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Abstract— This paper proposes a new algorithm for human
motion estimation using inertial measurement unit (IMU) mea-
surements. We model the joints by matrix Lie groups, namely
the special orthogonal groups SO(2) and SO(3), representing
rotations in 2D and 3D space, respectively. The state space is
defined by the Cartesian product of the rotation groups and
their velocities and accelerations, given a kinematic model of the
articulated body. In order to estimate the state, we propose the
Lie Group Extended Kalman Filter (LG-EKF), thus explicitly
accounting for the non-Euclidean geometry of the state space,
and we derive the LG-EKF recursion for articulated motion
estimation based on IMU measurements. The performance of
the proposed algorithm is compared to the EKF based on
Euler angle parametrization in both simulation and real-world
experiments. The results show that the proposed filter is a
significant improvement over the Euler angles based EKF, since
it estimates motion more accurately and is not affected by
gimbal lock.

I. INTRODUCTION

Human motion measurement is a key enabling technology in
many applications, including human motion analysis, reha-
bilitation, imitation learning and human-robot interaction [1].
A number of different sensing modalities have been proposed
for human motion measurement, including camera, magnetic
and wearable systems [1]. When line of sight between the
sensor and the human cannot be ensured, and when motion is
to be captured in large or outdoor spaces, wearable sensing,
based on inertial measurement units (IMUs) is preferred.

Many previous works focus on human pose estimation
using wearable IMUs. A simple approach is to integrate
the gyroscope to estimate the orientation of each limb,
however, due to gyroscope drift error accumulates over time
[2]. Stochastic filter methods are often used to combine
gyroscope and accelerometer signals to reduce drift and
allow for estimation of highly dynamic motions. Without
taking into account the kinematic model of the human body,
the orientation of each limb can be estimated separately
[3], [4] with the Kalman filter. In post processing kinematic
constraints can be incorporated and the joint angle estimated
via optimization [5].
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To retrieve the joint angles directly, human kinematic
constraints must be incorporated into the estimation. Steel
et al. [6] utilized arbitrary leg movement and optimization
techniques to extract the constraints and used a weighted
combination of the gyroscope integral and accelerometer
projected onto the knee joint axis. If the kinematic model
is available a priori, stochastic filter methods can be used
to directly estimate human pose from IMU measurements.
Modeling the human body as a set of rigid links connected
with hinge joints Lin and Kuli¢ [7] and El-Gohary and
McNames [8] used the Extended and the Unscented Kalman
filters to estimate arbitrary 3D leg and arm motion respec-
tively. Model based extended quaternion Kalman filter was
used by Szczesna to track a 3-segment inverted pendulum
motion [9]. Finally, having a model of the motion in addition
to the kinematic constraints can further improve human pose
estimation [2], [10].

In most of the aforementioned works the joints of the
kinematic model are described using Euler angles and while
[9] provides a quaternion joints representation, the approach
cannot provide different constraints for human joints with
different degrees of freedom (dof): 3 at the hip and shoulder,
2 in the elbow and wrist, and a single dof at the knee. In
our previous work [11] we showed that Lie Group based
kinematic modeling can correctly represent the degrees of
freedom of the human body and that Lie Group based
extended Kalman filter can significantly improve camera
based pose estimation. A number of other studies have also
investigated the uncertainty modelling and representation on
Lie groups. In [12]-[14] representation and propagation of
uncertainty on Lie groups was studied in the context of
manipulator kinematics and camera trajectory estimation,
and later in [15] the authors studied the example of a
stochastic kinematic model of a differential drive mobile
robot on SE(2). Uncertainty association, propagation and
fusion on SE(3) was investigated in [16]. In [17] the authors
preintegrated a number of IMU measurements for visual-
inertial navigation by properly addressing the geometry of
the rotation group and defining the uncertainty in the per-
taining tangent space. Finally, an extended Kalman filter on
Lie groups (LG-EKF) was proposed in [18], [19] and has
been further developed to an iterative version [20].

In this paper we propose a novel approach for human
motion estimation based solely on IMU measurements. The
proposed filtering approach performs stochastic inference
of human motion by defining the state space to reside
on a Lie group, with each state element corresponding to
the kinematic model of the analysed human body part.
Then, the LG-EKF is derived, where the prediction step is
based on the constant acceleration model [21], while the



AN
Fig. 1: Left: 3D Arm model showing simulation IMU place-
ment. Middle: Lie group-based arm model with attached

IMU units for dynamic motion simulation. Right: Euler
angle-based arm model.

update step depends on the gyro and accelerometer mea-
surements of the IMU units. We compare the performance
of the proposed algorithm with an EKF based on the Euler
angles parametrization both in simulation and real-world
experiments. The results show that the proposed approach
significantly improves performance and is not affected by
gimbal lock.

The rest of the paper is organised as follows. In Section II
we present the mathematical fundamentals addressing Lie
groups and associated uncertainties. In Section III we present
the novel LG-EKF, while in Section IV we briefly describe
the EKF based on Euler angles. Section V presents the
validation results and Section VI concludes the paper.

II. MATHEMATICAL BACKGROUND

In this section we provide the mathematical background for
human motion estimation on matrix Lie groups. Our human
body modeling approach and the corresponding state space
construction is the same as proposed in [22], which we
briefly review for the completeness.

A. Construction of the state space

We construct the state space by using Lie group representa-
tives for each joint of interest. As an example we consider
a state space model of a human arm from shoulder to wrist
employing Lie groups, as illustrated in Fig. 1.

An example of group G representing the state space for
this model is

shoulder elbow
G =50(3) x SO(2) x SO(2) . (1)

The first element in (1) describes the shoulder employing a
special orthogonal group SO(3) and providing 3 DoF mobil-
ity, while the second and third elements jointly model the 2
DoF motion of the flexion/extension and internal rotation of
the elbow joint, where each element of a special orthogonal
group SO(2) contributes a single DoF. Note that the choice

of the state space only incorporates system variables and not
the full forward kinematics.

B. Lie groups and Lie algebra

A Lie group G is a group which also has the structure of
a smooth manifold. The group operators, composition and
inversion, are smooth operations. Each point X € G has
an associated tangent space T'x (G) [23]. This linear tangent
space is usually placed at the group identity, and is called the
Lie algebra of G, which we denote by g [24]. The Lie algebra
g, which is of the same dimension as G, admits a binary
operation [-, -] called the Lie bracket, which reflects the non-
commutative content of the group operation. Furthermore, if
the group G is a matrix Lie group, then G C R™*"™ and group
operations are simply matrix multiplication and inversion.

The Lie algebra g C R™*™ associated to a p-dimensional
matrix Lie group G C R™ ™ is a p-dimensional vector
space defined by a basis consisting of p real matrices
E., r =1,...,p, often referred to as generators [25]. In
particular, a Lie algebra is an open neighbourhood around
0” in the tangent space of G at the identity I™. The matrix
exponential exp¢ and matrix logarithm log establish a local
diffeomorphism between G and g as

expg: 9 — G and log;: G —g. 2)

Furthermore, a natural relation exists between the p-
dimensional Lie algebra g and the Euclidean space RP, and
is given through a linear isomorphism

[1&:g—RP and []Q:RP —g. 3)
For brevity, we will use the following notation [20]
expg(z) = expg([z]¢) and logd(X) = [logg(X)E, (4)

where x € RP and X € G.

Since Lie groups are generally non-commutative, i.e.,
XY # Y X, we also need to employ the adjoint representa-
tions. The adjoint representation of G on g, Adg, can be seen
as as a way of representing the elements of the group as a
linear transformation of the group’s algebra, and in general,
it measures the failure of X € G to commute with elements
of G near the identity [26]. The adjoint representation of g,
adg, is in fact the differential of Adg at the identity element.
For a commutative group, the map ad evaluates to zero.

C. Concentrated Gaussian distribution

To make use of EKF on Lie groups, we need to establish
first a notion of a Gaussian distribution on Lie groups. A
distribution on a Lie group that is tightly focused, meaning
that almost all the mass of the distribution is concentrated
in a small neighborhood around the mean, can be expressed
in the Lie algebra [16], [27], and this concept is called a
concentrated Gaussian distribution.

Let X € G be a random variable following a concentrated
Gaussian distribution with mean p and covariance P as

X = pexpg(e), X ~G(u P), ®)



where € ~ Ng» (07, P) is a zero-mean Gaussian distribution
with covariance P C RP*P defined in the Lie algebra, i.e.,
the Euclidean space RP. We can see form (5) that the mean
value p is defined on G, while the associated uncertainty
resides in RP. Roughly, this concept allows us to work with
the covariance directly in R? and use Euclidean tools, almost
as we would with a ‘classical’ Gaussian distribution [19]. For
a more formal introduction of the concepts presented here,
the interested reader is referred to [28].

D. Special orthogonal groups SO(2) and SO(3)

The special orthogonal group SO(n) is the matrix group
SO(n) = {X CRV"|X"X =1,det(X) =1} . (6)

For n = 2,3 this group defines rotations in 2D and 3D,
respectively. The algebra so(n) comprises of n x n skew-
symmetric matrices. For Euclidean vectors x = ¢ and = =
[¢1 P2 ¢3]T, the algebras s0(2) and s0(3) amount to

0 —¢ 0 —¢3 ¢
T50(2) = [(;5 0 ] s Tsoz) = | Ps 0 —=o1|, (D
—¢2  ¢1 0

where (+)gg(,,y © R™ — so(n), while its inverse, (-)¢g,
s0(n) — R™, follows trivially from (7).

For SO(2), the exponential map yields the classical 2D
rotation matrix, while the logarithm evaluates to simple ex-
traction of ¢ into a skew-symmetric matrix form in (7). Since
SO(2) is commutative, its adjoint representations are trivial:
Adso(z) is a unit map and adsg(2) is zero. The exponential
for SO(3), performing mapping expsq(s) : §0(3) — SO(3),
is given as

eXDlogs (@) = cos(|a) I*+

zz’ TSom B
T (1= cos([a)) 22 + sin(la])
|z[? |z
The logarithm, performing mapping logsgs) @ SO(3) —
50(3), is given as
lo (X) = L(X X
850(3) ~ 2sin(f)
s.t. 14 2cos(f) = Tr(X) 9)
00 —-7mT<f<m
0=0 log(X)=0

The adjoints Adsp(3y and adsgs) are respectively given as
Adso(g)(X) = X and ad50(3)(x) = $§o(3) . (10)

In the sequel we present the new human motion estimation
method based on the LG-EKF using IMU measurements.

III. HUMAN MOTION ESTIMATION ON LIE GROUPS

A. Motion prediction step
We assume that the motion model of the system can be
described with the following equation [19]

Xit1 = f(Xp,ni) = X expe (Qk +nk) , (11)

where X € G is the state of the system at time k, G is
a p-dimensional Lie group, np ~ Ng»(0P*1, Q}) is zero
mean white Gaussian noise with covariance i, and Qk =
Q(X}y) : G — R” is a non-linear C? function.

In our approach, similar to our previous work [22], we
assume the human motion to follow a constant acceleration
model and our state space G is then constructed to include
the positional, velocity and acceleration components block-
diagonally. Hence exponentials and logarithms will keep the
state in the block diagonal arrangement as well. The motion
model of a single joint ¢ is given as

i T2 g T2 i
| Twi + 5 s PR s
Q) = Taj, e R ny = Tnj, | € R>%
0 ny,

(12)

where w! and «f are the angular velocity and angular
acceleration represented in the Lie algebra'. The term n,
represents the acceleration increment during the k-th sam-
pling period [29], and d; represents the number of DoFs of
the ¢-th joint.

Given that the posterior distribution at step &k follows the
concentrated Gaussian distribution G (g, Py ), and following
the LG-EKF prediction step [22], the resulting prediction can
be approximated with a concentrated Gaussian distribution
G(ttk+1|k> Pit1)k)- The mean propagation of the LG-EKF is
governed by

k41lk = [k €XDg (Qk> ; (13)
while the covariance prediction is computed as
Py = FePFL + @6(Q)Qi®e(Q)" . (14)

The operator Fj, can be seen as a matrix Lie group equivalent
to the Jacobian of f(Xj,ny), and is calculated by

Fir = Adg (expe (—Qk)) + (I)G(Qk)gk
9 (15)
L = EQ (kk exPg (€)= -
The term .Z} represents the linearisation term where the
argument of the motion model is the mean of the current
state X, with an incremental perturbation additively added in
each of the p directions. Contrary to the conventional EKF, a
linear additive process noise affects the system as a function
of the current state of the system over the transformation

'Euclidean space RP,p € N is a matrix Lie group and in order to
construct G we employ its matrix representation obtained by simple matrix
embedding. The matrix representation of the Euclidean space is also a
subgroup of SE(n) where a pure translation is employed [28].



@G(Qk)Qk@G(Qk)T, where ®¢ appears due to the displace-
ment of the tangential space during the prediction step, and
is given by

_ - (_1)1 i p
—ZmadG(’l}),veR .

=0

(16)

B. Measurement update step

We next derive the update step by employing gyro and
accelerometer measurements of IMUs attached to a human
body. The discrete measurement model on the matrix Lie
group is modelled as

Zi1 = h(Xis1) expg (mps1) a7

where Z,1 € G, h : G — G’ is a C* function, G’ is a
p’-dimensional Lie group and myy1 ~ Nga(09% Rpy)
is zero-mean white Gaussian noise with covariance Ry 1.
The update step of the filter strongly resembles the standard
EKF update procedure, relying on the Kalman gain Kj
and innovation vector v calculated as

—1
Kii1 = PorpHir1 (Misr PosrpMis + Rita)

Vi1 = Kip1logds (M(ps1ie) ™ Zis) -

The matrix Hyy1 can be seen as the matrix Lie group
equivalent of the Jacobian of h(Xj41), and is given as

(18)

9 v 1
Hiqr = alog@ (h(ﬂkﬂ\k) h(ﬂ2+1|k)>|6:0 ;
where h(pj ) = h(tgia)e expg (€)), describes the varia-
tion of measurements for an infinitesimal motion e. We now
evaluate the matrix Hy41 based on gyro and accelerometer
measurements.

C. Gyro update

The measurement function of the gyro measurement is:

Z’C Whp1lk

where n is the number of joints preceding the gyro sensor
s. The term KL% = KR (X)) stands for the rotational
component of the forward kinematics between the ¢-th joint
and the gyro sensor s, thus affecting its measurement [30].
The gyro measurements are affected by position (through
kinematics) and velocity, hence the corresponding parts of
‘H 41 matrix need to be evaluated.

By applying partial derivatives and evaluating the multi-
variate limits similarly to [31], the part of 7 relating the
gyro measurement to the orientation of the [-th joint ’HZL
is given as:

(X)) = 19)

1
0,l,r _ iR pl Lr LR, i
My = E K, 0k+1\kE K W1k

i=1

(20)

where ICi a represents the rotation between the i-th and [-
th joint, Gk 1k is the position of the [-th joint, while E""
represents the r-th generator of a Lie group representing

the [-th joint [27]. Each of the generators represents an
infinitesimal motion in one of the directions of a Lie group.

The part of Hj;1 relating the gyro measurement to the
velocity of the [-th joint H‘,:_’il is given as:

,le —IClR

P @D

Since gyro measurement (19) is not a function of the joint
accelerations, the part of the #j4; matrix relating gyro
measurements to [-th joint acceleration components is filled
with zero values; ”H,k 1 =0

D. Accelerometer update

The measurement function corresponding to the accelerom-
eter measurement is:

point acceleration  gravity component
—~ =

M X)) = Ko + K99, (22)
where the first term emerges due to dynamics of a body,
while the second term arises due to gravity. The superscript
R denotes that only the rotation part is embedded into an
SE(3) member, while the translation part is set to 0. The term
Pr+1|k represents an acceleration of the sensor s represented
in the base frame and given in homogeneous coordinates,
while g is the gravity vector in homogeneous coordinates.
In order to evaluate py )3, we start from defining the IMU
position as

Prsaje = KO (23)
where O = [0 0 0 1T is the origin represented in
homogeneous coordinates. The forward kinematics can be
decomposed as

Ky = T1091£+1|kT219i+1|k i 'Tr?_162+1\k (24)
Each part of the forward kinematics IC;f_l = Tl 10; 1k

consists of the constant transformation 7~ " and the position
of the i-th joint Gk 1k In order to sequentially apply a
matrix multiplication inducing each joint state, we describe
joints as 4 x 4 transformation matrices (in terms of Lie
groups denoted as special euclidean group SE(3)). We now
evaluate the first two derivatives of sensor position pyy .
The velocity of the point pg )5, evaluates to

Praa = 3 (KISE L) 0, (25)

=1

where the summation iterates over n joints affecting sensor

s, while the term Sk+1|k is given as
d;
St = 2 (Wil B, 26)
r=1

which is a function of the number of degrees of freedom
d; of the i-th joint, and the superscript w denotes that the



velocity components are summed up. The acceleration of the
point py1| evaluates to

centripetal force component I

Prsie = (Z (/COSifu/CJ)SZLk’Ci)@ﬂL @27)

i=1 \j=1

centripetal force component II

Z(ICO oot Z (I@Si;lklcl))OJr

i=1 Jj=i+1

(KOS,; :1|kzci>o .
1

1=

joint acceleration component

The acceleration py1), consists of two components — the
centripetal force component and joint acceleration compo-
nent, which we emphasize in (27).

We now proceed to linearize and evaluate the part of Hy41
corresponding to the accelerometer measurement and joint /.
It is given as

[Hiﬂ] _
1
In order to evaluate (28) we need to compute partial
derivatives of ICS"R and Py, with respect to position,
velocity, and acceleration of X ,i 1k We omit the detailed
derivation for brevity; for completeness we provide them in
the supplementary material available at [32].

Finally, having evaluated H1, the measurement update
step is calculated as [19]

oKy
XL

s,R 3pk+1\k

0X! %)

(Brs1yk +9) + Ky

k+1|k k+1|k

[e41 = M1k €XPG (Vig1) (29)
Prp1 = ®c(vi1) (I — K1 Hiy1) Popap®o(vein)”
IV. EULER ANGLE BASED APPROACH

The proposed approach is compared to a conventional EKF
applied to a standard kinematic model defined with revolute
and prismatic joints [33]. Three perpendicular revolute joints
(Euler angles) can be used to model human spherical joints
such as the shoulder and the hip. The state of the EKF is
defined as the position ¢, velocity ¢, and acceleration § of
the joints. Assuming constant acceleration the linear motion

model is
2

— Gk

Qr+1 = qx +Tqr + 5

Gr+1 = qr + TG (30)

Gr+1 = Gk -
V. VALIDATION RESULTS

We validate the proposed approach both in simulation and
with real human motion. First, in simulation, we demonstrate
the benefits of LG-EKF over EKF when using IMU measure-
ments during highly dynamical movements whose motion is
better described on the group and show that unlike EKEF,
LG-EKF is not affected by gimbal lock. Next, we evaluate
the performance of LG-EKF and EKF on real IMU data of
dynamic figure eight arm movement sequence.

Acceleration of SO(3) x SO(2) x SO(2)

T T T I
I 1
3 2+ ay ||
5 2
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Fig. 2: Performance of EKF and LG-EKF based on Brownian
motion on Lie Algebra. Since LG-EKF has an accurate
motion model it correctly tracks the arm movement. Once
the angular accelerations on the Lie Algebra become large,
the constant Euler angle acceleration model of EKF does not
provide a good state prediction and EKF cannot maintain an
accurate estimate. o; denotes SO(3) with 3 dofs, while aq
and ag correspond to SO(2) joints with a single dof.

A. Simulation Validation

1) Dynamic Motion: To test the properties of LG-EKF, we
simulate a human arm composed of the shoulder and elbow
joints, where the state is an element of SO(3) x SO(2) x
SO(2) composition. Two IMUs are attached to the humerus
and radius at offsets of [0.10.10.3]T, and [0.10.10.4]T
respectively. The kinematic chain is visualized in Fig. 1.

It is possible to generate Brownian motion either on the
group or on Euler angles to exactly match the constant
acceleration with zero mean Gaussian noise assumption of
LG-EKF or EKF. Since large constant acceleration in one
representation implies a quickly changing acceleration in the
other, we can expect the filter with the correct motion model
to significantly outperform the other in high acceleration
regions. Figure 2 shows the Brownian motion generated on
the group representation of the arm and the error in position
estimation of the wrist IMU for EKF and LG-EKEF. It is clear
that during high constant accelerations on the group, Euler
angle based EKF cannot accurately track the motion.

However, it is unlikely that human motion will exactly
follow one motion model or the other. Thus, in order to
compare EKF and LG-EKF without being biased to a specific
motion representation we generate a dynamic trajectory in
task space and utilize inverse kinematics to recover joint
angles of the Euler angle model. Next we numerically
differentiate the trajectory to retrieve joint velocities and
accelerations and generate the IMU measurements using
forward kinematics. The task space trajectory is created by
cubic splining points in the reachable workspace generated
from a univariate distribution. This setup creates a highly
dynamic motion as can be seen from the positions of the
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Fig. 3: 10 Second simulation trajectory of the IMUs attached
to the humerus and radial undergoing the generated highly
dynamic motion.

two IMUs shown in Fig. 3. Simulated IMUs are sampled
at 100Hz and zero mean Gaussian noise with standard
deviations of 0.01% and 0.1%; is added to the gyroscope
and accelerometer measurements respectively. For both filters
the initial covariances were set to diagonal matrix of a
103 denoting accurate knowledge of the initial state. The
process noise was assumed to follow the discrete constant
acceleration process noise injection. For each triplet [¢ w o]
or [¢ ¢ §] noise of standard deviation 7 is injected into « and
is propagated to w and ¢ by integration. Thus, for each triplet
the process noise covariance is GGT where G = [T; T 1]n.
For the dynamic motion simulation 7 was set to 10% per
iteration. The observation noise was set to the true sensor
noise values.

To compare the estimate with the ground truth, we use the
deviation from the identity matrix as the distance metric [34]

Dr = ||I — Rl Ry, 31)
where I, and R, are the estimated and ground truth rotation
matrices of each joint and ||-|| , denotes the Frobenius norm.

Figure 4 shows the comparison between the LG-EKF and
EKF using this distance metric for the shoulder and elbow
joints. The LG-EKF significantly outperforms the EKF filter,
which is due to LG-EKF’s ability to handle gimbal lock as
explained in the next section.

2) Gimbal Lock: Next we investigate the impact of gimbal
lock on the proposed approach. Any set of Euler angles will
lose a degree of freedom when two of the rotation axes
align [35], implying that in that configuration the rotation
about the locked axis cannot be correctly estimated by EKF.
Typically the order of the joint axes is carefully selected to
try and avoid the lock, however in human motion estimation,
gimbal lock often takes place at the shoulder joint due to its
high manoeuvrability. Unlike the Euler angle formulation, an
SO(3) representation of the spherical joint does not suffer

1072Sh0ulder RMSE. LG-EKFRMSE = 0‘011, EKFRMSE = 0.037

I T T T
{- | === LG-EKF

. EKF

time [s]

10-2 Elbow RMSE. LG-EKFrmsg = 0.005, EKFrmse = 0.005

0 2 4 6 8 10
time [s]

Fig. 4: Error between the actual and estimated rotations at
the shoulder and elbow joint for LG-EKF and EKF during
task space generated dynamic motion. Estimation of shoulder
rotation is significantly improved using the SO(3) model.
Due to the improvement in the SO(3) joint we also see a
small improvement in the SO(2) x SO(2) joint.

Fig. 5: Simulation model used for gimbal lock validation.

from gimbal lock and thus LG-EKF will accurately estimate
any rotation.

To demonstrate the benefits of LG-EKF over EKF during
gimbal lock we simulate a single spherical joint at the origin
with a single IMU attached at an offset of 0.1 meters in
the z. The simulated model is shown in Fig. 5. A quintic
polynomial is used to generate a smooth trajectory, sampling
at 100 Hz. First, the model experiences a 1 second rotation
about the world y axis with initial position Orads and
final positions 7§ rads and zero initial and final velocity and
acceleration. In the Euler angle model this motion aligns the
first and third revolute joint axis putting it into a singularity
and removing a degree of freedom (gimbal lock). Next, the
model experiences the same 1s rotation in the now locked
world z axis. In order to focus only on the gimbal lock
problem, no noise was added to the IMU measurements.
Measurement noise, process noise, and initial covariances
were set as described in Sec. V-A.l. Figure 6 shows the
distance metric described in (31).

When Euler angles enter gimbal lock, the Euler angle
based Jacobian is singular and thus the linearized system
is no longer observable. In this case EKF cannot accurately
estimate the states. By plotting the condition number of the
observability matrix Oy = [Hy, HxFy ---|7 of the linearized
system we can visualize the ability of the filters to handle
gimbal lock (Fig. 7).



LG EKF and EKF in gimbal lock
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Fig. 6: LG-EKF and EKF estimation during gimbal lock.
Both filters accurately estimate the rotation about the y axis
until the system gets close to the gimbal lock, which happens
at 1 second. After the rotation about y the Euler angle model
is in gimbal lock and thus EKF cannot accurately track the
orientation until the lock is escaped at 1.5 seconds. Once
Euler angles escape the gimbal lock, EKF can regain an
accurate estimate of the roll and pitch orientation using the
accelerometer’s gravity measurement. However, any error in
yaw during gimbal lock accumulates. LG-EKF estimation is
unaffected by gimbal lock.
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Fig. 7: Condition number of the observability matrix of
the linearized system at each iteration during gimbal lock.
The condition number of EKF increases rapidly from 0.75
seconds when the Euler angles are still 12° away from
gimbal lock. In this region EKF may incorrectly estimate
large state increments. LG-EKF retains observability during
gimbal lock.

B. Real-world experiment

Using real human motion we verify that real human motion is
better represented with the Lie Group motion model and that
the proposed approach improves estimation throughout the
state space and as well as near gimbal lock. We validate the
proposed approach by comparing the distance between actual
and estimated wrist and elbow positions during a dynamic
figure eight human arm motion collected in a motion capture
studio. The motion capture studio utilizes 8 Motion Analysis
cameras capturing at 200Hz. Our IMUs are based on the
MPU9250 sensor and were set to sample at 100Hz, they
were calibrated with the algorithm proposed in [36] prior
to data collection. The kinematic model of the participant
was generated based on motion capture markers placed on
the shoulder as well as medial and lateral sides of the elbow
and wrist. Three motion capture markers were placed on each
IMU to compute their offset and rotation from the humerus
and radius.

For the best performance of both filters it is imperative
to tune the initial covariance, observation noise, and process
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Fig. 8: Actual and estimated 3d wrist position.
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Fig. 9: Distance between the actual and estimated wrist
positions. With each pass near gimbal lock, the Euler angle
model EKF accumulates error about world Z axis.

noise parameters. In our experiment the initial pose of the
participant is known and thus we set the initial covariance to
1073 along the diagonal. The observation noise parameters
are set to match those of the IMUs based on 30 seconds
of static data. We assumed discrete constant acceleration
process noise injection [29] of magnitude 7 as described in
section V-A.l and used the matlab optimization toolbox to
find the optimal process noise parameter for EKF and LG-
EKEF such that the distance between the estimated and actual
elbow and wrist positions is minimized over 3 repetitions of
the figure eight motion. The optimal process noise param-
eters were found to be ngkr = 389.1 and 1 g.Ekr = 264.8
for EKF and LG-EKF respectively. The significantly lower
optimal process noise for the Lie Group motion model shows
that human motion is better estimated on the group.

Figure 8 shows the estimated and actual wrist positions for
both EKF and LG-EKF. Figure 9 plots the distance between
actual and estimated wrist positions. Both filters begin with
equally accurate estimation, with each pass through the
corner of the figure 8 near gimbal lock, EKF accumulates
error about the world Z axis. Since LG-EKF is not affected
by gimbal lock its performance stays consistent throughout
the entire motion. Table I shows the RMSE and standard
deviation for elbow and wrist position estimation.



TABLE I: Root mean squared error of estimated and actual
elbow and wrist positions for the two filters. The proposed
LG-EKF improves the position estimate by 30% over EKF.

Elbow RMSE [cm]
52 + 2.6
74 + 3.6

Wrist RMSE [cm]
6.9 + 2.7
9.9 + 3.8

LG-EKF
EKF

VI. CONCLUSION

We proposed a novel algorithm for human motion estimation
based on body worn IMU sensors. Based on the geometric
arrangements of joints in the human body, we formed the
state as a Cartesian product of Lie groups, namely the special
orthogonal groups SO(2) and SO(3), which represent rota-
tions in 2D and 3D, respectively. In order to stochastically
infer the state of such a Lie group, we employed the LG-EKF,
thus explicitly accounting for the non-Euclidean geometry of
the state space. A constant acceleration motion model on the
group was developed for the LG-EKF prediction step and the
Jacobian of the IMU (gyroscope and accelerometer measure-
ments), was derived for the update step. The performance of
the proposed method was evaluated in both simulation and
real-world data, comparing it with the EKF based on Euler
angles. The proposed algorithm can estimate human motion
with lower end effector position RMSE than the EKF and is
not affected by gimbal lock.
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