g. Aulinas et al. (2008)) and
(ii) graph-optimization based SLAM back-ends (e.g.
Grisetti et al. (2010)). Recently, works in the field of
optimization based SLAM have been specifically focusing
on various optimization related components, including
initialization, convergence and global optimality aspects.
The initialization aspects emphasize the problem arising
when non-Euclidean variables exist in the system, such
as rotation Carlone et al. (2015) or full pose estimation
Arrigoni et al. (2016). Also, once the initialization is
performed, convergence Carlone (2013) and global
optimality Briales and Gonzalez-Jimenez (2016, 2017)
aspects of the problem can be analyzed. Filtering based
SLAM back-ends can be divided based on the states used
for the map and location estimation. The first group are the
feature-based SLAM back-ends that estimate the current
robot pose and poses of extracted map landmarks. Given
that, map landmarks and the robot location are correlated
and must be updated in the same step. The second group
of filtering based approaches are called pose graph SLAM
back-ends. These approaches estimate a discrete robot
trajectory, while map landmarks are correlated only to
one of the discrete trajectory states. The result is that map
landmarks are no longer correlated to each other, but only
to a single trajectory state which then allows trajectory
estimation being independent of the environment map
estimation.

The approach that we propose in the present paper
falls under the category of filtering based pose graph
SLAM back-ends. Herein, we draw upon our earlier work
presented in a conference paper (Lenac et al. (2017)), where
we proposed a preliminary version of the novel filter on
Lie groups and experimental results comparing our SLAM
solution to state-of-the-art visual SLAM algorithms. The
main contribution of the present paper is the introduction
of a long-term pose graph SLAM implemented on Lie
groups. The Lie group implementation allows our SLAM
system to respect the state space geometry and thus achieve
state-of-the-art performance comparable to that of a popular
graph-optimization approach, namely g2o, but with smaller
computation time demonstrated on extensive experiments
using two different publicly available datasets, namely the

KITTI and EuRoC dataset. Our approach also retains all the
good characteristics of the pose graph SLAM from which
the most important two are sparsity of the information
matrix and the separation between trajectory and map
estimation.

The rest of the paper is organized as follows. In Section 2
we give a survey of the related research and elaborate
the contributions of the proposed solution in details. In
Section 3 we give an overview of the standard Euclidean
filter our novel SLAM solution is based on. Section 4 gives
introduction to the Lie group fundamentals required for
deriving the novel filter, while the SLAM based on the
novel filter is presented in Section 5. Section 6 presents
modifications applied to our SLAM system in order to allow
long-term autonomy. In the end, experimental results are
given in Section 7, while Section 8 concludes the paper.

2 Related research
Although the graph optimization approach to SLAM was
known and well defined in the early stages of SLAM
development, first SLAM solutions were nevertheless
based on the filtering approach. The main reason behind
this, at the time, was the inability to compute graph
optimization in the time required for successful SLAM
operation. The first filtering based SLAM solutions utilized
the extended Kalman filter (EKF); however, issues were
detected stemming from the linearization of both process
and measurement model and from the increasing number of
states when new landmarks are extracted and added as new
filter states. Through time, many efficient implementations
of the EKF-SLAM were presented, such as Dissanayake
et al. (2001); Guivant and Nebot (2001, 2002); Tardós
et al. (2002); Kohlhepp et al. (2004); Weingarten and
Siegwart (2006); Davison et al. (2007); Civera et al. (2010),
but the core problems remained. The first fundamentally
different approach to EKF-SLAM was presented in the
form of a particle filter (PF) SLAM, dubbed Fast-SLAM
in Montemerlo et al. (2002). The main advantage of the PF
is that there is no need to linearize the system model, while
the main drawback is high dimensionality of the state space.
This was solved in Fast-SLAM by applying Rao-Blackwell
marginalization. The improved version of the Fast-SLAM,
dubbed Fast-SLAM 2.0, was later presented in Montemerlo
et al. (2003).

In order to solve the issue of high dimensionality
of the EKF-SLAM state-space, researches turned to
the information form of the EKF called the extended
information filter (EIF). The main advantage of using EIF
in SLAM is that with a large numbers of landmarks in
the state-space, most of the off-diagonal elements of the
information matrix are close to zero. One of the first
successful solutions for the EIF-SLAM was presented in
Thrun et al. (2004) and more were presented thereafter

Prepared using sagej.cls

Lenac et al. 3

in Wang et al. (2006); Walter et al. (2007). However,
disregarding elements that are close to zero leads to
inevitable introduction of estimation errors, which in most
cases for a well designed system are small, but still do
exist. In Eustice et al. (2006) authors presented a solution
to the information-form SLAM that has an exactly sparse
information matrix and thus no approximation error occurs.
Therein, they named the developed information filter the
exactly sparse delayed state filter (ESDSF).

The sparsity of the SLAM matrix was also a key insight
that allowed developing new direct linear solvers for the
SLAM problem using graph optimization techniques, such
as in Davis (2006). New solvers allowed the refinement
process to complete tens of times faster than before, which
opened a whole new research area for SLAM algorithms.
One of the first successful alternatives to filtering
approaches, dubbed

√
SLAM, was presented in Dellaert

and Kaess (2006).
√

SLAM used a smoothing approach
to solve SLAM and achieved better performance in both
computation time and accuracy than the contemporary
existing EKF-SLAM solutions. In Konolige et al. (2010)
authors presented a method for optimizing large pose
graphs called the sparse pose adjustment (SPA). SPA is
similar to

√
SLAM, but with the main differences in

(i) the efficient construction of the linear subproblem,
by employing ordered data structures, and (ii) in using
the Levenberg–Marquardt (LM) algorithm instead of the
nonlinear least squares. A graph optimization solution
was presented in Konolige (2010) which used an efficient
version of the sparse bundle adjustment (SBA). Therein,
relations among cameras are also sparse and, by combining
the proposed method with direct sparse Cholesky solvers,
authors outperformed the standard SBA implementations.
A stereo SLAM solution, named S-PTAM, was presented
in Pire et al. (2015) and used a parallel estimation process
of the map and robot poses, thus enabling fast computation
of robot location, while building map and refining the graph
in the background. S-PTAM uses the LM optimization for
refinement, while binary features are used for describing
visual point landmarks. A graph based SLAM solution
was also presented in Bourmaud and Mégret (2015),
where to speed up computation and allow execution in
large scale environments, authors divided the global graph
into subgraphs optimized independently using the LM
algorithm. Subgraphs are then matched and combined into
global graph using loopy belief propagation algorithm
called large scale relative similarity averaging.

In parallel to various complete SLAM solutions that
used graph optimization and comprised of both the front-
end and back-end, researchers started to develop universal
graph optimization solutions. These solutions can be used
as SLAM back-ends for trajectory and map optimization, as
well as for any optimization problem that can be formulated

using a graph structure. Currently, there exists several
such solutions including GTSAM of Dellaert (2012), Ceres
of Agarwal et al. (2010) and SLAM++ of Polok et al.
(2013), but the two solutions most commonly used in
combination with different SLAM front-ends are iSAM of
Kaess et al. (2008) and g2o of Kuemmerle et al. (2011).
iSAM uses a fast and incremental QR matrix factorization.
By updating only the QR factorization of the sparse
smoothing information matrix, it recalculates only those
matrix elements that change drastically, thus increasing
the computation speed. Another positive aspect of such
matrix factorization is an easy and fast access to estimation
uncertainties. Upgrade of the iSAM, called iSAM2, was
presented in Kaess et al. (2012) which introduced a new
data structure called the Bayes tree.

Among all the aforementioned solutions, g2o is the
most general optimization framework for nonlinear least
squares problems that can be represented as a graph. It
was developed to utilize sparse connectivity in the graph,
and also to take the advantage of the special structures
that occur in the graph when being built by specific
algorithms like the graph SLAM or bundle adjustment (BA)
SLAM. As a graph optimization solution, g2o is highly
efficient and computationally fast thanks to using advanced
methods for solving sparse systems and advanced features
of modern processors as well as maximally optimizing
processor memory and cache usage. Similarly to the other
solutions, g2o is also publicly available, but currently
enjoys better community support and offers a large database
of tutorials and examples. Therefore, it is not surprising
that the two current state-of-the-art visual SLAM solutions,
namely ORB-SLAM and LSD-SLAM, both use g2o as
their SLAM back-end. LSD-SLAM was first presented for
mono-cameras in Engel et al. (2014) and afterwards a
stereo-solution in Engel et al. (2015) was introduced. It
employs a direct and featureless method which minimizes
photometric errors between images in order to estimate the
pose. Main novelties included direct tracking method which
operated on Sim(3) and probabilistic solution to include
the effect of noisy depth values into tracking. ORB-SLAM
was also first introduced for mono cameras in Mur-Artal
et al. (2015), and later for stereo and RGB-D cameras
in Mur-Artal and Tardós (2017). It uses ORB features
for mapping, loop closing and tracking, and employs
covisibility graph and survival of the fittest strategy to allow
for real-time execution over long periods of time in large-
scale environments.

By looking at the past decade, one can notice the
dominant popularity of graph optimization back-end
solutions over the filtering approaches. However, regardless
of the SLAM version, we always have the need to
estimate the robot pose and poses of map landmarks
which inherently in 3D reside on SE(3). Filtering solutions

Prepared using sagej.cls

4 The International Journal of Robotics Research XX(X)

dominantly relied on the Euler angles or quaternions for
representing these poses. Although sufficient, filtering with
these representations within Euclidean frameworks does not
represent the natural way of characterizing uncertainties
and relations between the state vector elements. For
example, a more natural way to characterize uncertainties
over unit quaternions is the Bingham distribution on the
unit hypersphere (see works of Gilitschenski et al. (2015)
and Glover and Kaelbling (2013)). This is in contrast to
the state-of-the-art graph optimization back-ends, which
relied more on using the insights of Lie groups and Lie
algebras within the framework. We believe this to be one of
the main reasons why filtering approaches were generally
not on par with the graph-based optimization based SLAM
performance. This is not to say that filtering approaches
could not achieve state-of-the-art performance. The work of
Mourikis and Roumeliotis (2007) investigated the problem
of vision-aided inertial navigation, wherein the authors used
an EKF-based approach by deriving a measurement model
that avoids including the 3D feature position in the state
vector, but is able to express the geometric constraints. The
attitude of the sensor was modeled using unit quaternions,
but the approach relied on EKF filtering of the error state
using a window of a limited number of poses, hence did
not aim to solve a SLAM problem including loop closings.
Furthermore, some filtering approaches did utilize insights
from Lie groups and applied it, to an extent, on the EKF
and PF SLAM, as in Eade (2008), but in the end, resorted
to the graph optimization framework and used Lie group
insights to define and manipulated the graph edges, as in
Eade et al. (2010). In the end, although some modifications
were done to the filter itself, what was missing was a deeper
structural change to the EKF itself. Changes in this field
began to happen only recently with the introduction of the
EKF on Lie groups (LG-EKF) of Bourmaud et al. (2013).
By representing the states on Lie groups, and performing
filtering equations in the pertaining Lie algebra, LG-EKF
is able to respect the geometry of the state space, thus
achieving greater estimation accuracy of both the mean and
the covariance. Solutions to the unscented Kalman filter
on Lie groups (LG-UKF) also appeared in Hertzberg et al.
(2013), then were followed by the continuous-discrete EKF
on Lie groups in Bourmaud et al. (2015), and invariant
filters on Lie groups of Barrau and Bonnabel (2015).
However, in order to bear the potential for state-of-the-
art SLAM performance, the solution to the information
form of the LG-EKF, i.e., the extended information filter
on Lie groups (LG-EIF), was still missing; nevertheless,
this was solved recently in our previous work presented
in Ćesić et al. (2017). Now, with the LG-EIF as the basis,
we are able to develop a SLAM solution that is not only
capable of using sparse structure of the SLAM information

form, but which also respects the state space geometry by
representing states on Lie groups.

In this paper we draw upon our earlier work presented in
a conference paper (Lenac et al. (2017)) and propose and
derive equations for the novel ESDSF on Lie groups (LG-
ESDSF). LG-ESDSF retains all the good characteristics
of the classic ESDSF implementation, but also respects
the state space geometry by negotiating uncertainties and
employing filtering equations on Lie groups. Furthermore,
we propose a SLAM solution based on the LG-ESDSF
back-end, which in the rest of this paper we refer to as
LG-SLAM, and demonstrate that it is able to attain state-
of-the-art performance comparable to a graph optimization
approach, namely g2o. For this purpose we have coupled
both g2o and LG-SLAM with two different front-ends,
one based on the stereo camera (Cvišić and Petrović
(2015)) and one based on the 3D LIDAR (Stoyanov et al.
(2012)), and tested them on two large and quite different
publicly available datasets: the KITTI vision benchmark
suite Geiger et al. (2012) and EuRoC dataset Burri et al.
(2016). We also compare LG-SLAM based on the stereo
vision front-end of Cvišić and Petrović (2015) to ORB-
SLAM and LSD-SLAM on the KITTI and EuRoC datasets,
and have submitted our solution for online evaluation. At
the time of writing, LG-SLAM ranks second among the
stereo vision approaches and first among all the tested
SLAM solutions. Moreover, we have developed long-
term capability for LG-SLAM by allowing it to maintain
low number of trajectory states while repeatedly moving
through the same environment. This solution is solely based
on the information available to the SLAM back-end and
does not in any way rely on the front-end. However, this
is not a strict limitation—the solution can be modified to
achieve even better performance once the particular front-
end has been selected.

3 Euclidean ESDSF SLAM
ESDSF was first proposed in Eustice et al. (2006). It is
a special form of EIF with the main advantage of having
an exactly sparse information matrix. The SLAM back-
end based on ESDSF is a pose graph SLAM which, as
explained above, allows trajectory estimation independent
of the environment map. Since the map estimation is not
directly dependent on the SLAM back-end, in the present
paper we do not discuss the mapping components and
focus only on the trajectory estimation. Trajectory Tn in an
ESDSF SLAM consists of n discrete states Xi, i = 1 . . . n,
and is represented by a Gaussian random variable

Tn =


X1

X2

...
Xn

 ,
Xi ∼ N (µXi

,ΣXi,i
)

= N−1(ηXi
,ΛXi,i

)

Tn ∼ N (µn,Σn)

= N−1(ηn,Λn)

, (1)

Prepared using sagej.cls

Lenac et al. 5

Figure 1. Comparison between a normalized information
matrix (left) and the accompanying covariance matrix (right).
Black pixels represent 0, while whiter the pixel the closer its
value is to 1.

where µXi
and ΣXi,i

are mean and covariance of the state
Xi, while µn and Σn are mean and covariance of the
trajectory Tn, respectively. The equivalent representation
of the Gaussian distribution in the information form is
given by the relation η = Σ−1µ and Λ = Σ−1, thus, for
example, the information vector and information matrix of
of the state Xi are given by ηXi

= Σ−1Xi,i
µXi

and ΛXi,i
=

Σ−1Xi,i
, respectively. As shown in Eustice et al. (2006) the

information matrix Λn of the ESDSF trajectory Tn has a
sparse tridiagonal structure

Λn =


ΛXn,n ΛXn,n−1

ΛXn−1,n ΛXn−1,n−1 ΛXn−1,n−2

ΛXn−2,n−1
ΛXn−2,n−2

...
...

 , (2)

which is the result of using the motion model and trajectory
augmentation equations described in the sequel. Sparsity
of the information matrix is the key advantage of ESDSF,
since it enables fast computation of the matrix inverse using
specially designed sparse-matrix solvers. The illustration of
difference between the normalized information matrix and
the accompanying covariance matrix is shown in Fig. 1.
These matrices were extracted from a real SLAM system
at the end of one of the experiments presented in Sec. 7.
The black pixels represent a value of 0, while the whiter the
pixel is, the closer its value is to 1.

Each state Xi consists of a position and orientation that
the robot had at the time when the state was added to
the trajectory. State position and orientation are expressed
in the coordinate frame assigned to the initial state X1.
Whenever a new state Xi is added to the trajectory,
measurement zi is taken from the sensor used to map the
environment. In most modern SLAM systems, e.g., ORB-
SLAM and LSD-SLAM, the term keyframe is used instead
of the state. In our case, the term state is more appropriate
since Xi belongs to the filter state space and its pose is
directly estimated by the filter. However, since most modern

SLAM solutions use graph optimization back-ends, the
term keyframe is used instead of state to represent different
nodes of the graph. In general both the keyframe and state
represent the same and consist of: (i) the pose of the robot
at the time they were added and (ii) measurement taken at
the same moment.

While the robot moves, its current pose is estimated using
a motion model described as the first order Markov process

Xn+1 = f(Xn,Ωn, wn), (3)

where Xn represents the last state in the trajectory Tn,
Xn+1 represents the current robot pose, wn represents
zero-mean white Gaussian noise with covariance Qn,
while Ωn stands for robot displacement between Xn and
Xn+1 obtained from odometry. Depending on the available
sensors, this can be wheel odometry, visual odometry, laser
odometry etc.

3.1 Prediction step
Whenever new odometry data becomes available and the
current robot pose is estimated using (3), the prediction step
of ESDSF is triggered. ESDSF prediction consists of two
sub steps: (i) augmentation of the trajectory Tn with Xn+1,
and, conditionally, (ii) marginalization of Xn that is subject
to the pose difference between Xn and Xn−1.

3.1.1 Augmentation. The augmentation step always
happens immediately after the current robot pose Xn+1

is estimated using the motion model (3). During
augmentation, trajectory Tn is augmented with Xn+1 and
thus becomes Tn+1. Before the augmentation of Tn, we
can write the distribution of all the states in the information
form as

p(Xn,M |z1:n, u1:k)

= N−1
[(

ηXn

ηM

)
,

(
ΛXnXn

ΛXnM

ΛMXn ΛM

)]
,

(4)

where z1:n denotes the history of all measurements,
u1:k stands for history of all odometry data, and M
represents all trajectory states except the last one, i.e.,
M = {X1Xn−1}. Note that usually there are more
odometry data than the states in the trajectory, hence we
use a different index. After the augmentation with the state
Xn+1, using Markov first order assumption and the fact that
poses and measurements are not correlated, we have:

p(Xn+1, Xn,M |z1:n, u1:k+1) =

= p(Xn+1|Xn,M, z1:n, u1:k+1) p(Xn,M |z1:n, u1:k+1)

= p(Xn+1|Xn, u1:k+1) p(Xn,M |z1:n, u1:k)

= N−1(ηn+1,Λn+1). (5)

Prepared using sagej.cls

6 The International Journal of Robotics Research XX(X)

Final expression for Λn+1 is

Λn+1 =

 Q−1n −Q−1n Fn 0

−FTn Q−1n ΛXn,n
+ FTn Q

−1
n F ΛXnM

0 ΛMXn
ΛMM


(6)

where Fn stands for the Jacobian of the motion model (3).
The final expression for ηn+1 is given in Appendix 9.1.1.
From (6) we can se that augmenting the trajectory Tn with
the new state Xn+1 requires only the addition of three new
blocks to the information matrix. All the other elements
remain unchanged and sparsity is preserved.

When augmentation of the trajectory is complete, we
check the pose difference between Xn and Xn−1. If
the difference is larger than the predefined threshold,
we conclude that the measurement associated with Xn

provides new information and we keep both Xn and Xn+1

within the state space and the prediction step ends. When
new odometry data becomes available, the new robot pose
is estimated based on Xn+1 and the pose difference is then
checked between Xn+1 and Xn. Otherwise, we proceed
with the marginalization step described in the sequel.

3.1.2 Marginalization. If the difference between Xn and
Xn−1 is smaller than the predefined threshold, state Xn is
marginalized from the trajectory and replaced by Xn+1,
i.e., Xn ← Xn+1. Marginalization of the state from the
trajectory equals marginalizing a multivariate Gaussian
distribution. In general, we can write the multivariate Gauss
distribution as:

p

xy
z

 ;µ ,Σ

 ,

x ∼ N (µx, Σxx)

y ∼ N (µy, Σyy)

z ∼ N (µz, Σzz)

, (7)

where

Σ =

Σxx Σxy Σxz
Σyx Σyy Σyz
Σzx Σzy Σzz

 = Λ−1

=

Λxx Λxy Λxz
Λyx Λyy Λyz
Λzx Λzy Λzz

−1 .
(8)

For example, if we want to marginalize y, we need to solve
the following integral:

p(x, z) =

∫
p

xy
z

 ;µ ,Σ

 dy = N−1(η̄ , Λ̄), (9)

where η̄ and Λ̄ are equal to:

η̄ = ηα − ΛαβΛ−1β ηβ (10)

Λ̄ = Λα − ΛαβΛ−1β Λβα (11)

with

ηα =

[
ηx
ηz

]
, Λα =

[
Λxx Λxz
Λzx Λzz

]
,

Λαβ =

[
Λxy
Λzy

]
, Λβ = Λyy.

(12)

Concretely, for the case of ESDSF we have to marginalize
Xn from Tn+1:

p(Xn+1,M |z1:n+1, u1:k+1)

=

∫
p(Xn+1, Xn,M |z1:n+1, u1:k+1)dXn

= N−1(η̄n, Λ̄n). (13)

To find η̄n and Λ̄n, we use (10) and (11), which yield for
elements of (12) the following formulae:

ηα =

[
ηXn+1

ηM

]
, Λα =

[
ΛXn+1,n+1

ΛXn+1M

ΛmXn+1
ΛMM

]
, (14)

Λαβ =

[
ΛXn+1,n

ΛmXn

]
, Λβ = ΛXn,n

. (15)

These equations can be further simplified, because after the
trajectory augmentation with Xn+1, states Xn and Xn+1

are only connected via neighboring states, which means that
matrices ΛXn+1M and ΛmXn+1

are zero matrices and only
a single block in ΛmXn

is different from zero. This yields
the final expression for Λ̄n

Λ̄n =

[
αn Q−1n Fnβ

−1
n ΛXnM

ΛMXnβ
−1
n FTn Q

−1
n ΛMM − ΛMXnβ

−1
n ΛXnM

]
,

(16)

where

αn = (Qn + FnΛ−1Xn,n
F

T

n)−1

βn = (ΛXn,n + FTn Q
−1
n Fn).

The final expression for η̄n is given in Appendix 9.1.2.
Taking into account that ΛmXn

has only a single non-zero
block, we can see from (16) that, similarly to augmentation,
only four blocks of the information matrix Λn need to be
changed during the marginalization. Once marginalization
is complete, Λ̄n and η̄n become the new Λn and ηn,
respectively, and Xn ← Xn+1, which then concludes the
prediction step.

3.2 Update step
Update in the ESDSF SLAM is triggered every time the
loop closing is detected between two trajectory states Xi

and Xj . The measurement model in the ESDSF SLAM

Prepared using sagej.cls

Lenac et al. 7

system is given in the form of a relative pose between states
Xi and Xj

y = h(Xi, Xj) + v, v ∼ N (0, Rij), (17)

where v represents measurement noise and is assumed
to be a white zero-mean Gaussian with covariance
matrix Rij . The measurement is obtained from a relative
pose estimation (RPE) algorithm based on the saved
measurements zi and zj . The update equations of ESDSF
are the same as EIF update equations. However, since y
depends only on Xi and Xj , the measurement Jacobian H
has a sparse structure

Hn+1 =
[
· · · 0 · · · ∂h

∂Xi
· · · ∂h

∂Xj
· · ·
]
.

This means that the update always affects only four blocks
in the information matrix that share information associated
toXi andXj , thus making it constant time. Of course, after
the update, vector µn has to be calculated as µn = Λ−1n ηn,
which is not constant time. However, this is drastically
speed up due to the sparsity of the information matrix. For
more details on the update step and the entire ESDSF please
confer Eustice et al. (2006).

4 Lie group and algebra preliminaries
We now briefly introduce the necessary prerequisites for
derivation of the ESDSF on Lie groups, while the interested
reader can look for a more rigorous treatment of the subject
in Chirikjian (2012). A Lie group G is a group which has
the structure of a smooth manifold. A tangent space TX(G)
is associated to X ∈ G such that it is placed at the group
identity, called Lie algebra g, and then transferred to any
X ∈ G by applying corresponding (left or right) action
(Selig (2005)). The Lie algebra g is an open neighbourhood
around the zero-element in the tangent space of G at the
identity. In this paper we use matrix Lie groups which are
usually the ones considered in engineering and physical
sciences.

The matrix exponential expG and logarithm logG

establish a local diffeomorphism between the group and the
pertaining algebra

expG : g→ G and logG : G→ g . (18)

The Lie algebra g ⊂ Rn×n associated to a p-dimensional
matrix Lie group G ⊂ Rn×n is a a p-dimensional vector
space defined by a basis consisting of p real matrices Er,
r = 1, .., p, often referred to as generators, see Park et al.
(2010). Furthermore, a natural relation between g and Rp is
given through a linear isomorphism by

[·]∨G : g→ Rp and [·]∧G : Rp → g . (19)

For brevity, we will use the following notation of Bourmaud
et al. (2016)

exp∧G(x) = expG([x]∧G) and log∨G(X) = [logG(X)]∨G ,
(20)

where x ∈ Rp and X ∈ G. In addition, we need two more
operators—the adjoint representation of a Lie group and
Lie algebra, respectively denoted as AdG and adG. They
appear due to general non-commutative nature of matrix Lie
groups, i.e., XY 6= Y X . However, the non-commutativity
can be captured by the so-called adjoint representation of G
on g as follows

X exp∧G(y) = exp∧G(AdG(X)y)X, (21)

where X ∈ G, y ∈ Rp. This can be seen as a way
of representing the elements of the group as a linear
transformation of the group’s algebra. The adjoint
representation of g, adG, is in fact the differential of AdG at
the identity. A more detailed discussion on these concepts
and the used notation can be found in Chirikjian (2012).

To make use of ESDSF on Lie groups, we first need
to establish an error distribution on Lie groups. If a
random variable describing the error, ε , log∨G(XI), is
tightly focused around the identity element XI , it can be
well described with a Euclidean Gaussian in the pertaining
algebra ε ∼ NRp(0p×1, P) as in Wang and Chirikjian
(2008), and then we say that X follows a concentrated
Gaussian distribution (CGD) on G around the identity
element (confer Bourmaud et al. (2015) for details). We
regard this distribution then as a distribution on Lie groups
at the identity element, but which can further be translated
over G by using the left action. Finally, by combining
the error distribution definition and left action, a random
variable X ∈ G is defined as

X = µ exp∧G (ε) , with X ∼ G(µ, P) , (22)

with mean value µ ∈ G, covariance P ∈ Rp×p, and G
denoting the CGD as in Wang and Chirikjian (2008). In the
present paper, we concretely employ the special Euclidean
group SE(3) and for the completeness of the paper, required
group operators are given in Appendix 9.2.

5 ESDSF on Lie groups
To derive the ESDSF on Lie groups we need several
building blocks. Fundamentally, we require the information
form of the LG-EKF of Bourmaud et al. (2015), and
we need to be able to compute the augmentation and
marginalization of a CGD. In Ćesić et al. (2017) we
solved the problem of the information form and proposed
the extended information filter on Lie groups (LG-EIF).
The augmentation and marginalization of the CGD were

Prepared using sagej.cls

8 The International Journal of Robotics Research XX(X)

presented in Bourmaud et al. (2016) in the context of
iterated LG-EKF, where authors solved the prediction step
by approximating the Chapman-Kolmogorov equation with
a joint distribution and then marginalizing the posterior
state. In this paper we propose to follow the same train of
thought and we extend this result to the prediction equations
of ESDSF on Lie groups. In the sequel, we derive the
proposed LG-ESDSF.

5.1 State space construction
Let us represent a trajectory state Xi of the robot trajectory
Tn by an SE(3) group element

Xi =

[
Ri ti
0 1

]
, Xi ∼ G(µXi ,ΣXi,i) , (23)

where Ri is a member of the special orthogonal group
SO(3), given as a 3× 3 rotation matrix defining robot
orientation in the global frame, and ti = [xi, yi, zi]
represents the robot position in the global frame. In contrast
to the Euclidean ESDSF, the trajectory Tn is no longer a
vector, but rather a block diagonal matrix consisting of n
SE(3) elements, i.e.,

Tn =


X1 0 0 0
0 X2 0 0
...

...
. . .

...
0 0 0 Xn

 ∈ G = SE(3)× ...× SE(3) .

(24)
However, following the idea of the information filter
approach to LG-EIF of Ćesić et al. (2017), rather than
keeping the trajectory in the form of the matrix Tn, we store
the states in the form of concatenated Lie algebra se(3)
elements

τn = log∨G (Tn) =


x1
x2
...
xn

 =


log∨G (X1)
log∨G (X2)

...
log∨G (Xn)

 ,
xi ∼ N (µxi

,Σxi,i
) = N−1(ηxi

,Λxi,i
),

τn ∼ N (µn,Σn) = N−1(ηn,Λn) ,

(25)

where xi ∈ se(3) represents the state Xi ∈ SE(3) mapped
to the Lie algebra, while τn can be seen as a whole
trajectory Tn mapped to the Lie algebra. The relations
between the information matrix Λn, the information vector
ηn, the trajectory mean value in Lie algebra µn, and the
covariance matrix Σn follow the same equations as in the
standard ESDSF, i.e., µn = Λ−1n ηn and ηn = Σ−1n µn.

5.2 Motion model and LG-ESDSF prediction
The motion prediction is assumed to follow a non-linear
first order Markov process similarly to (3), except that the

motion is now defined directly on G as

Xn+1 = f(Xn,Ωn, wn) = Xn exp∧G (Ωn + wn) , (26)

where Xn ∈ G is the state, wn ∼ NRp(0, Qn) is a p-
dimensional white Gaussian process noise, and Ωn =
[∆t,∆r] represents a robot displacement measured by
odometry between Xn and Xn+1. Change in the position
component is represented by ∆t = [∆x, ∆y ,∆z], while
the change in rotation ∆r is represented using the Lie
algebra parametrization of the special orthogonal rotation
group SO(3) (Euler-axis convention). The process noise
covariance Qn represents uncertainty of the odometry. The
state covariance matrix is propagated as follows

Σn+1 = FnΣnFT
n + Ψ(Ωn)QnΨ(Ωn)T (27)

Fn = Ad (exp∧G (−Ωn)) + Ψ(Ωn)Ck , (28)

where Ψ is the right Jacobian of G (see Barfoot and Furgale
(2014)), while Ck denotes the linearization of the motion
model (26) at Xn as in Bourmaud et al. (2015), which is
given as

Ψ(v) =

∞∑
m=0

(−1)m

(m+ 1)!
ad(v)m , v ∈ Rp , (29)

Cn =
∂

∂ε
Ω (Xn exp∧G (ε))|ε=0 . (30)

The equation (27) looks similar to the EKF prediction, with
the Jacobian-like matrix Fn resulting from the linearization
of the motion model (26) and general non-commutativity
of matrix Lie groups. The matrix Ψ is reparametrization
resulting from dislocation over Lie group which appears
in the prediction step. Since Ω(·) is not a function of the
state Xn, (30) evaluates to zero, i.e., Cn = 0, hence (28)
evaluates to Fn = Ad (exp∧G (−Ωn)). For brevity, we also
introduce the following notation

Qn = ΨnQnΨT
n , Ψn = Ψ(Ωn) . (31)

In the prediction step of the LG-ESDSF, similarly as
in the prediction step of the ESDSF, the trajectory is
first augmented with the new state Xn+1. Afterwards,
depending on the marginalization threshold, the state Xn

can be either kept or marginalized. Given that, if the
threshold is exceeded, the state Xn is permanently kept as
a part of Tn+1. The distribution parameters Λn+1 and ηn+1

Prepared using sagej.cls

Lenac et al. 9

associated to the trajectory τn+1 evaluate to

ηn+1 =


Q−1

n (µxn+1
− Fµxn

)

ηxn −FTnQ
−1

n (µxn+1 − µxn)
ηxn−1

...

 , (32)

Λn+1 =


Q−1n −Q−1n Fn 0

−FTnQ−1n Λxn,n
+ FTnQ−1n Fn Λxn,n−1

0 Λxn−1,n
Λxn−1,n−1

.

 .
(33)

If the marginalization threshold is not exceeded and the
marginalization needs to be performed, the previous state
Xn is removed, while the new stateXn+1 becomesXn. The
equations for combining augmentation and marginalization
are in the vein of the iterated LG-EKF prediction presented
in Bourmaud et al. (2016); however, for the information
form and LG-ESDSF the procedure is different, and we
present the resulting expressions for ηn and Λn

ηn=


Q−1n Fnβ−1n ηxn

+ αn(µxn+1
−Fnµxn

)
ηxn−1

−Λxn−1xn
(ηxn
−FTnQ−1n (µxn+1

−Fnµxn
))

ηxn−2

...


(34)

Λn=


αn Q−1n Fnβ−1n Λxn,n−1 0

Λxn−1,n
β−1n FTnQ−1n γn Λxn,n−1

0 Λxn,n−1
Λxn−1,n−1

.

 ,
(35)

where

αn = (Qn + FnΛ−1xn,n
F

T

n)−1 , (36)

βn = (Λxn,n
+ FTnQ−1n Fn) ,

γn = Λxn−1,n−1
− Λxn−1,n

β−1n Λxn,n−1
.

Given that, we have derived the prediction step of the LG-
ESDSF.

5.3 Measurement model and LG-ESDSF
update

The discrete measurement model on matrix Lie groups is
given as

Zn+1 = h(Tn+1) exp∧G′(vn+1), (37)

where Zn+1 ∈ G′, h : G→ G′ is a C1 function, G′ is a q-
dimensional Lie group and vn+1 ∼ NRq (0q×1, Rn+1) is
zero-mean white Gaussian noise with covariance Rn+1.

The update step in LG-SLAM occurs following similar
rationale as in the case of the Euclidean ESDSF SLAM,
i.e., it is performed whenever a loop closing between any
two states Xi and Xj is detected, and a relative pose
measurement is delivered. However, in reality, update will
almost always occur between the newly augmented state
Xn and one or more states already in the trajectory. For
this reason, in the remainder of this section, we assume that
the trajectory Tn+1 is being updated after the loop closing
occurred between Xn and Xj , 0 < j < n. No generality is
lost since all equations are valid if we substituteXn withXi

(i 6= j, 1 < i ≤ n). Hence, the filter uses the relative poses
of the RPE module as measurements. The measurement
function is given as

h(Tn+1) = X−1j Xn ∈ SE(3) , (38)

which represents the relative transformation between poses
Xj andXn. The innovation term of the LG-ESDSF SLAM
is modelled by the difference in relative poses between the
measurement function (38) and the RPE module providing
measurement in term of relative transformation in loop
closing. It is finally given as

zn+1 = log∨G
(
h (Tn+1)

−1
Zn+1

)
, (39)

where z is already an innovation vector since log∨G is
applied. For calculating the updated estimates of the
information matrix Λ+

n+1 and the information vector η+n+1,
we use LG-EIF update equations from Ćesić et al. (2017).
We begin by calculating Λ−n+1 and η−n+1 using standard EIF
equations

η−n+1 = HT
n+1R

−1
n+1zn+1 ,

Λ−n+1 = Λn+1 +HT
n+1R

−1
n+1Hn+1 ,

(40)

with Rn+1 being the measurement uncertainty reported by
RPE and matrix Hn+1 is evaluated as in Bourmaud et al.
(2015)

Hn+1 =
∂

∂ε

[
log∨G

(
h(Tn+1)−1h

(
Tn+1 exp∧G(ε)

))]∣∣∣∣
ε=0

.

(41)

For the SE(3) group calculating the relative pose between
states Xn and Xj reduces to simple matrix inverse and
multiplication. Given the measurement model (38), the
matrix (41) evaluates to

Hn+1 = [0 · · ·︸︷︷︸
1:j−1 zero bl.

jth block︷ ︸︸ ︷
−Ad(X−1n+1) Ad(Xj) · · · 0 · · ·︸ ︷︷ ︸

j+1:n−1 zero bl.

nth bl.︷︸︸︷
I 0].

We note that a similar result was obtained in Bourmaud
et al. (2016) for relative pose averaging, although without

Prepared using sagej.cls

10 The International Journal of Robotics Research XX(X)

Algorithm 1 LG-ESDSF SLAM back-end pseudocode

Get current robot pose Xn+1 § 5.2
1: Get odometry data Ωn
2: Perform motion model (26) to get Xn+1

ESDSF prediction § 5.2
3: Calculate matrices Fn (28) and Qn (31)

AUGMENT state Xn+1

4: Calculate ηn+1 (32) and Λn+1 (33)
5: if MARGINALIZE state Xn then
6: Calculate ηn (34) and Λn (35)
7: else if LOOP CLOSED between Xn and Xj then

ESDSF update § 5.3
8: Get measurement Zn+1 from RPE
9: Calculate innovation zn+1 (39)

LG-EIF update
10: Calculate η−n+1 and Λ−n+1 (40)

CGD reparametrization
11: Calculate η+n+1 (44) and Λ+

n+1 (43)
end ESDSF update

12: end if
end ESDSF prediction

derivation, which is why we provide it for completeness
in Appendix 9.3. This result shows that, similarly to
the Euclidean ESDSF, the matrix Hn+1 remains sparse
consisting of n 6× 6 blocks, among which only blocks
j and n are non-zero. However, as explained in Ćesić
et al. (2017) for LG-EIF, η−n+1 and Λ−n+1 (denoted with
superscript −) do not represent final estimates of updated
information matrix and information vector, since at this
point the mean value µ−n+1 = (Λ−n+1)−1η−n+1 is in general
a non-zero vector, thus in collision with the CGD definition
(22). To overcome this issue, the state reparametrization
(denoted with superscript +) is performed as proposed in
Bourmaud et al. (2015), and the final formulae are given as
follows

µ−n+1 = (Λ−n+1)−1η−n+1 (42)

Λ+
n+1 = Ψ(µ−n+1)−TΛ−n+1Ψ(µ−n+1)−1 (43)

η+n+1 = Λ+
n+1 log∨G

(
exp∧G(Λ−1n ηn) exp∧G(µ−n)

)
. (44)

Note that η+n+1 and Λ+
n+1 differ from ηn+1 and Λn+1 which

are obtained only via augmentation in the prediction step.
Given that, we have derived the update step of the LG-
ESDSF. Pseudocode of the entire LG-ESDSF SLAM back-
end is given in Algorithm 1 while LG-SLAM back-end
coupled with a SLAM front-end is shown in Fig. 2.

5.4 Covariance estimation and computational
complexity analysis

In order to perform both the prediction and update, LG-
SLAM uses relative pose estimated between different

time instances. The prediction step relies on the relative
pose between two consecutive states determined by the
odometry module and used in the motion model (26), while
the update step uses the relative pose evaluated by the
RPE module between the two states for which the loop
closing is detected in order to calculate innovation term
(39). To incorporate these measurements, LG-SLAM needs
information about their uncertainties, where Qn represents
the odometry uncertainty used in the prediction (27) , while
Rn represents uncertainty of the RPE algorithm used in the
update (40). The proposed filter operates in such a way that
by the CGD definition (22), the uncertainties are assigned
to variables located in the Lie algebra. For example, since
algebra of the special orthogonal group is given in the
form of the Euler axis representation, the uncertainties
have to be associated to the same variable type. Since
majority of sensors and relative pose estimation algorithms
rely on Euler angle representation and associate the
uncertainties in this representation, we apply the unscented
transform (UT) presented in Julier and Uhlmann (2004),
on the covariance matrices, in order for them to become
adequately associated to the Lie algebra variables. The
UT algorithm first takes measurement and the associated
covariance matrix in Euler angles as input, and then applies
the nonlinear transformation function resulting with the
Euler axis representation and the new covariance matrix.

Considering the performance of LG-ESDSF as a SLAM
back-end, we need to look at the computation complexity
of each step. The prediction step of LG-ESDSF is constant-
time similar to ESDSF, since it always changes the same
number of blocks in the information matrix. In the case
when the augmentation is not followed by marginalization,
three new blocks are added (33), while in the case
when marginalization is performed, only four existing
blocks are changed (35). However, in both cases µxn

and
µxn+1

, residing in the Lie algebra se(3), are necessary to
complete the calculation of the new information vector
ηn+1 (32). Value µxn+1 can easily be calculated from
µXn+1 , but µxn would have to be extracted from the
µn which represents the expected value of trajectory τn
(25), and requires computing µn = Λ−1n ηn; moreover, new
µn needs to be evaluated after every update. This is a
computationally demanding operation, due to the inversion
of the information matrix, and should be avoided. Since
after the update, states permanently added to the trajectory
do not change until the next update, we can construct an
auxiliary vector µ′n which stores se(3) states permanently
added between the updates. After the update is performed,
we set µ′n = µn and continue by adding the new states in
µ′n until the next update. This way we always have the
history of all the states, which can then be exploited in
the prediction step with no need for inversion. Although
in the prediction we need only µxn

, the update step uses

Prepared using sagej.cls

Lenac et al. 11

Odometry
Motion model

§5.2

LG-ESDSF

Marginalization

§5.2

LG-ESDSF

Augmentation

§5.2

LG-ESDSF

Update

§5.3

Loop closing
Estimate

relative pose

No

Yes

Yes

No

LG-SLAM back-end

Sensors
(3D LIDAR,

stereo camera)

Figure 2. Schematic layout of the proposed LG-SLAM system.

the entire trajectory µ′n. After loop closing between states
Xi and Xj is detected, we require their respective poses
in order to perform the update, meaning that we would
need to calculate µn = Λ−1n ηn and extract µxi

and µxj
. To

avoid the calculation of µn, we simply obtain µxi
and µxj

from the auxiliary vector µ′n. Since we cannot know upfront
which states will be included in the update, we have to keep
the history of all the states.

By examining equations (42) to (44) it would appear that
there is an extra inversion of Λn+1 with respect to ESDSF.
In ESDSF the inversion only needs to be computed after
the update is performed, in order to recover the new µn+1,
while in LG-ESDSF it is also required in (42). To solve this
issue we rewrite (44) as follows

η+n+1 = Λ+
n+1 log∨G

(
exp∧G(Λ−1n ηn) exp∧G(µ−n+1)

)
(45)

= Λ+
n+1 log∨G

(
exp∧G(µn) exp∧G(µ−n+1)

)
= Λ+

n+1µ
+
n+1 ,

which means that there is no need for final computation of
µn+1 as it is already calculated within η+n+1. Therefore,
there is also only a single inversion of the information
matrix in LG-ESDSF.

The last potentially time consuming calculation is the
inversion of Ψ(µ−n+1) required in (43) during the update.
Although Ψ(µ−n+1) does have the same dimension as Λ−n+1,
it is also a sparse matrix and keeps a strictly tridiagonal
block form (not effected by the update); hence, its inversion
reduces to n inversions of a 6× 6 matrix.

6 Long-term LG-SLAM
In general, there are two scenarios for which we can
consider the problem of long-term SLAM:

1. The robot explores new areas for a longer period of time.

2. The robot continuously moves inside the same area for a
longer period of time.

For both of these scenarios and regardless of the used back-
end and front-end, operation time of any SLAM system is
limited. This is because the number of features in the map
and/or states in the trajectory constantly rises and increases
memory and computation requirements. In order to ensure
long-term operation, number of states and features has to
be reduced continuously. For the first scenario, information
from the SLAM front-end is essential for reducing the size
of the state-space regardless on the back-end. This is why,
in this paper, we focus on solving the second scenario using
only the information available to the pose graph SLAM
back-end.

When the robot continuously moves through the same
environment and if the environment being explored is
reasonable in size, most pose graph SLAM systems will
be able to build a complete map of the environment. The
problems will occur when the robot continues to move
repeatedly through the same environment, since the state
space will continue to grow. The easiest solution would
be to stop the SLAM system once the map has been
built and use the constructed map to localize the robot
within. Although straightforward, the main drawbacks of
this solution are that (i) the robot cannot explore new areas
and then return to the explored part without reinitializing
the SLAM, and (ii) the robot can no longer improve map
accuracy by closing loops. A better solution would be
to allow SLAM to function continuously, but manage the
increase in the number of features and/or trajectory states.

We build our solution to this problem under the
assumption that when the robot moves through an already
explored environment, majority of the newly augmented
states will have similar poses with the already existing
states in the trajectory. These states have to be added
into the trajectory such that loop closing can occur and
trajectory update can be performed. However, once the
trajectory update is completed, measurements assigned to
these states hold little new information. Given that, we

Prepared using sagej.cls

12 The International Journal of Robotics Research XX(X)

−100

−50

0

50

100

0

50

100

150

200

x (m)
y (m)

before first loop closing
after first loop closing
state
loop closing

X1

X51

X130

X80

X153

Figure 3. Example of a robot trajectory suitable for removing
some already added states. Robot started moving from state
X1. First loop closing occurred between states (X130, X51)
and second loop closing occurred between states (X153, X80).

formulate our main goal: After each trajectory update, all
the states having similar pose to some other states in the
trajectory, added permanently after the previous update
had occurred, should be removed (marginalized) in order
to preserve long-term real-time operation. Given that, we
have to marginalize states after the update in order to
allow the update to occur in the first place. Moreover,
marginalizing states immediately after the update occurs
ensures that accumulated odometry error is corrected. If
we would marginalize them prior to the update, due to the
odometry error, we could have states falsely further/closer
from/to each other. By removing a state falsely detected as
close, we lose information. On the other hand, if we do not
remove truly close states, we retain redundant information.

The drawback of marginalizing states based only on
their closeness is that the information about the dynamic
changes in the environment may be lost. One solution to this
problem would be to estimate the number of duplicate map
landmarks between measurements assigned to two close
states and then marginalize the state only if the number
of duplicates exceeds a predefined threshold. However,
this approach would require information from the front-
end, which is in contrast to our goal of developing a
back-end solution that is highly independent on the front-
end selection, but that can easily be fitted to one, once a
particular front-end is selected.

6.1 State selection and marginalization
In this section we assert that we can safely remove a state
Xi from the trajectory, only if it was added between two
consecutive loop closings. For example, let us consider a

robot moving as shown in Fig. 3. Robot started in the
initial state X1 and continued adding states to the trajectory
until the state X130 was added. Then, the loop was closed
between X51 and X130 and the trajectory was updated.
Afterwards, the robot continued moving until state X153

was added and loop was closed with X80. The difference
in height between the green and red path exists only for
illustration purposes, in reality both paths lie practically on
the same plane.

Now lets determine which states between X1 and X153

should be marginalized. Since the loop closings occurred in
states X130 and X153 we can assert that trajectory between
them is accurate and we can, with high certainty, determine
which states are close. From Fig. 3 we can see that all the
states between X130 and X153 have similar poses with the
states added betweenX51 andX80. This means that most of
the measurement information contained within these states
is already contained within measurements assigned to states
fromX51 toX80. This means that states fromX130 toX153

can be safely marginalized.
In order to determine how similar the poses of two states

Xi and Xj are (i.e., how close they are) we use the function
fc, which essentially takes into account Euclidean distance
and orientation difference between two SE(3) elements.

fc(Xi, Xj) = etran + κerot, (46)

where etran represents Euclidean distance between states
Xi and Xj , erot represents difference in their orientation
and κ is a scaling factor allowing for flexibility in weighting
the contribution of the translation and rotation component.
In order to evaluate etran and erot we first calculate relative
pose between Xi and Xj

∆P = X−1i Xj =


∆x

R ∆y
∆z

0 0 0 1

 , (47)

and then evaluate their Euclidean distance as

etran =
√

∆x2 + ∆y2 + ∆z2 (48)

and difference between their orientations as

erot = arccos

(
trace(R)− 1

2

)
. (49)

Now let us designate with β the set of all states between
X130 and X153, from Fig. 3, that can be removed according
to (46). Let’s assume that, without the loss of generality,
all states Xi, 130 < i < 153 are close enough to some
previously added state Xj , 51 < j < 80 so they can all be
marginalized. The question arises, how to remove these
states from the trajectory and from the information matrix?
The most important fact about marginalizing states added

Prepared using sagej.cls

Lenac et al. 13

between two loop closings is that they are connected only
with the neighbouring states. Given that, we can use (10)
and (11), which we used to marginalize Xn during the LG-
ESDSF prediction step, and the sparsity of the information
matrix will remain preserved. The only changes in the
information matrix after the removal of states β, besides
size reduction, will be changes to the blocks related to
states X130 and X153. Moreover, since states in β are
neighbouring states, they can be marginalized in a single
block which increases computation speed in comparison to
marginalizing just each state separately.

After successfully removing states in β, we have to
decide what to do with X130 and X153. The simplest
solution would be to never marginalize states included
in loop closings. However, in the case of the robot
continuously moving through the same environment,
we can expect a large number of loop closings; thus,
continuously ignoring these states would inevitably result
in the increase of the information matrix size. Therefore,
we also have to marginalize states included in loop closings
in order to ensure the long-term capability of our SLAM.
However, due to the nature of the loop closing procedure,
we only need to marginalize the state in which previous
loop closing occurred, since the state, X153, will become
in the next iteration the previous loop closing state, as state
X130 is currently. This is why in this example we would
only need to marginalizeX130. The problem with removing
loop closing state is that, as mentioned before, (10) and
(11) should only be used if the state to be marginalized is
connected only with its neighbouring states. However, this
is never the case for states that participated in loop closings.
If we did simply use (10) and (11) for marginalization, as
explained in the next section, this would have a negative
effect on the sparsity of the information matrix. Possible
solutions are to use an approach that preserves the sparsity
and reduces the number of loop closings. In LG-SLAM we
have implemented both.

6.2 Marginalization of states included in the
loop closings

For the simplicity of equations, in this section we
assume that Xl = X130. In order to understand why
marginalization of the state Xl would have a negative
impact on the sparsity of the information matrix, let us
assume that we have already marginalized all the states in
β. If we were to use (10) and (11) to marginalize Xl, we
would obtain:

Λ =

[
Λα − ΛαlΛ

−1
l Λlα Λαγ − ΛαlΛ

−1
l Λlγ

Λγα − ΛγlΛ
−1
l Λlα Λγ − ΛγlΛ

−1
l Λlγ

]
, (50)

Λαl =
[
. . . Λl,51 . . . Λl,l−1

]T
, Λγl =

[
Λ153,l

0

]
, (51)

where Λα represents information from the states α =
{X1, X1 . . . Xl−1} augmented before the state Xl, Λγ
represents information of states γ = {X153, X154} and
Λαl, Λαγ , and Λlγ represent their cross-information. As the
result of the following expression:

Λα − ΛαlΛ
−1
l Λlα, (52)

two blocks, Λl−1,51 and Λ51,l−1, will be inserted into the
new information matrix, while four more blocks will be
added by the following expressions:

Λαγ − ΛαlΛ
−1
l Λlγ , (53)

Λγα − ΛγlΛ
−1
l Λlα. (54)

In total, six new blocks will be inserted and seven
existing blocks will be removed. While this may seem
fine, the problems will start to occur during future
marginalization. For example, after the third loop closing
and marginalization of new β states, X153 is marginalized
from the information matrix. The term Λα,153 then becomes

Λα,153 =
[
. . . Λ153,51 . . . Λl,80 . . . Λl,l−1

]T
. (55)

This would result in five more blocks from (52) and four
more block from (54) and (53). Although (54) and (53)
always add four blocks, number of new blocks added by
(52) will continue to increase and the number of removed
blocks will always remain seven. If we would continue
this process, the number of new blocks in matrix Λ would
increase quadratically with the number of consecutively
marginalized states that participated in loop closings.
This describes the worse case scenario in which all the
states from β are marginalized. If some states between
consecutive loop closings are not in β and remain in the
information matrix, or if we periodically choose not to
marginalize loop closing states, the loss of sparsity would
be slowed down. However, in that case we would still
increase the number of states.

In order to solve the problem of losing sparsity of
the information matrix, we need to find an approach to
approximate the dense information matrix with a sparse
one. Two most recent approaches applicable to our problem
are the works presented in Kretzschmar and Stachniss
(2012) and Carlevaris-Bianco et al. (2014). In Kretzschmar
and Stachniss (2012) authors presented a solution for long-
term SLAM by approximating the dense sparse matrix with
a sparse one using the Chow Liu tree (CLT) of Chow and
Liu (1968). CLT approximates a probability distribution
p(θ) with p′(θ) in a way that (i) each variable is conditioned
only on one other variable and that (ii) Kullback-Leibler

Prepared using sagej.cls

14 The International Journal of Robotics Research XX(X)

divergence between p and p′ is minimized:

p(θ) = p(θm)

m−1∏
i=1

p(θi|θi+1, . . . , θm) (56)

≈ p(θm)

m−1∑
i=1

p(θi|θi+1) = p′(θ). (57)

The authors used CLT to approximate only the elimination
cliques disregarding constraints in the remainder of the
pose graph. The authors then use the resulting CLT to
compute the constraints which remain in the pose graph. In
Carlevaris-Bianco et al. (2014) the authors compute CLT
from the entire information matrix which ensures taking
into account all the pose graph constraints. Furthermore,
the authors also introduced generic linear constraint (GLC)
factors to ensure that the resulting information matrix will
have full-rank. In LG-SLAM we use the same sparsification
method as of Carlevaris-Bianco et al. (2014), but we do not
use GLC factors as we assume that all measurements are
such that the full-rank of the information matrix will always
be preserved.

By using the aforementioned sparsification method, we
can ensure sparsity of the information matrix regardless
of the states we chose to marginalize. However, it should
be noted that with every approximation we lose some
information and increase error in the SLAM trajectory.
Moreover, sparsification creates some computational
overhead and increases the update complexity. Given that,
we do not perform sparsification after every marginalization
of β, but only when the information matrix becomes so
dense that its inversion takes too long to be acceptable for
real-time operation.

6.3 Rejecting unnecessary loop closings
Although updating trajectory after each loop closing
increases SLAM accuracy, closing larger loops affects
accuracy more than does closing the smaller ones. An
example of such a situation is depicted in Fig. 3. Update
after the second loop closing in the state Xl will have a
much larger impact on the overall accuracy, than update
after the third loop closing in the state Xp, since more
information is gained. Furthermore, there are also some
negative effects of performing update after every loop
closing: (i) the trajectory update always takes some time,
(ii) sparsification is required more frequently, and (iii) there
will be less states in β that can be marginalized faster.
This is why we need to choose which loop closings are
important and which can be rejected using a measure of
the total information gained by the loop closing. For this
purpose, we use approach similar to the one proposed in
Stachniss et al. (2004). The idea is to build a graph Tg from
the information matrix. Each node of the graph represents

a single state from the trajectory and the nodes are only
connected if they represent neighboring states or if the loop
was closed. Weight of each connection is calculated using
(46).

Once the graph is generated, we can calculate
information gain from closing the loop between states Xi

and Xj by finding the shortest path from a node Ni to a
node Nj using the A∗ algorithm, and then calculating the
total weight of the path. When calculated in such a way, the
total weight of the path is also refereed to as the topological
distance Tdi,j between states Xi and Xj . The higher Tdi,j
the more information is gained from the loop closing. We
can again refer to Fig. 3 for an example. The information
gained from the first loop closing (X130, X51) is:

Td51,130 =

130∑
e=52

fc(e− 1, e),

while the information gained from the second loop
(X153, X80) is:

Tdo,p =

80∑
e=52

fc(e− 1, e) + fc(51,130) +

152∑
e=130

fc(e, e+ 1).

If the update did not occur between (Xl, Xu), T d80,153
would have the following value

Td′80,153 =

130∑
e=81

fc(e− 1, e) +

152∑
e=130

fc(e, e+ 1).

We can see that Td80,153 is much smaller than Td′80,153 since

80∑
e=52

fc(e− 1, e) + fc(51,130)�
130∑
e=81

fc(e− 1, e).

Now that we have the measure of information gain for
each loop closing we can use it to decide which loops
to use for the update and which to ignore. By changing
the frequency of accepted loop closings we can decide
how often do we need to perform sparsification. If we
accept frequent repeated loop closings, we waste time
on computing trajectory update and we need to perform
sparsification more often, while at the same time we gain
little information. By reducing the number of accepted loop
closings we allow more states to be marginalized out faster
which, together with avoiding the calculation of trajectory
update, increases the algorithm speed. Of course we cannot
reject too many consecutive loop closings, as we risk
increasing the trajectory error beyond allowable tolerances.
The complete algorithm for reducing the number of states
in LG-SLAM is summarized in Algorithm 2.

Note that the algorithm could be even more efficient
if information from the front-end was used. But as stated

Prepared using sagej.cls

Lenac et al. 15

Algorithm 2 State number reduction

Last update occurred after loop closed between Xa, Xi

1: if Loop closed between Xb, Xj (b > j) then
2: Compute topological distance T dj,b § 6.3
3: if T dj,b ≥T dmin then
4: Perform ESDSF update § 5.3
5: For states between Xa and Xb find fmc (46) § 6.1
6: fmc = min(fc(m,n), 0 < n < a), a ≤ m < b
7: Put states satisfying fmc ≤ fmaxc in set β § 6.1
8: Put neighbouring states from β into blocks § 6.1
9: Marginalize blocks using (10) and (11)

10: Set Xa = Xb

11: If required, perform sparsification § 6.2
12: end if
13: end if

Tdmin and fmaxc are predefined thresholds

in the introduction of this section, our goal was to
develop every component of the LG-ESDSF back-end
independent on the front-end. However, the developed long-
term algorithm can easily be fitted to a selected front-end
by changing the value of the minimum topological distance
T dmin and by using a different criterion to add states to be
marginalized between two loop closings in the set β.

7 Experimental results

We have divided the experimental testing of the proposed
LG-SLAM in three different scenarios. First, we compare
LG-SLAM with two state-of-the-art visual SLAM
algorithms, namely ORB-SLAM and LSD-SLAM, which
use g2o as the back-end. Second, we compare LG-SLAM
and g2o back-ends by using two different front-ends:
(i) stereo odometry with feature tracking (SOFT) of
Cvišić and Petrović (2015), and (ii) three-dimensional
normal distributions transform (3D-NDT) of Stoyanov
et al. (2012). Finally, we test the LG-SLAM long-term
capability by making it work continuously in the same
environment. All algorithms were implemented using
the C++ programming language. Testing machine was a
computer with Intel Core i7@2.6 Ghz processor and 8 GB
of RAM. For solving the sparse matrix equations we used
the Eigen library by Guennebaud et al. (2010).

Testing was conducted using two public datasets, the
KITTI vision benchmark suite by Geiger et al. (2012) and
the EuRoC dataset by Burri et al. (2016). The KITTI dataset
consists of 22 sequences recorded on different routes under
different conditions. Ground truth is provided only for
the first 11 sequences while others are used for online
evaluation. The dataset offers measurements acquired by
3D LIDAR Velodyne HDL-64E, 2 grayscale cameras Point
Grey Flea 2 in stereo configuration and two color cameras

Point Grey Flea 2 also in stereo configuration. Ground truth
is provided by an accurate inertial navigation system OXTS
RT 3003. For the recording of the dataset all sensors were
mounted on a commercially available vehicle Volkswagen
Passat. The EuRoC dataset contains in total 11 sequences,
out of which five were recorded in a large machine hall
and six were recorded in a so-called Vicon room (i.e., a
room equipped with the Vicon motion capture system).
For every sequence, measurements were recorded using the
visual inertial (VI) sensor (Nikolic et al. (2014)) mounted
on a hexacopter UAV AscTec Neo. The VI sensor provides
stereo images and synchronized data from the inertial
measurement unit (IMU). Depending on available texture,
brightness, and UAV dynamics each sequence is labelled as
easy, medium or difficult. Ground truth is provided by the
Vicon motion capture system and a laser tracking system,
depending on the environment.

Although the KITTI dataset provides its own metric,
it does not evaluate absolute errors between the ground
truth and the estimated results, but rather compares
errors on parts of sequences that are from 100 to
800 metres long, hence the benefits obtained from loop
closing only marginally affect the metric. As such, it is
designed primarily for evaluating pure odometry rather than
complete SLAM systems. Because of this we used the
automatic evaluation tool developed for the EuRoC dataset
available online1, which relies on evaluation of the absolute
error. However, it first tries to find the best fit between the
tested and ground truth trajectories and then computes the
error. This is why we also included a metric based on (46)
and evaluated rotational erot and translation etrans errors
separately without any fitting. We than calculated the root-
mean-squared-error (RMSE) and provided it with the rest
of the results. Herein, the error calculated using the online
tool is referred to as eF , while RMSE of the absolute
translational error and absolute rotational error are referred
to as etrans and erot, respectively. Since in the KITTI dataset
only tracks 0, 2, 5, 6, 7, and 9 provide suitable loop closures
for SLAM front-end based on stereo, we provide results
only for these tracks.

7.1 Experimental comparison of LG-SLAM,
ORB-SLAM, and LSD-SLAM

Although the stereo version of LSD-SLAM is not available
as open source, the results of testing LSD-SLAM, as well
as ORB-SLAM, on the KITTI and EuRoC datasets are
available in their respective papers. Since we could not
calculate etrans and erot, we provide only eF in Tables 1 and
2 for all solutions if available (results for LSD-SLAM are
available for only three out of 11 EuRoC sequences while
both ORB-SLAM and SOFT failed to produce meaningful
result for the final EuRoC track, probably because of
incorrect calibration parameters). We also provide results

Prepared using sagej.cls

16 The International Journal of Robotics Research XX(X)

Table 1. Results of LG-SLAM, LSD-SLAM and ORB-SLAM on
the KITTI dataset.

eF [m]
SOFT LG-SLAM ORB-SLAM LSD-SLAM

KITTI00 3.36 1.18 1.3 1.0
KITTI02 5.52 3.12 5.7 2.6
KITTI05 1.54 0.59 0.8 1.5
KITTI06 0.96 0.49 0.8 1.3
KITTI07 0.4 0.32 0.5 0.5
KITTI09 2.42 1.26 3.2 5.6

Table 2. Results of LG-SLAM, LSD-SLAM and ORB-SLAM on
the EuRoC dataset. MH stands for datasets recorded in
machine hall, while V stands for dataset recorded in the Vicon
room. E, M and D depict easy, medium and difficult sequences
respectively.

eF [cm]
SOFT LG-SLAM ORB-SLAM LSD-SLAM

MH 01 E 17.2 3.6 4.0 -
MH 02 E 7.8 5.0 4.3 -
MH 03 M 16.8 3.9 3.5 -
MH 04 D 32.8 7.5 7.1 -
MH 05 D 24.4 6.0 5.3 -
V1 01 E 10.8 4.8 8.7 6.6
V1 02 M 14.0 4.8 6.4 7.4
V1 03 D 32.7 4.7 7.2 8.9
V2 01 E 16.2 7.0 6.1 -
V2 02 M 22.4 8.2 5.6 -

for the pure SOFT odometry, which is the only front-end
used in this scenario, since both LSD-SLAM and ORB-
SLAM are stereo visual SLAM solutions. Since the code
of ORB-SLAM is available as open source, we tried using
it to get results for the last sequence. However, results for
all sequences were slightly worse than the ones stated in the
paper, which is why we do not report them here.

Given the results on the KITTI dataset in Table 1, we
can see that LG-SLAM achieved the best results on all
the tracks except in two cases. In particular, LSD-SLAM
shows the best performance on sequences KITTI00 and
KITTI02. It can also be seen that LG-SLAM significantly
improved SOFT results in all the tracks. Figure 4 shows
LG-SLAM, SOFT and ground truth trajectories for the
sequence KITTI00. When we analyze the EuRoC dataset
results shown in Table 2, we can notice that LG-SLAM
outperformed both solutions in the sequences taken in the
Vicon 1 room, while ORB-SLAM was better in 4 sequences
from the Machine Hall and 2 sequences from Vicon room 2.
As in the case of the KITTI dataset LG-SLAM again
significantly improved the accuracy with respect to the
SOFT odometry.

Additionally, we have compared our LG-SLAM online
on the KITTI dataset, using the built-in evaluation protocol.
For this purpose we tested LG-SLAM on the remaining
10 sequences and in Table 3 we can see the overall result

−300 −200 −100 0 100 200 300

0

100

200

300

400

x [m]

y
[m

]

KITTI00

SOFT
Ground truth
LG-SLAM

Figure 4. LG-SLAM results on the KITTI sequence KITTI00

Table 3. KITTI rankings of the state-of-the-art stereo vision
SLAM systems at the time of writing.

Method Transl. Rot. [◦/m] Sensors
LG-SLAM 0.82 % 0.0020 stereo cameras

ORB-SLAM2 1.15 % 0.0027 stereo cameras
S-PTAM 1.19 % 0.0025 stereo cameras

S-LSD-SLAM 1.20 % 0.0033 stereo cameras

achieved by LG-SLAM together with other three best
ranked SLAM solutions (two of them being ORB-SLAM
and LSD-SLAM). The complete results with details are
also available online2, and, at the time of writing, the
proposed approach ranked second among the stereo vision
approaches and first among the tested SLAM solutions.

7.2 Experimental comparison of LG-SLAM
and g2o

Even though both LSD-SLAM and ORB-SLAM use g2o
as the back-end, their front-ends are different. This is why,
in order to conduct a fair comparison between LG-SLAM
and g2o, we have used clean g2o and LG-SLAM back-ends
and coupled them with the SOFT and 3D-NDT front-ends.
We have also ensured that both back-ends have exactly the
same number of states, that states are added precisely after
the same stereo pair or point cloud was processed, and
that the same uncertainty model is used. To see how g2o
relates to other solvers in a pose graph initialization and
rotation estimation study, the reader is referred to the paper
of Carlone et al. (2015).

Prepared using sagej.cls

Lenac et al. 17

0 100 200 300 400

0

1

2

N

e F

LG-ESDSF

g2o @5

g2o @10

g2o @20

g2o @30

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

N

e F

LG-ESDSF

g2o @5

g2o @10

g2o @20

g2o @30

Figure 5. Comparison of eF through time for different g2o
maximum iteration values and eF of LG-ESDSF. N is the
number of states. Upper figure shows eF for sequence
KITTI00 and the bottom figure for sequence KITTI05.

7.2.1 Number of iterations. Since g2o converges to the
solution in an iterative fashion, the parameter which
limits the number of iterations drastically impacts its
performance. The overall SLAM performance is affected
not only by accuracy of the used back-end, but also by
its computation speed, and hence the maximum number of
iterations during optimization has to be limited. In order to
determine the number of iterations which balances between
speed and accuracy, we have evaluated g2o behaviour on
two different tracks of each dataset limiting the number
of iterations to several different values. Finally, we have
picked the limit for EuRoC and KITTI datasets, such that
an increase in the number of iterations only insignificantly
improves accuracy.

Figures 5 and 6 show eF consisting of states appearing
in every 10-th step of the trajectory and states appearing

0 10 20 30 40 50
0

0.1

N

e F

LG-ESDSF

g2o @1

g2o @3

g2o @5

g2o @10

0 20 40 60 80 100 120
0

0.02

0.04

0.06

N

e F

LG-ESDSF

g2o @1

g2o @3

g2o @5

g2o @10

Figure 6. Comparison of eF through time for different g2o
maximum iteration values and eF of LG-ESDSF. N is the
number of states. Upper figure shows eF for EuRoC track
MH 01 E and bottom figure for EuRoC track MH 01 M.

whenever updates were performed. Both algorithms were
relying on the same front-end solutions. The maximum
number of iterations on KITTI sequences was limited to 5,
10, 20 and 30, while on EuRoC sequences it was limited to
1, 3, 5 and 10 since it saturated more quickly.

In the sequel, for testing purposes, on KITTI dataset
we set the maximum number of iterations to 20, since
the accuracy was saturated at this point. Following the
similar reasoning and given Fig. 6, the maximum number
of iterations for EuRoC dataset was set to 5. From Figs. 5
and 6 we can see that on the tested tracks, the error of LG-
ESDSF is similar to that of g2o with the chosen maximum
number of iterations.

The results of both back-end algorithms relying on SOFT
and 3D-NDT front-ends on the KITTI dataset, are listed in

Prepared using sagej.cls

18 The International Journal of Robotics Research XX(X)

Table 4. Comparison of g2o and LG-SLAM on the KITTI
dataset with the SOFT front-end showing translational,
rotational and total error.

etrans [m] erot [deg] eF

LG-SLAM / g2o
KITTI00 4.41 / 4.40 1.25 / 1.25 1.10 / 1.09
KITTI02 13.02 / 12.90 1.21 / 1.16 3.44 / 3.45
KITTI05 1.45 / 1.45 0.55 / 0.55 0.56 / 0.57
KITTI06 1.26 / 1.26 0.81 / 0.81 0.62 / 0.63
KITTI07 0.93 / 0.93 0.52 / 0.52 0.32 / 0.32
KITTI09 2.72 / 2.72 0.77 / 0.77 1.24 / 1.24

Table 5. Comparison of g2o and LG-SLAM on the KITTI
dataset with the 3D-NDT front-end showing translational,
rotational and total error.

etrans [m] erot [deg] eF

LG-SLAM / g2o
KITTI00 8.90 / 8.83 3.62 / 3.74 2.28 / 2.33
KITTI02 98.27 / 130.97 19.57 / 24.75 46.65 / 49.71
KITTI05 2.87 / 2.85 1.92 / 1.87 1.34 / 1.34
KITTI06 3.27 / 3.16 2.01 / 1.92 1.95 / 1.87
KITTI07 1.22 / 1.21 0.97 / 0.99 0.64 / 0.64
KITTI09 14.81 / 14.78 4.05 / 4.05 3.34 / 3.34

Table 6. Comparison of g2o and LG-SLAM on the EuRoC
dataset.

etrans [m] erot [deg] eF

LG-SLAM / g2o
MH 01 E 0.16 / 0.17 2.10 / 2.59 0.04 / 0.04
MH 02 E 0.11 / 0.11 1.05 / 1.18 0.05 / 0.05
MH 03 M 0.13 / 0.13 2.10 / 2.18 0.04 / 0.04
MH 04 D 0.29 / 0.28 0.95 / 1.08 0.07 / 0.09
MH 05 D 0.16 / 0.17 0.98 / 1.02 0.06 / 0.08
V1 01 E 0.25 / 0.24 2.32 / 2.35 0.05 / 0.05
V1 02 M 0.09 / 0.09 0.88 / 0.94 0.05 / 0.05
V1 03 D 0.12 / 0.13 1.51 / 1.79 0.05 / 0.05
V2 01 E 0.12 / 0.15 1.64 / 2.53 0.07 / 0.09
V2 02 M 0.08 / 0.08 1.76 / 1.70 0.08 / 0.07

Tables 4 and 5. By examining results produced by back-
ends, we can conclude that in most cases the accuracy is
very similar, with minor differences. The exception is the
sequence KITTI02 when relying on 3D-NDT front-end,
since it accumulated high rotational error in the beginning
and the loop was never closed. In this case, none of the
back-end approaches were able to produce accurate result.

Since EuRoC dataset contains only stereo images, in this
case we relied on the SOFT front-end only. Results for all
the 10 sequences are provided in Table 6. Again, both back-
ends achieve similar performance in terms of accuracy, with
LG-SLAM performing slightly better in terms of rotation
error erot. However, even the maximum difference in erot is

Table 7. Minimum, maximum and mean computation times of
the LG-SLAM update step and g2o optimization on the KITTI
dataset with the SOFT front-end.

tmin [ms] tmax [ms] tmean [ms]
LG-SLAM / g2o

KITTI00 10.6 / 1.5 37.1 / 996.7 27.2 / 461.2
KITTI02 29.3 / 1.7 39.1 / 998.9 34.9 / 349.6
KITTI05 8.4 / 35.7 21.9 / 540.3 14.4 / 250.0
KITTI06 7.4 / 32.4 12.3 / 269.5 9.6 / 165.1
KITTI07 5.8 / 158.1 7.2 / 195.5 6.4 / 178.6
KITTI09 15.2 / 439.9 16.1 / 448.4 15.7 / 443.2

Table 8. Minimum, maximum and mean computation times of
the LG-SLAM update step and g2o optimization on KITTI
dataset with the 3D-NDT front-end.

tmin [ms] tmax [ms] tmean [ms]
LG-SLAM / g2o

KITTI00 10.6 / 1.8 42.1 / 999.8 27.0 / 510.1
KITTI02 29.3 / 181.6 40.4 / 972.2 35.6 / 829.8
KITTI05 8.4 / 49.6 22.4 / 554.7 14.3 / 278.0
KITTI06 7.1 / 33.0 12.8 / 297.0 9.5 / 157.2
KITTI07 5.8 / 56.4 7.2 / 175.1 6.3 / 124.3
KITTI09 14.6 / 406.0 16.5 / 438.5 15.4 / 420.7

smaller than 1◦, and in most sequences it is even smaller
than 0.1◦.

7.2.2 Computation runtime. The runtimes of both back-
end algorithms relying on SOFT and 3D-NDT front-ends
on KITTI dataset, are given in Tables 7 and 8. The
maximum tmax, minimum tmin and mean tmean computation
times for all 6 sequences are presented. The number of
iterations for g2o was set to the valued determined in
Section 7.2.1. It can be seen that all the computation times
of the LG-SLAM update steps are significantly smaller than
those of the g2o optimization. Furthermore, since update
of LG-SLAM is only dependent on the number of loop
closings and number of states in the trajectory, we can see
that computation times for LG-SLAM are similar regardless
of the used front-end. On the other hand, g2o optimization
runtimes depend on the initial condition. It can also be noted
that the range of runtimes for g2o is much wider, which is
due to faster optimization if loop closings appear frequently,
hence in KITTI07 and KITTI09 minimum and maximum
optimization runtimes are similar, since there were very
few loop closings. Table 9 shows computation times of the
update step for LG-SLAM and optimization step for g2o on
EuRoC dataset. Again, same conclusions can be drawn as
in the case of the KITTI dataset.

7.2.3 Robustness to bias. Additionally, we compared
the behaviour of the two back-ends during specific
conditions which may occur and are important performance
indicators for a SLAM system. These conditions include:
(i) existence of bias in the odometry measurements, (ii)

Prepared using sagej.cls

Lenac et al. 19

Table 9. Minimum, maximum and mean computation times of
the LG-SLAM update step and g2o optimization on the EuRoC
dataset.

tmin [ms] tmax [ms] tmean [ms]
LG-SLAM / g2o

MH 01 E 0.3 / 1.3 3.4 / 27.5 2.1 / 17.6
MH 02 E 0.2 / 0.5 3.6 / 26.5 2.2 / 16.3
MH 03 M 0.2 / 0.8 8.2 / 53.7 3.6 / 32.0
MH 04 D 0.2 / 1.1 4.9 / 35.3 2.8 / 21.3
MH 05 D 0.4 / 2.1 5.4 / 37.2 2.9 / 23.0
V1 01 E 0.3 / 1.7 3.7 / 28.6 2.2 / 15.8
V1 02 M 0.2 / 1.0 4.5 / 39.5 2.1 / 18.3
V1 03 D 0.4 / 2.1 3.5 / 30.9 2.2 / 18.8
V2 01 E 0.6 / 3.6 1.5 / 12.1 1.0 / 7.9
V2 02 M 0.2 / 1.0 4.0 / 29.6 1.8 / 15.5

large error introduced in several relative pose measurements
after loop closing detection, (iii) large error introduced in
several odometry measurements and (iv) perform only one
update/optimization after the end of experiment. For testing
purposes we used the KITTI00 track.

Bias in the odometry measurements was introduced
by adding a fixed value to every odometry measurement
produced by the SOFT front-end, primarily to the yaw
angle. Figure 7 shows comparison between the ground
truth and odometry trajectories with and without bias. As
can be seen, introducing bias has severely degraded the
odometry accuracy. However, both SLAM back-ends have
successfully corrected the introduced error as can be seen
in Fig. 8, which shows continuous plot of error eF . The
difference in eF between the two approaches is very small,
i.e., g2o finished with eF = 5.50 and LG-ESDSF finished
with eF = 5.64. Moreover, error difference at every point
is very small and we can conclude that both SLAM back-
ends can accurately estimate trajectory even in the presence
of significant bias.

7.2.4 Robustness to outliers. In contrast to bias,
outliers appearing as large errors that occur only several
times during the experiment, cannot be well modeled
with appropriate covariances. This makes outliers more
challenging for a SLAM system to recover from.

In the first experiment we introduced outliers in relative
pose measurements at every 20-th loop closing. This was
performed by perturbing the accurate relative pose estimate
with an SE(3) element ∆e. The error was set to 30◦ in
rotation and 10 m in translation. Figure 9 shows continuous
plots of eF for g2o and LG-ESDSF. The outlier occurrence
can be recognized by high jumps in eF . As can be seen
from the results, although the final eF of both trajectories is
close (eF = 5.12 for g2o and eF = 5.28 for LG-ESDSF),
by examining the entire graph we can see that g2o achieved
lower error, especially between states 250 and 350. The

−300 −200 −100 0 100 200 300

0

100

200

300

400

500

x [m]

y
[m

]

KITTI00

ground truth
SOFT
SOFT with bias

Figure 7. Comparison between ground truth trajectory and
SOFT trajectories with and without introduced bias.

main reason for this lies in the g2o relinearization ability
occuring at every iteration.

The second experiment is performed so that the outliers
in the odometry were introduced in the same way as in the
case of relative pose measurements of the loop closings,
but with lower absolute values on angles and location
displacements of ∆e. The maximum orientation change per
angle was set to 20◦ and maximum position displacement
was set to 5 m. The outliers were introduced every 800
steps. The continuous plot of eF with odometry outliers is
shown in Fig. 10, while the final errors are eF = 4.28 for
g2o, and eF = 5.63 for LG-ESDSF. Again, as is the case of
outliers in relative pose measurements, odometry outliers
were better corrected with g2o.

7.2.5 LG-ESDSF as a general optimization tool. In
order to test the ability of LG-ESDSF to perform as a
general solution for optimization problems formulated via
graph structure in a similar fashion as g2o, we compared
the two back-ends in the case when only one update is
performed at the end of the sequence. In this experiment g2o
was set so that all edges resulting from odometry and loop
closing detections are added as they occur, however, only
one optimization is called at the end of the sequence. LG-
ESDSF was set so that equation (40) is slightly modified.
In particular, Jacobian matrixH is no longer of dimensions
6×N , but becomes matrix with dimensions 6nu ×N ,
where nu is total number of loop closing detections.
Covariance matrix R is no longer of dimensions 6× 6, but
a block-diagonal matrix 6nu × 6nu, and innovation vector
is no longer 6× 1, but 6nu × 1. Each 6×N row in H

Prepared using sagej.cls

20 The International Journal of Robotics Research XX(X)

0 100 200 300
0

10

20

N

e F

LG-ESDSF

g2o @20

Figure 8. Continuous error plot eF of
g2o and LG-ESDSF trajectories when
bias was added to the SOFT odometry
measurements.

0 100 200 300
0

5

10

N

e F

LG-ESDSF

g2o @20

Figure 9. Continuous error plot eF of
g2o and LG-ESDSF trajectories when
outliers were introduced in the relative
pose measurements.

0 100 200 300
0

10

20

30

N

e F

LG-ESDSF

g2o @20

Figure 10. Continuous error plot eF of
g2o and LG-ESDSF trajectories when
outliers were introduced in the odometry
measurements.

Table 10. Comparison of g2o and LG-SLAM on KITTI00 with
only one update/optimization performed at the end.

etrans [m] erot [deg] eF tu [ms]
LG-ESDSF 4.41 1.25 1.10 55.2
g2o 10 9.70 2.00 3.04 483
g2o 20 4.40 1.25 1.10 978
g2o 30 4.40 1.25 1.09 1078

is added after every loop closing and is calculated in the
same way as when update is performed after each loop
closing detection. Each block of R is added with every new
row in matrix H and represents uncertainty of the relative
pose measurement for the particular loop closing detection.
Innovation vector z is also extended after every loop closing
detection with 6× 1 vector representing the innovation
resulting from the occurred loop closing detection. Once
information from all the updates is stored in matrices H,
R and z, and the sequence is completed, update step is
performed using (40) and (42)–(44).

Table 10 shows errors eF , etran and erot of the final
trajectory after single update/optimization was performed at
the end of KITTI00 sequence. Additionally, the runtimes tu
representing duration required for the update/optimization
to be completed are also presented. From the results we
can see that accuracy of both LG-ESDSF and g2o has
remained the same as in the case when multiple updates
appeared sequentially over time. However, when maximum
number of iterations during optimization was limited to 10,
results were significantly less accurate for g2o, while with
30 iterations there was no improvement in the accuracy
of the final trajectory. However, LG-ESDSF remained
significantly faster than g2o, while retaining same level of
accuracy. Figure 11 shows KITTI00 ground truth trajectory,
as well as the estimated trajectories obtained by g2o and
LG-ESDSF.

−300 −200 −100 0 100 200 300

0

100

200

300

400

500

x [m]

y
[m

]

KITTI00

Ground truth
LG-ESDSF

g2o @20

Figure 11. Comparison between ground-truth, g2o and
LG-ESDSF trajectories after only one update/optimization step
performed at the end.

7.2.6 Discussion. Besides taking the advantage of
a Lie group state representation, g2o uses the Gauss-
Newton or Levenberg-Marquardt algorithm to solve SLAM
represented as a least squares problem in an iterative
fashion, relinearizing after each iteration of the algorithm
and minimizing a weighted error function. It is a general
framework for solving nonlinear least squares problems
via optimization that can be represented as a graph, thus
being a highly general and extensible method, not only
applicable to SLAM problems. LG-ESDSF, on the other
hand, operates in only a single linearization point used
for obtaining the measurement Jacobian H, and instead of
gradually reaching optimization solution through several
iterations, it calculates the updated estimate based on a

Prepared using sagej.cls

Lenac et al. 21

single innovation term (40). Nevertheless, a similarity
between the compared back-ends exists, and stems from
the fact that LG-ESDSF also tackles the SLAM problem as
a pose graph and keeps the history of the whole trajectory,
but in the form of the information vector within a filtering
framework, which is different from most EKF based
SLAMs that keep the current robot pose and the pose of the
landmarks. Hence, when ESDSF computes the update step,
it does so over the entire trajectory, thus can be seen as a
form of trajectory smoothing (Dellaert and Kaess (2006)).

Furthermore, compared to approaches treating
orientation parametrization as an Euclidean vector
space with a pertaining covariance matrix, which can be
reasonable for small rotations when the non-Euclidean
nature is not as pronounced, by working on Lie groups
and manipulating covariances correspondingly, the
uncertainty interrelations can be better captured, which
is especially important for filtering frameworks, since
the goal of the Kalman gain is to ensure optimal update
by considering these exact covariance interrelations. For
example, direct filtering over Euler angle or unit quaternion
parametrizations ignores the non-Euclidean nature which
is in play between each of the parametrization components.

Moreover, it also holds that a filtering based SLAM
can rely on filtering relinearization approaches, such
as iterative EKF (Lie group solution was presented in
Bourmaud et al. (2016)), and indeed in Bell and Cathey
(1993) and Bell (1994) it was shown that the iterative EKF
update is an application of the Gauss-Newton method for
approximating a maximum likelihood estimate and that
iterated Kalman smoother is a Gauss-Newton method for
maximizing the likelihood function. Nevertheless, in the
present paper we focus on the standard single step filtering.

In the experiments, with LG-ESDSF we have
demonstrated that accuracy with respect to g2o remained
comparable in most scenarios, exempting outliers
where g2o showed higher accuracy, while runtime
was significantly lower. Although in general g2o would
most likely as a batch optimization approach achieve
better accuracy given an unlimited number of iterations,
in practical SLAM applications this number has to be
limited in order to assure real-time operation. Hence, after
carefully selecting the limits on the number of iterations
during optimization, LG-ESDSF was shown to perform the
update step 10-25 times faster on the KITTI dataset and 7-8
times faster on the EuRoC dataset with respect to g2o. The
reason behind KITTI and EuRoC timing differences lies in
the fact that the EuRoC dataset contains shorter trajectories
with more often occurring loop closings. Moreover, the
runtime of LG-ESDSF can be predicted and accounted for.

In conclusion, we can assert that by negotiating
uncertainties and employing filtering equations on Lie
groups within the ESDSF framework, thus respecting

the state space geometry, LG-SLAM managed to achieve
state-of-the-art performance based on a veteran filtering
SLAM approach.

7.3 Evaluation of the long-term LG-SLAM
performance

In order to test Algorithm 2 we again used the KITTI
dataset, particularly sequences KITTI00 and KITTI05. We
have chosen these sequences because they are among the
longest ones and they have significant trajectory parts that
overlap and a loop closing near the beginning. For the
testing purposes we have simulated two consecutive runs
of each trajectory and used SOFT for odometry. Although
this does not completely simulate a real-world experiment,
since images of the second run would not be identical, they
would be similar enough. Since our goal in this scenario
was not to test the accuracy of the front-end, we think that
this approach is adequate to test the long-term LG-SLAM
approach. Another advantage of such a simulation is that,
since images are identical, trajectory augmentation with
almost every new state in the second run results in a loop
closing, which is precisely the scenario we wanted to test.
The benefit is also that we had accurate ground-truth for
both experiments.

To test the behaviour of our algorithm we first ran the
simulation on both tracks with two runs without using
the algorithm in order to get a reference. Afterwards, we
used the topological distance to reject unnecessary loop
closings and performed the marginalization of all states that
were selected as close enough between two consecutive
loop closings, but without including the state participating
in the loop closing. This means that no sparsification
was required. Finally, we performed testing of all the
components by also including the state in which the loop
closing was detected. We have evaluated accuracy of final
tracks using eF , counted the number of states n in the
trajectory at the end, recorded total number of updates
performed nu, measured the total time required for all
trajectory updates tu, and counted states added in the
second run nnew.

Table 11 shows the results for KITTI00. Label
NO MARG stands for results acquired without using the
Algorithm 2. Label NO LOOP MARG stands for results
when the state in which loop closing occurred was not
marginalized and label ALL stands for results when all the
steps of the algorithm were used. We tested the algorithm
performance for two drastically different values of the
minimum topological distance Tdmin, one was set to 80 m
and the other to 6 m. We can see that when the algorithm
was not used, error eF for both runs seen in Table 11
remained the same as the error of the single run (confer
eF in Table 4). As expected, when rejecting updates and
marginalizing blocks the error increases, while in the case

Prepared using sagej.cls

22 The International Journal of Robotics Research XX(X)

−300 −200 −100 0 100 200 300

0

100

200

300

400

500

x [m]

y
[m

]

KITTI00

Figure 12. New states added in the second run of KITTI00
with Tdmin = 80m. Green line represents trajectory in the first
run, red × represent states added in the second run for the
NO LOOP MARG case, and blue × represent states added
for the ALL case. We can notice a significant reduction of
added redundant states for the ALL case.

of using sparsification, the error increase is even further
noticeable. However, for all the tests the error increase
remained small. When using the smaller Tdmin, changes in
the error were almost insignificant, since, in that case, fewer
updates were rejected. This can be seen from the parameter
nu, which also indicates the correct behaviour of the loop
closing rejection part. From Fig. 12 we can see that, when
states in which update occurred were not marginalized, they
were periodically added to the trajectory after each accepted
update (red crosses in the figure). However, updates were
performed only after T dmin was exceeded. When states
in which loop closing occurred were marginalized, only
few states were added in the second run (blue crosses in
the figure). This can also be confirmed by consulting the
parameter nnew.

The most interesting parameter is probably tu. As we
can see when Tdmin is large, time required to complete
all updates is practically the same when sparsification is
enabled or disabled. This is because very few updates were
performed and the effect of more dense information matrix
was nullified by the time required to do sparsification. Much
better effect of sparsification can be seen when T dmin is
small. In this case we can see that tu is much smaller when
using sparsification in comparison to the case when we do
not. This confirms the expected effect of marginalizing the
state in which loop closing was detected.

−200 −100 0 100 200

0

100

200

300

x [m]

y
[m

]

KITTI05

Figure 13. New states added in the second run of KITTI05
with Tdmin = 50m. Green line represents trajectory in the first
run, red × represent states added in the second run for the
NO LOOP MARG case, and blue × represent states added
for the ALL case. We can notice a significant reduction of
added redundant states for the ALL case. Red rectangle
marks the area where the vehicle went right and missed the
loop closing in the area marked with cyan rectangle during the
first run, while in the second run it continued straight at the red
rectangle and closed the loop at the cyan rectangle.

Results from the test conducted using KITTI05 are
displayed in Table 12. Most of the conclusions drawn
for the test using KITTI00 can also be made here. The
difference is that in this case sparsification reduces accuracy
even less. We can see that in this case eF is even slightly
smaller when using marginalization with small Tdmin than
without performing any marginalization, which is due
to rejecting some loop closings that had errors in their
estimates. The eF of two runs seen in Table 11 in this case
is larger than in the case of only one run (confer eF in
Table 4). The reason for this is, because unlike in KITTI00,
in KITTI05 two runs are different and one important loop
closing is not detected until the end of the second run. This
can be seen in Fig. 13. When robot arrived at the position
marked with red rectangle in the first run, it turned right,
while in the second run it went straight and closed the
loop in the area marked with the cyan rectangle. From this
figure we can also see that when robot entered a previously
unexplored area (straight segments densely populated with
crosses) the state vector was correctly augmented with new
states.

From the results we can say that the proposed algorithm
works correctly and drastically reduces the number of
unnecessary states in the trajectory. However, we do

Prepared using sagej.cls

Lenac et al. 23

Table 11. Long-term performance evaluation on KITTI00
eF [m] n nu tu [s] nnew

NO MARG 1.17 3865 2215 130.62 1949
T dmin = 80m

NO LOOP MARG 1.21 1758 106 2.77 109
ALL 1.27 1645 121 2.86 12

T dmin = 6m

NO LOOP MARG 1.18 2772 1140 47.42 986
ALL 1.19 1646 1183 27.81 18

Table 12. Long-term performance evaluation on KITTI05
eF [m] n nu tu [s] nnew

NO MARG 1.04 2150 1163 35.7 1149
T dmin = 50m

NO LOOP MARG 1.29 1072 88 1.31 172
ALL 1.29 997 96 1.30 107

T dmin = 5m

NO LOOP MARG 1.0 1633 650 14.58 669
ALL 1.01 993 669 8.31 105

acknowledge that the process of choosing which states
should be removed by checking the similarity of the
pose has its drawbacks and cannot, for example, account
for changes in the environment like moving objects and
occlusions. In order to make this algorithm applicable in
such conditions, we would have to use information from the
SLAM front-end which is out of scope of the present paper
and subject of future work. On the other hand, all other steps
of the proposed algorithm are front-end agnostic.

8 Conclusion

The successful solution of the SLAM problem is one of the
main prerequisites for the autonomy of every mobile robot.
Development of SLAM back-end algorithms is usually
divided into two main branches. One branch is focused
on developing SLAM solutions based on filtering and the
other is centred on using graph-optimization algorithms.
In the last decade, solutions based on graph-optimization
prevailed over the filtering approaches. However, with the
introduction of new EKF filtering approaches that solve
equations directly on Lie groups, a novel ground was set
for filtering based SLAM which respects the geometry of
the state space, thus achieving greater estimation accuracy
of both the mean and the covariance.

In this paper we have proposed a novel filtering SLAM
back-end solution based on the ESDSF derived on Lie
groups, dubbed LG-ESDSF. The developed filter does
not only retain all the good characteristics of the classic
ESDSF implementation, the main being the exact sparsity
of the information matrix, but also respects the state
space geometry by negotiating uncertainties and employing
filtering equations on Lie groups. In addition, we have

developed a method which allows our LG-ESDSF back-
end to work over long-term, while the robot is continuously
moving through already explored environments. In order
to test the LG-ESDSF back-end, we have coupled it with
two different front-ends: one based on the stereo camera
and one based on the 3D laser range sensor. We named
our complete SLAM solution LG-SLAM. For testing we
used two publicly available datasets. First dataset was the
KITTI dataset which was recorded with a commercially
available vehicle equipped with a 3D LIDAR and two pairs
of stereo cameras. The second dataset was the EuRoC
dataset recorded with an UAV equipped with a stereo
camera. We compared results of LG-SLAM with g2o when
coupled with the same front-ends and under the same
conditions. Results have showed that the proposed method
achieves similar accuracy as g2o, with significantly faster
computation times of the update step in comparison to the
g2o optimization. We have also evaluated LG-SLAM using
the KITTI online evaluation protocol achieving the second
best result among all the stereo odometry solutions and
the best results among all the tested SLAM algorithms.
Finally, we tested LG-SLAM long-term performance using
the KITTI dataset. The results validated the effectiveness
of LG-SLAM in such conditions. In the end we can
assert that although graph-optimization solutions still offer
several advantages over the filtering solutions, like easier
applicability to a wider range of problems, judging from the
newly proposed method, we believe that filtering solutions
deserve to be once again in the focus of the SLAM research.

9 Appendices

9.1 ESDSF equations for augmentation and
marginalization during the prediction

The derivation of Euclidean ESDSF is given in Eustice et al.
(2006), while here we provide only the final expressions.

9.1.1 Trajectory augmentation. If we denote estimated
pose in time step n by Xn, and all other previous poses
with M , i.e., M = [X1, . . . , Xn−1]

T , then we can partition
the joint probability distribution of Xn and M as follows

p(Xn,M |z1:n, u1:k) = N
[(

µXn

µM

)
,

(
ΣXn ΣXnM

ΣMXn
ΣMM

)]
= N−1

[(
ηXn

ηM

)
,

(
ΛXnXn

ΛXnM

ΛMXn ΛMM

)]
.

(58)
where z1:n represents history of all measurements and u1:k
represents history of all control inputs. Augmentation step
yields

p(Xn+1, Xn,M | z1:n, u1:k) = N−1(ηn+1,Λn+1), (59)

Prepared using sagej.cls

24 The International Journal of Robotics Research XX(X)

where

ηn+1 =

 Q
−1

n (µXn+1 − FnµXn)

ηXn
− FTn Q

−1

(µXn+1
− µXn

)
ηM

 (60)

and

Λn+1 =

 Q−1n −Q−1n Fn 0
−FTn Q−1n ΛXn,n

+ FTn Q
−1
n Fn ΛXnM

0 ΛMXn
ΛMM

 .
(61)

9.1.2 State marginalization. Marginalization of the state
Xn equals marginalization of a Gaussian from a
multivariate Gaussian distribution Tn

p(Xn+1,M |z1:n, u1:k)=

∫
p(Xn+1, Xn,M |z1:n, u1:k)dXn

= N (µ̄n, Σ̄n) = N−1(η̄n, Λ̄n)

(62)

where

η̄n =

[
Q−1n (µXn+1

− FnµXn
)

ηM

]
−
[
−Q−1n Fn
ΛMXn

]
α−1n (ηXn

− FTn Q−1n (µXn+1
− FnµXn

)

=

[
Q−1n Fnα

−1
n ηXn

+ βn(µXn+1
− FnµXn

)
ηM − ΛMXn(ηXn − FTn Q−1n (µXn+1 − FnµXn))

]
(63)

Λ̄n =

[
Q−1n 0

0 Λmm

]
−
[
−Q−1n Fn
ΛMXn

]
α−1n

[
−FTn Q−1n ΛXnM

]
=

[
βn Q−1n Fnα

−1
n ΛXnM

ΛMXnα
−1
n FTn Q

−1
n ΛMM − ΛMXnα

−1
n ΛXnM

]
,

(64)
and

αn =ΛXn,n
+ FTn Q

−1
n Fn

βn =Q−1n −Q−1n Fn(ΛXn,n + FTn Q
−1
n Fn)−1FTn Q

−1
n

=(Qn + FnΛ−1Xn,n
FTn)−1.

9.2 Special Euclidean group SE(3)

The group SE(3) describes a 6 DoF rigid body pose
and is formed as a semi-direct product of the Euclidean
space vector R3 and the special orthogonal group
SO(3)3, corresponding to translational and rotational parts,
respectively. This group is defined as

SE(3) =

{(
R t
0 1

)
⊂ R4×4 | {R, t} ∈ SO(3)× R3

}
.

A Euclidean space vector representing the pose of a rigid
body consisting of position t = [t1 t2 t3] and orientation
φ = [φ1 φ2 φ3] vectors is obtained by concatenating the
two, x = [t φ]T. Mapping of the pertaining Euclidean

space to Lie algebra, i.e., (·)∧SE(3) : R6 → se(3), is then
constructed as

x∧SE(3) =

[
φ∧SO(3) t

0 0

]
∈ se(3) , (65)

φ∧SO(3) =

 0 −φ3 φ2
φ3 0 −φ1
−φ2 φ1 0

 ∈ so(3) , (66)

while its inverse, (·)∨SE(3) : se(3)→ R6, follows trivially
from (65) and (66). The exponential, performing mapping
expSE(3) : se(3)→ SE(3), is determined as follows:

exp∧SE(3)(x) =

[
C Lt
0 1

]
(67)

C = exp∧SO(3)(φ)

= cos(|φ|)I + (1− cos(|φ|))φφ
T

|φ|2
+ sin(|φ|)

φ∧SO(3)

|φ|

L =
sin(|φ|)
|φ|

I+(1− sin(|φ|)
|φ|

)
φφT

|φ|2
+

1−cos(|φ|)
|φ|2

φ∧SO(3).

The logarithm, performing the mapping logSE(3) : SE(3)→
se(3), is calculated by deconstructing X , and determining
φ by using

logSO(3)(X) =


θ

2 sin(θ)
(X −XT) if θ 6= 0

0 if θ = 0

,

s.t. 1 + 2 cos(θ) = Tr(X) .
(68)

Then, from (67), we can determine t. In order to determine
the adjoints for SE(3), we need to deconstruct the state
X ∈ SE(3) and the vector x ∈ R6. Firstly, we extract the
rotation part C and the translation part t from X , and
secondly, we split the translation part t and the orientation
part φ from x. Then, the adjoints AdSE(3) and adSE(3) are

AdSE(3)(X)=

[
C tC
0 C

]
, adSE(3)(x)=

[
φ∧SO(3) t∧SO(3)

0 φ∧SO(3)

]

9.3 Derivation of the Lie measurement
Jacobian H

When the loop closing occurs between the statesXi andXj

we need to evaluate

Hn+1 = ∂
∂ε

[
log∨G

(
h(Xi, Xj)

−1h
(
(Xi, Xj) exp∧G(ε)

))]∣∣∣∣
ε=0

in order to perform update using (40). First we evaluate

h
(
(Xi, Xj) exp∧G(ε)

)
= (Xj exp∧G(εj))

−1Xi exp∧G(εi)

= exp∧G(−εj)X−1j Xi exp∧G(εi).

Prepared using sagej.cls

Lenac et al. 25

Then, we evaluate

h(Xi, Xj)
−1h

(
(Xi, Xj) exp∧G(ε)

)
=

= (X−1j Xi)
−1 exp∧G(−εj)X−1j Xi exp∧G(εi)

= X−1i Xj exp∧G(−εj)X−1j Xi exp∧G(εi)

= X−1i exp∧G(Ad(Xj)(−εj))XjX
−1
j Xi exp∧G(εi)

= X−1i exp∧G(Ad(Xj)(−εj))Xi exp∧G(εi)

= exp∧G(Ad(X−1i) Ad(Xj)(−εj))X−1i Xi exp∧G(εi)

= exp∧G(Ad(X−1i) Ad(Xj)(−εj)) exp∧G(εi).

Using Baker–Campbell–Hausdorff formula we obtain

Hn+1 =
∂

∂ε
[εi + Φ(εi) Ad(X−1i) Ad(Xj)(−εj) + · · ·]|ε=0

= [

1:j−1︷︸︸︷
0 · · ·

j︷ ︸︸ ︷
−Φ(εi) Ad(X−1i)Ad(Xj)

j+1:i−1︷ ︸︸ ︷
· · · 0 · · ·

I +
∂

∂ε
(Φ(εi) Ad(X−1i) Ad(Xj)(−εj))︸ ︷︷ ︸

i

· · · 0︸︷︷︸
i+1:n+1

]|ε=0

= [

1:j−1︷︸︸︷
0 · · ·

j︷ ︸︸ ︷
−Φ(εi) Ad(X−1i) Ad(Xj)

j+1:i−1︷ ︸︸ ︷
· · · 0 · · ·

I −Ad(X−1i) Ad(Xj)εj
∂

∂ε
(Φ(εi))︸ ︷︷ ︸

i

· · · 0︸︷︷︸
i+1:n+1

]|ε=0

= [

1:j−1︷︸︸︷
0 · · ·

j︷ ︸︸ ︷
−Φ(0) Ad(X−1i) Ad(Xj)

j+1:i−1︷ ︸︸ ︷
· · · 0 · · ·

I︸︷︷︸
i

· · · 0︸︷︷︸
i+1:n+1

]

Φ(0) =

∞∑
n=0

Bn ad(0)n

n!
=
B0 ad(0)0

0!
+ 0 = 1.

Finally, we have

Hn+1 = [

1:j−1︷︸︸︷
0 · · ·

j︷ ︸︸ ︷
−Ad(X−1i) Ad(Xj) · · · 0 · · ·︸ ︷︷ ︸

j+1:i−1
I︸︷︷︸
i

· · · 0︸︷︷︸
i+1:n+1

].

(69)

Acknowledgements

This work has been supported from the Unity Through
Knowledge Fund (no. 24/15) under the project Cooperative
Cloud based Simultaneous Localization and Mapping in Dynamic
Environments (cloudSLAM) and has been carried out within the
activities of the Centre of Research Excellence for Data Science
and Cooperative Systems supported by the Ministry of Science
and Education of the Republic of Croatia under Grant 533-19-15-
0007.

Notes

1. http://vision.in.tum.de/data/datasets/rgbd-dataset/tools#
evaluation

2. http://cvlibs.net/datasets/kitti/eval odometry.php
3. The Euclidean space can be formed only by employing direct

product, while other ways to concatenate Lie groups also
exist, i.e., semi-direct product, twisted product etc.

References

Agarwal S, Mierle K and Others (2010) Ceres solver. http://ceres-
solver.org.

Arrigoni F, Rossi B and Fusiello A (2016) Spectral
synchronization of multiple views in se(3). SIAM Journal on
Imaging Sciences 9(4): 1963–1990.

Aulinas J, Petillot Y, Salvi J and Lladó X (2008) The SLAM
Problem: A Survey. In: Conference on Artificial Intelligence
Research and Development. IOS Press, pp. 363–371.

Bailey T and Durrant-Whyte H (2006) Simultaneous localization
and mapping (SLAM): part II. IEEE Robotics & Automation
Magazine 13(3): 108–117.

Barfoot TD and Furgale PT (2014) Associating uncertainty with
three-dimensional poses for use in estimation problems. IEEE
Transactions on Robotics 30(3): 679–693.

Barrau A and Bonnabel S (2015) Intrinsic filtering on Lie groups
with applications to attitude estimation. IEEE Transactions
on Automatic Control 60(2): 436–449.

Bell BM (1994) The iterated kalman smoother as a gauss–newton
method. SIAM Journal on Optimization 4(3): 626–636.

Bell BM and Cathey FW (1993) The Iterated Kalman Filter
Update as a Gauss-Newton Method. IEEE Transactions on
Automatic Control 38(2): 294–297. DOI:10.1109/9.250476.

Bourmaud G and Mégret R (2015) Robust large scale monocular
visual SLAM. In: IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 1638–1647.

Bourmaud G, Mégret R, Arnaudon M and Giremus A (2015)
Continuous-Discrete Extended Kalman Filter on Matrix Lie
Groups Using Concentrated Gaussian Distributions. Journal
of Mathematical Imaging and Vision 51(1): 209–228. DOI:
10.1007/s10851-014-0517-0.

Bourmaud G, Mégret R, Giremus A and Berthoumieu Y (2013)
Discrete Extended Kalman Filter on Lie groups. In: European
Signal Processing Conference (EUSIPCO). pp. 1–5.

Bourmaud G, Megret R, Giremus A and Berthoumieu Y (2016)
From Intrinsic Optimization to Iterated Extended Kalman
Filtering on Lie Groups. Journal of Mathematical Imaging
and Vision 55(3): 284–303.

Briales J and Gonzalez-Jimenez J (2016) Fast global optimality
verification in 3d slam. In: International Conference on
Intelligent Robots and Systems (IROS). IEEE/RSJ, pp. 4630–
4636.

Briales J and Gonzalez-Jimenez J (2017) Cartan-sync: Fast and
global se(d)-synchronization. IEEE Robotics and Automation
Letters 2(4): 2127–2134.

Prepared using sagej.cls

26 The International Journal of Robotics Research XX(X)

Burri M, Nikolic J, Gohl P, Schneider T, Rehder J, Omari S,
Achtelik MW and Siegwart R (2016) The EuRoC micro
aerial vehicle datasets. The International Journal of Robotics
Research 35(10): 1157–1163.

Cadena C, Carlone L, Carrillo H, Latif Y, Scaramuzza D, Neira
J, Reid I and Leonard JJ (2016) Past, Present, and Future
of Simultaneous Localization And Mapping: Towards the
Robust-Perception Age. IEEE Transactions on Robotics
32(6): 1309–1332.

Carlevaris-Bianco N, Kaess M and Eustice RM (2014) Generic
Node Removal for Factor-Graph SLAM. IEEE Transactions
on Robotics 30(6): 1371–1385.

Carlone L (2013) A convergence analysis for pose graph
optimization via gauss-newton methods. In: IEEE
International Conference on Robotics and Automation
(ICRA). pp. 965–972.

Carlone L, Tron R, Daniilidis K and Dellaert F (2015)
Initialization techniques for 3d slam: A survey on rotation
estimation and its use in pose graph optimization. In:
IEEE International Conference on Robotics and Automation
(ICRA). pp. 4597–4604.

Ćesić J, Marković I, Bukal M and Petrović I (2017) Extended
information filter on matrix Lie groups. Automatica 82: 226–
234.

Chirikjian GS (2012) Stochastic Models, Information Theory,
and Lie Groups, Volume 2: Analytic Methods and Modern
Applications. Springer.

Chow CK and Liu CN (1968) Approximating Discrete Probability
Distributions with Dependence Trees. IEEE Transactions on
Information Theory 14(3): 462–467.

Civera J, Grasa OG, Davison AJ and Montiel JMM (2010) 1-
Point RANSAC for EKF Filtering. Application to Real-Time
Structure from Motion and Visual Odometry. Journal of Field
Robotics 27(5): 609–631.

Cvišić I and Petrović I (2015) Stereo odometry based on careful
feature selection and tracking. In: European Conference on
Mobile Robots (ECMR). pp. 0–5.

Davis T (2006) Direct Methods for Sparse Linear Systems. Society
for Industrial and Applied Mathematics.

Davison AJ, Reid ID, Molton ND and Stasse O (2007)
MonoSLAM: Real-time single camera SLAM. IEEE
Transactions on Pattern Analysis and Machine Intelligence
29(6): 1052–1067.

Dellaert F (2012) Factor Graphs and GTSAM: A Hands-on
Introduction. Technical report, GT RIM.

Dellaert F and Kaess M (2006) Square Root SAM: Simultaneous
Localization and Mapping via Square Root Information
Smoothing. The International Journal of Robotics Research
25(12): 1181–1203.

Dissanayake G, Huang S, Wang Z and Ranasinghe R (2011) A
review of recent developments in Simultaneous Localization
and Mapping. In: Industrial and Information Systems. pp.

477–482.
Dissanayake MWMG, Newman P, Clark S, Durrant-Whyte HF

and Csorba M (2001) A solution to the simultaneous
localization and map building (SLAM) problem. IEEE
Transactions on Robotics and Automation 17(3): 229–241.

Durrant-Whyte H and Bailey T (2006) Simultaneous localization
and mapping: part i. IEEE Robotics & Automation Magazine
13(2): 99–110.

Eade E (2008) Monocular Simultaneous Localisation and
Mapping. PhD Thesis, University of Cambridge.

Eade E, Fong P, Munich ME and Robotics E (2010) Monocular
Graph SLAM with Complexity Reduction. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS). pp. 3017–3024.

Engel J, Schops T and Cremers D (2014) LSD-SLAM: Large-Scale
Direct Monocular SLAM. Springer International Publishing.

Engel J, Stueckler J and Cremers D (2015) Large-Scale Direct
SLAM with Stereo Cameras. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). pp.
1935–1942.

Eustice RM, Singh H and Leonard JJ (2006) Exactly Sparse
Delayed-State Filters for View-Based SLAM. IEEE
Transactions on Robotics 22(6): 1100–1114.

Geiger A, Lenz P and Urtasun R (2012) Are we ready for
Autonomous Driving? The KITTI Vision Benchmark Suite.
In: Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 3354–3361.

Gilitschenski I, Kurz G, Julier SJ and Hanebeck UD (2015)
Unscented orientation estimation based on the Bingham
distribution. IEEE Transactions on Automatic Control in
press: 11.

Glover J and Kaelbling LP (2013) Tracking 3-D rotations with
the quaternion Bingham filter. Technical report, Computer
Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology (MIT).

Grisetti G, Kummerle R, Stachniss C and Burgard W (2010)
A Tutorial on Graph-Based SLAM. IEEE Intelligent
Transportation Systems Magazine 2(4): 31–43.

Guennebaud G, Jacob B et al. (2010) Eigen v3.
http://eigen.tuxfamily.org.

Guivant J and Nebot E (2001) Optimization of the Simultaneous
Localization and Map Building Algorithm for Real Time
Implementation. IEEE Transactions on Robotics and
Automation 17: 242–257.

Guivant J and Nebot E (2002) Improving computational and
memory requirements of simultaneous localization and map
building algorithms. IEEE International Conference on
Robotics and Automation (ICRA) 3: 2731–2736.

Hertzberg C, Wagner R, Frese U and Schröder L (2013)
Integrating generic sensor fusion algorithms with sound
state representations through encapsulation of manifolds.
Information Fusion 14(1): 57–77.

Prepared using sagej.cls

Lenac et al. 27

Julier S and Uhlmann J (2004) Unscented Filtering and Non
Linear Estimation. Proceedings of the IEEE 92(3): 401–422.

Kaess M, Johannsson H, Roberts R, Ila V, Leonard JJ and Dellaert
F (2012) iSAM2: Incremental smoothing and mapping using
the Bayes tree. The International Journal of Robotics
Research 31(2): 216–235.

Kaess M, Ranganathan A and Dellaert F (2008) iSAM:
Incremental smoothing and mapping. IEEE Transactions on
Robotics 24(6): 1365–1378.

Kohlhepp P, Pozzo P, Walther M and Dillmann R (2004)
Sequential 3D-SLAM for mobile action planning. In:
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), volume 1. pp. 722–729.

Konolige K (2010) Sparse Sparse Bundle Adjustment. In: British
Machine Vision Conference. BMVA Press, pp. 102.1–102.11.

Konolige K, Grisetti G, Kümmerle R, Burgard W, Limketkai
B and Vincent R (2010) Efficient Sparse Pose Adjustment
for 2D mapping. In: EEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). pp. 22–29.

Kretzschmar H and Stachniss C (2012) Information-theoretic
compression of pose graphs for laser-based SLAM. The
International Journal of Robotics Research 31(11): 1219–
1230.

Kuemmerle R, Grisetti G, Strasdat H, Konolige K and
Burgard W (2011) g2o: A General Framework for Graph
Optimization. In: IEEE International Conference on Robotics
and Automation (ICRA). Shanghai, China, pp. 3607–3613.

Lenac K, Ćesić J, Marković I, Cvišić I and Petrović I (2017)
Revival of filtering based SLAM? Exactly sparse delayed
state filter on Lie groups. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). pp.
2012–1018.

Montemerlo M, Thrun S, Koller D and Wegbreit B (2002)
FastSLAM: A Factored Solution to the Simultaneous
Localization and Mapping Problem. In: National Conference
on Artificial Intelligence (AAAI). AAAI, pp. 593–598.

Montemerlo M, Thrun S, Roller D and Wegbreit B (2003)
FastSLAM 2.0: An Improved Particle Filtering Algorithm
for Simultaneous Localization and Mapping That Provably
Converges. In: International Joint Conference on Artificial
Intelligence (IJCAI). San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., pp. 1151–1156.

Mourikis AI and Roumeliotis SI (2007) A multi-state constraint
Kalman filter for vision-aided inertial navigation. In:
IEEE International Conference on Robotics and Automation
(ICRA). pp. 3565–3572.

Mur-Artal R, Montiel JMM and Tardós JD (2015) ORB-SLAM:
A Versatile and Accurate Monocular SLAM System. IEEE
Transactions on Robotics 31(5): 1147–1163.

Mur-Artal R and Tardós JD (2017) ORB-SLAM2: an Open-
Source SLAM System for Monocular, Stereo and RGB-D
Cameras. IEEE Transactions on Robotics PP(99): 1–8.

Nikolic J, Rehder J, Burri M, Gohl P, Leutenegger S, Furgale
PT and Siegwart R (2014) A synchronized visual-inertial
sensor system with FPGA pre-processing for accurate real-
time SLAM. In: IEEE International Conference on Robotics
and Automation (ICRA). IEEE, pp. 431–437.

Park W, Yunfeng Wang and Chirikjian GS (2010) The Path-of-
probability Algorithm for Steering and Feedback Control of
Flexible Needles. The International Journal of Robotics
Research 29(7): 813–830.

Pire T, Fischer T, Civera J, de Cristóforis P and Jacobo-Berlles
J (2015) Stereo parallel tracking and mapping for robot
localization. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). pp. 1373–1378.

Polok L, Ila V, Solony M, Smrz P and Zemcik P (2013)
Incremental Block Cholesky Factorization for Nonlinear
Least Squares in Robotics. In: Intelligent Autonomous
Vehicles Symposium (IFAC). Berlin, Germany.

Selig JM (2005) Lie Groups and Lie Algebras in Robotics. In:
Computational Noncommutative Algebra and Applications.
Springer Science and Business Media, pp. 101–125.

Stachniss C, Hahnel D and Burgard W (2004) Exploration
with active loop-closing for FastSLAM. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), volume 2. pp. 1505–1510.

Stoyanov T, Magnusson M, Andreasson H and Lilienthal
AJ (2012) Fast and accurate scan registration through
minimization of the distance between compact 3D NDT
representations. The International Journal of Robotics
Research 31(12): 1377–1393.

Tardós JD, Neira J, Newman PM and Leonard JJ (2002) Robust
Mapping and Localization in Indoor Environments Using
Sonar Data. The International Journal of Robotics Research
21(4): 311–330.

Thrun S, Liu Y, Koller D, Ng AY, Ghahramani Z and Durrant-
Whyte H (2004) Simultaneous Localization and Mapping
With Sparse Extended Information Filters. The International
Journal of Robotics Research 23(7-8): 693–716.

Walter M, Eustice R and Leonard J (2007) A Provably Consistent
Method for Imposing Sparsity in Feature-Based SLAM
Information Filters. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 214–234.

Wang Y and Chirikjian GS (2008) Nonparametric Second-Order
Theory of Error Propagation on Motion Groups. The
International Journal of Robotics Research 27(11): 1258–
1273.

Wang Z, Huang S and Dissanayake G (2006) Implementation
Issues and Experimental Evaluation of D-SLAM. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 155–166. DOI:
10.1007/978-3-540-33453-8 14.

Weingarten J and Siegwart R (2006) 3D SLAM using planar
segments. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). pp. 3062–3067.

Prepared using sagej.cls

	1 Introduction
	2 Related research
	3 Euclidean ESDSF SLAM
	3.1 Prediction step
	3.1.1 Augmentation.
	3.1.2 Marginalization.

	3.2 Update step

	4 Lie group and algebra preliminaries
	5 ESDSF on Lie groups
	5.1 State space construction
	5.2 Motion model and LG-ESDSF prediction
	5.3 Measurement model and LG-ESDSF update
	5.4 Covariance estimation and computational complexity analysis

	6 Long-term LG-SLAM
	6.1 State selection and marginalization
	6.2 Marginalization of states included in the loop closings
	6.3 Rejecting unnecessary loop closings

	7 Experimental results
	7.1 Experimental comparison of LG-SLAM, ORB-SLAM, and LSD-SLAM
	7.2 Experimental comparison of LG-SLAM and g2o
	7.2.1 Number of iterations.
	7.2.2 Computation runtime.
	7.2.3 Robustness to bias.
	7.2.4 Robustness to outliers.
	7.2.5 LG-ESDSF as a general optimization tool.
	7.2.6 Discussion.

	7.3 Evaluation of the long-term LG-SLAM performance

	8 Conclusion
	9 Appendices
	9.1 ESDSF equations for augmentation and marginalization during the prediction
	9.1.1 Trajectory augmentation.
	9.1.2 State marginalization.

	9.2 Special Euclidean group SE(3)
	9.3 Derivation of the Lie measurement Jacobian H

