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Abstract— Simultaneous Localization And Mapping (SLAM)
is a core element of every modern mobile autonomous robot.
The underlying engine of a SLAM system is its back-end,
which aims at optimally estimating trajectory and the map
of the robot’s environment based on sensor data abstractions.
Over the past 10 years filtering based SLAM solutions gave in
to graph optimization approaches, since the latter dominated
in performance over a wider range of applications. In this
paper we propose a novel SLAM back-end based on the
exactly sparse delayed state filter (ESDSF) and the extended
Kalman filter on Lie groups (LG-EKF). Using LG-EKF directly
would yield to same limitations as the early EKF-based SLAM
approaches; therefore, we derive the ESDSF on Lie groups,
which we dub LG-ESDSF. The proposed filter retains all the
good characteristics of the classic ESDSF, but also respects the
state space geometry by employing filtering equations directly
on Lie groups. We have compared our SLAM system with two
current state-of-the-art SLAM solutions, namely ORB-SLAM
and LSD-SLAM, on the KITTI vision benchmark suite. Results
showed that the proposed SLAM based on the LG-ESDSF back-
end can match and even outperform methods based on graph
optimization techniques.

I. INTRODUCTION

Simultaneous Localization And Mapping (SLAM) has
become a core element of every modern autonomous mobile
robot. It gives a mobile robot the ability to map a new
unknown environments and localize itself within at the
same time. The SLAM system can usually be divided in
two functional components: (i) SLAM front-end, which
takes care of low-level sensor data processing, i.e., sensor
data abstracting, and (ii) SLAM back-end, which based on
the front-end data abstractions takes care of pose estimation
based on adequate handling of pose constraints. In the past
20 years numerous solutions for both SLAM back-end and
SLAM front-end have been introduced [1]. SLAM back-end
algorithms, which is the focus of the present paper, can
be divided in two main groups depending on the view to
state optimization: (i) filtering approaches, and (ii) graph
optimization approaches.

First solutions to the SLAM problem were based on
filtering and employed the Extended Kalman Filter (EKF)
[2] or the Particle filter [3] to predict and optimize the
robot’s location and the map. While revolutionary at the time,
methods suffered from slow execution time and were not
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suitable for large-scale real-time operations. With time, faster
and more accurate methods were introduced. In [4] authors
proposed a novel EKF system architecture for 3D position
tracking which enabled pose tracking with a 3D range
image understanding system and uncertainty propagation.
Work in [5] presented 3D SLAM based on EKF that uses
planar segments extracted from laser range thus dramatically
reducing number of features needed for accurate localization.
In [6] SLAM system based on a mono camera was presented.
Although it could not work in a large scale environment it
used a sparse map of landmarks that enabled it to work
over long periods with a high frequency (30 Hz). The
SLAM solution presented in [7] used a combination of
EKF and Random Sample Consensus (RANSAC) that relied
on prior probabilistic information from the EKF in the
RANSAC hypothesis generation. This significantly increased
processing speed without the loss of discriminative power.

In the last 10 years the focus has shifted from filtering
SLAM approaches to graph optimization approaches. One
of the first successful alternatives to EKF SLAM, dubbed√

SLAM, was presented in [8].
√

SLAM used a smoothing
approach to solve the SLAM problem and achieved better
performance in both computation time and accuracy than
contemporary existing EKF SLAM solutions. In [9] authors
presented a method for optimizing large pose graphs
called the sparse pose adjustment (SPA) which is similar to√

SLAM with the main difference in efficient construction of
the linear subproblem, by employing ordered data structures,
and in using the Levenberg–Marquardt (LM) algorithm
instead of the standard nonlinear least-square method. Graph
optimization SLAM solution presented in [10] used efficient
version of the sparse bundle adjustment (SBA). Therein,
relations among cameras are also sparse and by combining
the proposed method with direct sparse Cholesky solvers
authors outperformed the standard SBA implementations.
Graph based SLAM solution is also presented in [11].
In order to speed up computation and allow execution in
large scale environments, authors divided global graph into
subgraphs which are optimized independently using LM
algorithm. Subgraphs are then matched and combined into
global graph using loopy belief propagation algorithm called
large scale relative similarity averaging.

Current state-of-the-art method for solving SLAM
problem by graph optimization, called g2o, was presented
in [12]. It represents a general framework for performing
optimization of nonlinear least squares problems that can
be represented as a graph. By utilizing sparsity in the
graph together with the advanced methods to solve sparse
systems and special structures that often occur in the SLAM
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Fig. 1: Layout of an ESDSF SLAM system

graphs, g2o SLAM back-end outperformed all other existing
solutions. Two current state-of-the-art SLAM solutions,
namely ORB SLAM and LSD-SLAM, both use g2o for
SLAM back-end. LSD-SLAM was first presented for
mono-cameras in [13] and afterwards a stereo-solution [14]
was introduced. It employs a direct and featureless method
which minimizes photometric errors between images in
order to estimate robot location. Main novelties included
direct tracking method which operated on Sim(3) and
probabilistic solution to include the effect of noisy depth
values into tracking. ORB SLAM was also first introduced
for mono cameras [15] and later for stereo and RGB-D
cameras [16]. It uses ORB features for mapping, loop
closing and tracking and employs covisibility graph and
survival of the fittest strategy to allow real-time execution
over long periods in large-scale environments.

Although it would seem that the SLAM back-end
optimization problem is solved and that filtering approaches
in general offer worse performance than the graph
optimization, in this paper we assert that this may not
be the case. One of the main advantages of the graph
optimization methods over filtering approaches is in their
ability to respect geometry of the state space of both the
trajectory and landmark poses. For example, g2o respects
the geometry of the state space by representing the states
on Lie groups and performs optimization in the pertaining
Lie algebra. On the other hand, filtering approaches in
the past used suboptimal representations of the state space
geometry which is one of the main reason they were
unable to compete with the newly developed graph-based
optimization SLAM solutions. Only recently, the first
complete solutions to the EKF [17], [18] and unscented
Kalman filter [19] on Lie groups have been introduced,
which we designate as LG-EKF and LG-UKF, respectively.
In this paper we show that by implementing the SLAM
back-end based on a filtering approach using Lie groups
one can attain state-of-the-art performance comparable to
graph optimization approaches.

We propose a novel filtering SLAM back-end solution
that respects the state space geometry by representing it
as a Lie group. The proposed approach is based on the
framework of the exactly sparse delayed state filter (ESDSF)
[20] and LG-EKF [18]. ESDSF is a special form of the
Extended Information Filter (EIF) whose main advantage is
sparsity of the information matrix. LG-EKF is an extension

of the EKF where the state is defined as a random variable
residing on a Lie group. By using the LG-EKF one ensures
that the filtering equations intrinsically take the nonlinear
geometry of the state space into account and that pertaining
uncertainties are handled correctly. However, LG-EKF
suffers from the same limitations as the standard Euclidean
EKF when it comes to its application to SLAM problems.
The main contribution of this paper is the introduction
of a novel ESDSF on Lie groups (LG-ESDSF) which
retains all the good characteristics of the classic ESDSF
implementation, but also respects the state space geometry
by employing filtering equations respecting Lie groups.
In the end, we show on a popular public dataset that the
proposed LG-ESDSF SLAM back-end can match and even
outperform state-of-the-art SLAM solutions based on graph
optimization techniques.

II. EUCLIDEAN ESDSF SLAM

In this section we briefly present the fundamentals of the
Euclidean ESDSF as a SLAM back-end. The SLAM back-
end based on the ESDSF is a so-called pose graph SLAM
which means that states of the filter are represented by
a discrete robot trajectory. Map consists of measurements
assigned to each of the discrete trajectory states which is why
map landmarks are dependent only on the pertaining state
and are not correlated to each other. This allows independent
estimation of the trajectory and environment map. Since map
estimation is not directly dependent on the SLAM back-
end, in the present paper we do not discuss the mapping
components.

The key components of an ESDSF SLAM system based
on, e.g., stereo vision, are displayed in Fig. 1. There we
can see that all blocks except the SLAM back-end block
belong to the SLAM front-end. All modules within the
SLAM back-end are responsible for robot localization and
trajectory building. Trajectory consists of discrete states
Xi, i = 1, . . . , n, where each state is represented by a
robot’s pose (3D position and orientation) expressed in the
coordinate frame assigned to the initial state. Whenever new
odometry data becomes available, motion model is used to
predict the latest stored pose Xn to X̄n. After that, the
trajectory is augmented with X̄n and marginalized by Xn.
If the pose difference between Xn−1 and X̄n exceeds a
predefined threshold, the latest predicted pose X̄n is added
to the trajectory and designated as Xn+1.



Sensor measurements which were taken at the moment
when Xn+1 was added are stored and loop detection
algorithm begins to search for possible loop closings
between the newly added state Xn+1 and other states
which were already stored in the trajectory. If loop closing
is detected between states Xn+1 and Xj , a relative pose
estimation (RPE) algorithm estimates the relative transform
between states Xn+1 and Xj . This result is then reported
back to the SLAM back-end, which incorporates it as a
pose constraint into the pose graph and performs trajectory
update. Regardless of the augmentation or loop detection,
the back-end continuously predicts the robot’s pose in
the background using odometry information. Given this
overview of the pose graph construction, in the sequel we
focus on the SLAM back-end based on ESDSF.

In the case of ESDSF, robot trajectory Tn, consisting of
n pose samples or states, is a Gaussian random variable

Tn =


X1

X2

...
Xn

 ,
Xi ∼ N (µXi

,ΣXi,i
)

= N (ηXi
,ΛXi,i

)

Tn ∼ N (µn,Σn)

= N (ηn,Λn)

, (1)

where µXi
and ΣXi

represent mean and covariance of a pose
sample Xi, while µn and Σn are mean and covariance of the
trajectory Tn, respectively. The equivalent representation of
the Gaussian distribution in the information form is given by
the relation η = Λµ and Λ = Σ−1. Each state Xi consists of
a robot position and orientation at the time of augmentation.
Depending on the chosen orientation representation, in the
case of the Euclidean ESDSF it can hold 6 elements in the
case of Euler angles or 7 elements in the case of quaternions.

Motion based model is described as a nonlinear first order
Markov process

Xn+1 = f(Xn,Ωn, wn), (2)

where the control signals Ωn consist of changes in the robot
pose at time step n as obtained from odometry, while wn
represents zero-mean white Gaussian noise with covariance
Qn. As shown in [20], when using a first order Markov
process motion model (2), the trajectory information matrix
has a sparse tridiagonal structure

Λn =


ΛXn,n

ΛXn,n−1

ΛXn−1,n
ΛXn−1,n−1

ΛXn−1,n−2

ΛXn−2,n−1
ΛXn−2,n−2

...
...

 . (3)

This is the key advantage of the ESDSF which enables fast
computation of the matrix inverse using specially designed
sparse-matrix solvers.

In ESDSF, the prediction step is defined as augmentation
of Tn with X̄n, followed by marginalization of Xn

p(X̄n,X1:n−1|y1:m,Ω1:n) = N (µ̄n, Σ̄n) = N (η̄n, Λ̄n) (4)

=

∫
p(X̄n, Xn, X1:n−1|y1:m,Ω1:n)dXn ,

where y1:m and Ω1:n represent history of all measurements
and odometry data up to and including time step n. Once
conditions for finally adding the state to the trajectory are
fulfilled, X̄n becomes Xn+1 and the process continues.
Augmenting the trajectory Tn with a new state Xn+1, i.e.,
Tn+1 = [Xn+1 Tn]T requires only the addition of three
new blocks to the information matrix: ΛXn+1,n+1 , ΛXn+1,n

and ΛXn,n+1
. All the other elements remain unchanged and

sparsity is preserved. Similarly for marginalization, since
Xn is connected to states Xn+1 and Xn−1, only four
blocks of the information matrix Λn need to be changed:
ΛXn,n ,ΛXn,n−1 ,ΛXn−1,n , and ΛXn−1,n−1 .

Measurement model in the ESDSF SLAM system is given
in the form of a relative pose between states Xi and Xj .
The update step in ESDSF is constant time as it affects only
blocks sharing information associated to Xi and Xj . This
is because Jacobian Hn+1 of the measurement function is
given as

yn+1 = h(Xi, Xj) + vn+1, vn+1 ∼ N (0, Pij) (5)

Hn+1 =
[
· · · 0 · · · ∂h

∂Xi
· · · ∂h

∂Xj
· · ·
]
.

The matrix Hn+1 is always sparse, since yn+1 depends only
on Xi and Xj . When the measurement arrives at the time
stamp n + 1, relative pose error vn is determined from the
RPE module. The error vn than acts as measurement noise
and is assumed to be a white zero-mean Gaussian with
covariance matrix Pij .

III. LIE GROUP AND ALGEBRA PRELIMINARIES

We now introduce the necessary prerequisites for derivation
of the ESDSF on Lie groups. Group operators, composition
and inversion, are smooth operations, given simply as
matrix multiplication and inversion. Lie algebra g elements
represent a tangent space of a group G at the identity
element [21]. In particular, a Lie algebra is an open
neighbourhood around 0p in the tangent space of G at the
identity I . The matrix exponential and logarithm establish a
local diffeomorphism given as

expG : g→ G and logG : G→ g . (6)

The Lie algebra g associated to a p-dimensional matrix Lie
group G ⊂ Rn×n is a p-dimensional vector space defined by
a basis consisting of p real matrices Er, r = 1, .., p, often
referred to as generators [22]. A linear isomorphism between
g and Rp is given by

[·]∨G : g→ Rp and [·]∧G : Rp → g . (7)

For brevity, we will use the following notation [23]

exp∧G(x) = expG([x]∧G) and log∨G(X) = [logG(X)]∨G , (8)

where x ∈ Rp and X ∈ G. In addition, we need two
more operators—the adjoint representation of a Lie group
and Lie algebra, denoted as AdG and adG. A More detailed
discussion on these concepts and the used notation can be
found in [24].



To make use of ESDSF on Lie groups we need to first
establish an error distribution. If ε , log∨G(XI) is tightly
focused around the identity element XI , it can be described
with a Euclidean Gaussian ε ∼ NRp(0p×1, P ) [25], and we
say XI follows a concentrated Gaussian distribution (CGD)
on G around the identity [18]. This distribution can then be
translated over G by using the left action of the Lie group,
and finally the random variable X is as follows

X = µ exp∧G (ε) , with X ∼ G(µ, P ) , (9)

where G denotes the CGD [25]. For the present SLAM, we
particularly employ the special Euclidean group SE(3) and
the aforementioned operators can be found in [26].

IV. LIE GROUP ESDSF SLAM

The proposed ESDSF filter on Lie groups is based on
the LG-EKF framework presented in [18]. However, in
order to derive the ESDSF on Lie groups, there are several
ingredients that need to be solved. First we need to have an
information form of the filter on Lie groups, and second,
we need to be able to compute the augmentation and
marginalization of a CGD. The information form was
presented in our previous work [26] where we proposed the
extended information filter on Lie groups (LG-EIF). The
augmentation and marginalization of a CGD was presented
in [23] in the context of computing the prediction step of
the iterated extended Kalman filter on Lie groups. The idea
therein was to approximate a CGD product with a joint
CGD, after which one of the variables is marginalized out.
The procedure needed to solve this problem yielded results
that can be used in the prediction step of our LG-ESDSF. In
the sequel, we present modifications of each of the ESDSF
steps that are required for derivation of the LG-ESDSF.

A. Motion model

In LG-ESDSF each discrete pose Xi of the robot’s trajectory
is represented by an SE(3) group element

Xi =

[
Ri ti
0 1

]
, Xi ∼ N (µXi

,ΣXi,i
) , (10)

where Ri represents a 3 × 3 rotation matrix defining the
robot’s orientation in the global frame and ti = [xi, yi, zi]
represents robot’s position in the global frame. Trajectory Tn
is no longer a vector but a block diagonal n× n matrix

Tn =


X1 0 0 0
0 X2 0 0
...

...
. . .

...
0 0 0 Xn

 , Tn ∼ N (ηn,Λn) . (11)

For LG-ESDSF the trajectory is required to be on the Lie
algebra se(3) instead of the Lie group. For this reason we
define the trajectory τn = log∨G (Tn) as follows

τn =


x1

x2

...
xn

 =


log∨G (X1)
log∨G (X2)

...
log∨G (Xn)

 , (12)

where xi represents state Xi on the Lie algebra se(3) and
in this case G = SE(3). Relation between Λn and τn is the
same as in the standard ESDSF τn = Λ−1

n ηn.
In LG-ESDSF we also assume a non-linear first order

Markov process, except that the motion model (2) is now
defined on G

Xn+1 = f(Xn,Ωn, wn) = Xn exp∧G (Ωn + wn) , (13)

where in the present paper Ωn = [∆t,∆r] represents robot’s
pose change between Xn+1 and Xn. Position change is
represented by ∆t = [∆x, ∆y∆z], while the change in
rotation ∆r is represented using euler-axis convention. The
prediction covariance matrix is computed as

Σn+1 = FnΣnFT
n + Ψ(Ωn)QnΨ(Ωn)T (14)

Fn = Ad (exp∧G (−Ωn)) + Ψ(Ωn), (15)

where Ψ is the right Jacobian of G [27], while Ck denotes
the linearization of the motion model (13) at Xn [18]

Ψ(v) =

∞∑
m=0

(−1)m

(m+ 1)!
ad(v)m , v ∈ Rp , (16)

Cn =
∂

∂ε
Ω (Xn exp∧G (ε))|ε=0 . (17)

In the case of LG-ESDSF, Ω(·) is not a function of Xn which
means that (17) evaluates to zero, i.e., Cn = 0, hence (14)
evaluates to Fn = Ad (exp∧G (−Ωn)). For brevity, we also
introduce the following notation

Qn = ΨnQnΨT
n , Ψn = Ψ(Ωn) . (18)

B. LG-ESDSF prediction

During the prediction step trajectory is augmented with X̄n

and then marginalized by Xn. Based on augmentation and
marginalization results for CGDs derived in [23], [28], it
can be shown that for the information form the resulting
expressions for η̄n and Λ̄n are:

η̄n =


Q−1
n Fnβ−1

n ηXn
+ αn(µX̄n

−FnµXn
)

ηXn−1 − ΛmXn(ηXn −FTnQ−1
n (µX̄n

−FnµXn))
ηXn−2

...



Λ̄n =


αn Q−1

n Fnβ−1
n ΛXn,n−1

0
ΛXn−1,nβ

−1
n FTnQ−1

n γn ΛXn,n−1

0 ΛXn,n−1
ΛXn−1,n−1

...
...

...


where

αn = (Qn + FnΛ−1
Xn,n
F

T

n )−1 (19)

βn = (ΛXn,n + FTnQ−1
n Fn)

γn = ΛXn−1,n−1
− ΛXn−1,n

β−1
n ΛXn,n−1

.

Once the threshold is exceeded we add the predicted state
X̄n to trajectory Tn, which now become Xn+1 and Tn+1,



respectively, while parameters Λn+1 and ηn+1 evaluate to

ηn+1 =


Q−1

n (µXn+1
− FµXn

)

ηXn −FTnQ
−1

n (µXn+1 − µXn)
ηXn−1

...



Λn+1 =


Q−1
n −Q−1

n Fn 0
−FTnQ−1

n ΛXn,n + FTnQ−1
n Fn ΛXn,n−1

0 ΛXn−1,n
ΛXn−1,n−1

...
...

...

 .
C. LG-ESDSF update
Update in LG-ESDSF SLAM occurs at the same time as
in ESDSF SLAM, i.e., whenever loop closing is detected
between any two states Xi and Xj and RPE sends relative
pose measurement. In the case of LG-ESDSF SLAM the
innovation term is defined as

zn+1 = log∨G
(
h (Tn+1)

−1
Zn+1

)
, (20)

where h (Tn+1) represents estimate of the relative pose
between states Xn+1 and Xj acquired from the current
trajectory Tn+1 and Zn+1 represents RPE measurement in
a form of SE(3) element. For calculating updated estimates
of the information matrix Λn+1 and the information vector
ηn+1 we can use LG-EIF update equations from [26]

η−n+1 = HT
n+1R

−1
n+1zn+1

Λ−n+1 = Λn+1 +HT
n+1R

−1
n+1Hn+1 ,

(21)

where Rn+1 represents measurement uncertainty reported by
RPE and matrix Hn+1 is calculated as follows [18]

Hn+1 =
∂

∂ε
[log∨G(h(Tn+1)−1h (Tn+1 exp∧G(ε))]|ε=0 .

(22)

For the SE(3) group calculating the relative pose between
states Xn+1 and Xj reduces to simple matrix inverse and
multiplication. Given that, measurement model is defined by

h(Tn+1) = X−1
j Xn+1, (23)

which is equal to the one used in [23] for relative pose
averaging wherein (22) was shown to evaluate to

Hn+1 = [· · · 06×6 · · · −Ad(X−1
n+1) Ad(Xj) · · · I6×6] .

The result shows that as in the Euclidean ESDSF, Hn+1

in LG-ESDSF remains a sparse matrix consisting of n
6 × 6 blocks of which only the blocks (n + 1) and j
are different than 06×6. However, as explained in [26] this
does not complete the update step of LG-ESDSF since
now the value of η−n+1 = (Λ−n+1)−1η−n+1, is in general
different from the zero vector, and this is in contradiction
to the CGD assumption. To overcome this issue, the state
reparametrization is performed [18] and the final expressions
are as follows

τ−n+1 = (Λ−n+1)−1η−n+1 (24)

Λ+
n+1 = Ψ(τ−n+1)−TΛ−n+1Ψ(τ−n+1)−1 (25)

η+
n+1 = Λ+

n+1 log∨G
(
exp∧G(Λ−1

n ηn) exp∧G(τ−n )
)
. (26)

Algorithm 1 LG-ESDSF SLAM back-end pseudocode

1: Set initial values of Λ1, X1, η1, x1

2: loop:
3: Get odometry data Ωn
4: Perform motion model (13) to get X̄n

5: Calculate matrices Fn and Qn from (15) and (18)
6: if adding new state to Tn required then
7: Xn+1 ← X̄n

8: Calculate ηn+1 and Λn+1

9: if Loop closed between Xn+1 and Xj then
10: Get relative pose measurement Zn+1

11: Calculate innovation zn+1 (20)
12: Do update via (21)–(26)
13: else
14: Calculate η̄n and Λ̄n

This concludes the update step. Pseudocode of the entire
LG-ESDSF SLAM back-end is given in Algorithm 1.

D. Performance analysis

The prediction step of LG-ESDSF is constant time since it
always changes the same number of blocks in the information
matrix. However, it requires poses xn and xn+1 represented
on the Lie algebra se(3). State xn+1 can easily be calculated
from Xn+1, but state xn would have to be evaluated via
xn = Λ−1

n ηn, which should be avoided due to inversion of
the information matrix. For this reason we use the vector
xn+1
n = [xn+1, xn] which stores required state estimates.

Whenever a new state is calculated, it is inserted into xn+1
n

and the last one is discarded, thus inversion of Λn is not
needed during prediction. Vector xn+1

n is also changed after
the update step is complete by extracting the last two states
xn, xn+1 from the newly estimated τn+1.

By examining (24) to (26) it would appear that there is an
extra inversion of Λn+1 in comparison to ESDSF. In both
ESDSF and LG-ESDSF it takes place before the update so
as to evaluate the measurement model, and after the update
in order to recover the updated trajectory. In LG-ESDSF it
is also required in (24), but (26) can be written as

η+
n+1 = Λ+

n+1 log∨G
(
exp∧G(Λ−1

n ηn) exp∧G(τ−n+1)
)

(27)

= Λ+
n+1 log∨G

(
exp∧G(τn) exp∧G(τ−n+1)

)
= Λ+

n+1τ
+
n+1 ,

which means that there is no need for final computation of
τ+
n+1 as it is already calculated within η+

n+1. Therefore, there
are also only two inversions of the information matrix in LG-
ESDSF: first in τn = Λ−1

n ηn and the second in (24).
The last potentially time consuming calculation is the

inversion of Ψ(τ−n+1) required in (25) after the update.
Although Ψ(τ−n+1) does have the same dimension as Λ−n+1,
it is also a sparse matrix and always remains a strictly
tridiagonal block matrix (its form is not effected by update)
and its inversion reduces to n inversions of a 6× 6 matrix.



TABLE I: KITTI rankings of the state-of-the-art stereo vision
SLAM systems at the time of writing.

Method Transl. Rot. [◦/m] Sensors

LG-SLAM [this] 0.82 % 0.0020 stereo cameras
ORB-SLAM2 [16] 1.15 % 0.0027 stereo cameras

S-PTAM [32] 1.19 % 0.0025 stereo cameras
S-LSD-SLAM [14] 1.20 % 0.0033 stereo cameras

V. EXPERIMENTAL RESULTS

We have tested the proposed LG-ESDSF SLAM on the
KITTI vision benchmark suite [29] and compared the results
with state-of-the-art SLAM approaches, namely ORB-SLAM
and LSD-SLAM. For the SLAM front-end we have used the
SOFT stereo visual odometry [30]. Although the improved
version of SOFT exists (SOFT2), we did not use this
version since it is still work in progress. However, we have
modified SOFT to allow loop closing detections and relative
pose estimations between any two pairs of stereo images.
All algorithms were implemented using C++ programming
language. Testing machine was a laptop with Intel Core
i7@2.6 Ghz processor and 8 GB of RAM. For solving the
sparse matrix equations we used the Eigen library [31].

The KITTI dataset consists of 22 sequences recorded on
different routes under different conditions. Ground truth is
provided only for the first 11 sequences while others are used
for online evaluation. The KITTI dataset provides its own
metric, herein referred to as relative metric, for evaluating
the odometry results. This metric does not evaluate absolute
errors between the ground truth and estimated results, but
rather compares errors on parts of sequences that are from
100 to 800 metres long, hence the benefits obtained from
loop closing only marginally affect the metric. As such, it
is designed primarily for evaluating pure odometry rather
than complete SLAM systems. Given that, in our evaluation,
we also used the automatic evaluation tool available online1

which relies on evaluation of absolute errors.
The LG-ESDSF SLAM was evaluated online on the KITTI

dataset, therein dubbed LG-SLAM. The results are given in
Table I which also contains results of several other evaluated
state-of-the-art SLAM systems, from which we can see that
LG-SLAM achieves the smallest translational and rotational
error. The results and the whole table are also available
online2, and, at the time of writing, the proposed approach
ranks second among the stereo vision approaches. The results
of LG-SLAM using the absolute metric are presented in
Table II. Here we provide results of absolute metric for LG-
SLAM together with results of SOFT visual odometry, LSD-
SLAM and ORB-SLAM2 for 6 KITTI sequences that contain
loop closings. The results for sequence KITTI00 is depicted
in Fig. 2. Given the results in Table II, it can be noted that
LG-SLAM outperformes the other two SLAM approaches
on 4 out of 6 sequences. In particular, LSD-SLAM shows
best performance on sequences KITTI00 and KITTI02, while

1http://vision.in.tum.de/data/datasets/rgbd-dataset/tools#evaluation
2http://cvlibs.net/datasets/kitti/eval odometry.php

TABLE II: Results of LG-ESDSF SLAM on the KITTI dataset
using the absolute metric on sequences containing loop closing.

SOFT LG-ESDSF ORB-SLAM LSD-SLAM

KITTI00 3.36 1.18 1.3 1.0
KITTI02 5.52 3.12 5.7 2.6
KITTI05 1.54 0.59 0.8 1.5
KITTI06 0.96 0.49 0.8 1.3
KITTI07 0.4 0.32 0.5 0.5
KITTI09 2.42 1.26 3.2 5.6
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Fig. 2: LG-SLAM results on the KITTI sequence KITTI00

LG-SLAM achieves the smallest error in all the other cases.
We can also see that on all of the sequences which contain
loop closing, LG-SLAM significantly improves the accuracy
with respect to the SOFT visual odometry.

We have also compared computation times of the proposed
LG-ESDSF with the g2o [12]. This was performed by
simulating the LG-ESDSF on all the KITTI sequences
that contain loop closings and then simulating the g2o
framework under the same conditions taking care that graph
optimization is conducted at the same number of states and
in the same order. Table III gives computation times of the
LG-ESDSF update step and g2o optimization. We provide
maximum tmax, minimum tmin and mean tmean values of
all computation times together with the number of states
in the trajectory at the time of the first (nfirst) and the
last (nlast) update/optimization. Due to the sparseness of
the matrix implementation we can see that the maximum
and mean computation times of the LG-ESDSF update
steps are significantly lower compared to those of the
g2o optimization. Also, it can be noted that the minimum
computation times of g2o are much lower compared to
its maximum computation times, which is due to fast
optimization if loop closings appear frequently, whereas filter
update step always takes the same time depending on the
number of states n in the trajectory.



TABLE III: Minimum, maximum and mean computation times of
the LG-ESDSF update step and g2o optimization.

tmin [ms] tmax [ms] tmean [ms] nfirst nlast

LG-ESDSF / g2o
KITTI00 11 / 22 61 / 998 35 / 349 641 1946
KITTI02 41 / 6 73 / 943 48 / 279 2040 2247
KITTI05 9 / 37 32 / 749 18 / 317 542 1094
KITTI06 9 / 23 23 / 387 13 / 221 480 625
KITTI07 7 / 179 9 / 199 7 / 194 386 391
KITTI09 18 / 432 20 / 449 18 / 441 909 913

VI. CONCLUSION AND FUTURE WORK

In the last years SLAM algorithms have mostly focused
on developing novel front-end methods, while the back-end
has focused on graph optimization techniques and current
state-of-the-art SLAM approaches are largely based on g2o.
In this paper, we have proposed a novel SLAM back-end
based on the ESDSF and LG-EKF. The main contribution of
the paper is derivation of the ESDSF on Lie groups. This
approach enables us to respect the geometry of the state
space, thus reducing localization errors in filtering methods,
while keeping the prospects of the classical ESDSF. We have
shown on the popular KITTI dataset that our solution can
match and even outperform state-of-the-art SLAM methods
in both accuracy and computation speed. As part of future
work, we plan to develop reduction of the number of states
by allowing marginalization of redundant states within the
LG-ESDSF, thus further improving computation time.
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