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Abstract

In this paper we propose a fast 3D pose based SLAM system that estimates a vehicle’s trajectory by registering sets of
planar surface segments, extracted from 360° field of view (FOV) point clouds provided by a 3D LIDAR. Full FOV and
planar representation of the map gives the proposed SLAM system the capability to map large-scale environments while
maintaining fast execution time. For efficient point cloud processing we apply image-based techniques to project it to
three two-dimensional images. The SLAM backend is based on Exactly Sparse Delayed State Filter as a non-iterative way
of updating the pose graph and exploiting sparsity of the SLAM information matrix. Finally, our SLAM system enables
reconstruction of the global map by merging the local planar surface segments in a highly efficient way. The proposed
point cloud segmentation and registration method was tested and compared with the several state-of-the-art methods
on two publicly available datasets. Complete SLAM system was also tested in one indoor and one outdoor experiment.
The indoor experiment was conducted using a research mobile robot Husky A200 to map our university building and
the outdoor experiment was performed on the publicly available dataset provided by the Ford Motor Company, in which

a car equipped with a 3D LIDAR was driven in the downtown Dearborn Michigan.
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1. Introduction

In the last two decades sensors capable of providing
real-time 3D point clouds which represent the environment
opened many possibilities in the field of mobile robotics
and environment sensing in general. Using real-time 3D
information, autonomous robots are capable to safely navi-
gate in unknown complex environments and perform wider
variety of tasks. One of the best examples comes from the
automotive industry. Today, automotive industry invests
a lot in research of fully autonomous driving capability,
which does not require the driver to intervene and take
control of the vehicle. Self-driving cars could revolutionize
the transportation system known today and bring many
advantages to it, such as increased efficiency and lower ac-
cidents rate. However, autonomous driving opens many
new challenges for the robotic systems and the full auton-
omy is still far away. Some of the challenges are design of
perception systems that operate reliably in changing envi-
ronmental conditions and navigation in an unknown and
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GPS restricted complex environments. There are different
sensors for environment perception (e.g. stereo cameras,
depth cameras, radars, LIDARs etc.) but LIDARs are by
far the most used ones. Therefore, development of a real-
time Simultaneous Localization And Mapping (SLAM) so-
lution based on 3D LIDAR measurements, that can work
in large-scale environments, is of great importance.

3D LIDAR provides 360° field of view (FOV) 3D point
clouds representing the surrounding environment. The
main question is how to process those point clouds. Many
attempts [1} 2 [3] had the philosophy that the environment
is its best representation and operate directly on raw 3D
point clouds. In almost all of these works, matching 3D
point clouds of the environment is performed with algo-
rithms derived from the iterative closest point (ICP) al-
gorithm [4]. Although ICP has an advantage of implic-
itly solving data association problem, it suffers from pre-
mature convergence to local minima, especially when the
overlap between scene samples decreases [5]. Furthermore
the main problem of ICP comes from the sheer size of the
raw data provided by 3D sensors that even modern com-
puting systems cannot process in real-time.

Since raw 3D point cloud processing is computation-
ally intensive, a question arises what is the best environ-
ment representation that would allow real time processing
while preserving precision up to a certain level. Answer
to this question is especially important for SLAM systems
since they must simultaneously build the map and perform
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localization using sensors information about the environ-
ment. Ability to work in real-time increases SLAM local-
ization performance and enables it to build a meaningful
map. One solution to the problem is in segmenting the
sensor data into higher level features. During segmenta-
tion of raw data into higher level features some precision is
always lost but the SLAM system can be designed so that
this does not significantly impact its overall performance.
The maps consisting of higher level features such as poly-
gons can be almost as good for the navigation tasks as
more precise maps consisting of raw data, but also enable
execution in real-time which is more important in those
tasks.

The main contribution of this paper is the new 3D
SLAM system capable of working in real-time and in large-
scale environments. We have designed every component of
our SLAM system with computational and memory effi-
ciency in mind to be suitable for navigation in large-scale
complex environments. We have chosen planar surface
segments to represent the environment because they are
prevalent in indoor and outdoor urban spaces. Three im-
portant distinctive novelties can be pointed out. First,
we have adapted point cloud segmentation algorithm from
[6], which was originally developed for RGB-D sensors, to
operate on full field of view 3D LIDAR point clouds. We
did this by dividing and projecting full FOV 3D point
clouds onto three image planes which allows fast 2.5D
point cloud segmentation based on recursive 2D Delau-
nay triangulation and region merging. Second, we have
changed algorithm presented in [7], which calculates rel-
ative pose between two local maps by registering planar
surface segments contained within them, to include initial
guess of the relative pose from the SLAM trajectory. We
have also adapted its planar segment model and registra-
tion algorithm to take into account both the uncertainty
model and 360° FOV of 3D LIDAR. By doing this we were
able to significantly reduce the number of outliers in pose
constraint calculation and increase process speed at the
same time. Third, we have developed a global planar map
building algorithm which reduces the number of required
planar surface segments for map representation. Number
of segments is reduced by taking into account that several
planar surface segments extracted at different time can
belong to one single planar segment and that same planar
surface segment can be re-observed so consequently it does
not form a new planar surface segment in the global map.

The rest of the paper is organized as follows. The re-
lated work and the overall concept of the proposed SLAM
system are presented in Section [2] In Section [} our point
cloud segmentation algorithm is described. In Section
five components of our SLAM system are explained. Ex-
perimental results are presented in Section [5| and conclu-
sion is given in Section [f]

2. Related work and overall system concept

In this section, first we present previous work related to
point cloud segmentation and 3D planar SLAM, and then
give the overall concept of the proposed SLAM system
together with notations used throughout the paper.

2.1. Related work

Algorithms that segment point clouds into planar sur-
face segments can be divided into organized and unorga-
nized, based on the type of used point clouds, and struc-
tured and unstructured, based on the environments they
can work on. In [§] two different algorithms are presented
i) a subwindow based region growing (SBRG) algorithm
for structured environments and ii) a hybrid region grow-
ing (HRG) algorithm for unstructured environments. Both
SBRG and HRG work only on organized point clouds which
are first divided into subwindows and then classified as
planar or non planar based on their shape. Only planar
subwindows are used in SBRG while both planar and non
planar subwindows are used in HRG. In [9] Cached Octree
Region Growing (CORG) algorithm is presented which
computes planar segments from unorganized point clouds
in both structured and unstructured environments. The
main idea of CORG is to accelerate the neighbour search-
ing algorithm in the octree by requiring a single nearest
neighbour search trial for each point in the octree. As a
result, a compromise is made between memory and speed
by caching the indices of the nearest neighbours searched
for each point. The solution used in our paper is based on
the modified version of [6]. We used this solution because
it works on unorganized point clouds as input and achieves
comparable results to the techniques based on organized
point clouds.

Some of the earliest 3D SLAM solutions based on pla-
nar segments use a mobile robot equipped with a rotating
2D LIDAR producing three dimensional point clouds. The
paper [10] presents a feature-based SLAM approach based
on the Extended Kalman Filter (EKF), where the scans
are directly converted into a planar representation com-
posed of polygons and plane parameters with associated
uncertainty in the framework of Symmetries and Pertur-
bation model (SPmodel). The resulting maps are very de-
tailed and compact but the approach is computationally
very demanding and therefore not suitable for real-time
applications. Work described in [I1] is interested only
in the local aspect of mapping, doing sequential surface
capture of the workspace, while global pose corrections
are propagated on-line in an elastic graph with a bounded
number of elastic sub-maps. A feature based graph SLAM
that uses rectangles in order to build a global map of in-
door environments is presented in [I2]. Algorithm allows
extraction of rectangles from LIDAR measurements even
in conditions of only partial visibility.

Besides LIDAR based SLAM solutions that use higher
level features, there are several SLAM solutions based on
dense point clouds obtained from RGB-D sensors [13, [14]



15) [16l, 7] and by dense multi-view stereo reconstruction
[13, [18]. These methods are different from LIDAR based
approaches due to significantly smaller operating range
and field of view. In order to address sensor limitations of
the range cameras, [19] makes use of 2D laser range find-
ers in combination with a range camera sensor in a planar
surface 3D SLAM system. In that work, 2D LIDAR line
measurements are used to constrain planar landmark poses
in graph optimization.

The approach that is the most similar to ours is pre-
sented in [5]. It uses a fast pose-graph relaxation technique
for enhancing the consistency of the three-dimensional maps
created by registering large planar surface segments. The
surface segments are extracted from point clouds acquired
from a 2D rotating LIDAR. The approach accurately de-
termines the rotation, although a lack of predominant sur-
faces in certain directions may result in translational un-
certainty in those directions. Hence, a loop-closing and re-
laxation problem is formulated that gains significant speed
by relaxing only the translational errors and utilizes the
full-translation covariance determined during pairwise reg-
istration. In other words, the approach assumes that the

orientation error obtained by plane registration is neglectable

and minimizes only the translational errors to produce con-
stant time updates. There are three main differences be-
tween [5] and work presented in this paper. First, we do
not minimize only the translational errors, but optimize all
states of the trajectory. Our method takes the advantage
of the information space parametrization without incur-
ring any sparse approximation error. Second, in [5] pla-
nar surface segments are extracted from raw point clouds,
while we base our method on projection of the point clouds
into lower dimensional space before extracting planar sur-
face segments. This makes our approach by the order of
the magnitude faster. Third, planar surface segments in
[5] are not merged in any way and are all added to the
global map, while we perform merging of extracted planar
surface segments that lie on the same plane which signif-
icantly reduces complexity of the global map making it
suitable to represent large-scale environments.

2.2. The overall concept of the proposed SLAM system
The layout of the proposed SLAM system with key
components is shown in Fig. Hereafter, we briefly
describe the functions of each component, while detailed
descriptions are given in Sections marked in the Fig.
SLAM backend is responsible for vehicle localization and
trajectory building. Trajectory consists of discrete states
X;,1=0,...,n—1, where each state is represented by ve-
hicle’s pose (3D position and orientation quaternion) ex-
pressed in the coordinate frame assigned to the first state.
A new state Xj is added to the trajectory when the pose
difference between the last added state in the trajectory
and the current pose exceeds predefined thresholds. Once
new state is augmented two things occur: i) point cloud
acquired in this state is sent to the Local map buzild-
ing module and ii) Loop detection algorithm begins to

search for possible loop closings between the state X and
other states in the trajectory. Local map building mod-
ule then segments received point cloud into planar surface
segments (PSS) and builds the local map. If loop closing
is detected between states Xj and X; indexes (k,i) are
sent to the Local maps registration (LMR) module
alongside with the current trajectory for predicting rela-
tive pose between the states X; and X;. The LMR uses
SLAM trajectory and the segmented planar surface seg-
ments for the initial guess and precise estimation of the
relative pose between the states X and X;. Once the rel-
ative pose is calculated, it is reported back to the SLAM
backend which then incorporates it as a pose constraint
into the pose graph and performs trajectory update. Up-
dated trajectory and indexes (k, i) are sent to the Planar
surface segments update module which uses new tra-
jectory to update existing planar surface segments in the
local maps. After the local maps are updated, that tra-
jectory is also sent to the Global map building module
which then incorporates the updated planar surface seg-
ments together with the newly segmented planar surface
segments into the global map. If no loop closing was de-
tected the trajectory is sent to the Global map building
module immediately after augmentation which then adds
the newly segmented planar surface segments to the global
map. In the background, SLAM backend continuously
predicts the vehicle’s pose using odometry information.

2.3. Notation used in this paper

Here we give the overview of commonly used notations
with short descriptions for easier reference.

e X; - State in SLAM trajectory taken at time step 4

e P, - Point cloud associated with I-th trajectory state

e M; - Local map that consists of planar surface seg-
ments segmented from j-th point cloud

e S; - Coordinate frame of j-th local map (the same
as coordinate frame of j-th point cloud)

e (R;;, t; ;) - Rotation matrix and translation vector
which transform S into S;

o 9F; ; - j-th planar surface segment in i-th local map
which belongs to g-th global planar surface

o S Fij; - Local coordinate frame of j-th planar surface
segment in ¢-th local map

e ('R, ;, I't; ;) - Rotation matrix and translation vec-
tor which transform Sp, ; into S;

Fni,j - Unit normal of F;; expressed in SFM (ex-

pected value is [0 0 1])

° Fpm- - Distance of F; ; from Sp, ; (expected value is
0)
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Figure 1: The overall concept of the proposed SLAM system.

e 3, - Covariance matrix of perturbation vector ¢
representing uncertainty of “n; ; and ¥p; ; in Sp,

e " - I-th global surface with assigned n-th local map
e Sg, - Local coordinate frame of I-th global surface

e (“Ry, ©t;) - Rotation matrix and translation vector
which transform Sg, into coordinate frame of local
map M, assigned to "G

e (RY, “1)) - Rotation matrix and translation vector
which transform S¢, into coordinate frame Sy

©n; - Unit normal of G expressed in Sg, (expected

value is [0 0 1])
e “p; - Distance of G from Sg, (expected value is 0)

e Y, - Covariance matrix of perturbation vector rep-
resenting uncertainty of “n; and “p; in Sa,

3. Local map building

Local maps consist of planar surface segments extracted
from one point cloud. In this section, we first describe a
method for detection of planar surface segments from 3D
LIDAR point clouds and then give their mathematical de-
scription and uncertainty model. Local maps are used for
creation of the global environment map and for calculating
relative poses used as the pose constraints in the SLAM
pose graph.

8.1. Detection of planar surface segments

The approach used in the presented system for extract-
ing planar surface segments is based on 2D Delaunay tri-
angulation, which requires an appropriate 2D projection
of the input point cloud. One possibility is to project the
point cloud onto a cylindrical surface. However, projec-
tions of straight lines in 3D space onto a cylindrical sur-
face are not straight lines. Therefore, triangles obtained
by Dealunay triangulation applied to such projection don’t
represent triangular surfaces in reality. This is the rea-
son why we choose to project point clouds onto three im-
age planes I;, Is and I3, each covering a field of view of
120° in horizontal direction, as shown in Fig. Point
cloud projection is performed using the pinhole model.
First, we define two sets: s, = {0, sin(27/3), —sin(27/3)}
and ¢, = {1,cos(27/3),cos(2w/3)}. Then for each point
p(X,Y,Z) in the point cloud P, the following equations
are evaluated for 1 = 1,2, 3:

i = =8, (1) Z + cp(1) X
yi=Y

zi =cn(1)Z + 5,(1) X

T,

Ui:fuj"‘“c (4)

vi:fv&"_vo (5)
Zi
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Figure 2: Point cloud division and projection onto three image
planes: a) three image planes with their coordinate frame, b) de-
termination of the horizontal pixel coordinate u; of the point’s p
projection onto the image plane, c) determination of the vertical
pixel coordinate v; of the point’s p projection onto the image plane.

Equations - (3) represent the transformation of the
point p(X,Y, Z) from the LIDAR coordinate frame into
the coordinate frame of the image plane I;, while the equa-
tions and represent the projection of the trans-
formed point into the pixel (u;,v;) of the I;. Values of
Umae and VUmq, define the image resolution which affects
the precision of the projection. Higher image resolution
corresponds to greater projection precision. However, the
processing speed drops with increase of resolution. Pixel
(ue,v.) represents the center of the projection while (fy, fu)
represent vertical and horizontal focal lengths of the pin-
hole model, respectively. Their values are determined based
on the LIDAR FOV (Fig. and in order to cap-
ture the whole scan. Value of u,. is always set at the hori-
zontal middle of the image plane (t,q./2) with horizontal
focal length set to f, = uc/\/§ Values of v, and f, are
set according to the vertical FOV of the used LIDAR.
Let the point’s p projection to the image plane I; at
the image pixel (u;,v;) be such that conditions u; >= 0,
U; <= Umaz, V; >= 0 and v; <= v;q, are satisfied. We
say that the point p belongs to I; and we assign to its image
pixel the distance r = vV X2 + Y2 + Z2 of the point p from
the projection center L. For points belonging to the same

image plane whose projections fall at the same image pixel,
r is set to the range of the closest point from L. In this
way we form a triplet (u;, v;,r) for every pixel in the image
plane I; corresponding to a point in the point cloud, thus
obtaining 2.5D input for our segmentation method. The
projected point clouds are then segmented into connected
approximately planar subsets using a split-and-merge al-
gorithm based on the approach proposed by [20], which
consists of an iterative Delaunay triangulation method fol-
lowed by region merging. An example of the point cloud
segmentation to planar 3D surface segments is shown in
Fig. The obtained planar surface segments represent
features which are used in the presented system for envi-
ronment representation and trajectory estimation.

z (m)

y (m)

Figure 3: Local planar 3D map. Red dots represent points from the
point cloud acquired by the LIDAR.

The parameters of the plane supporting a planar sur-
face segment are determined by least-square fitting of the
plane to supporting points of the segment. Each surface
segment is assigned a reference frame S with an origin
in the centroid of the supporting point set and z-axis par-
allel to the supporting plane normal. The orientation of
the z-axis and y-axis in the supporting plane are defined
by the eigenvectors of the covariance matrix 3, represent-
ing the distribution of the supporting points within this
plane. The purpose of assigning reference frames to sur-
face segments is to provide a framework for surface seg-
ment matching and EKF-based pose estimation explained

in Section E.1]



3.2. Representation of planar surface segments

Planar surface segments in our work are represented
by sets of 2D polygons in the same way as described in
[7]. Each 2D polygon is defined with its outer and inner
contours and with supporting 3D plane which is defined
by the equation

(Fm)*-Fp="p, (6)
where 7 is the unit normal of the plane represented in the
planar surface segment reference frame Sr, ¥'p is the dis-
tance of the plane from the origin of Sy and ¥'p € R3 is an
arbitrary point of the plain represented in Sr. The uncer-
tainty of the supporting plane parameters is described by
three random variables that form the disturbance vector
q = [S4,8y,7]T. These three variables describe the devia-
tion of the true plane parameters from the measured plane
parameters. In the ideal case, where the measured plane is
identical to the true plane, the true plane normal is iden-
tical to the z-axis of Sg, which means that “'n = [0,0,1]7,
while “p = 0. In a general case, however, the true plane
normal deviates from the z-axis of Sy and this deviation is
described by the random variables s, and s, representing
the deviation in directions of the z-axis and y-axis of Sg
respectively, as illustrated in Fig. [ for the x direction.

measured
plane

Figure 4: Deviation of the true plane from the measured plane.

The unit normal vector of the true plane can then be
written as

1
Fp= ———1 sz s 1]T. (7)
\/s2+si+1

The random variable r represents the distance of the true
plane from the origin of Sp, i.e.

Fpij=r. (8)

We use the Gaussian uncertainty model, where the dis-
turbance vector ¢ is assumed to be normally distributed
with 0 mean and covariance matrix 3,. Covariance ma-
trix ¥, is a diagonal matrix with variances 02,, o2, and
o? on its diagonal. Computation of covariance matrices
¥, is explained in [2I]. Finally, a planar surface segment
denoted by the symbol F segmented from the point cloud

P, is associated with the quadruplet

F=(*R, "t 2, %), (9)

where 'R and 't are respectively the rotation matrix and
translation vector defining the pose of Sp relative to the
coordinate system S; of the point cloud P,.

From this point on, it is important to distinguish be-
tween different planar surface segments, so we shall briefly
explain our notation. Whenever the point cloud P, is seg-
mented, a local map M; is created. The local map has the
coordinate frame S; equal to the coordinate frame of P,
and consists of planar surface segments segmented from
P,. Every planar surface segment F; ; in M; is identified
by two indexes (i and j), where the value of index i repre-
sents the ID number of the planar surface segment in M,
and the value of index j identifies the local map which the
planar surface segment belongs to (i.e. all planar surface
segments contained within M; have value of index j =1).
According to this notation, planar surface segment Fj ; is
represented by quadruplet

Fij=("Ri;," tij, %, 5p,,) (10)

4. Planar Surface 3D SLAM

In this section, we describe in details each of the five
components introduced in Section that constitute our
3D SLAM system: (i) local maps registration, (i) SLAM
backend, (iii) loop closing detection, (iv) global map build-
ing and (v) update of planar surface segments.

4.1. Local maps registration

In order to perform trajectory and map update, the
relative pose between two states X; and X; must be esti-
mated. This is accomplished by the local map registration
(LMR) module based on the approach described in [7].
Given two local maps representing two sets of 3D planar
surface segments, LMR searches for the relative pose be-
tween these two local maps which maximizes overlapping
between the surface segments of the first local map and
the surface segments of the second local map, transformed
by this pose into the reference frame of the first local map.
The approach presented in [7] is primarily designed for
place recognition using RGB-D cameras, i.e. matching of a
currently acquired local map to a relatively large database
of previously acquired local maps. LMR applied in this
paper represents an adaptation of this approach to reg-
istration of two local maps acquired by the 3D LIDAR.
Since registration of planar surface sets is not in the fo-
cus of this work, we only provide a brief description of the
applied registration approach with emphasis on the differ-
ences between the method presented in [7] and the LMR
applied in this paper.

The considered LMR approach generates multiple hy-
potheses about the pose of the reference frame S; cor-
responding to the state X; with respect to the reference
frame S; corresponding to the state X;. The hypotheses
are generated by selecting small sets of pairs (F,;, Fp;),
where Fy, ; is a planar surface segment belonging to the lo-
cal map M; and F} ; is a planar surface segment belonging



to the local map Mj, such that the surface segments se-
lected from M; have similar geometric arrangement to the
corresponding segments selected from AM;. Then, EKF-
based registration of the selected surface segments from
M; to the corresponding surface segments from M is per-
formed, resulting in a hypothetical relative pose between
X, and X, which can be represented by w; ; = (R; j, i ;),
where R; ; is the rotation matrix defining the orientation
and t; ; is the translation vector defining the position of X
relative to X;. In general, the number of possible combi-
nations of feature pairs, which can be used for generating
hypotheses, is very large. In order to achieve computa-
tional efficiency, a strategy for selection of feature pairs
proposed in [6] and described in detail in [7] is applied. It
is based on the feature ranking according to a measure of
their usefulness in the pose estimation process. The result
of this hypothesis generation process is a set of hypotheses
about the pose w; ;. Besides the correct hypothesis, this
set usually contains many false hypotheses. The number
of false hypotheses is significantly reduced by using the
coarse information about the pose w; ; provided by SLAM
trajectory to constrain the selection of planar surface seg-
ment pairs (Fy;,Fp ;) to those which satisfy coplanarity
criterion and overlapping criterion with respect to this ini-
tial pose estimate Yw; ;, as proposed in [7].

The initial pose estimate w; ; is defined by rotation
matrix R, ;, translation vector /¢; ; and covariance of the
transformation ! P; ;. In order to calculate I wy,j, unscented
transform is used. Inputs to the unscented transform are
vector vp

vp = [ti qi t; ¢;]", (11)

where ¢;, ¢;, t; and g; are positions and orientation quater-
nions assigned to trajectory states X; and X, and its co-
variance matrix X p. Both vp and X p are obtained from
the SLAM trajectory. Nonlinear function used in the un-
scented transform is equal to the measurement model
modified to operate on Euler angles instead of quaternions
for representing rotation.

In addition to planar surface segments, line features
representing straight edges along depth discontinuity con-
tours can also be used. The LMR algorithm described in
[7] uses line features detected by segmenting depth discon-
tinuity contours in RGB-D images. However, for reliable
detection of line features, a dense point clouds must be
available, such as those obtained by RGB-D camera or by
dense LIDAR scanning. Since the system proposed in this
paper is designed to use sparse point clouds obtained by
Velodyne HDL-32 LIDAR , line features are not consid-
ered.

The main difference between the method applied in
this paper and the original LMR approach presented in [7]
is in the hypothesis evaluation stage. In this stage, each
generated hypothesis w; ; is assigned a conditional prob-
ability P(w; j|M;, M;) representing the estimated proba-
bility that w; ; is the pose of X relative to X; if M, is a
local map consisting of planar surface segments segmented

in the state X; and M; is a local map consisting of planar
surface segments segmented in the state X;. The hypoth-
esis with the highest estimated probability is selected as
the final solution.

Assuming that the prior probabilities of all hypothe-
ses are equal, maximizing P(w; ;|M;, M;) is equivalent to
maximization of likelihood p(M;|w; j, M;), i.e. the condi-
tional probability of segmenting the local map M; with
particular parameters in the state X; if the local map M;
is detected in the state X; and the pose of X; relative to
X, is w; j. The probability p(M;|w; ;, M;) is computed as
follows:

p(M;|w; j, M;) =

1T max{ max (p(Fy,jlwij, Fj = Fai)), P(Foy)}y
FijeMj a,t T

(12)

where p(Fy j|w; j, Fp; = Fa,;) is the probability of detect-
ing a planar surface segment Fj ; with particular param-
eters in the state X if this segment represents the same
surface as the segment Fy, ; detected in the state X;, while
p(Fy, ;) represents the prior probability of detecting a pla-
nar surface segment with parameters equal to Fy, ;.

Figure 5: Relative pose between planar surface segments Fy ; and
Fy ;.

Probabilities p(Fy j|w; j, Fyj = Fg,) and p(Fp ;) are
computed using the approach proposed in [7]. While in
[7] only plane normal is considered in probability compu-
tation, in this paper, the plane offset is also considered in
the same manner. The probability p(Fy j|w; ;, Fp; = Fa,i)
for a particular pair (F, ;, Fp ;) is computed only if surface
segment Fj ;, transformed to the reference frame S; of the
local map M; using the rotation matrix R; ; and transla-
tion vector t; ;, overlaps sufficiently with F, ;. Reference
frames S; and S; of the local maps M; and M; are shown
in Fig. |5| together with two planar surface segments F, ;
and Fy ; and their reference frames Sg, ; and Sg, ;.

The approach presented in [7] is originally designed
for RGB-D cameras. Due to relatively narrow FOV of
RGB-D cameras, in many cases, relatively small number
of dominant surfaces is captured within the camera FOV.
Therefore, in addition to supporting plane parameters of
the detected planar surface segments, the segment shape
must also be considered in the place recognition process in



order to allow reliable distinction between geometrically
similar places. In order to include the information about
the surface shape in the hypothesis evaluation stage, in [7]
planar surface segments are represented by sets of square
patches approximating the surface shape. The 3D LIDAR
used in this paper, however, has a 360° FOV, allowing it to
capture many dominant surfaces in the local environment.
The information provided by the plane parameters of the
detected surfaces has shown to be sufficient for a reliable
registration of two views. Furthermore, in contrast to the
research presented in [7] where the discussed approach is
used to recognize the particular place among a relatively
large number of possible candidate local maps, in this pa-
per, the considered approach is used for registration of only
two close local maps, making the discrimination of surface
segments according to their precise surface shape unnec-
essary. Therefore, time consuming surface sampling is not
applied in this paper and overlapping of the scene surface
segment with a corresponding planar surface segment is
measured by an alternative approach. Instead of counting
overlapping surface patches, which is the approach applied
in [7], overlapping of two corresponding planar surface seg-
ments is measured in this paper by approximating these
surface segments with ellipsoids whose radii are defined by
the eigenvalues of their covariance matrices X,,.

Overlapping between two planar surface segments F, ;
and Fj; is measured by Mahalanobis distance between
distributions of points of these two surface segments rep-
resented by their centroids ¥ ta,; and F ty,; and covariance
matrices X, . and X, ., which is computed by

dp(Fa,iv Fb,]7w7«1j) =

Ftai—to,)" (Spas + Sy, + Zw) " e — Ftg),

(13)

where X, represents the uncertainty of the estimated pose
w;, j. Covariance matrix 3, is added to the covariance ma-
trix 3, . of the surface segment Fy, ; because this feature
is transformed in the reference frame S; using pose w; ;.
Covariance matrix ¥, is defined using a simplifying as-
sumption that the uncertainty in translation is equal in all
directions and that the uncertainty in rotation around all
three axes is equal. It is computed as follows

Yo = 02133 4 ok (rTr33 — ), (14)

where I3%3 is a unit matrix, o; and o represent uncer-
tainty of the estimated translation and rotation, respec-
tively, and

r="t; by (15)

Parameters o, and oy are determined experimentally. Pair
of planar surface segments Fj,; and Fj ; is considered as
successful match if the following condition is satisfied

dp(Fai, Fy j3wij) < €p, (16)

where the threshold ¢, is computed according to a desired

probability assuming x? distribution of d,, distance.

4.2. SLAM backend

The SLAM backend algorithm responsible for trajec-
tory estimation and based upon Exactly Sparse Delayed
State Filter (ESDSF) is developed partly in [22]. The
main extension made within this paper is generalization
of the motion model to 3D and a detailed analysis of the
SLAM time complexity. ESDSF is used for estimation of
Gaussian vehicle’s trajectory X which consists of n pose

samples X; = [¢; t;]*, i=0,...,n— 1
Xo
X1
X = , X~ N, %) =N, A),
anl

where relation between state mean p and information vec-
tor n is: n = Ap, and relation between state covariance
¥ and information matrix A is: A = £7!. ¢; represents
vehicle’s orientation in the global frame in the form of
quaternion, and ¢; denotes its position in that frame. As
elaborated in [22], the information matrix A of this system
has sparse structure which makes SLAM computationally
and memory efficient when implemented to use sparse al-
gebraic system solvers and therefore significantly gains ex-
ecution speed.

Let’s say that we control the vehicle by applying inputs
to its motors that generate translational velocity

T
v = ( Up Uy U ) ,

and rotational velocity
T
W= ( Wo Wi w2 ) )

relative to the vehicle’s body coordinate system. Both v
and w are represented with quaternions where the vector
part of a quaternion corresponds to a direction of motion
or axis of rotation, respectively, and its length to a speed
amplitude. Kinematics of such system can be described
by

0 0
€T Vg —1
— 17
; a| . |1 (17)
z v,
_! * (18)
= 5q%w
G=M-q (19)
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where [x y z] is the vehicle’s position and [qo g1 g2 g3] its
orientation quaternion in a global frame. In (18] “«” de-
notes quaternion multiplication while “” in denotes
matrix multiplication which is then expanded in (20)).

We discretize the vehicle’s kinematics model 1}
using Euler method and describe its uncertainty with ad-
ditive Gaussian white process noise w,, with mean value 0
and covariance @),. In this way, the non-linear first order
Markov process is obtained and used in ESDSF:

Xn+1 = f(Xnaun) + Wn, (21)

where control signals wu,, consists of changes in vehicle’s
position and angle in time step n determined by integrat-
ing translational v and rotational velocity w between time
steps n — 1 and n.

Motion model defines tridiagonal information ma-
trix which remains sparse when adding new states:

AXn+1Xn+1 AXn+1Xn
AXan«l»l AXan AXan71
A~ Ax,axa Axixao

During prediction, the state X,,y; is marginalized with
state X,,. Since X, is connected only to states X,, 1 and
X, _1, only four blocks of information matrix need to be
changed. These are: Ax, 2, s Ax, X010 AX 1 X0s1s
AXn—an—l .

A measurement model h in the pose SLAM system
is given in a form of relative pose between two states
(X;,X;). The relative pose describes rotation qu and
translation tiLj of the sensor, which records 3D point clouds
between poses that sensor had when it recorded data in
states X; and Xj.

% =4, ¢ (22)

tiy =q; 't — ti)a (23)

af = Up1 93 9RL }

h{ t@‘Lj = Q§£(QithLqi}1 +tij —lRL)qRL (24)
qrr and try, describe the relative pose between coordinate
frames of the LIDAR sensor and the vehicle.

Measurement update in ESDSF is constant time as it
affects only blocks sharing information associated to X;
and X;. This is because the Jacobian H of the measure-

ment function y,,, given as

yn(X) = h(X;, X;) + v, 05 ~ N(0, P, ) (25)

o
R

is always sparse, since y,, depends only on these two states.
The measurement arrives at time stamp n from the LMR
algorithm described in Section by registration of planar
surface segments between local maps M; and M;. The
relative pose error v,, determined by registration, acts as
a measurement noise in the estimator and is assumed to
be white with normal probability distribution

In Appendix A we give an overview of ESDSF equa-
tions for the operations of state augmentation, time pre-
diction and measurement update. Their derivation, the
benefit of the exact sparsity of the delayed-state frame-
work used in ESDSF and the advantage of the informa-
tion space parametrization without incurring any sparse
approximation error can be found in [23].

However, parts of the state mean vector u and its co-
variance matrix 3 are still needed for motion prediction
and measurement update in order to linearize nonlinear
process and measurement models and to perform map reg-
istration. These can be obtained by solving a sparse, sym-
metric, positive-definite, linear systems of equations

n=~Ap (27)
AEM = €4, (28)

H = (0, 0) (26)

where X,; and e; denote the ith columns of the covariance
matrix and identity matrix, respectively.
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Figure 6: Execution time of the proposed SLAM system.

Figure [6] shows execution times for the operations of
state augmentation and update with partial covariance
and state recovery in dependence on the state dimension.
Augmentation and update operation are O(1) and there-
fore this graph shows that covariance and state recovery



are the most complex operations in information filter, and
behave almost like O(n), a theoretical limit. This is the re-
sult of optimizations achieved by using sparse information
matrix structure in our implementation.

4.3. Loop closing detection

Whenever the new state is added to the trajectory, the
loop closing algorithm begins to search for possible loop
closings between newly added state X; and all other states
X, j # 1, in the trajectory. In order to be chosen for the
loop closing state X; has to satisfy two conditions. First
condition is that its Euclidean distance from X; has to
be lower than the predefined value d,,;,. This condition
imposes high probability of registration between states X
and X; since it is likely that there are enough similar pla-
nar surface segments between local maps assigned to them.
Second condition is that the resulting SLAM update will
have high enough impact on the trajectory accuracy. Al-
though every loop closing would increase accuracy of the
trajectory, SLAM update and the global map update after
loop closing are performance costly operations that should
not be executed if the impact on the accuracy is too small.
In general, update impact on the trajectory accuracy is
proportional to the sum of cost functions f. between all
neighboring states in the trajectory moving from the state
X to the state X;. The cost function f. takes into account
both angle and distance differences between two states and
is calculated as

fe(i, ) =d(Xi, X;5) + a(|Ayaw (Xi, Xj) |+

(29)

+ [Apiten(Xis Xj)| + [Arou (Xi, X)),
where d(X;, X;) is Euclidean distance between the states
Xi and X, Ayqw, Apiten and Agyy are differences of Eu-
ler angles between those states and « is the scaling factor.

Possible
loop closing

o,

Loop closed

Figure 7: Topological distance as a measure of information gain.

However, the problem with always using sum of all cost
functions between neighboring states to calculate accuracy
impact of loop closing, arises if there were previous loop
closing detections. For example let’s consider situation il-
lustrated in Fig. [7] where we want to measure accuracy
impact of loop closing between states X; and Xg. Al-
though the sum of cost functions between all states from
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Xy to X is high, since the update occurred between states
X7 and Xs, the overall impact on trajectory accuracy from
closing loop between states Xg and X; is small. This is
because a lot of information that would be gained from
loop closing between states X; and Xg was already gained
by loop closing between states X5 and X7. This is why we
use approach similar to [24] as a measure of accuracy im-
pact of a loop closing. The accuracy impact is determined
using the topological distance. The topological distance
is calculated from the graph Tg generated from the pose
graph incidence matrix 7I. The pose graph incidence ma-
trix 77 is n x n matrix, where n is the number of states in
the trajectory, which elements are given by

1,
Tl = {0,

The states are connected if they are neighboring states (i.e.
the state X; is connected with states X;+1 and X;_1) or if
pose constraint was formed between them (i.e. loop closing
was detected and trajectory update executed). Nodes in
the graph 7g are represented by the states and connections
between nodes ¢ and j exist if the element (i,7) in the
matrix 77 is 1. Weight of the connection w; ; between the
states ¢ and j is

v {fc(m%

if state X; is connected with state X (30)
otherwise

if i —j|=1

. (31)
otherwise

0,

This ensures that connections made by previous loop clos-
ing have 0 weight and will not increase measured topo-
logical distance between two states. Topological distance
between states (X;,X;) is calculated as the shortest path
from the node i to the node j in the graph Tg. The shortest
path is calculated using the A* algorithm. For example,
topological distance from the node 1 to the node 9 (Fig.
7)) would be the sum of cost functions between the states
(X1,X2), (X7,Xs) and (Xs,X9). Now when we can calcu-
late topological distance between two states (X;,X;), we
can form second condition that states have to satisfy in
order to be chosen for the loop closing:

Td(Xi, X;) > Dimau, (32)
where Td is the topological distance between the states X;
and X; and D, is the predefined topological distance
threshold. For all states that satisfy both conditions, the
state with the highest topological distance from X; is se-
lected for loop closing.

4.4. Global map building

In this section we present our approach to building the
environment global map which consists of global planar
surfaces. The reference coordinate frame of the global map
is the same as the coordinate frame of the local map M,
associated with the first state Xy in the trajectory. Each
global planar surface joins all planar surface segments from



the local maps that approximately lie on the same plane
in the environment. That is why the global map has much
less planar surface segments than the total number of seg-
ments in all local maps, which makes it faster to process
and requires less memory to store. For example, entire
floor, roof or wall is represented by only one global planar
surface in the global map.

In our work, the global map is represented with a hi-
erarchical graph. Nodes in that graph are: i) global pla-
nar surfaces /G, at the highest level, where values of in-
dexes g and j represent respectively the ID number of the
global planar surface and the local map assigned to the
g-th global planar surface, ii) local maps M;, at the mid-
dle level, where value of index j represents the ID number
of the local map, and iii) planar surface segments, at the
lowest level 9F; ;, where the value of index 7 represents the
ID number of the planar surface segment in the local map
M;. The triplet (4, j, g) uniquely identifies the planar sur-
face segment and its belonging to a certain local map and
a certain global planar surface. For example 1F3,4 means
that ID of the planar surface segment is 3, and that it is
part of the global planar surface 1 and the local map 4.
If a planar surface segment does not belong to any global
planar surface we omit index g from the notation. Con-
nections between planar surface segments and local maps
are formed during the segmentation process and are kept
unchanged afterwards.

Every global planar surface "Gy, I € {1,...,Ng}, is
defined by

"Gy = (YR, %, °%, OR), °1)) (33)
where Ng is the total number of global planar surfaces
in the global map, “R; and ©t; are respectively the rota-
tion matrix and translation vector defining the transfor-
mation between local coordinate frame Sg, of the global
surface "G and the coordinate frame S, of the local map
M, which is assigned to "Gj, Y, is the covariance ma-
trix defining uncertainties of the perturbation vector of the
unit-normal “n; and the plane distance p; from the ori-
gin of Sg,, and GR? and Gt? are rotation and translation
vector defining the transformation between S¢, and Sp.

Updating of the global map occurs every time a new
state is added to the trajectory. The update process dif-
fers depending on whether or not loop closing has been
detected with the newly added state. Below we shall first
explain how the global map updating is performed if a new
state is added to the trajectory and loop closing is not de-
tected, and than we shall describe additional steps that
are performed if the loop closing is detected.

4.4.1. Global map update after trajectory augmentation with-

out loop closing
Let’s assume that there are k — 1 states in the trajec-
tory and that at time step k the state X was added. After
point cloud Py has been segmented, the local map My, is
created. At this point none of the planar surface segments
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from Mj is present in the global map. The next step is to
determine pairs between the planar surface segments al-
ready included in the global map and the newly extracted
segments from M. The exact way would be to try to
match every planar surface segment from M) with all pre-
viously extracted segments. However, this approach would
be far too slow for real time application. Our solution is
to try to match the planar surface segments from M} only
with the planar surface segments from Mj_; and to up-
date the global map accordingly. With this approach the
accuracy deterioration is neglectable if no loop closing is
detected because it is reasonable to assume that the newly
extracted planar surface segments in M mostly originate
from the same planes as the surface segments extracted
from Mj_1. So the first step in the global map update is
to perform planar surface segments matching between My,
and My_,. Two planar surface segments are matched if
they lie on approximately the same plane. This matching
process is different than the segments matching when esti-
mating relative poses between local maps in LRM. While
LRM searches for planar surface segments between two
local maps that are coplanar and overlap, in the case of
building the global map, it is not necessary for planar sur-
face segments to overlap. For example, if we consider a ve-
hicle moving through a corridor, every new state will have
one additional wall segment that needs to be connected
with the previous segments. These segments do not over-
lap in the environment, but they do lie on the same plane
and should represent one global planar surface. This is
why only coplanarity condition is checked. The entire al-
gorithm for checking if surfaces are coplanar is described
in 7] and only final expressions and brief description are
given here. In order to check if (F; y—_1,F} ) are coplanar,
the Mahalanobis distance d(e) is used

d(e) = " (ESy, ,ET + CPy11,CT + 5, ) e, (34)

where F represents the Jacobian matrix propagating the
uncertainty of planar surface segment parameters and C
represents the Jacobian matrix propagating the uncertainty
of the transformation between two local maps (the final ex-
pressions for E and C' are given in Appendix B), P,_1 1 is
the uncertainty of the transformation between local maps
(calculated from the SLAM trajectory using unscented
transform the same way as I P) and e is the random vari-
able given by

= FREk_le_l,kFRj,anj7k (35)

F ~
ik

Bt — (Ftig—1 —te—1p)Re—1k) Rj k)
(36)

F ~
Pjk =

(37)




where ¥ fjr and F pj.k represent the expected values of
Fnj o and ¥ p; i transformed into Sg, ,_, and
[Fﬁ;”,k, Fﬁjk, Fﬁjk] represent z, y, z-coordinates of ©'7; x
in Sg, ,_,. The pair (F; y_1,F} ) is considered coplanar if
the following condition is satisfied
d(e) <, (38)
where € is a measure of coplanarity calculated using -
distribution with three degrees of freedom.

angle < a,

F”kjt/gnk
3 %

Fc.,

/

distance < A,

Figure 8: Second condition for matching planar surface segments.

The problem with using only coplanar condition based
on the Mahalanobis distance is that covariances (especially
covariance P which describes uncertainty of transforma-
tion between two local maps) can become large due to the
uncertainty in the current pose, i.e., when a vehicle trav-
els on a difficult terrain and no loop closings are detected.
That is why, in order to ensure global map accuracy, all
surface pairs that pass condition also have to pass
an additional condition based on the absolute values of
their parameters differences (e). This condition acts as a
cut-off threshold in the matching process and ensures that
the angle between normals A(Fﬁjyk, Fn; k1) and distance
Fp; 1 are smaller than the predefined thresholds aps, A,
respectively (Fig. . Mathematically, the condition can
be expressed as

F

lcos ™ (F7 1 Fmik—1)| < aur |Fpjul < Aum.  (39)

After forming pairs of planar surface segments between
My, _1 and My, all pairs are sorted into groups. Pairs be-
long to the same group if one or both of the following
conditions are satisfied: 1) pairs have one planar surface
segment in common, and ii) both pairs have at least one
planar surface segment in the same global planar surface.
The result is a list Lgp of Np groups: Lp = {ly...In, }-
Each group in Ly contains planar surface segments from
Mk,1 and Mk

Now for each group from Lp we determine whether
it represents a new global planar surface. Group I, ¢ €
{1...Np} represents a new global surface if none of the
planar surface segments from [ are already contained within
another global planar surface. For every group that rep-
resents a new global planar surface ™G, parameters of
", are estimated and "G, is added to the global map.
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The parameters of "G are estimated directly from the pa-
rameters of all planar surface segments contained within
lc. Therefore, before estimating the parameters of "Gy,
all parameters of all segments from the group [, have to
be transformed into the same coordinate frame Sp,, , of
one of the planar surface segments from .. The transfor-
mation of the expected values of planar surface segment
parameters is given by — and their covariance is

Sg, =FESq ,ET+CP,;CT. (40)
Based on equations and the parameters of "G,
are estimated using maximum likelihood estimator. The
problem which arises in the uncertainty model of plane
perturbations is that uncertainty of z-coordinate of the
normal is lost by imposing unit-normal constraint. To
solve this issue, we add this unit-constraint

Frz _ \/1 _ (Fﬁa:)Z _ (Fﬁy)z

to the state model and obtain expanded state model
e = [F'a® Fpy Fp# 5. Unscented transform is used
to determine its covariance ¥4-. Now we apply maximum
likelihood estimator to estimate €7; and Gﬁl together with
their covariances:

Nlc
Sg = (3 (50 (41)
k=1
ol
n s —1_z
Gﬁlz = EG(Z(quek))v (42)
ot =

where “7; is the normal of "G, in Sp,, ,,, ©p; is the distance
of "Gy from F, 5, in SF,, , and Ny, is the number of planar
surface segments in [.. At the end, we normalize estimated
normal 7.

The last four parameters that need to be estimated
for "G, are rotation matrices ©R; and GR? and transla-
tion vectors “t; and “t? which transform the coordinate
frame Sg, into the coordinate frame S,, and Sy, respec-
tively. In order to estimate GRZ, the rotation matrix R,,p
that transforms unit normal “7; into unit-normal Fy,. .
has to be calculated. To preserve orientation of all planar
surface segments, the rotation matrix R,,;,, which corre-
sponds to minimum Euler angles, is determined using the
following equation

1-c
Rin =1+ [U]X + [U}i 52 (43)
0 —wv3 wu
[’U} X = U3 0 —v1], (44)
—V2 U1 0
where v = “nf —9nY, ¢ = i and s = \/(Cn])? + (Cn])?.



Once the matrix R,,;, is calculated, the final rotation ma-
trix ©R; can be determined as

GRl = FRm,anm (45)
A vector ‘tg can be calculated using the following equation

0
“U@=FRpn| 0| +tp,.. (46)
“p

Finally, GR? and Gt? can be easily calculated as

“R) = Ry,.°R, (47)

“1) = Ron %t +ton, (48)

Next step is to perform plane merging in order to re-
duce the number of planar surface segments in the global
map. First, we transform all contours of planar surface
segments within /. to Sg,, and then perform the union
of the transformed contours which are 2D polygons. The
contours are transformed to Sg, by transforming their ver-
texes using the following transformation

iy =R (Raj("Ri T pis+ i) +ta; —Ct), (49)
where ¥ pi,; is the vertex of the contour of planar surface
segment Fj ; contained within [. and 'p; ; represents its
coordinates in the coordinate frame Sg,. After all local
planar surface segment from [. have been transformed us-
ing equation , their normal will be aligned with “n;
and their contours will be expressed in Sg,. The union
of contours is done using 2D polygons which are gener-
ated from the transformed contours by simply taking their
x,y-coordinates. Finally, when all 2D polygons have been
generated, union of polygons is performed using Boost
C++ libraries [25]. Boost is used for creating the union
because it offers fast performance and supports the union
of multi-polygons and polygons with multiple holes. Once
the union is complete, the resulting 2D polygon is assigned
to the global planar surface "G as its contour.

For groups from Ly that have at least one planar sur-
face segment °F; ; which belongs to the global planar sur-
face "Gy, the only difference in the described process is
that instead of transforming contour of the planar surface
segment, the contour of the "G is transformed and used
in the merging step. Here it becomes apparent why it is
very important to assign a local map to the global planar
surface since now all the equations used for transforming
planar surface segments can be applied to the global pla-
nar surfaces by simply using “R,, “t, and Y, instead
of 'R, ;, I't;; and GEqi_j respectively. After the union
has been created all the global planar surfaces used in the
union are deleted because newly created global planar sur-
face replaces them in the global map.

An example of the global map update after trajectory

augmentation is shown in Fig. [0 Initially, we have two
local maps My and Ms. The groups generated after the
matching phase are shown in Table Three global pla-
nar surfaces are generated (1G4, 2G5 and 2Gj3, Fig. @ left
diagram). When the state X3 was added to the trajec-
tory, the local map M3 was segmented and after that the
global map was updated by matching planar surface seg-
ments from M, and Mj. Only one segment from Ms was
matched, and the result of grouping is shown in Table
Since planar surface segment 3F5 5 is already part of 2G3
and ?F3 5 is already part of 2G5 the resulting global planar
surface 1G4 was estimated from 2Gs, 2G5 and Fy 3. After
the new global surface !G4 was generated, global surfaces
2G5 and 2G5 are deleted and the planar surface segments
connected to them are connected to the !G4 (Fig. EI, right
diagram).

M; + M,

&

M;

)
(&
G

Figure 9: Example of the global map update: after update between
M; and M3 (top), and after update between Mo and M3 (bottom).
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Group | My IDs | My IDs
1 1 1
2 2 3,4
3 3,4 2

Table 1: Groups from matches between M and Ma.

Group | My IDs | My IDs | M3 IDs
1 2,3 1

Table 2: Groups from matches between My and Ms.

4.4.2. Global map update after loop closing

If the loop closing is detected between a newly added
state X} to the the trajectory and an already existing tra-
jectory state X, three additional steps to those explained
in Section are executed during the global map up-
date:

1. Updating planar surface segments parameters in My,
and M;

2. Reformatting the global planar surfaces if necessary

3. Updating the global map by matching planar surface
segments between My and M;

The first step is initiated immediately after the trajectory
is updated. The planar surface segments from M) and
M; are matched using the algorithm described in Section
4.4.1) Every matched pair is reported to the planar surface
segments update algorithm which uses new SLAM trajec-
tory to update their parameters (algorithm is described
in Section . After the segments have been updated,
the second step, i.e. reformatting the global planar sur-
faces, is performed. The global planar surface "G needs
to be reformatted for two reasons: i) a planar surface seg-
ment within "G; has been updated or, ii) one or more
local maps containing planar surface segment that is part
of "G, are associated with trajectory states which poses
were significantly changed. Reformatting the global pla-
nar surface "G ensures that all planar surface segments
contained within "G satisfy the coplanarity conditions af-
ter the trajectory has been updated. The reformatting
step is similar to the estimation of a new global planar
surface. The difference is that, instead of matching planar
surface segments from the local maps, planar surface seg-
ments contained within "G are matched with one-another
instead. The result of the matching are groups of planar
surface segments from "G that satisfy coplanarity condi-
tions with one another. Although absolute poses of the
trajectory states could significantly change due to the up-
date, their relative positions could remain the same. In
that case the result of the matching will be one group
which represents the same global surface "G;. However, if
relative positions change then several groups could exist,
each representing a new global planar surface. If only one
group exists there is no need to merge planar surface seg-
ments again and only values of parameters GRZO, Gt? are
re-estimated. If several groups exist, parameters of the
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new global planar surface for each group are estimated in
the same way as described in Section Newly esti-
mated global planar surfaces are added to the global map
and the original global planar surface "G is deleted.
After reformatting is completed, the third and final
additional step is performed. Since the states, between
which loop closing is detected, are presumed to have sim-
ilar local maps, matching them will result in numerous
pairs that will connect newly segmented planar surface
segments from M}, with global planar surfaces containing
planar surface segments from M, thus creating ground for
connecting planar surface segments from the future local
maps with the same global planar surfaces. Updating of
the global map by matching segments from My and M; is
the same process as the global map update between M
and Mj,_1, described in Section [f.4.1] After this step, up-
date of the global map occurs by matching local maps My,
and Mj._1 just like in the case of no loop closing detection.

4.4.3. Final global map generation
In order to complete the update of the global map the
only thing left to do is to transform all the newly built
global planar surfaces into the coordinate frame Sy. This
is done by transforming every point “p in contours of all
newly created global planar surfaces using equation
“p="R}(“p) + ] (50)
After this step, the update of the global map is com-
plete. However, there is a possibility that some of the
global planar surfaces can still be merged with one an-
other. The reason for this is explained by the following
example. Let’s say that a vehicle travels through a cor-
ridor and during that path it adds three new local maps
(M, M1, Mi42). According to the algorithm, each wall
of the corridor should be one surface. If during the record-
ing of the LIDAR measurements for model My, e.g. a
group of people moves between corridor wall and the ve-
hicle, the corridor surface will not be present in the model
Mj.4+1. Since loop closing algorithm does not match lo-
cal maps M} and My o there will be no connection es-
tablished with the corridor planar surface segments from
My, and Mj,o and they will be displayed as two sepa-
rate global planar surfaces in the global map. In order
to solve this problem the global map has to be refined.
Refinement process is done in the same way as updating
the global map between two local maps, except that this
time the input to the matching algorithm are global planar
surfaces contained within the global map. The algorithm
than matches only new global planar surfaces and global
planar surfaces that were updated after the last state was
added, with all unchanged global planar surfaces, and gen-
erates new groups of matched global planar surfaces. The
rest of the process is the same as for the group of planar
surface segments, described in Section Once all the
global planar surfaces from the group have been merged,
the global planar surfaces within the group are deleted
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Figure 10: Left: Side and top view of curved wall consisting of planar surface segments from three consecutive local maps (blue are segments
from Mj,_1, orange are segments from M}, and green are segments from My_); Right: Side and top view of curved wall represented in the

global map by global planar surfaces.

from the global map and replaced with the merged global
planar surface. When the refinement process is completed,
the global map is ready to be used in any algorithm that
works in combination with the SLAM. Figure shows
the example of a curved wall in the global map after three
consecutive states are added to the trajectory and global
map update process is completed.

4.5. Updating planar surface segments

Pose based SLAM systems rely on the fact that a tra-
jectory estimation and global map building are condition-
ally independent. This enables separation of a trajec-
tory estimation and environment mapping process as local
maps are independent when conditioned on a specific tra-
jectory. The joint posterior density of a trajectory X and
local maps M; and M}, can be factorized as

p(X, M;, Mk) = p(Mi’ Mle)p(X)
= p(M;| X)p(My | X)p(X).

The first two factors in are conditional posterior den-
sity functions of the parameters of the local maps and the
last one is a posterior density function of the trajectory.
We have already elaborated trajectory estimation in Sec-
tion [£:2] Here we consider estimation of the local maps
based on the estimate of the trajectory. In our SLAM sys-
tem we estimate plane perturbations in the local maps to
avoid singularities of minimal parametrizations of SO(3)
group. Local maps estimation occurs every time after tra-
jectory optimization, i.e. after a relative pose constraint
(measurement) is generated between M; and M; by their
registration and the trajectory updated.

From the relative pose measurement (R;;, t;;) be-
tween X; and X}, all the planar feature pairs (F,;, Fp ;)

(51)
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in M; and M consistent with that pose are found. The
process of calculating (R; ;, t; ;) and its uncertainty, and
selecting suitable pairs, is the same as the one used in the
global map estimation. Parameters of one planar surface
segment are considered as observations to its paired planar
surface segment. According to that, to estimate parame-
ters of the Fy, ; a priori state estimate &, and its covariance
matrix estimate P, are set equal to the expected normal
and offset of that planar surface and its uncertainty:

t=1[0010"
Pw:zq(zm

Measurement z and covariance R, are set by transforming
parameters of Fy, ; into the Sp, ,:

(54)

(55)

Finally, we apply EKF a posteriori update which results
in a new perturbation parameters x’ of the planar fea-
ture F,, ;. R},  and t}, —are estimated by aligning = with
x’ using minimal rotation matrix in the same way as in
the global plane estimation. Once parameters of F ;’i are
estimated, the same process is repeated for Fy ;, taking
transformed parameters of Fj ; as measurements and pa-
rameters of Fy, ; as a priori state estimate.



4.6. Functional flow diagram of the proposed SLAM algo-
rithm

To summarize our SLAM algorithm, in Fig. [TI] we
present functional flow diagram of the entire process, from
predicting current vehicle pose using odometry, to refine-
ment of the global map. Functional flow diagram con-
sists of the same major components as the overall system
concept diagram shown in Fig. [} but presents them in
more detailed view by segmenting them to several function
blocks. All blocks represented with green color belong to
the SLAM backend module and all orange blocks belong
to the Global map building module. Each block marked
with blue color corresponds to related module of the over-
all system concept diagram. It is important to notice that
since map building and localization are two separate pro-
cesses, the orange blocks are executed in parallel with the
green blocks. This means that once trajectory update is
complete, SLAM backend does not wait for the global
map building to finish but continues to augment and up-
date the vehicles trajectory in the meantime. This ensures
that timely global map operations, like update after the
loop closing, do not affect pose accuracy.

5. Experimental results

We have divided the testing of our SLAM solution into
two stages. First we present test results of our point cloud
segmentation and registration algorithm and then provide
test results for our SLAM system.

5.1. Test results for point cloud segmentation and regis-
tration

We compare our point cloud segmentation and regis-
tration algorithm with the state-of-the-art local 3D regis-
tration algorithms: two variants of Normal Distributions
Transform (NDT) and two variants of ICP, using stan-
dardized benchmarking protocol [26] on the structured en-
vironment datasets. Also, we have compared our method
to one global alternative, Minimally Uncertain Maximum
Consensus (MUMC) method proposed in [5], using the
”Collapsed car park” datasetﬂ The ”Collapsed car park”
dataset consists of 35 point clouds collected with a mobile
platform and a 2D LIDAR mounted on a pan-tilt unit.
Actually, we made the comparison with currently avail-
able implementation of MUMC] which works more accu-
rately than the original one described in [5], but does not
have graph relaxation method. Because of that we only
tested both algorithms for planar segmentation and reg-
istration on a consecutive point clouds and constructed a
trajectory based on them; no loop closing constraints were
added nor pose graph optimizations performed. One of

Thttp:/ /robotics.jacobs-university.de/node,/292
2by the courtesy of Prof. Pathak, Prof. Pfingsthorn and Prof.
Vaskevicius
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Figure 11: Functional flow diagram of the entire SLAM system.

the main parameters which impacts the MUMC perfor-
mance is the number of planar surface segments used in
matching, i.e. "filter percentage threshold”. In MUMC,
the planar surface segments are sorted in the decreasing
order of their statistical certainty, and only the top filter-
percentage-threshold is used for matching. This means
that the lower threshold values increase computation speed
but decrease the accuracy.

‘We chose this parameter to be the lowest possible which
still produces relatively accurate registrations based on
qualitative analysis of the trajectory and the map since
neither a ground truth trajectory nor a 3D model is avail-
able. Figure[2]shows MUMC trajectories for three differ-



Table 3: Mean, maximum and minimum registration times of con-
secutive point clouds for our method and MUMC with different filter
thresholds. All times are in seconds.

MUMCGO MUMC40 MUMC20 Our
Mean 23.30 8.02 2.83 0.29
Max 123.84 35.00 7.02 0.42
Min 3.54 1.73 0.95 0.11

ent threshold values and the trajectory of our algorithm.
As can be seen, the trajectories of our algorithm and the
MUMC trajectory for the threshold of 60% (MUM Cego)
are the most similar, MUMC trajectory for the threshold
set at 40% (MUDMCyyp) is still close to the first two, while
MUMC trajectory for the threshold of 20% (MUM Cyp) is
severely degraded. Since computation time for MU M Cyg
is significantly lower than for MUMCg% (Table [3)), and
there is no exact way to assess the accuracy of the trajec-
tories, we compared our method to the MUMCyy. The
resolution of each of the three image planes used to project
a point cloud in our method was set to 512 x 663.

% . MUMC,,
MUMC,,
1 MUMC,,
our method
_2 |-
3F
4+
‘ ‘ ‘ ‘ ‘ ‘ ‘
8 -6 -4 -2 0 2 4
x (m)
Figure 12: Estimated trajectories using our method and using

MUMC with different filter percentage threshold values.

The trajectory estimation accuracy was tested indi-
rectly by observing the quality of mapping of dominant
planar structures in the scene, e.g the walls, the floor, the
ceiling etc. Once the trajectory has been estimated, we
used it to transform the extracted planar surface segments
to the coordinate frame of the first scan. Then, we have
compared how well the planar surface segments extracted
from the point clouds using our method align with each
other in the case we used the trajectory acquired from
MUMCyy and in the case we used our trajectory. The
planar map of the area constructed from all 35 scans using
our method is shown on Fig. Some elements are not
shown because we have filtered out smaller planes too im-
prove visibility. All planar surface segments with the same
color belong to the same point cloud. We can distinguish
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three main groups of planar segments: first is the wall,
second is the floor and third is the ceiling group. Figure
also shows zoomed parts of the map. From the zoomed
parts we can see how well the planar surface segments from
different scans align with each other for each of the three
groups. Figure [[4] shows the same map, but built with
trajectory estimated using MUM Cyy. Both our method
and the MUMC work well on this dataset although our
method does align planes somewhat better which can be
best seen on the ceiling group.

Floor group

Figure 13: Planar map built using trajectory estimated by our algo-
rithm.

Table [4] shows computation times for our method and
for MUMCY4y. We can see that our method is about 4
times faster in the segmentation and 26 times faster in the
registration. Such high computation times for MU M Clyg
method are due to the fact that MUMC is a global method,
i.e. does exhaustive search for the most consistent set of
planar surface correspondences without an initial guess,
while we set the initial guess of our method to zero pose
with high uncertainty.

The dataset used to compare our point cloud segmen-
tation and registration method with local 3D registration
algorithms is the ”Challenging data sets for point cloud



Figure 14:
MUMClyop.

Planar map built using trajectory estimated by

Table 4: Mean, maximum and minimum computation times for seg-
mentation (seg). and registration (reg.) of point clouds. All times
are in seconds.

Our method MUMC\y
Seg. | Reg. | Total | Seg. | Reg. | Total
Mean | 0.17 | 0.29 | 0.46 | 0.70 | 8.02 | 8.72
Max | 0.22 | 0.42 | 0.62 | 0.82 | 36.00 | 36.78
Min | 0.13 | 0.11 | 0.22 | 0.59 | 1.73 | 2.35

registration algorithms”El described in [27]. This dataset
consists of point clouds from 6 distinctive environments
and covers both indoor and outdoor situations as well
as structured and unstructured environments. The exact
pose of every point cloud in relation to the first point cloud
is provided by a highly accurate differential GPS solution.
The dataset was used in [28] to several state of the art ap-
proaches for 3D scan matching. In total 5 algorithms were
tested: Point based ICP variant described in [29], Plane
based ICP variant described in [4], P2D-NDT method de-
scribed in [30], D2D-NDT method described in [3I] and
MUMC method from [5]. The protocol for testing is avail-
able on the dataset website. From each environment, 35
different pairs of scans are selected and for each pair 196
initial transforms are given. The initial transforms are de-

3http://projects.asl.ethz.ch /datasets/doku.php?id=
laserregistration:evaluations:home
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rived from the ground truth transforms by adding differ-
ent magnitude pose offsets and, depending on its difference
from the ground truth, a pair is marked as easy, medium
or hard for matching. Details of the entire test protocol
including the initial pose generation can be found in [26].
The results of the testing are available on the dataset web
page for each algorithm except for MUMC, since MUMC
does not make use of initial transform. The results for
MUMC method are available in [28] and show how well
the method performs depending on the overlap between
two point clouds for each of the 35 pairs.

We have tested our algorithm only on indoor datasets
since it is designed to work in structured environments
which contain enough planar structure (i.e. indoor and
outdoor urban environments), while outdoor environments
of the considered dataset are deficient in dominant planar
surfaces, required for our approach, and hence on these
environments we don’t consider it competitive with other
methods. Two indoor environments we provide results for
are the Apartment and the Stairs datasets. Apartment is
the largest of the 6 datasets, consisting of 45 scans averag-
ing 365000 points per scan. It includes dynamic conditions
resulting from moving furniture between scans and consists
of multiple reflecting surfaces. The Stairs dataset consists
of 31 scans with average of 191000 points per scan. It is in-
tended to test registration algorithms when there are rapid
variations in scanned volumes and when the hypothesis of
the planar scanner motion is incorrect.
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Figure 15: Cumulative translation error probability for the Apart-
ment dataset (dashed line represents error of 0.5 m).

Figures [15] and [I6] show the cumulative probability of
the translation and orientation error, respectively, for the
Apartment dataset after all 35*196 combinations were
matched. We can see that our method outperforms all
other methods in accuracy both for translation and ori-
entation. More than 82% of translation errors are lower
than 0.5 m, and more than 90% of rotation errors are lower
than 20°. However in the Apartment dataset our method
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Figure 17: Cumulative translation error probability for the Stairs
dataset (dashed line represents error of 0.5 m).

failed to provide relative pose estimate in 24 out of 6720
matchings (0.36%) which was automatically detected by
the method itself.

Figures [T7] and [I8] show the cumulative probability of
the translation and rotation error, respectively, for the
Stairs dataset after all 6720 combinations were matched.
We assume that pose estimates which differ from the true
values for more than 0.5 m with respect to translation
or more than 20 degrees with respect to rotation are not
useful for robot navigation and focus our analysis to data
within these error bounds. We can see that our algorithm
has translation error greater than 0.5 m for approximately
5% measurements more than D2D-NDT, but has more ac-
curate rotation estimation. Rotation estimation error of
our algorithm is less than 20° in approximately 80% cases,
while D2D-NDT achieves this result in approximately 65%
cases. For the Stairs dataset there were only 3 matchings
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Table 5: Mean, maximum and minimum computation times of all
6720 relative poses for the Apartment dataset.

ICP Point | ICP Plane | P2D | D2D | Our
Mean 4.37 2.35 0.62 | 0.22 | 0.36
Max 25.62 15.16 1.35 | 0.44 | 0.64
Min 0.71 0.26 0.09 | 0.13 | 0.23

without estimate (0.045%).

Computation times for the Apartment and Stairs datasets

are shown in Tables [fl and [f] We can see that only D2D-
NDT is slightly faster than our method. We computed
the time for our method by combining the segmentation
times for two point clouds and the time needed to perform
registration. However, in reality almost always only one
newly arrived point cloud has to be segmented while all
past point clouds have already been segmented before, i.e.
when doing odometry. This is why a practical application
computation time of our algorithm would be even smaller.
Furthermore, it has to be mentioned that D2D-NDT and
P2D-NDT methods were tested using Intel Core i7 @ 3.5
Ghz while we tested our method on Intel Core i7 @ 2.6
Ghz. One more advantage of our method is that the map
is represented with planar surface segments resulting in
much smaller memory consumption in comparison to map
representations which consist of points.

Table 6: Mean, maximum and minimum computation times of all
6720 relative poses for the Stairs dataset.

ICP Point | ICP Plane | P2D | D2D | Our
Mean 2.45 1.50 0.86 | 0.22 | 0.35
Max 17.60 11.08 3.19 | 0.78 | 0.42
Min 0.21 0.15 0.06 | 0.07 | 0.29




5.2. Test results for the SLAM system

We tested our SLAM system on two datasets. One
dataset was acquired indoor while driving a mobile robot
through our university building. The other, outdoor, dataset
is available onlineEl and was acquired by Ford Motor Com-
pany while driving their specially equipped Ford F-250
pickup truck. All algorithms were implemented in ROS
(Robot Operating System) using C++ programming lan-

guage and both experiments were executed on Lenovo Thinkpa(=

P50 with 8GB RAM and Intel Core i7-6700HQ processor
at 2.6Ghz running 64-bit Ubuntu 14.04 LTS operating sys-
tem.

5.2.1. Indoor experiment

The indoor experiment was conducted using equipment
shown in Fig. A mobile platform Husky A200 was
driven with an average speed of 1m/s through our uni-
versity building. It was equipped with Velodyne HDL-
32E LIDAR and Xsens MTi-G-700 IMU sensor. Velodyne
HDL-32E has a vertical field of view of 40° with angular
resolution of 1.33°. Its measurement rate was set to 10Hz.
IMU sensor and the encoders of the mobile platform were
used to estimate its rotational and translational motion,
respectively. Resolution of all three image planes used for
projecting point cloud was set to 320 x 240.

»’

P S

R

Figure 19: Equipment used in the indoor experiment.

The ground plan of the testing environment and the
simplified robot trajectory are depicted in Fig. This
environment provides challenging conditions for SLAM in-
cluding many reflective surfaces (i.e. windows and marble
floors) and moving people as shown in Fig. During

4http://robots.engin.umich.edu/SoftwareData/Ford
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Figure 22: Point cloud segmentation time.

the experiment, 320 states were added to the SLAM tra-
jectory. The graph presented in Fig. [22]shows the compu-
tation time for the point cloud segmentation process for
every state added to the trajectory. It can be seen that
it is always below 200 ms. Although we could not pro-
vide ground truth trajectory, the actual SLAM trajectory
presented in Fig. shows that the robot passed accu-
rately through narrow passages like doors and corridors.
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Figure [24] also shows comparison between final SLAM and
odometry trajectories. From the comparison we can see
that SLAM has managed to estimate accurate trajectory
although odometry used for prediction has accumulated
high amount of error during the experiment. Both SLAM
and odometry trajectory start from the initial robot’s pose
marked with green dot, and the ending poses are marked
with red dot.
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Figure 24: Odometry and SLAM trajectory comparison.

Figure shows computation time of updating the
global map after the new state is added to the trajectory.
We can see that the mean time of the global map update
is around 250 ms, but there are spikes in the computation
time which are the result of loop closing detection after
which additional steps described in Section were per-
formed. In ideal case, there would be only one spike af-
ter every loop closing and computation time would return
back to low values at the next global map update between
consecutive local maps. However in reality, computation
time increases/decreases gradually before/after the loop
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closure. Because the LIDAR has very long range upon en-
tering already mapped areas, planar surface segments that
belong to the surfaces already included in the global map
are segmented from newly acquired point clouds before
the loop closing happens, and consequently planar sur-
face segments are matched only with previous local maps
which results in new global planar surfaces being added
to the global map. They are combined with already exist-
ing ones in the refinement step, which is why computation
time rises even before the loop closing. When the loop
closing happens, additional steps further extend the com-
putation time, especially if the trajectory changed signifi-
cantly. Since mapping works in parallel with the trajectory
estimation, new states are added to the trajectory while
update of the global map after the loop closing is being
performed. Because of this, local maps from newly added
states are not immediately incorporated into the global
map. When the global map update is done, there are
more than one local map that has to be incorporated into
the global map using algorithm described in Section [£:41]
They are incorporated at the next update of the global
map, but since there are several of them, this update also
takes longer than when incorporating only one local map,
and consequently more than one states could be added
to the trajectory before the update is complete. This is
why the computation time gradually decreases after the
loop closing. From the map update time, we can also see
that our loop closing technique performs well by selecting
only highly informative loop closing states. Although the
platform was moving along previously traversed trajectory
over significant distances and came close to several of pre-
viously added states, only one loop closing was initiated.
Figure[25]shows the total number of planar surface seg-
ments contained within all global planar surfaces (blue)
and the total number of global planar surfaces after every
global map update (red). At the end of the experiment,



out of the 24273 planar surface segments in all global pla-
nar surfaces, the final global map contains only 1036 sur-
faces, which proves that the number of planar surface seg-
ments merged in the global map is significant. It can also
be seen that the number of planar segments in the global
map sometimes decreases after the global map is updated
with new local maps. This is direct result of merging mul-
tiple global planar surfaces in the same global planar sur-
face.

Figure[26]shows the complete global 3D map of the area
built by our SLAM system, after the last state was added
to the SLAM trajectory. The roof plane was removed from
the map in order to show interior structure. It can be
seen that reobserving places does not introduce duplicate
planar surface segments into the map. This is because lo-
calization has remained accurate and all re-observed pla-
nar surface segments are correctly merged into one global
plane. It can also be seen that the final global map con-
tains only static environment features, i.e. our map build-
ing method managed to filter out the moving objects be-
cause either they represent outliers in the matching pro-
cess or can not be described as strong planar features.
Video of the experiment is available onlindﬂ In order to
at least qualitatively estimate modeling accuracy by our
SLAM system, 2D ground plan of the test area was ex-
tracted from the global 3D model and plotted over 2D
CAD ground plan of the building in Fig. 27 It can be
seen that they align well.

Figure 26: 3D model of the test area.

5.2.2. Outdoor experiment
Outdoor experiment was conducted using publicly avail-
able dataset from Ford Motor Company [32]. The dataset

was acquired with a Ford F-250 pickup truck driving through

Shttps://youtu.be/vWoS_9wSNJIw
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Figure 27: Ground plan from SLAM (blue) overlayed over the CAD
ground plan (red).

downtown Dearborn. The vehicle was equipped with a
professional (Applanix POS LV) and consumer (Xsens MTI-
G) IMU, a differential GPS, a Velodyne HDL-64E 3D LI-
DAR, two push-broom forward looking Riegl LIDARs and
a Point Grey Ladybug3 omnidirectional camera system.
Velodyne HDL-64E has 64 vertical laser beams which is
twice as much as Velodyne HDL-32E LIDAR used in the
indoor experiment presented in Section The vertical
FOV of the Velodyne HDL-64E is 40°, which is the same
as Velodyne HDL-32E. Since rotation rate is also 10Hz it
generates double the number of points per scan. We have
used the data from the differential GPS as ground truth.
Odometry for prediction was acquired the same way as
in the indoor experiment by fusing the data from Xsens
IMU and the wheel encoders data contained within the
Applanix POS LV raw sensor measurements. Figure
shows the test vehicle Ford F-250 equipped with sensors
and sample images taken by the vehicle’s camera while
driving downtown Dearborn. It can be seen that there
were multiple moving objects in the area as well as that
the dataset was collected during daytime and represents
real world scenario for urban environment. Average veloc-
ity of the vehicle was 20km/h while the maximum velocity
was 45km/h. Total distance travelled was around 1.5km.
Resolution of all three image planes used for projecting
point cloud was set to 1024 x 297.

In order to show real time capability of our SLAM
system even with LIDAR with higher resolution, we seg-
mented every acquired point cloud and calculated relative
poses between consecutive local maps. Figure 29] shows
segmentation times for point clouds (mean/max value is
around 250ms/375ms) and Figure 30| shows time required
to compute relative poses (mean/max value is around
1.8ms/3ms). Segmentation time is larger than in indoor
experiment since the resolution of every image plane used
for projecting point cloud had to be increased in order to
accommodate for higher resolution of Velodyne HDL-64E
compared to Velodyne HDL-32E (64 instead of 32 verti-



Figure 28: Vehicle used in the dataset collection and sample images
taken from the environment.

cal laser beams) and to allow projection of planar surface
segments from larger distances.
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Figure 29: Point cloud segmentation time.

In total 280 states were added to the SLAM trajectory.
SLAM, odometry and ground truth trajectories are shown
in Fig. Since loop closing is possible only at the end
of the drive, first part of the trajectory does not change
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much because loop closing at the end has very little in-
formation gain for that part of the trajectory. Two loop
closings were detected, first between states (Xosg7, Xi9)
and second between states (Xagp, Xp). Corrections that
SLAM made can be best seen on lower part of the trajec-
tories (marked with dashes in Fig. where the SLAM
trajectory is much more precise than odometry trajectory
and is almost identical to the ground truth trajectory. We
have calculated RMS error of SLAM and odometry tra-
jectories with the respect to the ground truth trajectory:

RMSEspam = \/ Loy M, OT1)
" (56)
RMSEodom = \/Zk_l d(Ok, GTk) )
n

where n is the number of states in the trajectory, d( Xy, GT})
is Euclidean distance between state X; of the SLAM tra-
jectory and the ground truth at time step k and d(Oy, GT},)
is Euclidean distance between odometry and the ground
truth trajectories at time step k. The calculated RMS
errors are:

RMSESLAM =4.48m RMSEOdom =11.22m

The error of the SLAM trajectory is about 2.5 times
smaller than the error of the odometry trajectory. What
is more important, the final poses of the SLAM and the
ground truth trajectories are almost the same, which means
that if the vehicle had continued to move, its estimated
pose would remain accurate whereas odometry error would
increase further. This would result in even more expressed
odometry versus SLAM RMS error ratio in the second lap
with additional big loop closing events. Figure shows
the absolute error of the final odometry and the SLAM
trajectories. The absolute error is calculated as Euclidean
distance between the ground truth pose at time step k
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Figure 31: Comparison between odometry, ground truth and SLAM
trajectory. Dashes mark the area where SLAM correction is most
significant.

and SLAM state X (red) / odometry pose at time step
k (blue). It can be seen that our SLAM system is able to
recover from relatively large localization drift accumulated
in large-scale environments.

The global map update time is shown in Fig. [33
We can see that the time increases as more global planes
are added to the map but remains in real-time domain
throughout the experiment. Spikes in the update time are
due to the loop closing detections. The reasons for the
residual spikes are the same as in the indoor experiment.
Figure 34 shows the number of global planar surfaces com-
pared to the number of planar surface segments within
them after each map update. At the end of the experi-
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ment, there were 3631 planar surface segments and only
667 global planar surfaces. Our merging algorithm has re-
duced the number of planar surfaces in the global map by
5.45 times. Since there is no ground truth for the map in
this dataset, we perform qualitative map accuracy analy-
sis by showing our generated planar global map together
with the SLAM trajectory in Fig. Several areas of the
global map are zoomed in for better representation. As in
the indoor experiment, it can be seen that there are almost
no duplicate planes. However, some of the moving objects
(e.g. cars) are present in the map (marked with dotted cir-
cles) since their speed was too low when first observed and
could not be differentiated from the static objects. Video
of the outdoor experiment is also available onlind’]

6. Conclusion

In this paper, we have presented a fast planar surface
3D SLAM solution that is designed to work on full field
of view 3D point clouds obtained from 3D LIDAR mea-
surements. There are four key improvements that allow
our SLAM algorithm to work fast in large-scale environ-
ments. First is efficient processing of 3D point clouds
achieved by projecting them onto 2D image planes and
then performing segmentation of projected point clouds
into planar surface segments. Second is the use of the in-
formation space parametrization of the SLAM filter and
exploiting the sparsity of the SLAM information matrix
without incurring any sparse approximation error. In that
way, we can optimize the trajectory of the robot in a non-
iterative way. Third is adaptation of pose constraint cal-
culation algorithm developed in [7], which was initially
intended for use with RGB-D cameras. We have modi-
fied the algorithm to respect new uncertainty model of the
3D-LIDAR and to work with planar surface segments ex-
tracted from 360° field of view. Also, it takes into account
SLAM trajectory as initial guess for generating pose con-
straint which reduces the number of outliers and speeds up
the calculation time. Fourth is improvement of the planar
global map generation. Instead of simply transforming
segmented planar surfaces into one coordinate frame, we
have developed a new technique that combines all planar
surface segments that lie on the same plane in the envi-
ronment into one global planar surface whose parameters
are estimated based on the uncertainty models of every
planar surface segment contained within. Using this ap-
proach we have significantly reduced the number of planar
surface segments in the global map since all re-observed
segments and segments that belong to the same plane are
represented as one global planar surface. The result is the
global map which requires much less memory and conse-
quently allows fast processing.

We have demonstrated the effectiveness of our SLAM
solution on two experiments, one conducted indoors and

Shttps://youtu.be/HboixGB2umY
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the other outdoors, under real-world conditions. Exper-
imental results confirmed that the proposed SLAM algo-
rithm managed to significantly improve accuracy of vehi-
cle trajectories as well as generate planar global map with
high reduction in the number of planar surface segments
compared to the total number of planar surface segments.
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Figure 35: Global map generated from Ford dataset. Dotted circles represent moving objects present in the map.
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Appendix A: ESDSF equations for the operations of state augmentation, time prediction and measure-
ment update

The derivation of Exactly Sparse Delayed State Filter (ESDSF) is given in [23]. Here, we provide just final expressions
with review how they impact the estimation process in SLAM regarding computational complexity.

In ESDSF, delayed states of the system trajectory X = [Xo X;...X,] are estimated using Extended Information
Kalman filter. Let a system state transition model be

X1 = f(Xn, un) + Wy, wp ~ N(0,Q), (57)

and a measurement model
Yn = W(X;, X;) + vp,vn ~ N(0, R). (58)
If we denote estimated pose in time step n by X,,, and all other previous poses with m, i.e. m = [X,,_1,... 7XO]T

then we can partition the joint probability distribution of X,, and m given a history of measurements 3" and control
inputs u™ up to time step n in the fallowing way

: o l’LX'n, EXn EXnm
p(Xmm|y,U)—N{( m, >’< Ean Emm >:|

(59)
| e Ax,x, Ax,m
Nm ’ AmXT,, Amm '
State augmentation acts on a distribution with the 1st order Markov process as
p(Xn-i-h Xna m|yna un+1) = p(Xn-‘rl |Xna m, yn7 un+1) p(XTH m|yn7 un+1)
= p(Xn+1]| Xn, unt1) p(Xpn, mly™, u™). (60)

If we denote by F' Jacobian of the motion model with respect to the state variables in expected value of states ux,
augmentation yields

P(Xng1, Xp,m|y"™, u™ ) = N7y, Appa), (61)
where .
Q (f(lf)l(n,unﬂ) - Fux,)
77:1+1 = Nx, — FTQ (f(ux, s Unt1) — px,) (62)
Tm
and

/ Q! —-Q'F 0
An+1 = *FTQ71 AX,,,Xn +FTQ71F AX"m . (63)

0 Aan Amm

We can see that by augmentation of the state trajectory, information matrix A exhibits tridiagonal form as only boxed
block elements can be non-zero in of all added rows and columns.
Motion prediction can be defined as augmentation with X, ; and marginalization by X,

p(Xn+lam|yn7un+1> = N(ﬂn+1a 2_:n+1) = N_l(ﬁnJrhA'rH»l)

= /p(Xn+17Xn7m|yn7unJrl)eru (64)
_ ( Q' (f(ux, unt1) — Fux,) )
77n+1 -
Nm
—Q~'F _ _
(2 ) o, - FTQ v, imin) — Fix,)

_ ( QilFQilan + W (f(ux,, uns1) — Fux,) ) (65)
Nm — Amx, (Nx, — FTQil(f(:anvunJrl) - Fux,))
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and

—1 _N-1

Aan

_ !/ QT FQ T Ax,m (66)
- AanQ_lFTQ_l Amm - AanQ_lAXnm

where
V=Q '~ Q 'F(Ax,x, + FTQ'F)T'FTQ™ = (Q + FAY ¢ F' )~
Q=(Ax,x, + FTQ'F).

Since X, is only serially connected to X, 11 and X, _;, marginalizing it out only requires modifying the information
blocks associated with these elements, i.e. Ax,  x,. s Ax, X0 1o AX_ 1 Xn_1y and Ax, 1 x, -
The measurement Jacobian with respect to the states has the form

H=(0 .. % .0 . & .0) (67)

Therefore, measurement update is constant time in ESDSF as it affects only blocks sharing information associated
to XZ and Xj

M = i+ HTR?l(yn — h(px,) + Hiix,) (68)
A, = A, +H'R'H (69)

Appendix B: Planar surface segment covariance transformation

The parameter uncertainties of planar surface segment Fj ,,, are transformed from S, . into local coordinate frame

S, of planar surface segment F},, as (matrices E, ¥, , C' and P, ; are defined in Section 4.4.1)).

J.m
in,n = EEQ'L',WL ET + Oanch (70)
In general case, given surface segment pair (Fj ,,, Fj ), their perturbation vectors (g; m, ¢jn) and rotation matrix R,

and translation vector t¢,, , between their local maps M,, and M,, we can define a non-linear function h that transforms
parameters of F} , into Sg, .-

FCET F F
jn R in,,m+[ Ti,m ylvm:l Sém — Si.n
F,T mn VIFsTsim VIS nsin
h = yﬂvn (71)

FZz‘,er [in,m Fyl-‘m} Si,m
V1457, sim

Ti,m + (FtZ:m - (th,n - tm,n)TRm,n) —Tjn

where first two rows represent transformation of the z,y coordinates of the normal ¥'n; ,,,, third row represents transfor-
mation of the distance ¥ Pi,m, vector s = [s; sy| is a part of perturbation vector ¢ describing uncertainties of Fnin Sp,
r represents uncertainty ' p, and vectors ¥z, 'y and ¥z represent columns of the rotation matrices:

FRi,m = [in,m Fy'i,m in,m] FRj,n = [ij,n ij,n sz,n} . (72)

In order to get expected values of the transformed parameters e defined in equation we evaluate h for s = 0 and
r=20 o
T,
Rm,ani,m
€= h|s=0,r=0 = ijj‘:n (73)

(th:m - (th,n - tm,n)TRm,n)FZi,m
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Jacobian matrix C of the function h given with can be calculated as

F,.T
Ljn

Jo(,F j,n) 02x3
= Fyl (74)

qi,m=0,g;,,=0

_on

= aw

_(th,n - tm7n)TJ¢<¢sz Js n) FI RL

j,n"tmn

where vector w = [@m,n tmn], vector ¢u,, = [a S O] represents Euler angles corresponding to rotation matrix Ry, n,
and Jacobian Jy(¢, F'z; ) is calculated as

O(R(¢)p)
Jy(@,p) = —F—F|y= 75
o(,p) 9 V= (75)
Calculation of matrix E from the function h is done using the following equation
FF T F T -
J,mn ,m
R 0
F. T F. T
(9]7, yj;n yi,m
E= %, = (76)
aq qi,m=0,q5,,=0 F:C’Z]’m
(Tt = (Ttim = tmn) " Bnn) 1
: Py

30



	Introduction
	Related work and overall system concept
	Related work
	The overall concept of the proposed SLAM system
	Notation used in this paper

	Local map building
	Detection of planar surface segments
	Representation of planar surface segments

	Planar Surface 3D SLAM
	Local maps registration
	SLAM backend
	Loop closing detection
	Global map building
	Global map update after trajectory augmentation without loop closing
	Global map update after loop closing
	Final global map generation

	Updating planar surface segments
	Functional flow diagram of the proposed SLAM algorithm

	Experimental results
	Test results for point cloud segmentation and registration
	Test results for the SLAM system
	Indoor experiment
	Outdoor experiment


	Conclusion

