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Abstract—In this paper we present a novel algorithm for
moving object detection in thermal images taken by a moving
thermal camera. It allows a detection of moving objects in
thermal images of low quality without imposing restrictions on
the temperature and/or shape of the object. The main assumption
required for good performance of the algorithm is that the
transversal movement of the vehicle will not produce significant
change in the optical flow of the static objects in the scene
between two consecutive image frames. Our algorithm does
not use any temperature thresholds and works well in urban
environments detecting moving humans and other moving objects
as well. To achieve this we use fusion of an inertial measurement
unit (IMU) and a thermal camera. First we use IMU data to
compensate for rotational movements of the thermal camera
between two consecutive thermal images. Then we differentiate
those images and filter the resulting image based on dense optical
flow calculated using Farneback technique. After that moving
objects are detected and further filtering is applied using random
sampling consensus algorithm based on optical flow model.

Keywords—autonomous vehicles; sensors; thermal camera; dy-
namic scenes; moving object detection

I. INTRODUCTION

Today autonomous vehicles need to move and work along-
side humans and other moving objects whose locations and
trajectories are, in most cases, impossible to predict upfront.
To be able to work in such dynamic environments autonomous
vehicles need to be aware of their surrounding and all dynamic
objects in it.

Depending on application and working conditions moving
object detection problem is solved using variety of sensors and
algorithms. Laser scanners are used to detect moving objects
in [1] [2]. In [3] fusion of laser scanner and stereo RGB
pair is used for moving object detection. In [4] [5] moving
objects are detected using background subtraction techniques.
Comprehensive study on vehicle detection techniques can be
found in [6]. In [7] experimental survey on vision based
moving objects detection and tracking can be found.

As can be seen from the above paragraph, current trends in
moving object detection primarily rely on two types of sensors:
RGB cameras and laser scanners. Their advantage over thermal
cameras are high precision and number of details they can
extract from the scene. Thermal cameras however present a
unique sensor capable of giving RGB camera like data during
full darkness. In general any moving object detection algorithm
that works on RGB images can also be applied on thermal
image. However results when applied on thermal images taken
while camera is moving will in most cases be drastically worse
due to following characteristics of thermal images:

• Textureless - objects usually have the same tempera-
ture over their entire surface.

• High amount of noise - results in different images
even when recording static scenes.

• Low resolution - thermal cameras with resolutions
higher than QVGA are extremely expensive.

Due to these characteristics algorithms that use image
feature extraction (such as Harris corners, SIFT and SURF
features) and feature matching to build models (e.g affine or
bilinear) for warping previous image into current image do
not work well on thermal images since there are too many
false matches that are impossible to filter. Also algorithms
that use dense optical flow techniques to warp images fail
when applied on thermal images because outliers cannot be
filtered out since there are too few accurate estimations to
build good model that would be used for filtering. Because of
these problems thermal cameras are almost exclusively used
for moving object detection while camera is static in which
case background subtraction techniques are easier to apply [8]
[9].

In order to overcome disadvantages of thermal cameras
but also keep their ability to distinguish objects based on
temperature differences some solutions combine thermal and
RGB cameras [10], [11]. Although these approaches have
significantly higher accuracy of detecting moving objects
compared to detection using only thermal camera they are
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dependant on the light source. Some approaches [12], [13]
use predefined values of temperature and/or shape of entire
human body, or just the head to detect moving humans in
thermal images. Although these approaches can produce good
results in some situations they are highly restricted (detects
only humans) and sensitive to clothing and other objects of
similar temperature in the environment.

Algorithm presented in this paper uses thermal camera and
IMU to detect moving objects in thermal images taken by
a moving thermal camera and does not restrict the type or
specific temperature range of the object (as long as temperature
of the object is within camera’s sensing range). Algorithm
targeted usage is as an aid for the driver while driving in
poor lighting conditions. There are three main stages of the
algorithm:

1) Thermal image conversion and warping.
2) Background subtraction and object detection.
3) Final object filtering and detection using RANSAC.

The main assumption required for good performance of the
algorithm is that transversal movement of the vehicle does not
produce significant change in the optical flow of static objects
in the scene between two consecutive images processed by the
algorithm. Reason for this is that we do not want to impose any
restrictions on the shape or temperature of a moving object.
Because of that and problems with thermal images listed in the
previous paragraph, warping of a previous thermal image into
the current thermal image and then subtraction of those images
is the only way to get initial estimate of the moving objects.
As stated before warping based on image features or optical
flow does not work good on thermal images. That is why we
use IMU to compensate for static scene movement between
two consecutive images caused by rotational ego motion of
the vehicle and disregard movement caused by transversal
ego motion. Of course, after subtraction of a warped image
and a current image some amount of differences will exist
due to transversal movement and image noise. We filter those
differences out using clustering techniques coupled with dense
optical flow. Although estimation of a dense optical flow on
the complete thermal image results in high amount of errors
we only use optical flow of pixels that remained in the image
after subtraction and clustering. Main idea behind this is that
pixels which remained after subtraction and clustering belong
to moving objects and that optical flow calculated in them will
be accurate enough for a model generation and validation.
After remained pixels are grouped and assigned to objects
we use RANSAC [14] to determine if optical flow of pixels
contained within the object can be fitted to an optical flow
model. If the fit is successful we conclude that pixels indeed
belong to a moving object. Although the assumption that
static scenery does not change significantly due to transversal
movement between consecutive images may seam as a major
restriction, many modern safety aids for the driver also have
maximum velocity restriction after which they are unusable.

Also, since this algorithm is mainly intended for usage on
electric trams that are part of public transportation system
where most accidents occur while tram is leaving the station
and on crossroads in which cases speed of a tram is reduced,
this restriction is acceptable.

Main novelties presented in this paper are: 1) building
dense optical flow models of only preselected parts of the
image and using those models in RANSAC algorithm to detect
moving objects without imposing any restrictions on the shape
and temperature of the object; 2) thermal image to grayscale
image conversion technique which preserves thermal image
details and is robust to sudden high temperature variations. To
the best of authors knowledge there is no other algorithm that
would allow detection of moving objects in thermal images of
this quality while thermal camera is moving without imposing
restrictions on temperature and/or shape of the object.

The rest of the paper is organised as follows. In Section
II we explain our image conversion, warping and initial
background subtraction techniques. In Section III we explain
a technique based on clustering and dense optical flow that
is used for final detection of moving objects. Section IV is
dedicated to experimental results and in Section V we give
our conclusion and plan for future work.

II. IMAGE ENHANCEMENT, WARPING AND SUBTRACTION

First stage of the moving object detection algorithm con-
sists of three main steps. First, thermal image is enhanced
and converted to a grayscale image, after that previous image
is warped into the current image. Lastly, the current and the
warped image are subtracted and the resulted image is filtered
using clustering and dense optical flow.

A. Image Conversion

Before we can process thermal images and apply any
algorithms on them we need to convert them into grayscale
images. The problem is that it is not trivial to determine
a conversion algorithm that will transform images taken by
thermal cameras into classic grayscale images. One of the
mostly used ways is contrast stretching. In contrast stretching
we define an interval L = [0, Lmax] for a converted image
(defined by the number of bits used to code an intensity of
every pixel) and we transform a thermal image data into that
interval using equation (1).

IC(x, y) =
IThermal(x, y)− Tmin

Span
Lmax (1)

where IC is a converted image, Span equals Tmax − Tmin,
Tmax is the maximum value and Tmin is the minimum value
in a thermal image we want to convert. There are several ways
we can choose Tmin and Tmax values. Simplest one is to select
the region of interest that most of thermal data falls into and
fix it for all images. Problem with this approach is that thermal
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a) b) c)

Fig. 1. Comparison of conversion algorithms: a) Region based conversion; b)
Adaptive Tmin and Tmax values; c) fixed Tmin and Tmax values

images which have maximum values of for example Tmax/2
will only use half of the L range which will result in loss of
details. Another way is to find real Tmin and Tmax values for
every thermal image and convert it accordingly. The advantage
of this is that we can custom fit conversion of every image and
we are certain that maximum value of every thermal image will
have value of Lmax in the converted image. Problem with this
approach arises when one smaller hot or cold object enters the
scene in which case we have the same situation as with fixed
values of Tmin and Tmax. Solution could be to limit Tmin
and Tmax numbers and consider all the values higher than
Tmax as Tmax and all the values lower than Tmin as Tmin,
but in that case if more hot objects enter the scene we lose
distinctiveness between them. In order to solve those problems
we have implemented region based conversion algorithm. We
have selected the range of values (Span) in thermal images
which covers almost entire relevant spectrum recorded by our
camera and divided it into 10 regions. After thermal image
is acquired we first determine how many pixels belong to
each region. Based on the number of pixels, every region is
assigned with a portion of interval L. When this is done all
pixels belonging to one region are stretched over the interval
assigned to that region using equation (2). This is done for all
the regions and the result is a grayscale image. This approach
ensures that Tmax value in every thermal image will get value
of Lmax in grayscale image, and also ensures that if only small
amount of pixels have significantly higher values than the rest
they will be assigned only small part of L.

IC(x, y) =
IT (x, y)− Tmin − n ∗Rsize

Rsize
Rnint +Rnstart

(2)
where Rsize = Span/10, n is the number of current region
n element [0, ..., 9], Rnint is interval assigned to the n-th
region and Rnstart is the lower limit of Rnint. Fig. 1 shows
the comparison between our region based conversion (a), the
conversion based on adaptive Tmin and Tmax values (b) and
the conversion based on fix values of Tmin and Tmax (c).
It is obvious that the region based conversion is much more
distinctive than two other techniques. It is also important to
note that since we do not impose any restrictions on interval
of object temperature we did not use any conversion formulas
to get real temperature data (i.e. Celsius of Fahrenheit) but
instead we used raw data recorded by a camera sensor. This
reduces a noise and detail loss during a conversion.
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f
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Fig. 2. a) Warping of individual pixels; b) Image from step k-1; c) Image from
step k; d) Warped image

B. Warping

Warping is used to account for relative motion of static
objects between two consecutive images that resulted from
vehicle rotation and vibration. Translational movement be-
tween the image frames is considered small enough to be
neglected. Rotation angles (yaw and pitch) between two con-
secutive images are measured with IMU. Yaw angle is used
to compensate for intentional vehicle rotation and pitch angle
is used to compensate for camera vibrations. If we consider
vehicle rotating while recording images and if we know exact
angle of rotation between images Ik−1 and Ik we can compute
warped image Iwarp using the following equations (Fig. 2a):

p(x) =
f

dp
tan(∆Y aw + atan2(((x− Iw/2) ∗ dp), f))

p(y) =
f

dp
tan(∆Pitch + atan2(((y − Ih/2) ∗ dp), f))

Iwarp(p(x), p(y)) = Ik−1(x, y)

(3)

where ∆Y aw and ∆Pitch are vehicle rotational movements
between consecutive time steps measured by IMU, (x, y) are
pixel coordinates of the image Ik−1 (x is column number, y
is row number and (0,0) is top left corner), (p(x), p(y) are
coordinates of the warped pixels, f is camera’s focal length,
dp is a pixel width, Iw is an image width and Ih is an image
height. Fig. 2 (b-d) shows the result of warping. We can see
that original image (Fig. 2c) and warped image (Fig. 2d) are
almost completely aligned.
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Fig. 3. a) Subtracted image; b) Subtracted image after filtering; c) Pixels
filtering algorithm

C. Image Subtraction and Filtering

Once warped image has been acquired we can compute
subtracted image IS from Ik as

IS(x, y) =

{
Lmax, if Ik(x, y)− Iwarp(x, y) ≥ Dthr

0, otherwise
(4)

where Dthr is a predefined threshold used to filter small
differences that are mostly produced by noise. Example of IS
is shown in Fig. 3a. In order to filter out pixels that remained
in IS due to noise and transversal movement, a filtering based
on clustering and optical flow is performed. Dense optical flow
is calculated between Iwarp and Ik using Farneback algorithm
[15]. Filtering is based on grouping pixels in regions of 5x5
by analyzing pixels neighbourhood. Neighbourhood is divided
into two parts R1 (8 pixels) and R2 (16 pixels) as shown in
Fig. 3c. For every pixel in IS whose value is larger than 0
steps listed in algorithm 1 are performed. Pixels that already

Algorithm 1 Grouping of pixels into 5x5 regions

1: Count the number of pixels (NR1, NR2) with positive
values in R1 and R2

2: Calculate the sum of optical flows ~Us and ~Vs in ~u and ~v
directions of all pixels with positive values in R1 and R2

3: Check if NR1 ≥ Nthr1 and NR2 ≥ Nthr2 (Nthr1 and
Nthr2 are predefined thresholds)

4: If previous condition is satisfied check if |~Us| ≥ Uthr and
|~Vs| ≥ Vthr (Uthr and Vthr are predefined thresholds)

5: If both conditions are satisfied set all pixels in this 5x5
region to Lmax, otherwise set all to 0

belong to one 5x5 region that was filled cannot be a part of
another region. One example of this filtering technique applied
on image shown in Fig. 3a is presented in Fig. 3b. After the
filtering of IS , the resulted image ISF serves as a base for
final moving object detection.

III. MOVING OBJECT DETECTION

Final object detection is done in two stages. First 5x5
regions are grouped and assigned to objects and then RANSAC
is used to determine which of those objects are true moving
objects and which are faulty detections.

A. Region Grouping

Image ISF still contains only pixels grouped in regions
of 5x5 without any information on which region belongs to
which object. Before assigning regions to particular objects in
order to speed up the process and make it more robust we do
another grouping of 5x5 regions into 10x10 regions. This is
done using a sliding window approach on image ISF . Created
10x10 regions are saved in matrix R. Sliding window size is
10x10 and sliding process starts at the top left corner of ISF .
Algorithm than sums optical flows in ~u and ~v directions of
all 5x5 regions whose centres are located within the sliding
window. If the sums in any direction are different than 0,
the algorithm marks current location of the sliding window
as filled in matrix R and records the information on sums of
optical flows in both directions. Since dimensions of sliding
window are 10x10 dimensions of matrix R are Ih/10 x Iw/10.
All positive elements in matrix R potentially belong to a
moving object. Grouping of individual elements into one object
is done using the algorithm 2. The result of the algorithm

Algorithm 2 Creating objects from elements

1: Find positive element e in R
2: If e is not part of another object create new object O

containing element e
3: Search neighbourhood of e and add all positive elements

to O and to stack S if they do not belong to another object
4: For every element in S repeat step 3
5: When S is empty go to step 1 and save object O

Neighbourhood of an element ei,j in matrix R are all
elements en,m that satisfy conditions: 1) |n − i| ≤ 2 and
2) |m− j| ≤ 2

is a list of potential moving objects. Before a final object
filtering using RANSAC, objects in the list are filtered based
on their width, height and density. Minimum values for width
and height are used to filter out objects that are either false
detections or are too small or too far away to be of importance.
Maximum values are used to filter objects that span over more
than 70% of the image width or more than 85% of the image
height and are probably results of vibrations that were unable
to be corrected by the IMU. Width Ow and height Oh of an
object containing N elements ei,j are Ow = jmax − jmin
and Oh = imax − imin. Density of an object is calculated as
Density = N/(OwOh). All objects that have height and width
within predefined intervals [Hmin, Hmax] and [Wmin, Wmax]
and whose density is larger than predefined value DENSmin
are added to a list LO and passed onto the final filtering step
using RANSAC algorithm.

B. RANSAC Filtering

RANSAC algorithm is used for final filtering of detected
objects in the list LO based on an optical flow model derived
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in [15]. Model is given in equation (5).

du(x, y) = a1 + a2x+ a3y + a7x
2 + a8xy

dv(x, y) = a4 + a5x+ a6y + a7xy + a8y
2 (5)

where du and dv are the amplitudes of optical flows in ~u and ~v
directions of a pixel located in image coordinates (x, y) and a1
to a8 are model parameters that need to be evaluated. Model
(5) can be rewritten as:

d = Sp (6)

S =

(
1 x y 0 0 0 x2 xy
0 0 0 1 x y xy y2

)
(7)

p = (a1 a2 a3 a4 a5 a6 a7 a8)T (8)

Now that we have the model we can use RANSAC algorithm.
There are two main steps of RANSAC algorithm:

1) Create model based on random sampling.
2) Evaluate the model.

Our goal is to create a model for every object in LO from
optical flows of randomly selected pixels belonging to those
objects and then, in evaluation step, to determine if optical
flow fits the model and really belongs to a moving object. If
the flow is too random to be fitted to a model we conclude it
is not a real moving object. In order to get model parameters
(a1 to a8) we define the least squares problem

Ne∑
i=0

||Sip− di||2

di =

[
|~ui|
|~vi|

] (9)

where Ne is the number of pixels randomly selected for model
generation and (~ui, ~vi) are optical flow vectors of the i-th pixel.
Solution to the problem (9) is:

p = (

Ne∑
i=0

STi Si)
−1

Ne∑
i=0

STi di (10)

Once the model is generated, we can evaluate how many pixels
that were not used in model generation fit into the model using
||Snp− dn||2. If the ratio of the number of pixels that fit into
the model and the number of all the pixels contained within the
object is larger than predefined threshold we say that model
is good enough and that the object it belongs to is indeed a
moving object. If model does not satisfy this, another iteration
of RANSAC algorithm starts and a new model is created
based on newly and randomly selected pixels. If after Nit
iterations, none of the generated models satisfies required ratio,
the object is discarded and not reported as a moving object.
Pixels used in RANSAC model in our case are represented by
5x5 regions contained within all 10x10 regions that particular

object consists of. Number of regions Nm selected for model
generation is computed as:

Nm =

{
Nreg

3 , if Nreg

3 ≤ Nmmax

Nmmax, otherwise
(11)

where Nreg is the total number of 5x5 regions contained within
the object and Nmmax is a predefined threshold. Finally all
the objects that have passed RANSAC filtering are reported as
moving objects in the scene. Since we do not track detected
objects we did not use any technique to ensure that entire
area of the object is detected since for this application it is
not required. Fig. 4 shows the entire process from grouping
5x5 regions into 10x10 regions to a final display of detected
moving object. Steps that sum up the entire process of moving
object detection are listed in algorithm 3.

Algorithm 3 Moving object detection algorithm

1: Acquire the thermal image ITk
2: Convert ITk to grayscale image Ik using region based

contrast stretching algorithm
3: Warp the image Ik−1 according to differences in Yaw and

Pitch angle between steps k and k − 1 that are measured
by IMU

4: Calculate dense optical flow between warped image and
Ik

5: Get IS by subtracting warped image from Ik
6: Filter pixels of IS based on their neighbourhood and

optical flow and group remaining pixels into 5x5 regions
7: Group 5x5 regions into 10x10 regions using sliding win-

dow approach and connect 10x10 regions into objects
8: Filter objects based on width, height and density
9: Filter remaining objects using RANSAC and optical flow

model
10: Display detected moving objects in grayscale image Ik

IV. EXPERIMENTAL RESULTS

Experiments were conducted using Husky A200 mobile
platform equipped with FLIR A320 thermal camera and Xsens
MTI-G 700 IMU. Images acquired with Flir A320 have res-
olution of 320x240, maximum frame rate of 30Hz, horizontal
field of view 25◦ and vertical field of view 18.8◦. Wavelengths
captured by the camera sensor are between 7.5µm and 13µm.
Maximum speed of Husky A200 is 1.5m/s. Values of all
algorithm parameters are listed in the Table I. Detection
algorithm was running on Fujitsu H series notebook with Intel
i7-3630QM mobile processor.

Results are displayed in Figs. 5 to 10. First image of
every sequence displays the objects that are detected. Fig. 5
displays the detection of a moving car that is far away from
the camera while Husky is moving forward. Fig. 6 shows
continuous detection of a human who is walking while robot is
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a) b) c) d)

Fig. 4. Final moving object detection: a) Grouping of 5x5 regions from filtered subtracted image into 10x10 regions and connecting them into objects b) Optical
flow of all 5x5 regions contained within the object (blue) and optical flow selected for model generation (purple); c) Optical flow that was successfully fitted
to the generated model; d) Object displayed in the grayscale image

Fig. 5. Detection of a car while moving forward

Fig. 6. Human walking detection while rotating and moving forward

Fig. 7. Continuous detection of a walking human while moving forward

we

rotating to the left and moving forward at the same time. Fig. 7
shows continuous detection of a human who is walking while

robot is moving forward. In Fig. 8 a human is detected while
walking. At image 3 of the sequence a car enters the scene
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 Car and human

Car 

Human Human

Car 

Fig. 8. Two objects detection while standing still

Fig. 9. Detection of a moving car and no detection of human who is standing still while Husky is moving forward

Fig. 10. Continuous detection of a human while Husky is moving forward and rotating

and covers the human. After the human is visible again both
the car and the human are detected as two moving objects.
Fig. 9 shows detection of a moving car and it can also be
seen that human who is standing in place is not detected
although Husky is mowing forward. Fig. 10 shows successful
continuous detection of a human while Husky is rotating
and moving forward. As can be seen from the results, the
algorithm performs quite well in different scenarios. However
there are some fault detections. Most of them occur because
noise in the image resulted in the subtracted image containing
too many pixels that were inaccurately set to positive values
and at the same time optical flow was incorrectly estimated
resulting with error in detection. Also in some cases objects are
not detected instantly upon entering the scene due to inaccurate

TABLE I. List of used parameters and their values

Parameter Value Parameter Value Parameter Value
Tmin 16500 Tmax 21500 Span 5000
f 18mm dP 24.8µm Dthr 3000

Nthr1 2 Nthr2 4 Uthr 100
Vthr 100 Hmin 3 Hmax 21
Wmin 3 Wmax 21 DENSmin 0.3
Nit 10 Nmmax 90 Lmax (16 bits) 65535

optical flow estimation.

V. CONCLUSION

In this paper we have presented a novel approach for de-
tecting moving objects in thermal images. When using thermal
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images main problems occur from the fact that most objects
have similar temperatures all over their surfaces. Because
of that, the images captured by thermal cameras are almost
textureless and provide very little details that would allow
efficient feature matching. We have solved this problem by
using fusion of IMU and thermal camera in order to track
ego motion of the robot while rotating. This has allowed us
to implement image subtraction between consecutive images
and by using filtering techniques based on clustering and
dense optical flow estimation differentiate moving objects from
static scenery in the subtracted images. We have shown by
experiments done in real world scenarios that our algorithm
works well, but also still has room for improvement. In the
future we plan to implement tracking algorithm that would
allow further filtering of faulty detections. Also we plan to
reduce the number of parameters required for algorithm to
work and to improve optical flow estimation algorithm in order
to account for specific properties of thermal images.
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