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Abstract—Trajectory optimization methods for motion plan-
ning attempt to generate trajectories that minimize a suitable
objective function. Such methods efficiently find solutions even
for high degree-of-freedom robots. However, a globally optimal
solution is often intractable in practice and state-of-the-art
trajectory optimization methods are thus prone to local minima,
especially in cluttered environments. In this paper, we propose
a novel motion planning algorithm that employs stochastic
optimization based on the cross-entropy method in order to
tackle the local minima problem. We represent trajectories as
samples from a continuous-time Gaussian process and introduce
heteroscedasticity to generate powerful trajectory priors better
suited for collision avoidance in motion planning problems. Our
experimental evaluation shows that the proposed approach yields
a more thorough exploration of the solution space and a higher
success rate in complex environments than a current Gaussian
process based state-of-the-art trajectory optimization method,
namely GPMP2, while having comparable execution time.

Index Terms—motion planning, trajectory optimization, gaus-
sian processes, stochastic optimization

I. INTRODUCTION

Motion planning is an indispensable skill for robots that
aspire to navigate through an environment without collisions.
Motion planning algorithms attempt to generate trajectories
through the robot’s configuration space that are both feasible
and optimal based on some performance criterion dependent
on the task, robot or environment. Algorithms that can be exe-
cuted in real time are highly encouraged, mostly because they
allow fast replanning in response to environment changes. The
majority of methods in the domain of high-dimensional motion
planning can be roughly divided into two categories: sampling-
based approaches and trajectory optimization approaches.

The central tenet of sampling-based approaches [1]-[3]
is the idea of connecting points randomly sampled from
the free configuration space. Due to the underlying random
sampling, these approaches exhibit probabilistic completness
and fast exploration of the environment. However, sampling
based planners can be computationally inefficient for high-
dimensional problems with challenging constraints and often
require a post-processing step to smooth and shorten the com-
puted trajectories. Furthermore, considerable computational
effort is spent on exploring the portions of the configuration
space that might not be relevant to the task.

This research has been supported by the European Regional Development
Fund under the grant KK.01.1.1.01.0009 (DATACROSS).

*Authors are with the University of Zagreb Faculty of Electri-
cal Engineering and Computing, Laboratory for Autonomous Systems
and Mobile Robotics, Croatia. {luka.petrovic, juraj.persic, marija.seder,
ivan.markovic } @fer.hr

A significant amount of recent work has focused on tra-
jectory optimization and related problems. Trajectory opti-
mization methods start with an initial trajectory and then
minimize an objective function in order to optimize the trajec-
tory. Covariant Hamiltonian optimization for motion planning
(CHOMP) [4], [5] is the seminal work in modern trajectory
optimization. It utilizes a precomputed signed distance field for
fast collision checking and uses covariant gradient descent to
minimize obstacle and smoothness costs. Stochastic trajectory
optimization for motion planning (STOMP) algorithm [6] sam-
ples a series of noisy trajectories to explore the space around
an initial trajectory which are then combined to produce an
updated trajectory with lower cost. The key trait of STOMP
is its ability to optimize non-differentiable constraints. An
important shortcoming of CHOMP and STOMP is the need for
many trajectory states for reasoning about fine resolution ob-
stacle representations and finding feasible solutions when there
are many constraints. TrajOpt [7], [8] algorithm formulates
motion planning as sequential quadratic programming. The
key feature of TrajOpt is the ability to solve complex motion
planning problems with few states since swept volumes are
considered to ensure continuous-time safety. However, if the
smoothness is required in the output trajectory, either a densely
parametrized trajectory or post-processing of the trajectory
might still be needed thus increasing computation time.

The Gaussian process (GP) motion planning family of
algorithms [9]-[12] employs continous-time trajectory repre-
sentation in order to overcome the computational cost incurred
by using large number of states. The GPMP algorithm [9]
parametrizes the trajectory with a few support states and then
uses GP interpolation to query the trajectory at any time of
interest. The GPMP2 algorithm [10] represents trajectories as
samples from a continuous-time GP and then formulates the
planning problem as probabilistic inference. It exploits the
sparsity of the underlying system by using preexisting opti-
mization tools developed by the simultaneous localization and
mapping (SLAM) community [13] to generate fast solutions.

Altough trajectory optimization methods generate fast solu-
tions in high-dimensional spaces, they have limited exploration
ability and in complex environments often converge to the
infeasible local minima. In this paper, we propose a gradient-
free stochastic optimization method for trajectory planning
with continous time GP trajectory representations. We consider
a trajectory as a sample from a GP and introduce heteroscedas-
ticity to generate powerful trajectory priors better suited for
collision avoidance in motion planning problems. The pro-
posed optimization method relies on importance sampling



and is a derivative of the cross-entropy optimization method
[14]. While our method belongs to the trajectory optimization
approaches, it relies on random trajectory samples which raises
a connection to the sampling based planning. The proposed
method is an example of bridging the gap between sam-
pling based and trajectory optimization approaches in order
to generate fast solutions in high dimensional spaces while
retaining the ability to throughly explore the environment.
We evaluated our method in simulations and compared it to
GPMP2 - a state-of-the-art gradient-based, in constrast to the
proposed gradient-free, trajectory optimization method. The
results show that the proposed method yields a higher success
rate in complex environments with comparable execution time.

II. HETEROSCEDASTIC GAUSSIAN PROCESSES FOR
MOTION PLANNING

A. The Gaussian Process Trajectory Representations

Consider a continuous-time trajectory as a sample from a
vector-valued continuous-time Gaussian process (GP)

0(t) ~ GP(u(t), K(t,t")) (1)

that is parameterized with N support states at discrete time
instants, @; € RP, i € N, where D is the state dimensionality.
We employ a structured kernel belonging to a special class
of GP priors generated by a linear time-varying stochastic
differential equation (LTV-SDE)

6(t) = F(1)0(t) + v(t) + L(t)w(t), )

where F' and L are system matrices and v is a known
exogenous input. The white noise process w(t) is itself a GP
with zero mean value

w(t) ~ GP(0,Q.(t)o(t — '), 3)

where Q_(t) is an isotropic time-varying power-spectral den-
sity matrix, Q.(t) = Q.(t)I. A similar dynamical system
has been utilized in estimation [15], [16], calibration [17]
and planning [12], [18]. However, the crucial difference in
our approach is that the covariance Q. (t) is time-varying and
consequently generates a heteroscedastic GP [19]. We discuss
benefits of this approach in Section II-E.

The mean and the covariance of the GP generated by the
LTV-SDE given in (2) evaluate to
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K(t,t) = ®(t,to)Ko®(t', 1) +
min(¢,t")
/ ®(t,5)L(s)Q.(s)L(s)T®(t',s)T ds, (5)

where p, and ICy are the initial mean and covariance of the
first state, and ®(¢, s) is the state transition matrix [15].

B. GP Prior for Motion Planning
Due to Markov 1property of the LTV-SDE in (2), the inverse
kernel matrix IC  is exactly sparse block tridiagonal [15]:
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The GP defined by mean and covariance in (4) and (5)
is well suited for estimation problems. However, in motion
planning problems there exists a desired fixed goal state. Given
that, we need to condition this GP with a fictitious observation
on the goal state with mean p, and covariance /Cpn. This
can be accomplished while still preserving the sparsity of the

kernel matrix [12]
~_1
F
ich} {0 .. 0 I]

-1 P ! 671
K= [0 ... 0 I} {
(10)

=FTQ'F.
The mean vector p = [No 7’ N]T and the kernel matrix
given in (10) fully determine a continuous-time trajectory
defined by (1) that we employ for motion planning.

C. Fast GP interpolation

A major benefit of modelling continuous-time trajectory
in motion planning with GPs is the possibility to query the
planned state O(7) at any time of interest 7, and not only
at discrete time instants. The kernel matrix defined in (10)
allows for computationally efficient, structure-exploiting GP
interpolation with O(1) complexity. State O(7) at 7 € [t;, t;41]
is a function only of its neighboring states [10]

O(7) = (1) + A(T)(0; — py) + ¥ (7) (i1 — piyq), (1D
A(r) = @(7,t;) — R ()R (tit1, L), (12)
U(r)=Q,, ®(tit1, T)TQ;}H,

where @, ;, is given in (9). Efficient GP interpolation can be
exploited for reasoning about small obstacles while keeping
a relatively small number of support states which reduces
the incurred computational burden. It can also be utilized for
providing a dense output trajectory that a robot can execute
without any post-processing.

13)
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Fig. 1. Comparison of the homoscedastic and the proposed heteroscedastic GP priors which depend on the covariance of the white noise process w(t)

D. Constant-velocity motion model

Robot dynamics are represented with the double integrator
linear system with white noise injected in acceleration. The
trajectory is thus generated by the LTV-SDE (2), where the
Markovian state @(t) consists of position and velocity in
configuration space with the following system matrices

F(t) = {g (IJ L(t) = m .

This formulation generates a constant velocity GP prior which
is centered around a zero acceleration trajectory. Applying
this motion model minimizes actuator acceleration in the
configuration space, thus minimizing the energy consumption
and providing the physical meaning of smoothness [12].

(14)

E. Benefits of heteroscedasticity

State-of-the-art methods based on GPs [10]-[12] minimize
the sum of two costs: an obstacle cost and a smoothness cost
which measures the deviation of the trajectory from the GP
prior mean. Those methods use covariance as a parameter
in optimization, with smaller values of /C penalizing the
deviation of the trajectory from the prior mean more. For
therein employed homoscedastic GPs, small constant values
of Q. allow high variance of states near the midpoint of
trajectory, while states close to the trajectory start or goal
have relatively small variance. If the prior mean of those
states passes through an obstacle, the Levenberg-Marquardt
optimization technique used in [10]-[12] will have difficulty
escaping the collision since the incurred smoothness cost can
become too large commensurate with obstacle cost. Figure la
shows that sample trajectories drawn from the homoscedastic
GP do not have large deviation from the mean near the
first and the last state. With larger constant values of Q.
this problem diminishes, however, states near the trajectory
midpoint then have high variance and trajectories lose the
desirable smoothness property.

By introducing heteroscedasticity of the underlying white
noise process, we can design GPs that are better suited
for motion planning and help alleviate the problem of local
minima. Ideally, the GP should be able to generate trajectories
that maneuver around the obstacles near start and goal states,

while retaining the smoothness property in the middle. With
careful selection of the proposed time-varying white noise
power-spectral density matrix Q. (t), we are able to model
GPs that achieve the stated goal. In our experience, modeling
Q.(t) as a parabola with high values at the beginning and end,
and the lowest value at the temporal midpoint of the trajectory,
leads to GPs that have these desirable features. Note that the
GP covariance IC(t,t') is obtained by propagating Q).(t) with
the underlying motion model, as defined in (6), and thus low
(or even zero) value of ).(t) at a particular time instant does
not imply small GP covariance. An example of such Q.(t)
is depicted in Figure 1c and it leads to a heteroscedastic GP
shown in Figure 1b. Notably, sample trajectories drawn from
the example heteroscedastic GP have large deviation from
the mean near the first and the last state. The example GP
would be able to thoroughly explore the environment and
generate trajectories that bypass obstacles near the first and
the last state. Note that any non-negative function can be used
for Q.(t), depending on the specific context of some motion
planning problem. For example, one could model Q.(t) as
a monotonically decreasing function, resembling the aim of
exploring more at the beginning and less towards the end.

III. PROPOSED STOCHASTIC TRAJECTORY OPTIMIZATION

Formally, the goal of trajectory optimization is to find
a smooth, collision-free trajectory through the configuration
space between two end points. Prior work in this area mod-
els the cost of a trajectory using two terms: a prior term,
which usually encodes smoothness that minimizes higher-
order derivatives of the robot states, and an arbitrary state-
dependent term, which usually measures the cost of being near
obstacles. However, our optimization criteria consists solely
of an arbitrary state-dependent cost term. We reason that our
trajectory carries an inherent property of smoothness since we
model it as a sample from the GP defined in (1). Therefore,
our method starts with the following optimization problem:

minimize  f[0(t)]
o(t) (15)
subject to  O(t) ~ GP(pu(t), K(t,t')).

The state-dependent cost term f[@(¢)] can include any cost
function corresponding to the desired trajectory properties,



e.g. collision avoidance, task-space constraints, torques [6] and
manipulability [20]. In this work, we consider only collision
avoidance and use a precomputed signed distance field for
collision checking similarly to [10], [12].

Most of the state-of-the-art approaches use gradient-based
methods which find locally optimal trajectories. In this work,
we instead optimize using a derivative-free stochastic opti-
mization method. This allows for better exploration while
being less prone to local minima. It also enables optimization
of arbitrary costs which are non-differentiable or non-smooth.
To solve (15), we employ a stochastic optimization approach
stemming from the cross-entropy method [14] and with simi-
larities to the estimation-of-distribution algorithm [21].

Our method starts with drawing K sample trajectories from
the GP defined in (1), where the mean g is initialized as
a constant-velocity straight line in configuration space and
covariance matrix K arises from the kernel matrix defined
in (10). A sample trajectory is generated using

0=p+AZ, (16)

where A is a lower triangular matrix obtained by Cholesky
decomposition of the covariance matrix, K = AAT, and Z
is a vector of N standard normal variables Z ~ N(0,1).
Subsequently, we evaluate the cost f[@(t)] for each trajec-
tory using the aforementioned hinge loss with a precomputed
signed distance field. From the evaluated K trajectories we
pick M best ones according to the optimization criteria, i.e.
ones with the lowest cost f[0(t)]. We then take the cost-
weighted average (weighted arithmetic mean) of those M best
trajectories in order to form a GP mean p for next iteration:

Sy WO (£)
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p(t) =

where
Wm = 1/f[0m(t)]'

This process is repeated until a collision-free trajectory is
found. The described method is summarized in Algorithm 1.

Contrary to a generic cross-entropy optimization algorithm,
in our approach the covariance matrix )C remains unchanged
through iterations. This is done because computing the new
covariance matrix of the same form would significantly in-
crease the computational burden. Furthermore, the unchanged
covariance matrix allows for exhaustive exploration around the
mean in each iteration. Changing only mean g while keeping
the covariance matrix K unchanged is permitted in the GP
framework described in Section II, as change in @ can be
attributed to some implicitly imposed exogenous input v(t)
which does not impact covariance.

(18)

A. Computational Efficiency Remarks

In order to throughly explore the environment, our approach
requires cost evaluation for relatively many drawn trajectory
samples, which naturally leads to the slower computation than
the state-of-the-art gradient based methods. However, due to
the fact that cost evaluation for each trajectory is independent,

Algorithm 1 Stochastic Trajectory Optimization with GPs
Input: Start and goal states 6y, 6, a state-dependent cost
function f[0(t)]
Precompute: Initial mean @ and covariance /C
1: for 1... Ny, do

2: for 1... K do

3: Sample trajectory 0 (t) ~ GP(u(t), IC(¢,t'))

4: Evaluate trajectory cost f[6(¢)]

5: if f[6x(t)] = 0 then

6: Return collision free trajectory 6y (¢)

7: end if

8: end for

9: From K sampled trajectories take M with lowest cost
10: Compute new mean p(t) = W

11: end for e

the inner for loop in the proposed Algorithm 1 can be
parallelized with computational efficiency scaling linearly with
the number of processing cores. In our implementation, we
exploit this property and parallelize the inner loop on 4 pro-
cessing cores. A GPU implementation presents an interesting
possibility that would allow sampling and cost evaluation for
a huge number of trajectories, leading to fast environment
exploration and discovering optimal trajectories allowing real-
time replanning in dynamic environments [22].

We use GP interpolation for dense collision checking,
similarly to [10]. Since trajectory support states are temporally
equidistant and each sampled trajectory is drawn from the
same GP, matrices A and ¥ in (12) and (13) can be pre-
computed, instead of computing them each time interpolation
is needed. This provides another significant increase of the
proposed method computational efficiency.

IV. TEST RESULTS

We tested the proposed method on two simulation bench-
marks and compared it with the state-of-the-art trajectory
optimization technique GPMP2 [10]. In Section IV-A, we
quantitatively demonstrate the improvement of the proposed
method over GPMP2 with random restarts in solving a 2D
maze, which is a good benchmark for an optimization-based
planner effectiveness at finding a collision-free solution in
a haystack of local minima. This experiment aims to show
benefits of the proposed stochastic method, which allows for
better exploration in comparison to gradient-based methods.
In Section IV-B, we demonstrate the improvement of the
proposed method over prior techniques in finding a collision-
free trajectory for a 7 DOF manipulator in cluttered environ-
ment. This experiment aims to show benefits of the proposed
heteroscedastic prior since the environment was set up so that
obstacles are placed near the start and goal state.

In both benchmarks, our method was always initialized with
a constant-velocity straight line trajectory in the configuration
space. For GPMP2, we used a straight line initialization as a
baseline, and in our experiments we designate to this model as
line. Since GPMP2 always converges very quickly, but often



fails in cluttered environments due to infeasible local minima,
we also employed random restarts, which is a commonly used
method to tackle the local minima problems in gradient-based
trajectory optimization methods [4]. In this technique, the
optimizer is first initialized with a straight-line and, on failure,
re-initialized with a random trajectory. Our implementation
samples the random restart trajectory from a homoscedastic
GP, similarly to [11]. We designate to this model as rr.

We used the GPMP2 C++ library [10], [23] and its respec-
tive MATLAB toolbox based on the GTSAM C++ library [13].
Experiments were performed on a system with a 2.8-GHz Intel
Core 17-7700HQ processor and 16 GB of RAM.

A. The Maze Benchmark

The maze benchmark, appropriate for quantitative evalua-
tion, consisted of 1000 synthetic environments created by the
Wilson’s algorithm [24], which generates uniformly sampled
mazes with a single solution (i.e. perfect mazes). Mazes were
generated on grids with sizes of 3 x 3, 4 x 4 and 5 x 5 and
afterwards inflated to realistic dimensions. While the 2D maze
problem is generally suitable for grid-based or sampling-based
motion planning approaches which achieve 100% success rate,
it can be used to measure an optimization-based planner’s
effectiveness at finding the unique collision-free solution in
a cluttered environment.

For each maze environment, we plan motion for a 2D holo-
nomic circular robot with the radius of 0.5 m. For our method,
we chose the number of sampled trajectories K € [200, 400],
while the number of best trajectories chosen for the weighted
mean in each iteration was set to M = 3. Altough these
parameters may seem disproportionate, choosing a large K
ensures exhaustive exploration, while small M induces drastic
changes in the GP mean p between iterations, which helps
in finding the solution faster in complex environments. We
set the total trajectory time (i.e. the timespan in which robot
moves from start to goal state) to tiota; = 20, while time-
varying covariance matrix of the white noise governing the
heteroscedastic GP was calculated as Q,(t) = (t — Lol )2
which generates a parabola with its vertex at the midpoint
of the trajectory. For GPMP2 we used the parameters set
from the Matlab toolbox 2D example. For both methods, the
trajectory was parametrized with N = 10 support states and
5 interpolation steps inbetween for which the trajectory cost
is evaluated. We set the maximum runtime for our algorithm
and random restarts as ty,,x = 1s, with one exception where
we set tax = 25 in order to investigate the ability of our
algorithm to find solutions given more time. We measure the
number of mazes solved (success rate) and the execution time.
The reults of the experiment are shown in Table L.

While the GPMP2 without random restarts has an order of
magnitude faster execution time, it has the worst success rate
for every maze complexity level. For the least complex mazes,
created from a 3 x 3 grid, the random restarts outperformed
our algorithm, managing similarly high success rate with sig-
nificantly faster computation. However, for the mazes created
from a 4 x 4 grid our algorithm outperformed random restarts,

>

—— GPMP2
——The proposed approach

y [m]

Fig. 2. Example of a 4 X 4 maze where the proposed approach finds
a collision-free solution, while GPMP2 converges to an infeasible local
minimum. Slight undulation of the trajectory obtained by the proposed method
is due to the criterium of finding a collision-free trajectory, unlike the GPMP2
criterium which explicitly encourages smoothness.

TABLE I
SUCCESS RATE (PERCENTAGE) / AVERAGE EXECUTION TIME
(MILISECONDS) ON MAZE AND ROBOT ARM PLANNING BENCHMARKS.

The proposed approach GPMP2
Maze K =400 K =400 K =200 . line
tmaz = 28 tmaz = 18 tmaz =18

3x3 95217197 929 /171 89.0 / 160 89.2/96  553/28
4x4 79.1 /1 489 66.9 / 324 61.8 /297 445/301 13.8/39
5x5 43.8 / 858 26.7 / 493 26.3 /429 5/252 2.1/29
Arm Heteroscedastic  Homoscedastic I line

100 / 446 757548 80 /368 10745

having notably higher success rate with similar reported times.
Note that the reported execution time for our algorithm is the
actual time it took to compute, and not the sum over all cores.
An example of a 4 X 4 maze is shown in Figure 2. The most
complex mazes created from a 5 x 5 grid demonstrated the in-
ability of gradient-based methods to find solutions in complex
environments plagued with multitude of local minima.

B. The Robot Arm Planning Benchmark

The robot arm planning benchmark consisted of a simulated
WAM robotic arm in an environment featuring a table and
a drawer. We conducted 20 unique experiments, all with
different start and goal states with starting points being under
the table and end states being inside the drawer. This set of
problems is not particularly difficult since most of the states
are initially collision free, however it was set up to accentuate
the proneness of the homoscedastic GP planning methods to
get stuck in local minima near start or goal states.

For our method, we chose the number of sampled trajecto-
ries K = 400, while the number of best trajectories chosen
for the weighted mean in each iteration was set as M = 3.
In this benchmark we tested our optimization method with
both heteroscedastic and homoscedastic GP priors in order
to demonstrate the benefits of heteroscedasticity. We set the
total trajectory time tyot, = 20s. For homoscedastic case we
chose Q. = 2, while for a heteroscedastic GP we calculated
Q.(t) = (t — “e21)2, similarly to the maze benchmark.
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Fig. 3. A simulated WAM robotic arm in an environment featuring a table and
a drawer. Plotted lines depict the end effector trajectories. This is an example
where the proposed approach finds a collision free solution, while GPMP2
converges to the infeasible local minimum. Initial straight-line trajectory in
configuration space is also shown.

For GPMP2 we used the default parameters set up in the
Matlab toolbox WAM planner example. For both methods
the trajectory was parametrized with N = 10 equidistant
support states and 10 interpolation steps inbetween for which
the trajectory cost was evaluated. We again set the fixed time
budget for our algorithm and random restarts as t,,x = 1s.
We again measured the success rate and the execution time.
The results of the experiment are shown in Table I, where we
can see that while the baseline GPMP?2 fails in most cases, the
stochasticity introduced by random restarts helps in achieving
higher success rates. The proposed method achieved a perfect
score within the fixed time budget, thus demonstrating the
advantage of the proposed heteroscedastic prior.

V. CONCLUSION

In this paper we have presented a stochastic trajectory
optimization method for motion planning. We considered each
trajectory as a sample from a continuous time GP generated by
a linear time-varying stochastic differential equation. By intro-
ducing the heteroscedasticity of the underlying GP, we were
able to generate trajectory priors better suited for collision
avoidance in motion planning problems. We proposed a cross-
entropy method based derivative-free optimization in order to
contend with the local minima problem present in trajectory
optimization methods. Through simulated experiments we
demonstrated that the proposed approach ameliorated the local
minima problem present in trajetory optimization approaches
while having comparable execution time.

In future work, it would be interesting to exploit the paral-
lelization capability of our algorithm with a GPU implemen-
tation. Furthermore, the strong exploration capability could be
used for finding homotopy classes in the environment.
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