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Abstract 

This paper considers the potential of using 3D planar surfaces and line segments detected in depth images for place 

recognition. A place recognition method is presented which is based on matching sets of surface and line features 

extracted from depth images provided by a 3D camera to features of the same type contained in a previously created 

environment model. The considered environment model consists of a set of local models representing particular 

locations in the modeled environment. Each local model consists of planar surface segments and line segments 

representing the edges of objects in the environment. The presented method is designed for indoor and urban 

environments. A computationally efficient pose hypothesis generation approach is proposed which ranks the features 

according to their potential contribution to the pose information, thereby reducing the time needed for obtaining 

accurate pose estimation. Furthermore, a robust probabilistic method for selecting the best pose hypothesis is proposed 

which allows matching of partially overlapping point clouds with gross outliers. The proposed approach is 

experimentally tested on a benchmark dataset containing depth images acquired in indoor environment with changes in 

lighting conditions and presence of moving objects. A comparison of the proposed method to FAB-MAP and 

DLoopDetector is reported.  
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1. Introduction 

Place recognition is one of fundamental problems in 

mobile robotics which has recently drawn much attention. 

From a practical point of view, efficient and reliable place 

recognition solutions covering a wide range of 

environment types would open a door for numerous 

applications of intelligent mobile machines in industry, 

traffic, public services, household etc. From a purely 

scientific point of view, our human curiosity urges us to 

find out how close to us an artificial agent can get in the 

ability to recognize places, which is a task that we perform 

with ease in everyday life.  

The basic robot localization problem can be defined as 

determining the robot pose relative to a reference 

coordinate system. According to this definition, following 

six problems are considered in literature: 

 

1. initial global localization – determining the robot pose 

relative to a global coordinate system assigned to its 

environment without any prior information; 

2. local pose tracking – determining the robot pose 

relative to a global coordinate system knowing its 

previous pose; 

3. kidnapped robot problem – detecting that the current 

robot pose estimation is incorrect and determining its 

true pose relative to a global coordinate system; 

4. motion estimation, odometry – determining the robot 

pose relative to its previous pose; 

5. loop closing – detecting situations where the robot 

arrives in the vicinity of a previously visited location; 

6. simultaneous localization and mapping (SLAM). 

 

The first three problems are related to robot 

localization in an existing environment map, while the last 

three problems are related to environment map building. 

Motion estimation and loop closing are necessary tools for 

SLAM, though they can be analyzed as separate problems. 

The first, third and fifth problems are actually variants of 

the place recognition problem. The main difference 

between them is related to the prior information and 

possibilities of the changes in the environment.  

Initial global localization assumes no prior information 

about the robot's pose, while a loop closing algorithm can 

use the estimate of the robot's pose obtained by a SLAM 

system which includes the loop closing algorithm. A 

solution to the kidnapped robot problem can be regarded 

as an initial global localization algorithm in combination 

with a mechanism for estimating the reliability of the 

current pose estimate, which triggers the global 

localization if the pose information is assessed as 

unreliable.  

Considering the problem of changing environment, 

there are two main types of changes: (i) changes in 

lighting conditions and (ii) appearance or disappearance of 

objects or presence of moving objects. The second type of 

environment change is referred to in this paper as presence 

of dynamic objects.  

The application of loop closing is in the map building 

process which usually takes several minutes or few hours. 

Although, it is possible that during the map building 

process some changes in the lighting conditions or 

appearance/disappearance of some objects in the 

environment occur, such events can be considered 

accidental. Hence, the robustness of a loop closing 

algorithm to such changes, although desirable, is not 



crucial. Moreover, if necessary, it is possible to keep the 

environmental conditions under control for some limited 

time period, while the map building is in progress.  On the 

other hand, if we consider the place recognition in context 

of global robot localization or the kidnapped robot 

problem, it is required that a robot localization system 

operates reliably during long time periods, in which 

significant changes in the environment can occur.  

There are two main classes of vision-based robot 

localization approaches, appearance-based approaches and 

feature-based approaches.  

In appearance-based approaches, each location in a 

robot's operating environment is represented by a camera 

image. Robot localization is performed by matching 

descriptors assigned to each of these images to the 

descriptor computed from the current camera image. The 

location corresponding to the image which is most similar 

to the currently acquired image according to a particular 

descriptor similarity measure is returned by the 

localization algorithm as the solution. The appearance-

based techniques have recently been very intensively 

explored, especially the approaches based on bag-of-

words (BoW) descriptors, for which impressive results 

have been reported (Cummins and Newman, 2009). BoW 

descriptors are created from local descriptors of point 

features detected in camera images by methods like SIFT 

(Lowe, 2004) and SURF (Bay et al., 2008).  

In feature-based approaches, the environment is 

modeled by a set of geometric features such as point 

clouds (Thrun et al., 2005), points with assigned local 

descriptors (Se et al., 2005), line segments (Kosaka and 

Kak, 1992; Faugeras, 1993) or planar surface segments 

(Cobzas and Zhang, 2001; Pathak et al., 2010; Fallon et 

al., 2012), where all features have their pose relative to a 

local or a global coordinate system defined. The 

localization is performed by matching a set of features 

detected by the applied sensor to the features in the 

environment model. A search for a set of model features 

with a similar geometric arrangement to that of the 

detected features is performed and the robot pose which 

maps these two sets is selected as the solution. If more 

than one match is found, the one which minimizes some 

cost function is selected or multiple hypotheses with 

different probabilities are considered. 

In this paper, a feature-based place recognition 

approach is considered, which uses planar surface 

segments and line segments as features. The features are 

extracted from depth images obtained by a 3D camera. 

The environment model which is used for localization is a 

topological map consisting of local metric models. Each 

local model consists of planar surface segments and line 

segments represented in the local model reference frame. 

The feature based environment models consisting of 

line segments were intensively explored in the 90s 

(Kosaka and Kak, 1992; Faugeras, 1993). In this paper, 

we revisit the usage of line features, combine them with 

planar surface segments and compare this feature-based 

approach to the recently popular BoW-approach.  

An advantage of a feature-based approach such as the 

one considered in this paper over appearance-based 

techniques is that it provides accurately estimated robot 

pose relative to its environment which can be directly used 

for visual odometry or by a SLAM system. An additional 

advantage which is expected to be gained by using depth 

information obtained by an active 3D camera instead of a 

'standard' RGB or grayscale image is its less sensitivity to 

changes in lighting conditions. Furthermore, since the 

considered approach uses completely different type of 

features than the methods based on point feature detectors, 

it can be expected that it will perform better in situations 

where geometric features are predominant or more stable 

in a sense that they do not change with time. For example, 

large surfaces are more suitable for being used as 

landmarks since they usually represent parts of buildings, 

such as walls, floor, ceiling or large furniture whose 

position in the environment is fixed. 

The performance of a feature-based localization 

system strongly depends on the efficiency of the applied 

hypothesis generation approach and reliability of the 

measure used to select the best hypothesis. Therefore, 

these two components are given extra focus in this paper. 

The hypothesis selection method we use is based on 

transforming the model to the camera reference frame 

using a pose hypothesis and measuring the similarity 

between the transformed model and the currently acquired 

depth image. This principle is commonly used for 

hypothesis evaluation based on laser scans (Thrun et al., 

2005) or 3D point clouds (Fallon et al., 2012), where the 

independent beam model is assumed. This approach is, 

however, suitable for complete metric models of the 

environment, i. e. models which include all relevant 

surfaces completely reconstructed. Using a camera to 

build a complete map of an environment containing all 

relevant surfaces of the modeled environment can be an 

exhaustive process taking many images which must cover 

the entire mapped environment. The mapping is much 

easier if a 3D laser scanner is used. However, in the case 

of a ‘standard’ camera or a 3D camera with a relatively 

narrow field of view, the mapping can take a lot of time 

and effort.  

Our approach allows localization using incomplete 

maps, i.e. maps with some parts of the environment 

missing. Such a map can be obtained by driving a robot 

with a camera mounted on it along a path the robot would 

follow while executing its regular tasks. Furthermore, the 

proposed approach is designed for maps consisting of a 

series of independent point clouds acquired by a 3D 

camera without their fusion, analogously to the 

appearance based approaches which use RGB images. 

 The original contributions of the research presented in 

this paper are: 

 

 To the best of our knowledge this is the only research 

where a combination of line and surface features is 

systematically evaluated for application in place 

recognition under significant changes in lighting 

conditions and presence of dynamic objects. The 

proposed approach is applied in a form of image 

retrieval common to appearance-based approaches and 

compared to representative BoW-based methods FAB-

MAP (Cummins and Newman, 2009) and 

DLoopDetector (Galvez-Lopez and Tardos, 2012). 

 In order to make such an approach highly efficient, we 

propose a novel hypothesis generation method which 

generates a relatively small number of incorrect 

hypotheses even in cluttered environments.  



 A novel probabilistic hypothesis evaluation method is 

proposed which is suitable for matching partially 

overlapping feature sets with gross outliers. This 

enables simple map building from a sequence of depth 

images which can be acquired during a single tour 

along a typical path the robot is expected to follow 

during its regular operation. 

 

The scope of the research reported in this paper is 

restricted to the following: 

 

 Although the proposed method is well suited for 

application within a SLAM system which exploits 

prior probability by using sequence information like 

those presented in (Kawewong et al., 2011; Milford, 

2013; Milford and Wyeth, 2012), this paper is focused 

on place recognition from a single image, i.e. usage of 

any information about the relative camera poses from 

which the images are acquired is not considered. 

 The application of the proposed method is constrained 

to indoor environments, since it relies on the presence 

of dominant planar surfaces and objects with straight 

edges. Furthermore, the 3D camera used in the 

reported research has diminished capabilities in daily 

light. Nevertheless, the proposed approach could easily 

be adapted for application with 3D laser scanner, 

which extends its applicability to urban environments.  

 

The proposed place recognition approach is 

experimentally evaluated using two sets of depth images 

acquired by Microsoft Kinect sensor in indoor 

environments. The first set represents places which the 

evaluated system should recognize (it is simply a database 

of reference images) and the second set contains test 

images of the same places but acquired under different 

lighting conditions and with presence or absence of 

dynamic objects.  

The rest of the paper is structured as follows. In 

Section 2, a short survey of the related research is given. 

Section 3 provides a definition of the place recognition 

problem considered in this paper and an overview of our 

approach. Detection and representation of surface and line 

features is described in Section 4. Sections 5 and 6 explain 

the methodology we apply for hypothesis generation and 

selection respectively. In Section 7, the results of the 

experimental evaluation of the proposed approach are 

reported. Finally, the paper is concluded with Section 8, 

where obtained experimental results are discussed and 

some directions for future research are suggested. 

2. Related research 

Recently, sophisticated 3D sensors at very affordable 

price appeared on the market, motivating a number of 

research teams to develop algorithms for processing of 3D 

point clouds obtained by such sensors. Highly efficient 

feature-based algorithms for visual odometry (Huang et 

al., 2011), SLAM (Endres et al. 2012; Stückler and 

Behnke 2013) and local pose tracking (Fallon et al., 2012) 

have been reported. While approaches based on 

registration of sets of 3D geometric features like points 

and surface segments are mainly used for visual odometry 

and pose tracking, place recognition research is dominated 

by appearance-based approaches which rely on intensity 

images only.  

Impressive results have been achieved in the field of 

appearance-based place recognition (Cummins and 

Newman, 2009; Ciarfuglia et al., 2012; Liu and Zhang 

2012; Milford, 2013; Galvez-Lopez and Tardos, 2012) by 

using 'standard' camera image.  

A reasonable question which is still open is: "Does the 

geometry of 3D structures in an observed scene provide 

sufficient information to allow reliable distinction 

between different locations in the environment?" 

Besides the information obtained from a 'standard' 

camera image, the approach presented in (Badino et al., 

2012) uses range data obtained by two lidars. An approach 

which uses only 3D point clouds for loop closing is 

proposed in (Granström et al., 2011) Point clouds are 

described by rotationally invariant geometric and 

statistical features which are used as input to a non-linear 

classifier based on AdaBoost algorithm. 

A variant of FAB-MAP which uses 3D information 

obtained by a range sensor is presented in (Paul and 

Newman, 2010). This approach incorporates the 

observation of spatial ranges corresponding to pairs of 

visual words. The image is then described by a random 

graph which models a distribution over word occurrences 

as well as their pairwise distances. 

Our approach belongs to a class of methods which 

perform registration of data obtained by a 3D sensor based 

on planar surface segments and then select the best camera 

pose according to a surface matching score.  

In (Cobzas and Zhang, 2001) a trinocular stereo 

system is used for building a topological map where each 

node consists of 360˚ grayscale and disparity image of the 

surrounding space. Edges in grayscale images are detected 

by the Canny algorithm and then Delaunay triangulation is 

performed followed by a region growing segmentation 

based on average triangle intensity to form planar 

segments. Localization is performed by matching 

currently detected planar segments with those from the 

previously built map. Since the initial correspondence 

matching relies on the average segment intensity it can be 

expected that this system is very sensitive to scene 

illumination changes. Our approach, on the other hand, 

does not use intensity information which makes it more 

robust to changes in lighting conditions. Furthermore, 

although our approach could use images acquired by 

turning in place for 360˚, it can also work with a reduced 

set of images which cover the robot's environment only 

partially.  

The work (Pathak et al., 2010) is methodologically 

most related to ours. Surfaces are extracted from range 

images and matched to the surfaces in the environment 

model. The hypotheses are generated using an algorithm 

which maximizes the overall geometric consistency within 

a search-space. A consensus approach similar to 

RANSAC is used but with two major differences: 

similarly to our approach, there is no random sampling 

involved and the solution is not based entirely on 

consensus maximization but also on the uncertainty 

volume of hypotheses. In the pre-processing step, the 

planes in both sets are initially sorted in descending order 



of evidence (the determinant of the pseudo-inverse of the 

covariance matrix of the plane) and a top fixed percentage 

is used only. This initial search-space is then pruned by 

finding all consistent two pairs of correspondences using 

six geometric constraints: size-similarity test, overlap test, 

cross-angle test, parallel consistency, and if available, 

rotation and translation agreement with odometry. In the 

main search step, each of these pairs is considered in turn 

and their largest rotation and translation consensus sets are 

built. For each of these consensus sets, the least-squares 

rotation and translation are determined, along with the 

volume of uncertainty given by the pseudo-determinant of 

the covariance matrix of the estimated pose. The pose 

corresponding to the consensus set with the minimum 

uncertainty volume having at least four pairs is selected as 

the chosen hypothesis. Our method is similar in idea to the 

one proposed by Pathak et al. (2010), but has three main 

differences: (i) Instead of generating hypotheses from only 

2 pairs of corresponding surfaces, our method builds a 

hypothesis by considering pairs one after another until the 

estimated orientation uncertainty becomes sufficiently 

low. Thereby, it allows for a case where none of 2 pairs of 

corresponding surfaces has sufficient information for 

accurate orientation estimation. (ii) The hypothesis 

generation process is designed to generate more probable 

hypotheses before the less probable ones, allowing the 

algorithm to stop long before all possible hypotheses are 

considered. Thereby the necessary computation time is 

significantly reduced. (iii) In addition to planar surfaces, 

our approach uses line features, which are very useful in 

the situations where the surfaces in the observed scene do 

not provide sufficient information for estimating all 

degrees of freedom of the camera pose.  

The proposed method builds upon the approach 

presented in (Cupec et al., 2012; Cupec et al., 2013). In 

this paper, an improved approach is presented, which 

includes application of line segment features as well as a 

novel probabilistic hypothesis evaluation method based on 

surface sampling. Furthermore, a contribution of this 

paper to the place recognition research field is the 

evaluation of a geometric feature-based approach using a 

benchmark dataset consisting of depth images of scenes 

with moving objects and illumination changes similar to 

the one presented in (Pronobis et al., 2010) which consists 

of RGB images. 

 

3. Problem description and overview of the 

approach 

The place recognition problem considered in this 

paper can be formulated as follows. Given an environment 

map consisting of local models representing particular 

locations in the considered environment together with 

spatial relations between them and a camera image 

acquired somewhere in this environment, the goal is to 

identify the camera pose at which the image is acquired. 

The term 'image' here denotes not only a standard RGB-

image but also a depth image or a point cloud acquired by 

a 3D camera such as the Microsoft Kinect sensor. In 

general, a local model is any information describing a 

particular location which can be used to identify this 

location. This can be a single RGB-image, a point cloud, a 

laser scan or a set of features extracted from one or a 

series of such perception sensor outputs. The proposed 

method is based on local models consisting of planar 

surface segments and edge line segments extracted from a 

single depth image. This type of local model is metric in 

the sense that it consists of geometric features with 

defined poses relative to the local model reference frame. 

In general, the spatial relations between local models in a 

map can be topological or metric. In a metric map 

consisting of local models, which can be built by a SLAM 

algorithm, each local model is assigned the absolute pose 

of its reference frame relative to the global coordinate 

system of the map. Our approach provides the estimate of 

the camera pose relative to the local model reference 

frame, which can easily be transformed into a global pose 

in the case of a metric map. Nevertheless, the 

investigation reported in this paper does not consider 

spatial relations between local models nor the global 

structure of the map. We just focus on identifying the 

local model representing the particular location at which 

the camera image is taken as well as the camera pose 

relative to this local model's reference frame. Formally, 

given a set of local models {M1, M2, ..., MN} each 

representing a cloud of 3D points described by the point 

coordinates relative to the model reference frame SM,i, i = 

1, ..., N, the localization method described in Sections 4, 5 

and 6 returns the index i of the local model Mi 

representing the current camera location together with the 

pose of the camera reference frame SC relative to SM,i. The 

camera pose can be represented by vector 
T

T T   w t , 

where  is a 3-component vector describing the 

orientation and t is a 3-component vector describing the 

position of SC relative to SM,i. Throughout the paper, 

symbol R(is used to denote the rotation matrix 

corresponding to the orientation vector . 

The basic structure of the proposed place recognition 

approach is the standard feature-based localization scheme 

consisting of the following steps: 

 

1. feature detection, 

2. feature matching, 

3. hypothesis generation, 

4. selection of the best hypothesis. 

 

The considered approach uses planar surface segments 

obtained by segmentation of a depth image and line 

segments obtained by segmentation of depth discontinuity 

contours. These features are common in indoor scenes, 

thus making our approach particularly suited for this type 

of environments. Extraction of surface and line features 

from depth images and their representation is described in 

Section 4. 

Place recognition is accomplished by registration of 

the feature set extracted from the currently acquired image 

of a scene with the feature sets of the local models in the 

map. The first feature set is referred to in the following as 

scene features and the second one as local model features. 

For registration of these two feature sets an appropriate 

optimization tool could be used. A common optimization 

approach used for registration of point features is bundle 

adjustment. Usually a bundle adjustment method proceeds 



after a correspondence pruning step. When point features 

are used, the initial correspondences are established using 

appropriate local descriptors, which usually provide over 

80% correct correspondences (Lowe, 2004) and then the 

obtained initial correspondence set is pruned using an 

appropriate method such as RANSAC. For planar 

surfaces, however, there are no commonly accepted 

descriptors which are shown to provide such a high 

matching rate. Since we do not use local descriptors for 

the initial surface matching, but only weak geometric 

constraints, the hypothesis generation step must handle 

many false correspondences. Therefore, we use an 

approach based on Extended Kalman Filter (EKF) in the 

hypothesis generation step which allows efficient 

selection of correct correspondences between many false 

correspondences, as explained in Section 5. Our approach 

is based on the following idea. At least three scene surface 

segments must be matched to local model surface 

segments in order to determine all six degrees of freedom 

(DoF) of the camera pose relative to the local model's 

reference frame. An efficient way of selecting a set of 

correct feature correspondences is to do it sequentially, 

where each selected correspondence poses a geometric 

constraint for the selection of the next correspondence. 

Since each surface is assigned measurement uncertainty 

information, this information is used for formulating the 

aforementioned geometric constraints. We use EKF as a 

commonly used tool for sequential estimation using 

probabilistic models. It is used in our approach to 

sequentially estimate the camera pose relative to a local 

model by a series of measurement updates, where the 

measurements are relative poses of corresponding scene 

and local model features. After each measurement update 

step of EKF, the uncertainty of the estimated pose is 

reduced resulting in a stronger geometric constraint for 

selection of the next feature pair. EKF can also be 

regarded as an optimizer, which minimizes the variance of 

the estimation error. The procedure stops when a desired 

accuracy is achieved.  

Assuming that some a priori information about the 

camera pose relative to the environment is available, even 

if its uncertainty is rather high, it can help reject many 

false matches. For example, in the case of a wheeled 

robot, the camera pose relative to the gravity axis can be 

determined quite accurately. This information can then be 

used to distinguish between the horizontal and vertical 

surfaces, thereby reducing the number of initial feature 

correspondences significantly. Nevertheless, even with 

geometric constraints, a high percentage of false pairs of 

corresponding features can be expected. Since a sequence 

of at least three such pairs is needed for camera pose 

estimation, the data association in the case of surface and 

line features assumes examining many combinations of 

possible feature correspondences. A pose computed from 

a particular sequence of feature correspondences is 

referred to herein as a pose hypothesis. A pose hypothesis 

can be represented by a pair (i, w), where i is the index of 

a local model and w is the estimated camera pose relative 

to that model. 

Examining all possible sequences of feature pairs 

would in general require an enormous computational 

effort. A method proposed in (Cupec et al., 2012) ranks 

the feature pairs according to their potential usefulness for 

camera pose estimation and generates camera pose 

hypotheses using EKF approach starting with the most 

promising pairs. A detailed explanation of this method is 

given in Section 5. This method is used within the 

discussed approach to generate one or more camera pose 

hypotheses for each local model in the map.  

Finally, the most probable of all generated hypotheses 

must be selected. This hypothesis represents the final 

solution of the place recognition problem. The hypothesis 

selection method used within our approach is described in 

Section 6.  

 

4. Planar surface and line segment Model 

The feature detection stage of our approach results in a 

3D model of a scene captured by a 3D camera. This 3D 

model consists of planar surface segments and edge line 

segments. The extraction and representation of surface 

and line features are described in Sections 4.1 and 4.2 

respectively. 

 

4.1 Detection and representation of surface 

segments 

 Depth images acquired by a 3D camera are segmented 

into sets of 3D points representing approximately planar 

surface segments using a similar split-and-merge 

algorithm as in (Schmitt and Chen, 1991), which consists 

of an iterative Delaunay triangulation method followed by 

region merging. Instead of a region growing approach 

used in the merging stage of the algorithm proposed in 

(Schmitt and Chen, 1991), we applied a hierarchical 

approach proposed in (Garland et al., 2001) which 

produces less fragmented surfaces while keeping relevant 

details. By combining these two approaches a fast 

detection of dominant planar surfaces is achieved. The 

result is segmentation of a depth image into connected sets 

of approximately coplanar 3D points each representing a 

segment of a surface in the scene captured by the camera. 

An example of image segmentation to planar surface 

segments is shown in Fig. 1. 

 The parameters of the plane supporting a surface 

segment are determined by least-square fitting of a plane 

to the supporting points of the segment. Each surface 

segment is assigned a reference frame with the origin in 

the centroid of the supporting point set and z-axis parallel 

to the supporting plane normal. The orientation of x and y-

axis in the supporting plane are defined by the 

eigenvectors of the covariance matrix p representing the 

distribution of the supporting points within this plane. The 

purpose of assigning reference frames to surface segments 

is to provide a framework for surface segment matching 

and EKF-based pose estimation explained in Section 5.  

 



 
 (a) 

 
 (b) 

 
 (c) 

 
(d) 

Fig. 1. An example of image segmentation to planar surface 

segments: (a) RGB image; (b) depth image obtained by Kinect, 

where darker pixels represent points closer to the camera, while 

black points represent points of undefined depth; (c) extracted 

planar surface segments and (d) 3D model consisting of 

dominant planar surface segments.  

  

The uncertainty of the supporting plane parameters is 

described by introducing three random variables forming 

the disturbance vector q = [sx, sy, r]T. These three variables 

describe the deviation of the true plane parameters from 

the measured plane parameters. The true plane is defined 

by the equation 

 F T F F n p , (1) 

 

where Fn is the unit normal of the plane represented in the 

surface segment reference frame SF, F is the distance of 

the plane from the origin of SF and Fp is an arbitrary point 

represented in SF. In an ideal case, where the measured 

plane is identical to the true plane, the true plane normal is 

identical to the z-axis of SF, which means that  
Fn = [0, 0, 1]T, while F = 0. In a general case, however, 

the true plane normal deviates from the z-axis of SF and 

this deviation is described by the random variables sx and 

sy, representing the deviation in directions of the x and y-

axis of SF respectively, as illustrated in Fig. 2 for x 

direction.  
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Fig. 2. Plane uncertainty model. 

The unit normal vector of the true plane can then be 

written as 
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The random variable r represents the distance of the true 

plane from the origin of SF, i. e. 

 

 F r  . (3) 

 

We use a Gaussian uncertainty model, where the 

disturbance vector q is assumed to be normally distributed 

with 0 mean and covariance matrix q. Covariance matrix 

q is diagonal matrix with variances 2

sx , 2

sy  and 2

r  on 

its diagonal. These variances are computed from the 

uncertainties of the supporting point positions, which are 

determined using a triangulation uncertainty model 

analogous to the one proposed in (Matthies and Shafer, 

1987). Computation of covariance matrices q is 

explained in (Cupec et al., 2013). 

 Finally, a scene surface segment is denoted in the 

following by the symbol F associated with the quadruplet 

  

  , , ,C C

F FF  q pR t Σ Σ , (4) 

 

where CRF and CtF are respectively the rotation matrix and 

translation vector defining the pose of SF relative to the 

camera coordinate system SC. Analogously, a local model 

surface segment is represented by 

   

  , , ,M M

F FF    
  q pR t Σ Σ . (5) 

 

 

4.2 Detection and representation of line 

segments 

 Discontinuities in depth images often appear as 

contours representing the edges of objects in a scene. The 

edges of objects with a fixed position in the robot's 

environment can be used for feature-based robot 

localization and pose tracking.  

 In our approach, depth discontinuity contours are 

segmented into line segments by Douglas-Peucker 

algorithm (Douglas and Peucker, 1973). Only the line 

segments longer than a predefined threshold are 

considered.  

 A scene line segment is denoted in the following by 

symbol F associated with quadruplet 

  

  1 2 ,1 ,2, , ,C CF  p pp p Σ Σ , (6) 

 

where Cp1 and Cp2 represent the coordinate vectors of the 

endpoints of the line segment and p,1 and p,2 covariance 

matrices describing their uncertainties. Covariance 

matrices p,1 and p,2 are computed using the 

aforementioned triangulation uncertainty model. Local 

model line segments are represented analogously. The 

same symbol F is used for both surface and line features 

in order to simplify explanations related to both types of 

features. 

 



 

5. Hypothesis generation 

After feature detection, the discussed place recognition 

algorithm proceeds by data association, i.e. by matching 

the features detected in a scene to the features of all local 

models in the map. The result of this matching is an initial 

set of feature pairs (F, F'), where each pair associates a 

local model feature F' to a scene feature F. This pair set is 

then used to generate pose hypotheses. Each pose 

hypothesis is generated from a sequence of feature pairs 

using EKF. A commonly used hypothesis generation 

approach is RANSAC (Fischler and Bolles, 1981). This 

approach assumes generating pose hypotheses from the 

sequences of randomly selected feature pairs. In the case 

considered herein, such an approach is inefficient because 

a large number of hypotheses would have to be generated 

in order to obtain a correct hypothesis. We give two 

reasons for that. First, there is a high probability that a 

sequence consisting of a fixed number of randomly 

selected pairs contains only small surfaces whose 

parameters have a high uncertainty, resulting in inaccurate 

pose estimation. Increasing the number of pairs per 

sequence would also increase the computational effort. 

Second, there is a high probability that a randomly 

selected sequence consists of approximately parallel 

surfaces or two sets of approximately parallel surfaces, 

from which a 6 DoF camera pose cannot be computed 

accurately. 

The hypothesis generation approach described in this 

section is designed to reduce these problems by using a 

data driven selection method to form sequences of feature 

pairs instead of random sampling. The proposed approach 

has the following properties (i) feature pairs are ranked 

according to a measure of their usefulness in the pose 

estimation process and hypotheses are generated from a 

relatively small number of the most 'useful' pairs and (ii) 

hypotheses are generated by introducing feature pairs one 

by one, where the selection of the next pair is subject to 

the geometrical constraints provided by the already 

selected pairs.  

 

5.1 Surface segment ranking 

 If very small surface segments are used for pose 

estimation, three surface segments might not be sufficient 

for computing the camera pose with a desired accuracy. 

There are two main reasons why it is reasonable to 

generate hypotheses using large surface segments prior to 

smaller ones. First, surfaces supported by a high number 

of image points have small parameter uncertainty. Thus, a 

few large surface matches are usually sufficient to 

estimate the camera pose with a desired accuracy. Second, 

larger surfaces are more probable to have a fixed position 

in the environment. Hence, a straightforward approach 

would be to generate hypotheses by considering only a 

representative subset of the largest surface segments. In 

some cases, however, relatively small surfaces can contain 

information crucial for motion estimation, as explained in 

the following. 

 With two non-parallel plane correspondences, 5 of 6 

DoF are completely defined. A typical indoor scene 

contains at least two dominant non-parallel planar 

surfaces, e. g. the floor surface and a wall, as shown in 

Fig. 3. In many cases, however, a scene is deficient in 

information needed to estimate the last, sixth DoF of the 

robot's motion. A typical example is the corridor shown in 

Fig. 3(a), where the floor and the walls provide sufficient 

information for accurate estimation of 5 DoF of the robot's 

motion, while it lacks the surfaces perpendicular to the 

sixth DoF, i.e. the horizontal movement direction parallel 

to the walls. A rather small surface perpendicular to this 

direction (e.g. surface denoted by “A” in Fig. 3(b)) would 

have much greater importance then a much larger surface 

parallel to the floor or the sides of the corridor.   

 

  

(a) (b) 

Fig. 3. Sample images of typical indoor scenes. 

 In (Cupec et al., 2012) surface ranking based on the 

information content factor is proposed. The idea of this 

approach is explained in the following. A planar surface 

provides information for estimating three of the total 

6DoF of the camera motion. A set Z of planar surface 

segments contains sufficient information for estimating all 

6DoF of the camera motion only if for every 
3v R  there 

is a segment Fi  Z with normal ni such that vTni ≠ 0. Let 

us assume that each image point lying on a particular 

surface segment Fi  Z is assigned a normal of that 

surface. Then the distribution of normal directions over 

the entire set Z can be represented by a covariance matrix  

  i

T

i i i

F Z




  Y n n  (7)

 

 

where ni is the normal of Fi and i is the number of points 

supporting this surface segment. For a given unit vector v, 

the value vTYv can be regarded as a measure of the total 

information for pose estimation in the direction v 

contained in Z. All points of a surface segment Fi 

contribute to the total information in the direction of the 

surface normal. Hence, the contribution of that surface 

segment in the direction of its normal ni is equal to its 

number of supporting points i. Since the total 

information in direction ni contained in Z is T

i i n Y n , the 

value  

  

i

i T

i i


 

 n Y n
 (8) 

represents a measure of the contribution of Fi to the total 

information in the direction of its surface normal. This 

value is referred to in the following as the information 

content factor. The strategy proposed in (Cupec et al., 

2012) is to rank the surfaces according to the value (8) and 

to consider only the first nsurf surface segments in the 

hypothesis generation process. The result of this ranking is 

A 



a list of surface segments sorted by the information 

content factor. The index of a surface segment in this list 

is referred to in the following as information content 

index. Assuming that the list is sorted in descending order, 

the smaller the information content index the more useful 

the segment is for the purpose of pose estimation. 

 

5.2 Surface segment matching 

The hypothesis generation process starts by forming 

the set of initial surface segment matches. This set is 

formed by considering all possible pairs of surface 

segments (F, F') and accepting only those which satisfy 

two criteria, coplanarity criterion and overlapping 

criterion, with respect to the initial estimate of the camera 

pose relative to the local model.  

A scene surface segment and a local model surface 

segment satisfy the coplanarity criterion if the difference 

between their parameters is within an uncertainty region 

determined by the uncertainty of the parameters of both 

surface segments as well as the uncertainty of the initial 

pose estimate. This approach is commonly used in EKF-

based registration approaches. In our implementation of 

this approach, the parameters of the supporting plane of 

the surface segment F are transformed from the camera 

reference frame SC into the local model reference frame 

SM using the initial camera pose estimate and then from SM 

to the reference frame of segment F’. The difference 

between the transformed plane parameters of F and the 

plane parameters of F’ is formulated as innovation 

function  , ,F F e w  which maps the parameters of F and 

F’ and the initial camera pose w to a 3-component 

innovation vector. This vector is then evaluated using 

Mahalanobis distance  

 

      1, , , , , ,Td F F F F F F  
q q

w e w Q e w , (9) 

 

where Qq is a covariance matrix computed from the 

covariance matrices q and q’ describing the uncertainty 

of the plane parameters of the compared surface segments 

and the covariance matrix w describing the uncertainty of 

the initial camera pose estimate. The coplanarity 

constraint can be formulated as 

 

  , ,d F F  
q q

w , (10) 

 

where the threshold q can be computed according to a 

desired matching probability assuming 2 distribution of 

dq distance. 

 In addition to the coplanarity criterion, a second 

matching criterion related to the overlap between the 

transformed scene surface segment and a local model 

surface segment is used. A computationally efficient 

overlap measure is formulated by describing the spatial 

distributions of the supporting point sets of the matched 

surface segments by the first and second order statistics. 

Matched surface segments F and F’ are represented each 

by a single point positioned at their centroids StF and MtF’ 

respectively, where the uncertainty of the position of these 

representative points is described by the covariance 

matrices p and p’. The representative point of F is then 

transformed from the camera reference frame into the 

local model reference frame and the Mahalanobis distance 

between the obtained point and the representative point of 

F’ is used as a measure of overlap between the matched 

surface segments.  

 The details regarding the two matching criteria are 

given in Appendix A. 

 

5.3 Hypothesis tree generation guided by 

surface information content 

The hypothesis generation approach proposed in this 

section is based on building a tree structure for each local 

model, where each node in this tree is related to a feature 

pair and each path from a leaf node to the root node 

represents a sequence of feature pairs from which a pose 

hypothesis is generated. Although it is possible to use both 

the surface and line features in equal manner, the current 

implementation uses only surface segments for estimating 

all three rotational and two translational DoF, while both 

the surface and line segments are used for determining the 

last translational DoF.  

The initial matching results in a set of surface segment 

pairs. Each pair is assigned a weight representing the sum 

of the information contents indices of its surface 

segments. The pairs are then sorted in ascending order 

forming a match queue. The next stage in hypothesis 

generation is building the hypothesis tree. The root of the 

tree represents the initial pose estimate with its 

uncertainty. The hypothesis tree building proceeds by 

taking a pair from the top of the match queue, testing this 

pair for compatibility with each of the nodes in the tree 

and appending a new node representing the considered 

pair to all nodes with which it is compatible. A pair (F, F') 

is compatible with a node V if (i) neither F nor F' is 

included in the pair corresponding to any node along the 

path from V to the root node and (ii) the pair satisfies the 

coplanarity and overlap constraint explained in Section 

5.2 with respect to the pose w assigned to the node V. 

After a new node is appended to the tree, the pose 

estimate assigned to the parent node is updated by EKF 

using the measurement provided by the considered pair. 

The new node is assigned the updated pose together with 

its uncertainty. This procedure continues until a 

predefined number NH of branches are generated, where 

each branch represents a pose hypothesis. Such a 

hypothesis tree is constructed in (Kosaka and Kak, 1992). 

The novelty of our approach is in using information 

contents factor to determine the order in which the surface 

segment pairs are appended to the tree.  

We also introduced a mechanism for reducing the 

number of similar hypotheses. Any sequence of correct 

correspondences results in a correct hypothesis. Since 

there can be a number of correct correspondence 

sequences, many similar hypotheses are generated. After a 

new node is appended to the hypothesis tree, the 

uncertainty of the pose corresponding to this node is 

evaluated. If all three rotational DoF are estimated with a 

satisfactory accuracy, the pose is compared to the other 

poses estimated during the construction of the hypothesis 

tree. The accuracy of the estimated three rotational DoF is 

considered to be sufficient if the maximum eigenvalue of 



the rotational part of the covariance matrix w is less than 

some predefined value .  
If the camera orientation is estimated with a low 

uncertainty, two translational DoF are also sufficiently 

accurate. For example, two pairs of non-parallel surface 

segments are sufficient to determine all three rotational 

DoF. If the involved surface segments are sufficiently 

large, which implicates that their parameters are estimated 

with low uncertainty, then the estimated orientation would 

also be accurate. Furthermore, correspondence between 

two non-parallel planes defines also two translational 

DoF. The remaining undetermined translational DoF is in 

the direction of the line defined by the intersection of the 

two planes.  

The pose obtained after appending a new node to the 

hypothesis tree with three rotational DoF estimated with a 

specified accuracy is referred to in the following as a 5 

DoF hypothesis. The new 5 DoF hypothesis is compared 

to all previously generated 5 DoF hypotheses. Only if it is 

not similar to any other hypotheses, the procedure for 

determining the remaining DoF is started in order to 

complete the pose hypothesis. Hence, the sixth DoF is 

estimated only once for all similar 5 DoF hypotheses, 

which reduces the computational effort. The method 

applied for estimation of the sixth DoF is described in 

Section 5.4. 

The proposed hypothesis generation algorithm is given 

in the following.  

 

Algorithm 1: Hypothesis generation 

Input:  match queue, i, winit, w,init, NH, NV,  

Output:  

1: Create a hypothesis tree consisting of a single root 

node V with assigned pose winit and its covariance 

matrix w,init. 

2: Repeat until the match queue is empty or || = NH or 

the total number of nodes in the tree is NV 

3:  Take pair (F, F') from the top of the match queue 

and remove it from the queue. 

4:  For every node V in the hypothesis tree 

5:   If (F, F') is compatible with V, then 

6:     Perform measurement update of the pose 

w assigned to V using EKF, where the 

parameters of F and F' are used to 

formulate innovation. The result is a new 

pose w’ and covariance matrix w’. 

7:     Create a new node with assigned pair  

(F, F'), pose w’ and matrix w’. Append 

this node to the hypothesis tree. 

8:    If the maximum eigenvalue of the 

rotational part of w’ is ≤ , then 

9:      Compare w’ to all already generated 5 

DoF hypotheses. If w’ is not similar to 

any of them, then 

10:       Determine the sixth DoF by the 

procedure described in Section 5.4. 

11:       If the sixth DoF is successfully 

determined, then add hypothesis  

H = (i, w) to the set . 

12:       end if 

13:     end if  

14:   end if 

15:  end for 

16: end repeat 

 

The algorithm is performed for every local model Mi 

in the map. The inputs to the algorithm are the match 

queue, the local model index i, the initial pose estimate 

winit and its covariance matrix w,init the maximum number 

of hypotheses per local model NH, the maximum allowed 

number of nodes in the hypothesis tree NV, the maximum 

orientation uncertainty and set  of hypotheses 

generated for the previously considered local models. For 

each local model, the algorithm adds a set of hypotheses 

to  which is initially empty. 

When the proposed approach is used for local pose 

tracking the initial pose estimate winit can be obtained from 

the previous robot pose using odometry or inertial sensors. 

Since this paper considers global localization without any 

prior pose information, in all presented experiments winit is 

set to 0 with a very high uncertainty, as described in 

Section 7. 

 

5.4 Determining the sixth DoF 

After a 5 DoF pose is generated, the hypothesis is 

completed by determining the last, sixth DoF. The sixth 

DoF of the estimated pose represents translation in the 

direction in which the translational uncertainty of the 

estimated pose w is highest. This direction is computed as 

the eigenvector corresponding to the greatest eigenvalue 

of the translational part of the covariance matrix w. Let 

us denote this vector by t  and the translation along this 

direction which needs to be found by l. The method 

applied to determine the sixth DoF is based on a voting 

scheme which includes both surface and line features. The 

process starts by forming pairs consisting of a local model 

feature and a scene feature transformed into the local 

model reference frame by R(’) and t’, where ’ and t’ 

represent orientation and position of the camera relative to 

the local model reference frame estimated in the process 

of generating the 5 DoF hypothesis, i.e. prior to 

determining the sixth DoF. A feature pair qualifies for 

voting if its elements satisfy the following conditions: (i) 

both features are oriented at a sufficiently large angle to t

(In the experiments reported in Section 7, this angle is 

45°), (ii) there is a value l such that the scene feature 

translated by l  t  overlaps sufficiently with the 

corresponding local model feature.  

 The votes are entered into an accumulator array of 

bins, where each bin corresponds to an interval of values l. 

Each feature pair makes a sequence of votes in the 

accumulator array centered in the bin corresponding to the 

value l which provides the best overlapping between 

features. A pair increases the value of the bin 

corresponding to the value l and the neighboring bins. The 

number of bins updated by a feature pair depends on the 

uncertainty of l. Since the feature parameters are measured 

with uncertainty, this uncertainty is used to compute the 

uncertainty of l. Hence, a value l provided by a feature 

pair is regarded as a random variable with variance l. The 



accumulator array is updated by this feature pair by 

increasing the value of each bin by the amount 
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where lbin is the central value of the bin and  is a feature  

overlapping measure. Computation of l,  and  for 

surface and line features is explained in Appendix B and 

Appendix C respectively. An example is shown in Fig. 4. 

After all feature pairs have been processed, the bin with 

the maximum value is determined and the feature pair 

which contributes the most to this bin is selected for 

estimation of the sixth DoF. This selection is performed 

according to the formula 
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where Tlast is the set of all feature pairs relevant for 

estimation of the sixth DoF,  * *,i jF F  is the selected 

feature pair and lmax is the center of the bin with the 

highest accumulated vote value.  

 

 
 
Fig. 4. Vote accumulation for the sixth DoF.  The contributions 

of four matches are depicted by thin black lines, the contribution 

of the match selected for estimation of the sixth DoF is depicted 

by a thick gray line and the total of all accumulated votes is 

depicted by a thick black line.  

Finally, the sixth DoF is estimated by EKF update of 

the pose    w t  using the measurement provided by 

the selected feature pair.  

6. Selecting the best hypothesis 

The hypothesis generation stage described in Section 5 

results in a set of hypotheses . The hypothesis evaluation 

consists in comparing the currently acquired 3D point 

cloud with the 3D point cloud corresponding to the 

hypothesis model and selecting the best hypothesis 

according to a particular measure of similarity between 

these two point clouds. The approach proposed in this 

section is to represent each surface segment by a set of 

samples and to match the scene samples to local model 

samples. The result of this matching is classification of 

each sample to one of the following four classes: matched, 

occluded, transparent and invisible as described in 

Section 6.2. A local model sample is classified as 

transparent if its projection onto the scene depth image 

occludes samples in that image. It is assumed that 

transparent surfaces cannot be detected and consequently 

the surface segment  which has transparent samples is not 

present in the currently observed scene. This surface 

segment is then classified as dynamic since it is removed 

from the location represented by the local model after map 

building. A scene sample is classified as transparent if it 

occludes local model samples projected onto the scene 

depth image. Analogously, a scene surface segment whose 

sample is classified as transparent is classified as dynamic 

since it appeared after map building. A surface segment is 

classified as matched if it is not dynamic and at least Ns of 

its samples are classified as matched. The matched surface 

segments participate in a probabilistic decision process 

which assigns a probability to every hypothesis. Each pair 

of matched surface segments increases the probability of 

the evaluated hypothesis. The hypothesis with the highest 

probability is selected as the final solution.  

Performing the described hypothesis evaluation 

procedure for each generated hypothesis would be time 

consuming. Therefore, before applying this procedure, 

pruning of the generated hypotheses is performed. The 

maximum consensus set of all generated hypotheses is 

determined, and only the hypotheses whose consensus set 

is close to the maximum consensus set are considered for 

further hypothesis evaluation. The hypothesis consensus 

set is determined as follows. Each scene surface segment 

is transformed to the hypothesis model coordinate system 

using the hypothesis pose and matched to all the local 

model surface segments according to the coplanarity 

criterion and overlapping criterion described in Section 

5.2. The matched scene surface segments represent the 

hypothesis consensus set. A hypothesis consensus set is 

considered to be sufficiently close to the maximum 

consensus set if its size is less than the size of the 

maximum consensus set for at most 2 elements. 

The following subsections provide details of the 

proposed hypothesis selection approach. 

 

6.1 Data driven surface sampling 

A common approach to reducing the amount of data 

provided by a complex sensor such as a camera is to apply 

sampling on a uniform grid. An image is segmented into 

rectangular regions and each region is represented by a 

single sample, as shown in Fig. 5(c). A sample can be 

simply a point, e.g. the center of a region, but it can also 

be a data structure describing the properties of the entire 

region. The image region represented by a sample is 

referred to in the following as a sample window. An image 

obtained by a 3D camera consists of pixels representing 

the surfaces detected in the observed scene and pixels 

without assigned depth. Each planar surface is represented 

in the image by a connected set of pixels. An example of 

image segmentation into regions corresponding to planar 

surface segment is shown in Fig. 5(b). The surface 

sampling approach proposed herein is to sample these 

regions and assign a set of samples to each of the relevant 

planar surfaces.  
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Fig. 5. (a) RGB-image; (b) image regions corresponding to 

planar surface segments represented by gray color; (c) uniform 

sampling; (d) data driven sampling. 

The desirable properties of the sampling method are 

given in the following: 

 

1. Each sample window is completely contained inside 

an image region representing a planar surface in the 

scene. Thereby, the data associated with the sample is 

restricted to a single surface. 

2. All pixels representing relevant planar surfaces 

detected in the scene are covered by sample windows. 

3. Overlapping between the adjacent sample windows 

should be low, thereby reducing the redundancy in the 

information encoded by the samples. 

4. The size of the sample windows should be inside 

specified limits. Very small sample windows should 

be avoided since they cover a small part of the scene, 

while taking approximately the same amount of 

processing time as the other samples. Very large 

sample windows, however, when transformed between 

two model views for the comparison purpose, can be 

significantly distorted by the perspective 

transformation. These large deviations from their 

original rectangular shape complicate the evaluation of 

the overlapping of the sample windows between the 

compared models. 

5. The sampling process should be as fast as possible. 

 

Regular sampling on a uniform grid has all the 

properties stated above except the first one. A sampling 

approach which meets all the requirements to a great 

extent, yet not perfectly, is proposed in the following. It is 

based on the Voronoi diagram as a means of selecting 

pixels in the middle of a particular image region. The 

Voronoi diagram of an image region with Chebyshev 

distance as metric can be computed using Algorithm 2.  

 

 

 

 

 

 

Algorithm 2: h-map update 

Input:  Q, h 

Output: h 

17: Repeat until Q is empty 

18:  Take m from the bottom of Q 

19:  For every m' from the 8-neighborhood of m 

20:   If h(m') > h(m) + 1 then 

21:    h(m') ← h(m) + 1 

22:    Put m' at the top of Q 

23:   end if 

24:  end for 

25: end repeat 

 

This is a region growing algorithm referred to in the 

following as h-map update which constructs a mapping 

h(m) assigning a value h to each image point m. Given an 

image region, Algorithm 2 can be used to compute the 

Chebyshev distance of all points belonging to this region 

from the region boundary. Let Q be a FIFO queue 

containing all image points m which do not belong to the 

considered region and let h(m) be set to 0 for all these 

points and to ∞ for all pixels belonging to the considered 

region. After executing Algorithm 2, values h(m) 

represent Chebyshev distance of all pixels belonging to 

the considered region to the region boundary. This process 

can be applied in parallel to all image regions. A 1D 

example is shown in Fig. 6, which can be regarded as e.g. 

an image row segmented into three regions corresponding 

to three planar surfaces in a scene. 

The Chebyshev distances for all points inside the 

regions shown in Fig. 6(a) are represented by the h-map 

depicted in  Fig. 6(b). The local maxima of h(m) represent 

the Voronoi diagram of the region. Assuming that image 

regions represent planar surfaces in the scene, the pixel m* 

corresponding to the highest value h(m*) is a reasonable 

choice for a sample, since it is the center of the largest 

square window completely contained inside a region. The 

next sample can be obtained by setting h(m*) to 0, which 

has the effect of removing point m* from the sampled 

region, and executing Algorithm 2 in order to recompute 

the Chebyshev distance map. The h-map after removing 

the point denoted by a circle in Fig. 6(b) is shown in Fig. 

6(c). By repeating this procedure until max ( ) maxh h
m

m  a 

set of samples is obtained, as shown in Fig. 6(d), where 

sample points are denoted by squares positioned in the 

local minima of h(m). The sample window for each 

sample can be determined by the local maxima of h(m) in 

the neighborhood of the sample point. The described 

method is represented by Algorithm 3, where hmin = 0 

while b(m) represents a mapping which assigns each pixel 

m value 1 if it belongs to a region and 0 otherwise. Fig. 

5(a) represents a visualization of the mapping b(m).  
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Fig. 6. (a) An image row segmented into three regions. (b) 

Chebyshev distance assigned to all points. (c) Chebyshev 

distance after removing the first sample from the region. (d) 

Final sampling result for hmin = 0. Sample centers are represented 

by squares and sample windows by thick vertical lines.  

(e) h-map after selection of the first sample for hmin < 0. (f) Final 

sampling result for hmin < 0. 

Algorithm 3: Data driven region sampling 

Input:  b, hmin, hmax 

Output:  

1:   

2: Set h(m) for all pixels m to ∞. 

3: Form empty queue Q. 

4: Put all pixels m for which b(m) = 0 as well as those 

that lie on a region boundary into Q and set their 

value h(m) to 0. 

5: Run h-map update algorithm. 

6: Repeat 

7:   arg max ( )h



m

m m  

8:   If h(m) < hmax, then stop the procedure. 

9:    Insert m into . 

10:       max , minh h h m m  

11:   Empty Q and put m into it. 

12:   Run h-map update algorithm. 

13: end repeat 

14: Return  

 

Although this method produces the sample windows 

positioned inside the sampled region, its drawback is that 

it results in a large number of samples if hmax is set to a 

small value, while by increasing hmax some relatively 

small surfaces are not represented by samples. A better 

result is obtained if hmin is set to some negative value, as 

illustrated in Fig. 6. The h-map shown in Fig. 6(e) is 

obtained after removing the sample denoted by a circle in 

Fig. 6(b). The final result is depicted in Fig. 6(f). The 

minimum width of an image region which is sampled is 

determined by the parameter hmax and the maximum 

sample window size is 2(hmax – hmin). Furthermore, a 

property of the proposed method is that the inside of a 

large region is represented by large sample windows, 

while narrow regions are represented by small sample 

windows. By this adaptive sampling strategy, the total 

number of samples is reduced without a significant loss of 

information. An example of the proposed data driven 

region sampling is shown in Fig. 5(d). 

Each sample represents a fragment of a surface defined 

by the sample window. A sample consists of the following 

data:  ,
T

u vm – image point representing the sample 

centre, d – depth of the sample center,  , ,
T

x y zp – 

position of the sample center point relative to the camera 

or local model reference frame, p – maximum eigenvalue 

of the covariance matrix which describes the uncertainty 

of p, v –eigenvector corresponding to that eigenvalue and 

w – sample window size. The covariance matrix 

describing the uncertainty of the sample center point is 

determined using a triangulation uncertainty model 

analogous to the one proposed in (Matthies and Shafer, 

1987). This matrix is reduced to its maximum principal 

axis for computational efficiency. 

Note that although the sample windows are square, the 

surface patches they represent are not since the projection 

of a square onto an arbitrary surface is not square in 

general, as illustrated in Fig. 7. 
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Fig. 7. Surface patch corresponding to a sample window. 

 

6.2 Sample matching 

Comparison of a scene model to a hypothesis model 

is performed by matching surface samples. The surface 



samples of a hypothesis model are transformed into the 

coordinate system of the scene model, projected onto the 

camera image and matched to the scene surface samples 

with respect to their position and orientation.  

A hypothesis model sample is matched to a scene 

sample if there is sufficient overlapping between their 

windows, if they have similar depths and if their 

corresponding surface patches have similar orientations. 

The overlapping between a hypothesis model sample and 

a scene sample is considered sufficient if the center of 

each sample is inside the window of the other sample, as 

shown in Fig. 8. The details are given in Appendix D. 
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Fig. 8. Overlapping samples. 

A scene sample and a local model sample which 

overlap with each other can be in one of the following 2 

relations: (i) if their depths and orientations are 

sufficiently similar they match or (ii) if the depth of one of 

them is significantly less than the depth of the other, the 

first one occludes the other. According to these relations, 

each sample is classified in one of three classes: (i) if a 

local model sample matches at least one of the scene 

samples, then it is classified as matched, (ii) if a local 

model sample does not match any of the scene samples, 

but it is occluded by at least one scene sample, then it is 

classified as occluded and (iii) if a local model sample is 

neither matched nor it is occluded, but it occludes at least 

one scene sample, then it is classified as transparent. 

Scene samples are classified analogously. If a sample does 

not overlap with any sample from another sample set, then 

it is classified as invisible. 

 Since transparent samples of a model surface segment 

indicate that this segment is not present in the scene, 

thereby causing a rejection of the segment from further 

processing, as explained at the beginning of Section 6, the 

hypothesis evaluation algorithm must have mechanisms 

which avoid misclassification of segments. Let us 

consider one situation related to this problem. A depth 

image obtained by a 3D camera often contains regions 

with undefined depth due to limited range of the sensor, 

specular reflections or materials which do not reflect the 

structured light or laser beams emitted by the sensor. For 

these reasons, a 3D camera can fail to detect a part of a 

surface in a scene from a particular view, while the same 

surface is completely reconstructed from another view. 

Thus, it can happen that e.g. a local model sample is 

projected onto an undefined region in the scene image, 

although the pose hypothesis has correctly registered the 

acquired point cloud with the local model. In this case, the 

considered sample is not matched to a scene sample 

representing the same surface. However, because of a 

small error in the estimated pose, a small fragment of the 

considered sample can overlap with a scene sample 

representing another surface, resulting in misclassification 

of the considered sample. If the hypothesis evaluation 

algorithm was designed to reject every surface segment 

which has at least one transparent sample, a significant 

number of dominant segments would be falsely rejected. 

In order to reduce the probability of misclassification and 

false rejection of segments, it is required that the 

percentage of visible surface samples which are classified 

as transparent must exceed a predefined threshold in order 

for the segment to be classified as dynamic. In the 

experiments presented in Section 7, this threshold is set to 

20%. 

 

6.3 Estimating the hypothesis probability 

 In this section, a method for estimating the probability 

of the hypotheses, generated as described in Section 5, is 

described. A straightforward approach to estimating a 

hypothesis probability would be to use the independent 

beam model (IBM) (Thrun et al., 2005) by assigning the 

probability to each sample match and then to estimate the 

hypothesis probability by multiplying the probabilities of 

individual sample matches. This approach gives advantage 

to hypotheses which match large number of samples, 

which is reasonable. Nevertheless, in the case of matching 

local models which cover the scene image only partially, 

the number of matched samples does not always reflect 

the probability of a hypothesis. Let us consider the 

example shown in Fig. 5. Since the floor surface is 

represented by the majority of samples, the IBM approach 

would give advantage to a false hypothesis which matches 

a single local model surface to the floor surface, over a 

correct hypothesis which matches model surfaces to many 

other scene surfaces but not the floor surface. Some other 

drawbacks of IBM are discussed in (Krainin et al., 2012). 

 In order to make our approach suitable for matching 

partially overlapping point clouds, we use an approach 

which matches entire surface segments instead of 

matching individual samples. The idea is to give 

advantage to hypotheses which match complex structures, 

which are not probable to appear accidentally. The 

proposed approach is described in the following. 

 Let Z = {F1, F2, .... } be a set of all surface segments 

detected in a camera image. The conditional probability of 

a hypothesis Hk given Z can be computed by Bayes' rule 
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where p(Z | Hk) is the conditional probability density 

function (PDF) of detecting a particular set of surface 

segments if hypothesis Hk is correct, P(Hk) is the prior 

probability of Hk and p(Z) is prior PDF of obtaining a 

particular set of surface segments. Assuming that one of 

the hypotheses from a hypothesis set  1 2, ,H H   is 

correct and that only one of them can be correct, 
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Assuming that prior probability of all hypotheses is equal, 
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In the context of place recognition for loop closure in a 

model building process, the assumption that one and only 

one hypothesis is correct is not fulfilled, since it implies 

that the robot never visits a place not already recorded in 

the map. This restricts the problem to robot localization 

given a previously built environment model. In our future 

work we will adapt the proposed method to the cases 

where a currently observed scene is not covered by the 

model, e.g. by adding an additional term to the 

denominator on the right side of (14), which models the 

probability that a particular set of surface segments is 

detected and none of the generated hypotheses is correct. 

Let us assign to each hypothesis Hk a correspondence 

vector ck defined as in (Thrun et al., 2005). The ith 

element of this vector is cki = j if the scene surface 

segment Fi corresponds to the local model surface 

segment 
jF   or cki = 0 if Fi does not correspond to any 

surface segment. In order to estimate the conditional PDF 

p(Z | Hk), we apply independent surface model, i.e. we 

assume that the errors in the parameter measurements of 

the surface segments are mutually independent. Then, the 

conditional PDF of obtaining particular parameters of all 

detected surface segments if the hypothesis Hk is correct 

can be written as 

 

     
0 0

| , | , | 0
ki ki

k i j ki k i ki

c c

p Z H p F F c j p F c
 

   w

(16) 

 

The conditional PDF for obtaining particular parameters 

of the segments Fi and 
jF   will be obtained by feature 

detection, assuming that the pose wk of the camera relative 

to the local model and a correspondence vector ck are 

correct, can be approximated by the probability that Fi 

transformed into the local model reference frame using wk 

shares the same supporting plane with 
jF  . Let us assume 

that both Fi and 
jF   lie in a plane with normal n and offset 

. In that case, the PDF of obtaining particular 

measurements of the supporting plane parameters of these 

two surface segments is given by  
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where  | , ,i kp F n w  denotes the PDF of obtaining 

particular measurement of the supporting plane 

parameters of Fi under the assumption that Fi lies in a 

plane defined by n and . PDF  | ,jp F  n  is defined 

analogously.  

 Let us now consider the case of a scene surface 

segment Fi which is not matched to any local model 

surface segment, i.e. for cki = 0. Assuming uniform 

distribution of the measured supporting plane normal of Fi 

over the space of all unit vectors, it follows that the prior 

PDF of obtaining a particular normal vector is 
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since 4 is the area of the unit sphere. Without loss of 

generality, it can be assumed that all surfaces detected by 

a 3D camera have a normal with an angle less than 90° 
relative to the camera optical rays, i.e. for any detected 

surface the surface with the oppositely directed normal 

cannot be detected. Hence, it can be assumed that the 

normals of the detected surfaces are uniformly distributed 

over approximately half of the unit vector space, i.e.  
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The prior PDF of measurement of the plane parameter  is 

rather difficult to estimate. Therefore, we decided to 

consider only plane normals in our probabilistic model. 

Hence, the following approximations are used 
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 In order to compute the PDFs on the right side of (20), 

both surface segments Fi and 
jF   are transformed into the 

coordinate system SF' assigned to 
jF   as described in 

Section 4.1. Let s be the vector formed by the first two 

components of a plane normal n represented in SF'. This 

vector can be used to represent the deviation of the plane 

normal n from the measured plane normal of the surface 

segment 
jF  . Therefore, 

     | , | ,i k i kp F p Fn w s  . (22) 

 

Using this approach, the deviation of the normal of the 

supporting plane of Fi transformed into SF' can be 

described by vector F

i


s  representing the first two 

components of this normal. This vector can be computed 

by 
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where si = [sx,i, sy,i]T. The equation (23) follows from (2) 

and from definitions of the rotation matrices CRF and MRF' 

given in Section 4.1. The uncertainty of the normal of Fi 

can be described by a normal distribution with mean 
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and covariance matrix 
,

F

i



sΣ . The covariance matrix 

,

F

i



sΣ can be obtained by transforming covariance matrix 

s,i = diag([sx,i, sy,i]) into SF', where sx,i, sy,i are 

variances introduced in Section 4.1. This transformation 

can be performed by  
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Now, having the mean and covariance matrix of F

i


s , the 

conditional PDF of measuring particular value ˆF

i


s  given 

the actual normal of its supporting plane  n  and pose wk 

can be computed by  
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Analogously, the uncertainty of the normal of 
jF   

represented in SF' can be described by a random vector 
j
s  

with 0 mean and a covariance matrix , jsΣ . 

Consequently, the conditional PDF of measuring value 

j
 s 0  given the actual normal of its supporting plane n  

and pose wk can be computed by  
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By substituting the PDFs on the right side of (20) with 

(27) and (28) and integrating the obtained product, the 

following is obtained   
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The derivation of (29) is given in Appendix E. 

 Finally, the probabilities of all hypotheses Hk given a 

set of surface segments detected in the scene can be 

estimated as follows. For each pair (Fi, 
jF ), vector ˆF

i


s  is 

computed by (24) and it's corresponding covariance 

matrix 
,

F

i



sΣ  by (25) and (26) using the parameters of Fi 

and 
jF   together with the estimated orientation k. Then, 

îjs  is computed by (31) and substituted into (30) in order 

to obtain Lij. The obtained value Lij is then used to 

compute  , | ,i j kip F F c j  w  by (29). The PDFs 

 , | ,i j kip F F c j  w  computed for each pair (Fi, 
jF  ) are 

substituted into (16) together with PDFs (21) of scene 

segments which are not matched. As a result, PDF 

 | kp Z H  is obtained for each hypothesis Hk. The final 

probability estimate for all hypotheses is obtained by 

normalization (15). 

 In order to meet the assumption that two hypotheses 

cannot be correct, only one hypothesis for a local model 

should be generated and two local models should not 

represent the same location in the map. Since several 

hypotheses are commonly generated for each local model, 

the first constraint can be met by forming the set   only 

of hypotheses with the highest value  | kp Z H  for each 

local model. The second constraint is in practice difficult 

to assure. Nevertheless, selection of the best hypothesis is 

influenced only by the PDF values  | kp Z H , while the 

purpose of normalization (15) is just to obtain 

probabilities from the interval [0, 1]. 

 The proposed hypothesis probability estimation 

method also assumes unique correspondences between 

surface segments. However, a scene surface segment can, 

in general, be matched to more than one local model 

surface segment. In order to meet the aforementioned 

assumption, for every hypothesis a list of all pairs (Fi, 
jF  ) 

is formed sorted by the number of shared sample matches 

in descending order. Then the pairs are taken one by one 

starting from the top of the list and used in the hypothesis 

probability estimation process. After a pair (Fi, 
jF  ) is 

removed from the list, all pairs containing either Fi or 
jF   

are removed from the list. 

 

 

7. Experimental evaluation 

 In this section, experimental evaluation of the 

proposed approach is considered.  We implemented our 

system in C++ programming language using OpenCV 

library (Bradski and Kaehler 2008) and execute it on a 

standard PC. Two experiments were performed. The first 

experiment tested the robustness of our approach to 

changes in the environment, while the objective of the 

second experiment was to provide an insight into the 

localization accuracy which can be achieved by the 

proposed approach.   

 In both experiments, the initial pose estimate winit in 

the hypothesis generation step is set to 0. The uncertainty 

of this pose information, i. e. the covariance matrix w,init, 

is computed using an uncertainty model of the camera 

mounted on a mobile robot Pioneer 3DX rolling on a 

bumpy horizontal surface. Assuming that the global 

coordinate system S0 assigned to the robot's environment 

is defined in such a way that its z-axis is parallel to the 

gravity axis, the bumps on the floor surface are modelled 

by white noise of standard deviation f = 0.005 m in z-

direction. The uncertainty of the robot's position and 

orientation within the xy-plane of S0 is modelled by 

normal distributions with standard deviations of 1 m and 



20° respectively. The uncertainty of the camera 

orientation with respect to the gravity axis due to the 

bumps on the floor surface is also modelled by a normal 

distribution with a standard deviation of approximatelly 

2.7° for the inclination angle and 1.6° for the rotation 

around the optical axis of the camera. 

 

7.1 Robustness to changing environment 

 Robustness of the proposed approach to changes in the 

environment is tested using a benchmark dataset 

consisting of two sets of depth images acquired by a 

Microsoft Kinect sensor. The first is a reference set which 

is used to create the environment model, while the second 

is a test set containing depth images of the scenes covered 

by the reference set. The reference set consists of 45 depth 

images representing different locations in a public 

building and a private household. The test dataset contains 

2165 depth images covering 22 of 45 reference scenes 

acquired under varying lighting conditions and with 

objects and people appearing and disappearing from the 

observed scenes. The test set is subdivided into 4 subsets 

covering 4 separately analyzed cases presented in Table 1. 

Several sample images from the considered dataset are 

shown in Fig. 9. Although only depth images are used by 

our system, RGB images are displayed for the 

visualization purpose.  

 
Table 1 Test datasets 

subset different lighting conditions than in 

the corresponding reference image 

dynamic 

objects 

1 - - 

2 - + 

3 + - 

4 + + 

 

  

   

   

   

   
 
Fig. 9. Sample test images. Reference images are represented in 

the left column, images taken after the lighting conditions are 

changed are shown in the middle, while the images with a 

moving person are shown in the right column. 

 The place recognition results are visualized in Fig. 10, 

where surface samples are depicted by squares of different 

colors according to the classification described in Section 

6. Notice how the samples representing the moving person 

are classified as transparent, thereby indicating the 

presence of a dynamic object. Many samples classified as 

invisible in the top right image in Fig. 10 indicate that 

only a relatively small part of the scene overlaps with the 

corresponding local model. 

 

 

 
 

Fig. 10. Place recognition results. Matched surface samples are 

depicted by green squares, occluded by yellow squares, 

transparent by red squares and invisible by blue squares.  

 The approach presented in this paper is based on the 

approach proposed in (Cupec et al., 2012; Cupec et al., 

2013). There are three main improvements to the original 

method. 

1. In addition to the planar surface segments, line 

segment features are used in the hypothesis generation 

process. 

2. Instead of approximating the surface segments by 

ellipsoids, each surface segment is represented by a set 

of samples, which should provide a better description 

of the surface shape and a novel probabilistic 

hypothesis evaluation approach is used to select the 

best hypothesis. 

3. A mechanism for detection and rejection of dynamic 

surfaces is introduced. 

 

In order to analyze the influence of all aforementioned 

steps, the experiments are performed with four variants of 

our algorithm: 

 

1. the original algorithm presented in (Cupec et al., 

2012); 

2. the original algorithm with line segment features used 

in hypothesis generation step; 

3. the novel algorithm with surface sampling, but without 

rejection of dynamic surfaces and 

4. the complete novel algorithm. 

 

We also performed experiments with an alternative 

hypothesis generation step, where we used PROSAC 

(Chum and Matas, 2005), an efficient variant of 

RANSAC, instead of the hypothesis generation approach 

based on the hypothesis tree, which is described in Section 



5.3. Analogously to the hypothesis tree approach 

presented in Section 5.3, PROSAC exploits ranking of 

feature pairs according to an appropriate criterion. The 

criterion used in the experiments with PROSAC presented 

in the following is the information content factor, which is 

also used in the hypothesis tree approach. PROSAC is 

used to generate hypotheses using the initial surface 

segment pairs and determine the best hypothesis for each 

local model. The obtained hypotheses are then forwarded 

to the hypothesis evaluation step described in Section 6. 

All parameters of the PROSAC are set to the values used 

in (Chum and Matas, 2005). The variant of our place 

recognition approach with PROSAC-based hypothesis 

generation is referred to in the following as variant 5. 

The performance of the proposed place recognition 

approach for the considered test dataset is presented in 

Table 2, where the results obtained by all five variants are 

given. Introduction of line features (variant 2) notably 

improves the performance of the original algorithm 

(variant 1) by allowing generation of hypothesis in cases 

where surfaces do not provide sufficient information for 

estimation of all 6DoF of the camera pose. The surface 

sampling step (variant 3) improves significantly the results 

for the subsets 3 and 4, while for sets 1 and 2 no 

improvement is achieved. Introduction of the dynamic 

surface rejection step (variant 4) resulted in slightly higher 

recognition rate for subsets 2 – 4. The contribution of this 

step is not so obvious because it helps in resolving 

situations where a surface in an observed scene appears 

exactly at the place of a surface of a falsely matched 

model. In such situations, information about the surface 

shape can help in distinguishing between the correct and 

false hypothesis. Such cases were not very frequent in the 

experiments presented in this paper. However, the 

probability of such cases is expected to rise with the 

number of local models. The performance data measured 

over the entire dataset (the last row of Table 2) show that 

the introduction of each step improves the algorithm 

performance.    

 
Table 2 Performance of five variants of the proposed approach. 

Symbol # denotes the number of correctly matched images and 

% their percentage. 

  correct recognitions 

  variant 1 variant 2 variant 3 variant 4 

subset total # % # % # % # % 

1 68 67 99 67 99 63 93 63 93 

2 676 639 95 650 96 597 88 606 90 

3 246 138 56 150 61 199 81 204 83 

4 1175 616 52 711 61 936 80 984 84 

 2165 1460 67 1578 73 1795 83 1857 86 

 

  variant 5 

subset total # % 

1 68 62 91 

2 676 582 86 

3 246 100 41 

4 1175 527 45 

 2165 1271 59 

 

The results obtained by the PROSAC-based 

hypothesis generation (variant 5) are similar to those 

obtained by the hypothesis tree approach for the subsets 1 

and 2, while for the subsets 3 and 4, the percentage of 

correct recognitions is much lower. A drawback of the 

applied implementation of PROSAC is that it does not use 

line segments. Another drawback which is the inherent 

property of this method is that it returns only a single 

hypothesis for each local model.   

 For comparison purposes, OpenFABMAP (Glover et 

al., 2012) and DLoopDetector (Galvez-Lopez and Tardos, 

2012) were applied in the same way as our method to the 

same dataset. Both methods are based on BoW principle, 

however DLoopDetector also performs a geometric 

consistency check (GCC) based on epipolar geometry in 

order to improve precision. The main purpose of making a 

comparison with both FAB-MAP and DLoopDetector is 

to analyze the influence of GCC to the algorithm 

performance. 

 Both FAB-MAP and DLoopDetector were configured 

to perform localization without map building. All other 

parameters of FAB-MAP were set to their default values 

that came with the source code. DLoopDetector was 

configured as follows. Since place recognition from a 

single image is considered in this paper, the temporal 

consistency of DLoopDetector was turned off by setting 

the number of temporally consistent matches to 0. 

FLANN method was used for determining feature 

correspondences. The efficiency of DLoopDetector can be 

improved by appropriately selecting the rejection 

threshold, whose purpose is to reduce the number of 

matches for GCC to be performed on the most reliable 

ones. Nevertheless, in order to provide a fair comparison 

of the considered algorithms according to their precision 

and recall properties, the rejection threshold was set to 0, 

thereby allowing the GCC for all matches. Furthermore, 

although the authors in (Galvez-Lopez and Tardos, 2012) 

favor using BRIEF descriptor with FAST detector as an 

optimal choice between speed and precision, SURF64 

descriptor was used in all experiments presented in this 

paper, since our experiments showed that BRIEF has 

significantly lower precision than SURF descriptor 

especially in the cases where illumination conditions in 

the test images are different from the map images.  

 For both FAB-MAP and DLoopDetector we 

performed experiments with the vocabularies provided 

with the program code as well as with a vocabularies we 

created from the considered reference images using their 

programs. For both algorithms, the vocabulary that we 

created showed better results than the one provided with 

the program code. Therefore, in this section, the results 

obtained with the vocabularies created from our reference 

images are presented. The results of the experiments 

performed with FAB-MAP and DLoopDetector are 

presented in Table 3 together with the results obtained by 

the proposed approach. 

 Assuming that the considered place recognition 

algorithms return multiple solutions whose estimated 

probability exceeds a specified threshold, they can be 

compared using their precision-recall curves. The 

precision-recall curves of the proposed approach, FAB-

MAP and DLoopDetector are depicted in Fig. 11. 

 

 



Table 3 Performance of the proposed approach, FAB-MAP and 

DLoopDetector. Symbol # denotes the number of correctly 

matched images and % their percentage. 

subset total 

correct recognitions 

proposed 

approach 

FAB-MAP DLoopDetector 

# % # % # % 

1 68 63 92.6 66 97.1 56 82.4 

2 676 606 89.6 574 84.9 577 85.4 

3 246 204 82.9 114 46.3 6 2.4 

4 1175 984 83.7 453 38.6 49 4.2 

 2165 1857 85.8 1207 55.8 688 31.8 

 

 The presented results show that the proposed approach 

outperforms FAB-MAP in the case of environment 

changes. In the case where the lighting conditions 

resemble those of the reference images and there are no 

dynamic objects, FAB-MAP performs slightly better. 

 DLoopDetector is designed primarily for loop closing 

and it has a very high precision. All best scored 

hypotheses of DLoopDetector which passed GCC, were 

correct in the case of all four image subsets. However, for 

the images taken in different lighting conditions than the 

reference images, a very low number of hypotheses passed 

GCC.     

 Possible complementarity between the proposed 

approach and FAB-MAP is analyzed in Table 4. This 

result shows a significant number of cases where one of 

the compared methods fails and the other succeeds, which 

indicates the potential of combining these two methods. 

  
Table 4 Complementarity analysis. The column denoted by 

"proposed approach" contains the number of samples which are 

correctly recognized by our approach and falsely by FAB-MAP, 

while the column denoted by "FAB-MAP" contains the number 

of samples which are correctly recognized by FAB-MAP and 

falsely by our approach.  

subset total proposed 

approach 

FAB-MAP 

1 68 2 6 

2 676 65 33 

3 246 115 25 

4 1175 591 60 

 
 

 

 

 

 

 

 

subset 1 

 

 
subset 2 

 
subset 3 

 
subset 4 

 
Fig. 11. Precision-recall curves of the proposed approach,  

FAB-MAP and DloopDetector for the four test subsets.  

 

0 0.2 0.4 0.6 0.8 1
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Recall

P
re

c
is

io
n

 

 

openFABMAP

DLoopDetector

Proposed approach

0 0.2 0.4 0.6 0.8 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Recall

P
re

c
is

io
n

 

 

openFABMAP

DLoopDetector

Proposed approach

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

c
is

io
n

 

 

openFABMAP

DLoopDetector

Proposed approach

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

c
is

io
n

 

 

openFABMAP

DLoopDetector

Proposed approach



7.2 Global localization accuracy 

 The accuracy of the proposed approach is determined 

in an initial global localization experiment. The algorithm 

is experimentally evaluated using 3D data provided by a 

Microsoft Kinect sensor mounted on a wheeled mobile 

robot Pioneer 3DX also equipped with a laser range finder 

SICK LMS-200. For the purpose of this experiment, two 

datasets were generated by manually driving the mobile 

robot on two different occasions through a section of a 

previously mapped indoor environment of the Department 

of Control and Computer Engineering, Faculty of 

Electrical Engineering and Computing, University of 

Zagreb. Fig. 12(a) shows the previously mapped indoor 

environment generated with the aid of SLAM using data 

from the laser range finder, while Fig. 12(b) shows the 

trajectory of the robot when generating the first dataset. 

 

 
(a) 

 

 
(b) 

 
Fig. 12. (a) Part of the map of the Department of Control and 

Computer Engineering, (FER, Zagreb) obtained using SLAM 

and data from a laser ranger finder (b) Trajectory of the wheeled 

mobile robot while generating images used in creating the 

topological map. 

  The first dataset consists of a sequence of RGB-D 

images recorded along with the odometry data. The 

corresponding ground truth data as to the exact pose of 

the robot in the global coordinate frame of the map was 

determined using laser data and Monte Carlo localization. 

A subset of RGB-D images from this dataset was used to 

create the environment model – a database of local metric 

models with topological links. This environment model or 

topological map consisted of a sequence of images, or 

local models, generated such that the local model of the 

first image was automatically added to the map and every 

consecutive image or local model added to the map 

satisfied at least one of the following conditions: (i) the 

translational distance between the candidate image and the 

latest added local model in the map was at least 0.5m or 

(ii) the difference in orientation between the candidate 

image and the latest added local model in the map was at 

least 15°. 

This translational distance and difference in orientation 

between images (local models) in the map were 

determined using their corresponding ground truth data. 

The generated topological map had 142 local models for 

the mapped area shown in Fig. 12(b). Each local model 

consisted of planar surface segments and line segments 

represented in the local model reference frame generated 

from each depth image. 

The second dataset, obtained by manually driving the 

robot on the second occasion, was used to generate the test 

sequence. The trajectory of the robot during the generation 

of this sequence was not the same as the first sequence but 

covered the same area. With the aid of odometry 

information from the robot, the test sequence was 

generated by recording RGB-D images every 0.5m or 5° 

difference in orientation between consecutive images. The 

corresponding ground truth data was determined using 

laser data and Monte Carlo localization and recorded as 

well. The second dataset consisted of a total of 267 

images. Examples of database images and test images are 

given in Fig. 13. 

 

  

  
 

Fig. 13. Examples of images used in the initial global 

localization experiment. 

The proposed place recognition procedure was 

performed for each image in the test sequence, with the 

topological map serving as the environment model.  For 

each test image, the best evaluated hypothesis, i.e., the 



hypothesis with the highest probability is selected as the 

solution.  Since the hypothesis provides the index of the 

local model from the topological map as well as the 

relative pose of the test image with respect to the local 

model, the accuracy of the proposed place recognition 

approach can be determined. The calculated pose of a 

given test image is determined using the relative pose 

provided by the best hypothesis as well as the ground truth 

data of the corresponding local model. By comparing the 

calculated pose of the test image to the corresponding 

ground truth pose of the test image, the accuracy of the 

proposed approach in initial global localization can be 

determined. An overview of the results of the initial global 

localization experiment is given in Table 5. 

 
Table 5.  Global localization results. 

 Number 

of  

images 

Percentage 

(%) 

Total number of images in the test 

sequence 

267 100 

Number of images not localized 5 1.87 

Number of images wrongly localized 22 8.24 

Number of images correctly localized 240 89.89 

 

Of the 267 test images, the proposed approach was not 

able to generate any hypothesis in 5 cases. In all 5 cases, 

the scenes were deficient in information needed to 

estimate the last DoF of the robot's motion. Examples of 

such images are shown in Fig. 14(a). Such situations 

normally arise when the robot comes too close to a wall or 

when the robot is turning around in a corridor.  

 

  
(a) 

  
(b) 

 
(c) 

 
(d) 

Fig. 14. Examples of images either not localized or wrongly 

localized. (a) Test images deficient in information needed to 

estimate the last DoF of the robot's motion; (b) test images not 

covered by local models in the topological map; (c) image in the 

topological map containing a repetitive structure (similar 

doorways); (d) corresponding test image wrongly localized 

having a similar doorway. 

In 22 cases, the best hypothesis generated by the 

proposed approach wrongly localized the test images. 

There were two main reasons for such errors: (i) the 

topological map did not contain a local model covering 

the scene of the test image. Examples of such images are 

shown in Fig. 14(b); (ii) the existence of repetitive 

structures in the indoor environment. An example of this 

can be seen in in Fig. 14(c), which represents an image in 

the topological map, where one can notice the similar 

repeating doorways on the left. Fig. 14(d), representing a 

test image, was localized such that the visible doorway on 

the left was matched to the first doorway on the left in Fig. 

14(c).  

The accuracy of the proposed approach is determined 

using the 240 correctly localized images. The results are 

shown statistically, in Table 6 as well as in Fig. 15 and 

Fig. 16, in terms of the absolute error in position and 

orientation between the calculated pose and corresponding 

ground truth pose of the test sequence images. 

 
Table 6. Statistical details of the global localization pose error. 

 Error [mm] Error [°] 

Avg. 68.209 1.216 

Std. 45.757 1.069 

Min. 3.098 0.004 

Max. 268.909 7.735 

 

 
(a) 

 
(b) 

Fig. 15.  Histogram of the error in (a) position (b) orientation. 

 



 
(a) 

 
(b) 

Fig. 16 Normalized cumulative histogram of the error in (a) 

position (b) orientation. 

The error in position was on average approximately 68 

mm with a standard deviation of about 46 mm, while the 

difference in orientation was on average approximately 

1.2° with a standard deviation of about 1°. Looking at Fig. 

16, it can be concluded that for 99%  of the samples, the 

pose error was at most 197mm and 4.4°. 

 

7.3 Computational Complexity 

The proposed method represents a sequence of the 

following processing steps: 

 

1. detection of planar surface segments, 

2. detection of line segments, 

3. sampling of surface segments, 

4. hypothesis generation, 

5. hypothesis evaluation and 

6. rejection of dynamic surfaces. 

 

The computational complexity of the first three steps does 

not depend on the map size, while the computational 

complexity the last three steps depends on the total 

number of the local models NM in the map.  

The computational complexity of the hypothesis 

generation step is linear in the number of generated nodes 

of the hypothesis tree. This number, however, varies 

significantly depending on the characteristics of the 

observed scene. The total number of generated nodes per 

local model is limited by the user specified parameter NV. 

However, in cases where the scene contains sufficient 

information to determine all 6DoF of the camera pose, the 

maximum number of NH  hypotheses are generated before 

reaching NV  nodes. In the opposite case, the hypothesis 

generation step stops after generating  NV  before NH  

hypotheses are generated. 

The computational complexity of the hypothesis 

evaluation step varies significantly depending on the 

geometry of the observed scene and the entire modelled 

environment. If many local models have similar geometry, 

then a high percentage of the generated hypotheses will 

remain after the hypothesis pruning and the 

computationally consuming hypothesis evaluation step 

will be applied to all of them.  

If we assume a uniform distribution of the processing 

time of the last three steps over all local models, the 

computational complexity of the proposed method 

increases linearly with the number of local models in the 

model database. This is, in general, a drawback in 

comparison to FAB-MAP whose complexity is linear in 

the size of the used dictionary, which means that the 

localization time of FAB-MAP does not rise with the 

number of model nodes.  

The computation time needed to obtain the final pose 

hypothesis from a depth image is presented in Table 7. In 

this table, the computation times for particular steps of the 

proposed approach are also shown. The data in this table 

represent the average values computed over 1175 images 

on an Intel Core 2 Duo CPU at 2GHz and 4 GB RAM. 

 
Table 7 Average computation time in seconds for each 

algorithm step.  

step per image per local model 

surface segment detection 0.152 - 

line segment detection 0.011 - 

surface segment sampling 0.027 - 

hypothesis generation 0.242 0.00537 

hypothesis evaluation 0.059 0.00132 

dynamic surface rejection 0.001 0.00002 

feature detection (first 3 steps) 0.190 - 

localization (last 3 steps) 0.302 0.00672 

total 0.492  

 

The localization time of our approach is 0.302 s for the 

map consisting of 45 local models, which is about 3.5 

times higher than that of OpenFABMAP, whose average 

localization time is 0.085 s. The feature detection time of 

our approach is 0.190 s, while OpenFABMAP can be used 

with different feature detectors and its feature detection 

time depends on the feature detector used. Nevertheless, 

despite a higher computation time in comparison to FAB-

MAP, the approach proposed in this paper is more suitable 

for applications where robustness to changes in lighting 

conditions is critical. 

 

8. Conclusion 

In this paper, the potential of using 3D planar surfaces 

and line segments detected in depth images for place 

recognition is investigated. A place recognition approach 

based on the aforementioned geometric features is 

proposed and experimentally evaluated. The proposed 

approach includes two novel solutions, an efficient 

hypothesis generation method which ranks the features 

according to their potential contribution to the pose 

information, thereby reducing the time needed for 



obtaining accurate pose estimation and a robust 

probabilistic method for selecting the best pose 

hypothesis. The presented place recognition system is 

designed for indoor and urban environments where planar 

surfaces and straight object edges are dominant structures. 

Since the proposed approach allows matching of partially 

overlapping point clouds, it enables fast and simple 

generation of environment maps by taking a sequence of 

depth images while driving along a path which the robot is 

expected to follow during its regular operation, in contrast 

to the approaches which need complete metric 

environment models. 

The developed place recognition system is 

experimentally evaluated using a benchmark dataset 

consisting of a reference dataset from which an 

environment model is created and a test dataset which 

includes images of the reference scenes with changes in 

the lighting conditions and presence of dynamic objects. 

The proposed approach has shown better results than 

FAB-MAP and DLoopDetector in the case of significant 

changes in the environment and comparable performance 

in the case where the conditions correspond to those in the 

reference images.  

Nevertheless, only indoor scenes are included in the 

benchmark dataset used in the reported research, which 

gives an advantage to our method. Therefore, from the 

obtained results it cannot be concluded that our approach 

is generally better than FAB-MAP or some other 

appearance-based method.  

Besides its good properties, the proposed approach 

has also significant limitations. It actually determines the 

pose of the camera relative to a particular geometric 

structure. The more complex the structure the more 

convinced is the place recognition algorithm in its 

decision. Consequently, the method can be expected to 

fail in the cases where a frequently moving object of a 

complex structure is present within a local model. Such 

objects are e.g. tables, chairs and other movable furniture. 

If a robot tries to localize itself by analyzing a camera 

image taken after this object changes its pose relative to 

the local model reference frame, a false pose hypothesis 

will be generated. Actually, in that case the robot localizes 

itself correctly relative to the considered object, but 

incorrectly with respect to the local model. In order for the 

proposed method to make a correct place recognition, the 

structure of a stable (not-moving) part of the observed 

scene must have a higher complexity then the dynamic 

objects present in that scene.  

Like many other computer vision methods, our 

approach has a number of user defined parameters which 

we determine experimentally. Determining the optimal 

values for all these parameters or an analysis of their 

influence to the performance of the proposed approach 

could be a topic of further research. Nevertheless, in this 

paper we demonstrated that the proposed approach is 

feasible and provides compelling results in comparison to 

other state-of-the-art techniques even with a non-optimal 

parameter set. 

The results of the research presented in this paper 

indicate that the considered approach based on geometric 

features is applicable for robust place recognition in 

indoor environments. Since geometric features are 

substantially different from features like those obtained by 

SIFT, SURF or similar methods, a potential exists of 

combining these two types of features in a system which 

would rely on geometric features where the intensity 

image features are not reliable and opposite.  
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Appendix A: Surface Segment Matching 

Criteria 

 
Given an estimated pose w of a scene relative to a 

local model, matching of a scene surface segment F to a 

local model surface segment F' is performed by 

transforming the parameters of F into the reference frame 

of F' using the pose w and comparing the transformed 

parameters to the parameters of F'. The parameters of the 

plane supporting F can be transformed from the reference 

frame SF to the reference frame SF' by transforming the 

plane equation (1). Given a vector F'p representing the 

position of a point relative to SF', the same point is 

represented in SF by  

 

    F A T T B F B A

F F F F



    p R R R p t t t  (32) 

 

 By substituting (32) into (1) we obtain  

 

 F T F F
  

 n p  (33) 

where 

  F B T A F

F F



n R R R n , (34) 

  

    F F F T A T A T B

F F F 


    n R t R t t . (35) 

 

Vector F
n  and value F

  are the normal of F represented 

in SF' and the distance of the plane supporting F from the 

origin of SF'. The deviation of the plane supporting the 

scene surface segment from the plane containing the local 

model surface segment can be described by the difference 

between the plane normals and their distances from the 

origin of SF'. Assuming that F and F' represent the 

segments of the same planar surface, the following 

equations hold 

 

 F F  n n , (36) 

 

 F F 
   , (37) 

 

where F n  and F
  are the parameters of the plane 

supporting F' represented in reference frame SF'. Since F
n  

and F n   are unit vectors with two degrees of freedom, it 

is appropriate to compare only their two components. We 

choose the first two components to formulate the 

coplanarity constraint 

 

  
1 0 0

0 1 0

F F

F F 

 

 

  
  

  
 
 

0
n n  (38) 

 

Note that the vector on the left side of equation (38) is 

actually a function of the disturbance vectors q and q' 

representing the uncertainty of the parameters of the 

planes supporting F and F' respectively, the pose w and 

the estimated poses of F and F' relative to SC and SM 

respectively. Hence, the left side of (38) can be 

represented by the function  , , ; ,F F h q q w  which maps 

particular values q, q' and w to a 3-component vector 

representing the deviation from coplanarity. Assuming 

that w is a normally distributed random variable with 

mean ŵ  and covariance w, the coplanarity between F 

and F' can be measured by the Mahalanobis distance (9) 

where 

  



    , , , , ; ,F F F F  0 0e w h w , (39) 

 

 T T T


   

q q q q w q
Q EΣ E E Σ E C Σ C , (40) 

 

q and q' are the covariance matrices describing the 

uncertainty of the parameters of the matched surface 

segments and E, E' and C are Jacobians 

 

  , , ; ,F F 




h q q w
E

q
,     , , ; ,F F 

 


h q q w
E

q
, (41) 

 

  , , ; ,F F 



q

h q q w
C

w
. (42) 

 

 Overlapping between two surface segments could be 

measured according to the area of their overlapping parts. 

However, since computing the exact value of this area is 

computationally expensive, an approximate measure is 

applied. Each surface segment is represented by an 

elliptical planar patch approximating the distribution of 

points supporting this segment, as described in Section 4, 

and overlapping between two surface segments is 

measured by the Mahalanobis distance between two points 

representing the centroids of these surface segments, 

where the position uncertainty of these points is described 

by the covariance matrices p and p'. This Mahalanobis 

distance is computed by 

 

      1, ,
T

M M M M

F F F Fd F F 

 
   

p p
w t t Q t t , (43) 

 

 ( )M C

F F  t R t t , (44) 

 

 ( ) ( )T T

      
p p p p w p

Q R Σ R Σ C Σ C  , (45) 

 

 
M

F



p

t
C

w
. 

 

The overlapping constraint is formulated as 

 

  , ,d F F  
p p

w , (46) 

 

Threshold p can be computed according to a desired 

matching probability assuming 2 distribution of dp 

distance. 

 

 

Appendix B: Measurement of the Sixth DoF 

Provided by a Pair of Surface Segments  
 

This appendix explains the estimation of the sixth DoF 

for the considered voting scheme from a surface segment 

pair  ,F F  , where F’ is a hypothesis model surface 

segment and F is a scene surface segment transformed 

into the reference frame of F’. Assuming that F and F’ are 

approximately parallel, the translation value l can be 

estimated from the distance of the supporting plane of F 

and the origin of the reference frame of F’. The translation 

vector between the camera reference frame and the 

hypothesis model reference frame can be written as 

   

  l  t t t  (47) 

 

By substituting (47) into (35) and the obtained equation 

into (37) we obtain 

 

   F F F T A T A T B

F F Fl 



       n R t R t t t  (48) 

 

From (48) follows an explicit expression for l as a 

function of q and q’  

 

 

 

   
 

,

F F F T A T A T B

F F F

F T A T T

F

l

 




 

    


 

q q

n R t R t t

n R R t





 (49) 

 

The value l can be regarded as a normally distributed 

random variable with mean  ˆ ,l l 0 0  and variance 

 

     
2 2

, ,
l r r

l l

r r
  

     
    

    

q q q q , 

 

where r and 
r   are variances of the third component of 

the disturbance vectors q and q’ respectively, introduced 

in Section 4.  

 For surface segments,  represents the smaller number 

of the supporting points of F and F’. 

 

Appendix C: Measurement of the Sixth DoF 

Provided by a Pair of Line Segments  
 

 This appendix explains estimation of the sixth DoF for 

the considered voting scheme from a line segment pair 

 ,F F  , where F’ is a local model line segment and F is a 

scene line segment transformed from the camera reference 

frame into the reference frame of the local model SM. This 

transformation is performed by transforming the both 

endpoints Cp1 and Cp2 as well as their covariance matrices 

p,1 and p,2.  

 An auxiliary coordinate system SL is defined with 

origin identical to the origin of the local model reference 

frame SM, x-axis identical to t and y-axis defined by 

 

   
 

M M

M

L M M

 


 

u u t
y

u u t

, 

where  

  2 1

2 1

M 




p p
u

p p
 

 

and Mu’ is defined analogously. Both line segments are 

transformed into the coordinate system SL and 

correspondence between their points is established 

according to their z-coordinate in this coordinate system. 

A point on the line segment F corresponds to a point on 

the line segment F’ if their z-coordinates with respect to 



SL are equal, as illustrated in Fig. 17. The subsets of  F and 

F’ which have their corresponding points represent 

overlapping parts of these two line segments.  
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Fig. 17.  Two line segments F and F’ represented in coordinate 

system SL. Examples of corresponding points are denoted by 

circles. The overlapping parts of the considered line segments 

are located between the dashed lines. Unit vectors u and u' are 

parallel to F and F’ respectively and have equal angle relative to 

xz-plane of the coordinate system SL. 

 Any pair of corresponding points represents a 

measurement of the sixth DoF. Let p  and p  be two-

component vectors representing the x and y coordinate of 

two corresponding points in the coordinate system SL and 

let 
pΣ  and 

pΣ  be the covariance matrices representing 

the measurement uncertainty of these two points. The 

correction of the translation vector t’ according to the 

points p  and p  is given by 

   t p p . 

 

The uncertainty of this measurement can be computed by 

propagating the uncertainties of the two considered points 

according to the equation   

 

  
T T



      
    

       
p pt

t t t t
Σ Σ Σ

p p p p
. (50) 

Since 

  2 2 
  

 

t t
I

p p
. (51) 

it follows that 

  
 p pt

Σ Σ Σ . (52) 

 

In our implementation the value l is estimated using both 

endpoints of the overlapping parts of the line segments F 

and F’ denoted in Fig. 17 by circles. Fusion of these two 

measurements is given by  

 

   1 1

12 1 2,12 ,1 ,2

  
t t t

t Σ Σ t Σ t , (53) 

where 

   
1

1 1

,12 ,1 ,2


  

t t t
Σ Σ Σ . (54) 

 

Vector 
12t  represents correction of the translation vector t’ 

estimated by the two considered measurements and  
,12t

Σ  

is the covariance matrix describing its uncertainty. Value l 

is the x-component of  
12t , i.e. 

  

    121 0l   t  

 

and its estimated variance is 

    ,12

1
1 0

0
l

 
  

 
t

Σ . 

 For line segments,  corresponds to the size of the 

overlapping parts of the matched line segments. 

   

   

Appendix D: Surface Sample Matching 
 

Let , ,
T

M M M Mx y z      p  be the vector defining 

the position of a sample center point relative to the 

hypothesis model.  Then, the coordinates of this point 

relative to the camera reference frame are given by vector 

 

  ( )C T M  p R p t   (55) 

 

and its projection onto the scene image is given by 

 

  C C

pr
  m f P p ,  (56) 

 

where fpr is function defined by 

 

     , , ,
T T

pr x z y x z y zf  

 

and P is the camera projection matrix defined by 
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v c
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 
  

P
, 

 

with fu, fv, uc and vc being intrinsic camera parameters, 

according to a commonly used pinhole camera model 

(Bradski G, 2008). 

Although in general the surface sample patches do not 

project to squares in the image, under assumption of a 

small displacement between the current scene view and 

the hypothesis model view, their image projections can be 

approximated by squares of size 

 

 
M

C

C

z
w w

z


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
,  (57) 

 

where w  is the original sample window size and Cw  is 

the size of the approximated projection of the sample 

patch onto the camera image.  

The overlapping condition, illustrated in Fig. 8 can be 

formulated by the following equation 

 

  min ,C C

socheb
w w    m m ,  (58) 

 

where m and is the center of a scene sample, w is the 

window size of the scene sample, 
cheb

 denotes the 

Chebyshev distance and so is tolerance due to the 



uncertainty of the hypothesis pose. Tolerance so is 

computed by 

  max ,

C

so sot

so u v C
f f

z

 


 




p
,  (59) 

 

where so and sot are constants representing the expected 

orientation and translation uncertainty respectively. The 

term in the nominator of (59) represents the estimated 

uncertainty of the position of the hypothesis model sample 

center transformed into the scene coordinate system. 

Tolerance so is the image projection of this uncertainty. 

Alternatively, the uncertainty of the transformed sample 

position could be computed using the estimated pose 

uncertainty obtained by the EKF. However, this would 

require a more complex computation. Since the condition 

(58) is evaluated for many sample pairs, it is important 

that this evaluation does not take much computation time 

and therefore, the approximate formula (59) is used, 

where constants so and sot are determined 

experimentally. 

 The similarity between depths and orientations of the 

surface patches corresponding to two samples is evaluated 

by taking into account the uncertainties of their 

parameters. We use a simple uncertainty model illustrated 

in Fig. 18, which is based on the uncertainty parameters 

p and v assigned to each sample, as explained in Section 

6.1. 
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Fig. 18. Uncertainty model of the surface patch corresponding to 

a surface sample. 

 

Appendix E: Derivation of (29) 

 

 By multiplying the left and the right sides of the 

equations (27) and (28) the following is obtained  

 

   

     

 
2

, ,

| , |

1
exp

22 det det

i k j

F

i j

p F p F

g






 

 
  

 
s s

s s

s

Σ Σ



 (60) 

 

where 
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Term g(s) can be expanded as follows 
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By rearranging the right side of (61) the following is 

obtained 
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By substituting g(s) in (60) with (62) we obtain 
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 (63) 

 

Assuming that the components of s can obtain arbitrary 

large values, the last term on the right side of  (63) can be 

integrated over interval ,  . Hence 

 

 

    

  

1 1

, ,

1
1 1

, ,

ˆ ˆ
exp

2

2 det

T
F

ij i j ij

F

i j

d



  



  



   
  
 
 




s s

s

s s

s s Σ Σ s s
s

Σ Σ

 (64) 

 

By substituting (64) into (63) we obtain 
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Obtaining (29) from (65) is straightforward. 

 


