
Cooperative Cloud SLAM on Matrix Lie Groups

Kruno Lenac, Josip Ćesić, Ivan Marković, and Ivan Petrović

University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia
{kruno.lenac, josip.cesic, ivan.markovic, ivan.petrovic}@fer.hr

Abstract. In this paper we present a Cooperative Cloud SLAM on Ma-
trix Lie Groups (C2LEARS), which enables efficient and accurate execu-
tion of simultaneous localization and environment mapping, while relying
on integration of data from multiple agents. Such fused information is
then used to increase mapping accuracy of every agent itself. In partic-
ular, the agents perform only computationally simpler tasks including
local map building and single trajectory optimization. At the same time,
the efficient execution is ensured by performing complex tasks of global
map building and multiple trajectory optimization on a standalone cloud
server. The front-end part of C2LEARS is based on a planar SLAM solu-
tion, while the back-end is implemented using the exactly sparse delayed
state filter on matrix Lie groups (LG-ESDSF). The main advantages of
the front-end employing planar surfaces to represent the environment are
significantly lower memory requirements and possibility of the efficient
map exchange between agents. The back-end relying on the LG-ESDSF
allows for efficient trajectory optimization utilizing sparsity of the infor-
mation form and exploiting higher accuracy supported by representing
the state on Lie groups. We demonstrate C2LEARS on a real-world ex-
periment recorded on the ground floor of our faculty building.

Keywords: cooperative SLAM, cloud SLAM, exactly sparse delayed
state filter, Lie groups, planar map

1 Introduction

The Simultaneous Localization and Mapping (SLAM) [1] is an essential com-
ponent of every autonomous mobile robot. It gives robot the ability to know
its location and build the map of its environment simultaneously. All modern
SLAM algorithms have two key components: (i) a front-end and (ii) a back-end.
The front-end is responsible for processing data from the sensors, detecting loop
closings, and finding pose constraints. The back-end is responsible for optimiza-
tion of both landmarks and robot poses. In general, SLAM is a passive solution
that does not alter robot’s movement. Instead it continuously works in the back-
ground and provides necessary data like location to higher level algorithms, e.g.,
exploration, navigation etc. In many cases these higher level algorithms would
benefit from multiple agent cooperation in order to complete their tasks faster.
For example, when considering the exploration task, which requires building

2 Kruno Lenac et al.

a complete map of the area in the shortest possible time, several agents (e.g.
ground and aerial robots) would complete the task much faster than a single
agent. The easiest way to do this would be to explore a part of the environment
with each agent using one of the available single agent SLAM algorithms, and
then merge local maps in a single global map. However, this solution has several
drawbacks, and the most important one is the inability of one agent to use in-
formation from other agents to increase its own mapping accuracy. Algorithms
that overcome this problem are called cooperative SLAM algorithms.

Front-end part of the cooperative SLAM requires processing the data from
sensors similarly to that of the SLAM system used for single agent. However,
SLAM front-end in cooperative solution additionally has to be able to com-
municate with other agents and exchange sensor data. If the communication
bandwidth is high, raw sensor data can be exchanged. This solution is suitable
for centralized SLAM systems [2, 3], since in that case agents do not need to
process data, but rather send it over the network to some central processing
unit. If the bandwidth is limited and agents have enough power to process the
measurement data, raw data is filtered and reduced in size, and only some pre-
processed information is then transmitted over the network. Examples of such
approaches can be found in [4, 5].

Regardless of the front-end implementation and information sharing, the
main difference between cooperative SLAM algorithms is the back-end imple-
mentation. The SLAM back-ends can be divided in two groups depending on
the optimization techniques. One group contains SLAM systems that use filter-
ing based approaches relying on the extended Kalman filter (EKF) and particle
filter (PF) implementations, while another group relies on graph optimization
techniques like g2o [6] and iSAM2 [7]. Among all of the approaches, the eas-
iest transformation from single to multiple agent SLAM is achieved using the
EKF SLAM back-end. Implementation of a cooperative EKF-SLAM [8, 9] is then
mostly straightforward. However, multiple agent SLAM based on EKF faces the
same issues as the single agent EKF SLAM, including linearization errors and
increased computational complexity with the increased number of landmarks.
More advanced filtering based solutions for cooperative SLAM use PF and the
extended information filter (EIF). The main advantage of the PF coopearative
SLAM [2, 10] is its requirement to linearize only the measurement model, while
its real-time computation is maintained using Rao-Blackwellization [11]. EIF
for multiple agent SLAM [12] allows simpler decentralization of the information
acquired by each agent, but the main problem of EKF still remains; the issue
of slow computation speed when number of landmarks increases. This problem
was solved in [13] where sparsification of the information matrix is used in order
to maintain computational efficiency. Cooperative SLAM algorithms that use
graph optimization back-ends [14, 15] generally employ global graph consisting
of subgraphs built by each agent. If relative pose between agents is not known
in advance, subgraphs are not connected until the agents meet, whereas if the
relative pose is known, the subgraphs are connected from the beginning. A more

Cooperative Cloud SLAM on Matrix Lie Groups 3

thorough analysis of all aspects and differences between various multiple agent
SLAM algorithms can be found in [16].

Solution proposed in this paper for cooperative SLAM is most similar to
the one presented in [17], where authors present cooperative cloud based SLAM
dubbed C2TAM. C2TAM is a mix between centralized and decentralized SLAM
system in which each agent performs its own localization using computationally
light visual odometry, while computational costly steps, including optimization
and map building, are executed on an external server. The main idea behind our
cooperative SLAM system is also to divide the computational load; however,
there are three key differences between C2LEARS and C2TAM: (i) instead of
bundle adjustment we use filter based back-end, (ii) each agent performs its own
trajectory estimation and optimization, while also maintaining local map which
allows it to operate completely independently in the case of other agent and/or
server failure, and (iii) we build planar map of the environment which drastically
reduces the memory and computation requirements when exchanging and using
maps.

2 SLAM for a single agent

In this section we present key properties of the SLAM back-end and front-end
developed for single agent SLAM as part our previous research. This represents
a basis for our newly developed cooperative SLAM system C2LEARS.

For the SLAM back-end we have used exactly sparse delayed state filter (ES-
DSF) [18] implemented using matrix Lie groups (LG-ESDSF) [19]. As demon-
strated in [19] by implementing the filter using Lie groups we were able to respect
state-space geometry and thus achieve significant improvement in accuracy, com-
parable to state-of-the-art graph optimization based SLAM solutions. Although
ESDSF is a special case of EIF, and has two distinctive properties: (i) informa-
tion matrix is exactly sparse which means matrix inversion can be drastically
speeded up using sparse matrix solvers with no need for sparsification; (ii) state
space consists of discrete trajectory states, while map consists of fused measure-
ments acquired in those states. This means that map landmarks are independent
of each other and that map estimation can be done in parallel with the trajec-
tory estimation. As is explained in the next section, this represents the crucial
property for developing C2LEARS. Trajectory Tn in LG-ESDSF is represented
by n discrete states Xi, i = 1 . . . n, where each state Xi represents agent’s pose
as SE(3) group element. The variable Tn is constructed as follows:

Xi =

[
Ri ti
0 1

]
, Tn =


X1 0 0 0
0 X2 0 0
...

...
. . .

...
0 0 0 Xn

 Xi ∼ N (µXi
, ΣXi,i

) = N (ηXi
, ΛXi,i

)

Tn ∼ N (µn, Σn) = N (ηn, Λn)
,

(1)
where Ri represents matrix defining the agent’s orientation in the global frame,
ti represents agent’s position in the global frame, µXi and ΣXi represent mean

4 Kruno Lenac et al.

and covariance of Xi, while µn and Σn are mean and covariance of the trajectory
Tn, respectively. Similarly to classic EIF, LG-ESDSF operates by evaluating two
steps; prediction and update. However, during the prediction step instead of just
predicting agent’s current location, the newly predicted location is also added
as a new discrete state in Tn. This process is refereed to as augmentation of
trajectory Tn. Once the trajectory has been augmented, the state Xn remains
in the trajectory if the difference between the newly augmented state Xn+1 and
state Xn is larger than the predefined threshold; otherwise it is marginalized and
Tn+1 becomes Tn with new state Xn+1 replacing state Xn. Motion model used
to predict state Xn+1 is given as nonlinear first order Markov process

Xn+1 = f(Xn, Ωn, wn) , (2)

where the control signal Ωn represents change in the agent’s pose between Xn

andXn+1 measured by odometry, while wn represents the zero-mean white Gaus-
sian noise with covariance Qn.

If loop closing is detected between newly augmented state Xn+1 and state Xi,
measurements taken during the augmentation are sent to the Relative Pose Esti-
mation algorithm (RPE) described in [20]. Once relative pose is calculated, it is
further used in LG-ESDSF to perform the trajectory update. The measurement
model is defined as

h(Tn+1) = X−1
i Xn+1, (3)

and the measurement Jacobian evaluates to

Hn+1 = [· · · 06×6 · · · −Ad(X−1
n+1) Ad(Xj) · · · I6×6] ,

where Ad represents adjoint operator on matrix Lie groups. This result means
that update step is always constant time. Since prediction step is also constant
time (it changes only four blocks in the information matrix) the only compu-
tationally expensive operation is the inversion of the information matrix. It is
performed after each update step, since it is required for the re-normalization of
Λ (as explained in [21]). However, as mentioned above, this step can be drasti-
cally speeded up with the usage of sparse matrix solvers.

The SLAM front-end used in C2LEARS is based on our single SLAM front-
end [20]. It uses point clouds generated by 3D LIDAR and segments those point
clouds into planar surface segments. Whenever a new state Xn is added into
the trajectory, point cloud Pn is recorded and segmented. An example of a
segmented point cloud is shown in Fig. 1. All planar surface segments from one
point cloud form local planar map Mn. The local planar maps are then used for
two purposes: (i) when loop closing is detected between Xi and Xj , RPE uses
Mi and Mj to calculate relative pose between Xi and Xj after which SLAM
uses relative pose constraint to perform trajectory update, and (ii) for building
the global planar map. Whenever new local map Mn is built, it is sent to the
global map building module (GMB). GMB searches for pairs between the planar
surface segments from the current global map and planar surface segments in
the local map Mn. All segments that have a match in the global map are fused

Cooperative Cloud SLAM on Matrix Lie Groups 5

-15
-10

-5

x (m)

0-30
5

-25

-2 10

-20

y (m)

0

-15

152

-10

20

z
(m

)

-5

0

5

10

Fig. 1. Point cloud segmented into planar
surface segments.

5
10

15
2

x (m)

20
1

9

0

y
(m

)
z

(m
) 8

-1

-2

7

5
10

15
1

9

x (m)

20
0

y
(m

)
z

(m
) 8

-1
-2

7

Fig. 2. Planar segments from local maps
(up) merged in the global map (down).

with the existing global planar surfaces while others form a new global planar
surfaces. An example of fusion of several planes between three local maps is
shown in Fig. 2.

Loop closing detection between states in the trajectory is done in the similar
way as in [20] and is based on the work presented in [22]. Whenever a new
state Xn is added into the trajectory, the graph Tg is generated from the pose
graph incidence matrix TI. The incidence matrix is n× n matrix whose element
(i, j) has value 1 if the states Xi and Xj are neighbouring states or if the loop
was closed between them. Otherwise the element value is 0. Each node in Tg
represents one state in trajectory, the connections are made based on TI, while
weights of the connections wi,j are given as

wi,j = etrans + αerot , (4)

where α is the scaling factor, and

∆T = X−1
i Xj =


∆x

R ∆y
∆z

0 0 0 1

 , etrans =
√
∆x2 +∆y2 +∆z2

erot = arccos
(

trace(∆T)
2 − 1

) . (5)

Once the graph is generated, topological distance between states Xi, i < n and
Xn is calculated for all states whose wn,i is smaller than the predefined threshold.
Topological distance is equal to the weight of the shortest path in the graph
T g from state Xi to state Xn calculated using A∗ algorithm. All states whose
topological distance is higher than the predefined threshold are reported for loop
closing. This way only loop closings with high information gain are selected. For
detailed description of surface matching algorithm, global map building and loop
closing detection please confer [20].

6 Kruno Lenac et al.

NO

Odometry Predict Augment
Loop

closing
Update trajectory

Build local map

YES

NO

Agent i

Update planar segmentsAdd new planar segments Check for loop closings

Cloud Server (CS)

Update information

YES

TrajectoryLocal map

Fig. 3. Overview of the proposed cooperative SLAM solution.

3 Cooperative SLAM

Our cooperative SLAM solution was designed with the main goal we wanted to
achieve being a faster exploration of indoor spaces using multiple agents. We
also wanted our system to be able to: (i) operate if one of the agents included in
the system fails, (ii) use the experience of some agent for improving the accuracy
of another and (iii) to be able to quickly exchange maps between agents.

The main assumption of our cooperative SLAM is that relative poses be-
tween all agents are known at the beginning. Although this may seem to be a
limiting factor, we believe it is acceptable respecting its intended use for faster
exploration. The reasoning is that we do not need absolute starting location, but
only relative poses between one reference agent and all other agents. Also, we
only require agents to be on the line of sight at the very beginning, hence scans
taken from the 3D LIDAR can be initially matched using the RPE algorithm.
Although we acknowledge that this condition can be limiting for some tasks, in
the case of our multiple agent exploration application, this requirement, for the
agents to start from relatively similar locations, is easily reachable.

The overview of our proposed system is shown in Fig. 3. Each agent in the
system builds its own trajectory using SLAM back-end described in Section
2. It also performs loop closings and segmentation of measurements into the
planar surface segments. However, once the new local planar map Mi is built,
it is sent to the Cloud Server (CS) alongside with the current trajectory of the
respective agent. After CS receives Mi, it incorporates its planar segments into
the global map using current trajectory information. The incorporation of local
planar maps from different agents into the global map is possible based on their
trajectories, since their relative poses are known and every trajectory is built
within the same global frame. CS also compares the received trajectory with
the last previously received trajectory of particular agent and if the change in
state poses exceeds predefined threshold, global planar segments are updated
accordingly.

This way, each agent has to have only enough computation power to estimate
its trajectory and build local planar maps. As explained in Section 2, all steps of
the LG-ESDSF have very low computational cost, which is also confirmed in the

Cooperative Cloud SLAM on Matrix Lie Groups 7

Sec. 4 describing the experimental results. By allowing each agent to maintain
its own trajectory, we have achieved robustness since in the case of another agent
or CS failure, each agent will know exactly where it is. One could argue that
building local planar maps on-board the agent is unnecessary and that it should
also be performed by CS. However, by having local maps available on-board an
agent, we benefit gaining two key advantages. First, only segmented local pla-
nar maps need to be transferred to the cloud server instead of the entire point
cloud, which achieves our goal of simpler and faster map exchange. Second, each
agent has its own local planar map which can be used in combination with tra-
jectory for navigation to the predefined safe location in case CS or connection
with it fails. Building local planar maps directly on-board each agent is enabled
by our planar segmentation algorithm [20] which is computationally inexpen-
sive and moreover needs to be executed only when the trajectory is augmented
with new state. Besides that, segmentation process can be performed in paral-
lel with the trajectory estimation because trajectory estimation is independent
from segmenting local planar maps.

The most important advantage from knowing relative poses between agents
in the beginning is the ability to improve their entire trajectories and global map
every time they meet later during the environment exploration. When the initial
relative pose of the agents is unknown, their trajectories will be also corrected
every time they meet, but the problem is that the trajectories and global map
corrections are almost entirely limited to the area of the environment that was
mapped by both agents before they have met. However, since all robot states and
map landmarks are connected they will all be corrected in the global frame, i.e.
also outside the overlapping area, but their relative poses can only be marginally
corrected until further rendezvouses occur in different locations. Since in our case
of multi-agent exploration we cannot predict the moments when the agent’s
trajectories intersect, knowing initial relative poses is of great importance for
maximally exploiting information from every meeting.

In order to use one agent’s information to correct the trajectory of another,
loop closing between their trajectories has to be detected. This is executed by
the CS for two reasons: (i) only CS has the trajectory of every agent and (ii)
in order to find the loop closing between different trajectories, trajectories from
all the agents need to be checked which can be a costly computation. The CS
searches for possible loop closings in the similar way as a single agent does,
using the algorithm explained in Sec. 2. The example shown in Fig. 4 depicts
trajectories from two agents: a (blue) and b (orange). Agents started to map the
environment from poses Xa

0 and Xb
0 and at some point they arrived at poses

Xa
i and Xb

j , respectively, after which the CS detected the loop closing. Once the

pair (Xa
i , X

b
j) is identified for loop closing CS uses RPE to estimate relative pose

T j,bi,a between them. The CS then calculates uncertainties of states Xa
i and Xb

j .
The trajectory which contains the state with the higher uncertainty is selected
for correction based on the other trajectory. Let’s say that the state Xb

j has
larger uncertainty. In order to correct trajectory of the b-th agent, since every
agent possesses only its own trajectory, update must be performed based on the

8 Kruno Lenac et al.

-25 -20 -15 -10 -5 0 5

0

5

10

X0
a

X0
b

Ti,a
j,b

T0,b
j,b

Xj
b

Xi
a

[m]

[m]

Fig. 4. Example of b-th agent’s trajectory (orange) update using information from a-th
agent’s trajectory (blue).

relative pose between the state Xb
j and some other state Xb

k, k 6= j from the

same trajectory. Any state can be chosen from b-th agent’s trajectory as Xb
k, but

we want to choose the state with the smallest uncertainty because then the loop
closing will have the largest impact on accuracy. The state that best satisfies
both conditions is state Xb

0 since it is the first state in the trajectory. Now in

order to perform the update of b-th agent’s trajectory, we have to find T 0,b
j,b

using new measurement T j,bi,a and a-th agent’s trajectory. Since all trajectories
are within the same global frame we can do this as:

T 0,b
j,b = (Xb

0)−1(Xa
i T

j,b
i,a). (6)

Finally the update information is sent to the agent immediately after calcu-
lation and the update is performed right after the new state is augmented into
the agent’s trajectory. In general case with more than two agents, the process
is repeated for every loop closing detected by the CS. Since the loop is always
closed between the first trajectory state X0 and another state Xi, it will always
impact the accuracy of all states between Xj , 0 < j ≤ i. If we did not know
initial relative pose between agents, this would not be possible since in equation
(6) Xb

0 and Xa
i would not reside in the same coordinate frame.

Since entire system is event triggered, from the SLAM perspective it is com-
pletely independent on the time synchronization. Each agent independently es-
timates its trajectory and planar maps, and sends them to the CS. Once the CS
accepts the new local map and trajectory, it uses them to update the global map.
If the new local map arrives while the CS is busy with incorporating previously
received one, it will simply be incorporated as soon as CS becomes free. Cur-
rently updated global map is available at any time instant on the CS and any
agent or higher level algorithm running alongside CS (e.g. exploration, naviga-
tion) can retrieve it. It is important to note that the global map is much smaller
than the sum of all local maps it consists of, since it combines multiple planes
from local maps into a single plane in the global map.

Cooperative Cloud SLAM on Matrix Lie Groups 9

0 100 200 300 400 500

0

50

100

150

200

250

300

350

Trajectory of agent a
Trajectory of agent b
Start locations
Finish locations

Fig. 5. Ground plan in the case when CS
did not send any information.

0 100 200 300 400 500

0

50

100

150

200

250

300

350

Trajectory of agent a
Trajectory of agent b
Start locations
Finish locations

Fig. 6. Ground plan in the case when CS
sent loop closing information.

4 Experimental results

In order to test our cooperative SLAM algorithm we have used the dataset we
recorded for testing our the planar SLAM developed in [20]. This dataset was
recorded using single mobile platform Husky A200 equipped with a Velodyne
HDL-32E 3D LIDAR, while driving through the ground floor of our faculty build-
ing. All algorithms were implemented using C++ and run on portable computer
Lenovo P50 with 8GB RAM and Intel Core i7@2.6 Ghz. In order to simulate
cooperative behaviour we have divided dataset into two subsets. Then, we ran
identical SLAM systems as separate threads simulating two agents. Each agent
received data from one of the subsets. The CS was also run on the same computer
as a third thread and independently received data from each agent. Interprocess
communication was handled by Robotic Operating System ([23]). Since no time
stamps were used in the algorithm, no generality was lost by simulating all agents
and the CS on the same computer as independent threads. Odometry for predic-
tion of both agents was calculated using point cloud matching algorithm based
on Three-Dimensional Normal Distributions Transform [24].

To test the ability of one agent to improve its accuracy using information
from another agent, we first performed the experiment without the CS sending
loop closing information to the agents. This way every agent closed only loops
detected by itself. Then we simulated the same experiment, but CS sent loop
closing information to agents. Although we do not have ground-truth for trajec-
tories, we have ground-truth for 2D ground plan of our faculty building. In order
to compare results of two conducted experiments we have generated 2D ground
plan by slicing the global map built by CS at certain height from the ground.
We have then overlayed this 2D ground plan over the ground-truth ground plan.
The results, alongside with agents’ trajectories, are shown in Fig. 5 and in Fig.
6, for the case when CS did not sent anything to the agents, and for the case
when CS sent loop closing information to the agents, respectively. As can be
seen from the resulting figures, accuracy of the ground plan is much better in
the case when CS sent information to the agents. Many duplicate planes that

10 Kruno Lenac et al.

represent the same wall have been merged into single plane in the global map
and walls have been correctly aligned.

tmin [ms] tmax [ms] tmean [ms]

Point cloud segmentation

58.4 166.8 115.9

Local maps matching

3.7 13.4 8.9

LG-ESDSF update step

0.7 3.6 2.3

Table 1. Computation times for key
agent’s tasks.

Smin [MB] Smax [MB] Smean [MB]

Point clouds

1.17 2.18 2.08

Local maps

0.03 0.20 0.11

Local maps size [MB] / Map size [MB]

30.2 / 2.6

Table 2. Sizes of point clouds, resulting
local maps and global map.

In Table 1 we provide minimum, maximum and mean computation times of
three computationally most costly tasks performed by each agent. Those tasks
are: (i) segmentation of local planar maps, (ii) their matching in case of the local
loop closing and (iii) update step of LG-ESDSF. As can be seen from Table 1,
matching of two local planar maps and performing update step are extremely fast
and do not compromise agents ability to work in real time. As can be expected,
point cloud segmentation operation is the most costly operation. However, it is
still fast and as long as the agent’s CPU contains at least two cores, it can be run
in parallel thread with other components of the SLAM system. Table 2 shows
minimum, maximum and mean sizes of point clouds and resulting local maps
recorded by both agents. The segmentation of point clouds drastically reduces
their size, thus allowing lower memory requirements for agents and faster transfer
times over the network to the CS. Final row in Table 2 shows comparison between
the cumulative size of all local maps and size of the final global map. It can also
be noticed that the final map size is much smaller than the size of all local maps
which allows faster transfer of the global maps and also faster computation times
for the tasks which use global maps, e.g. exploration, navigation, etc. Final global
map built when CS sent loop closing information is shown in 3D in Fig. 7.

5 Conclusion

In this paper we presented Cooperative SLAM solution named C2LEARS. We
developed the solution having three key goals in mind: (i) ability to increase
mapping accuracy of one agent by using information from other agents, (ii) us-
ing compact planar map representation which allows easy map exchange between
agents and server, and (iii) robustness of the entire system by allowing each agent
to function independently in case of CS and/or other agent failure. To enable
one agent to increase accuracy of another, we developed an algorithm which
runs on the cloud server and analyses trajectories of all agents. After a suit-
able loop closing is located, it determines which trajectory will be updated and

Cooperative Cloud SLAM on Matrix Lie Groups 11

Fig. 7. Global map built by CS when loop closing information was sent to the agents.

sends the update information to the respective agent. Compact map representa-
tion was achieved by utilizing our previously developed planar SLAM algorithm
which segments point clouds into planar surfaces, thus drastically reducing their
size while maintaining high level of details. Finally, robustness was achieved by
implementing our novel LG-ESDS filter which enables separation of trajectory
estimation from global map building. This separation enabled transfer of costly
global map building operation to the CS, while thanks to the sparsity of the
information form and fast planar segmentation of point clouds, trajectory esti-
mation and local map building were able to run on computationally less capable
agents. We have demonstrated the effectiveness of our solution using real world
dataset recorded at our faculty.

Acknowledgement

This work has been supported from the Unity Through Knowledge Fund (no.
24/15) under the project Cooperative Cloud based Simultaneous Localization
and Mapping in Dynamic Environments (cloudSLAM) and has been carried
out within the activities of the Centre of Research Excellence for Data Science
and Cooperative Systems supported by the Ministry of Science, Education and
Sports of the Republic of Croatia.

References

1. H. Durrant-Whyte and T. Bailey, “Simultaneous localisation and mapping (slam):
Part i the essential algorithms,” IEEE Rob. & Autom. Mag., vol. 2, p. 2006, 2006.

2. A. Howard, “Multi-robot simultaneous localization and mapping using particle
filters,” Int. J. Rob. Res., vol. 25, no. 12, pp. 1243–1256, 2006.

3. B. Kim, M. Kaess, L. Fletcher, J. Leonard, A. Bachrach, N. Roy, and S. Teller,
“Multiple relative pose graphs for robust cooperative mapping,” in ICRA, 2010,
pp. 3185–3192.

4. L. Paull, G. Huang, M. L. Seto, and J. J. Leonard, “Communication-constrained
multi-auv cooperative slam.” in ICRA, 2015, pp. 509–516.

12 Kruno Lenac et al.

5. A. Birk and S. Carpin, “Merging occupancy grid maps from multiple robots,” Proc.
of the IEEE, vol. 94, no. 7, pp. 1384–1397, 2006.

6. R. Kuemmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard, “g2o: A
general framework for graph optimization,” in ICRA, Shanghai, China, 2011, pp.
3607–3613.

7. M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert, “iSAM2:
Incremental smoothing and mapping using the Bayes tree,” Int. J. Rob. Res.,
vol. 31, pp. 217–236, 2012.

8. A. I. Mourikis and S. I. Roumeliotis, “Predicting the performance of cooperative
simultaneous localization and mapping (c-slam),” Int. J. Rob. Res., vol. 25, no. 12,
pp. 1273–1286, 2006.

9. X. S. Zhou and S. I. Roumeliotis, “Multi-robot slam with unknown initial corre-
spondence: The robot rendezvous case,” in IROS, 2006, pp. 1785–1792.

10. L. Carlone, M. K. Ng, J. Du, B. Bona, and M. Indri, “Rao-blackwellized particle
filters multi robot slam with unknown initial correspondences and limited commu-
nication,” in ICRA, 2010, pp. 243–249.

11. M. Montemerlo, S. Thrun, D. Roller, and B. Wegbreit, “Fastslam 2.0: An improved
particle filtering algorithm for simultaneous localization and mapping that provably
converges,” in Int. Joint Conf. on AI. Morgan Kaufmann Publishers Inc., 2003,
pp. 1151–1156.

12. E. W. Nettleton, H. F. Durrant-Whyte, P. W. Gibbens, and A. H. Goektogan,
“Multiple-platform localization and map building,” vol. 4196, 2000, pp. 337–347.

13. S. Thrun and Y. Liu, “Multi-robot slam with sparse-extended information filters.”
Springer Tracts in Advanced Robotics, vol. 15, pp. 254–266, 2005.

14. A. Cunningham, K. M. Wurm, W. Burgard, and F. Dellaert, “Fully distributed
scalable smoothing and mapping with robust multi-robot data association,” in
ICRA, 2012, pp. 1093–1100.

15. V. Indelman, E. Nelson, N. Michael, and F. Dellaert, “Multi-robot pose graph lo-
calization and data association from unknown initial relative poses via expectation
maximization,” in ICRA, 2014, pp. 593–600.

16. S. Saeedi, M. Trentini, M. Seto, and H. Li, “Multiple-robot simultaneous localiza-
tion and mapping: A review,” J. Field Robot., vol. 33, no. 1, pp. 3–46, 2016.

17. L. Riazuelo, J. Civera, and J. Montiel, “C2tam: A cloud framework for cooperative
tracking and mapping,” Rob. and Auton. Sys., vol. 62, no. 4, pp. 401 – 413, 2014.

18. M. R. Walter, R. M. Eustice, and J. J. Leonard, “Exactly Sparse Extended In-
formation Filters for Feature-based SLAM,” Int. J. Rob. Res., vol. 26, no. 4, pp.
335–359, 2007.

19. K. Lenac, J. Ćesić, I. Marković, I. Cvǐsić, and I. Petrović, “Revival of filtering based
SLAM? Exactly sparse delayed state filter on Lie groups. ,” in IROS, (accepted)
2017.

20. K. Lenac, A. Kitanov, R. Cupec, and I. Petrović, “Fast planar surface 3d SLAM
using LIDAR,” Rob. and Auton. Sys., vol. 92, pp. 197 – 220, 2017.

21. J. Ćesić, I. Marković, M. Bukal, and I. Petrović, “Extended information filter on
matrix lie groups,” Automatica, vol. 82, pp. 226 – 234, 2017.

22. C. Stachniss, D. Hahnel, and W. Burgard, “Exploration with active loop-closing
for FastSLAM,” IROS, vol. 2, pp. 1505–1510, 2004.

23. M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A. Y. Ng, “ROS: an open-source Robot Operating System,” in ICRA, 2009.

24. T. Stoyanov, M. Magnusson, H. Andreasson, and A. J. Lilienthal, “Fast and accu-
rate scan registration through minimization of the distance between compact 3d
ndt representations,” Int. J. Rob. Res., vol. 31, no. 12, pp. 1377–1393, 2012.

