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Abstract—Testing and evaluation of sensor processing algo-
rithms for autonomous vehicles is challenging due to the problem
of collecting reference data. To ensure safety and robustness,
many man-hours need to be spent in collecting and preparing
such data. One solution to alleviate this problem is to use
computer simulations. Computer simulations can model a real
system with all its static and dynamic characteristics. This
approach provides efficiency and precision when collecting data
and reduces testing time. The aim of this paper is development
of a simulation environment based on Unity where it would
be possible to test sensors and algorithms for autonomous
vehicles and show deviations from reference data. The proposed
simulation model contains typical city objects and participants:
roads, sidewalks, buildings, pedestrians, traffic signs and vehicles.
In this paper we simulate motion and sensors from a single
vehicle equipped with a stereo camera setup. The program
environment Unity is used for designing the simulation, and
behavioral scripts are executed with C# programming language.
To showcase the testing of applicable algorithms, OpenCV class
for computing stereo correspondence, using the semi-global block
matching algorithm, is used on simulated stereo images and we
discuss future development of the simulation.

Index Terms—Autonomous Vehicles, Urban Scenario Simula-
tion, Stereo Vision

I. INTRODUCTION

Reliable perception is one of the key components of any
autonomous system and entails analyzing and understanding
a series of steps; from physical properties of the operation
principle by which sensor collects data to high level semantic
reasoning about the scene. Combining different sensor modal-
ities enhances the chances of an autonomous robot or vehicle
operating robustly in a wide range of scenarios. However,
collecting sensor data in real-life scenarios takes resources and
time; thus, in order to alleviate that step and prepare more
adequately, prior testing and analysis can be performed in
appropriately designed simulated environments. Indeed, recent
reinforcement learning research extensively leverages simula-
tions in order to train policies that would take impractically
long in real-life and transfer them to reality [1].

Another challenge, besides collecting the real-world
datasets, is getting reference, i.e., ground truth, data for
evaluation purposes. For example, testing accuracy of vehicle
localization based on stereo cameras or 3D laser range finders
can be compared to more accurate sensor such as a differential
GPS as done in the well-known KITTI dataset [2]. Another

Fig. 1: Left camera images of the generated street curb and
crossroad examples

KITTI dateset example is evaluation of disparity computation
from stereo cameras by comparing it to the point cloud mea-
sured by the 3D laser range sensor; however, depth evaluation
for every stereo camera frame is not available since depth
integration from several 3D scans is necessary. Furthermore,
once datasets are recorded, evaluating semantic classification
and multitarget tracking algorithms requires annotations by hu-
man experts [3]. Naturally, real-life datasets and experiments
constitute a fundamental block and are irreplaceable for the
development of autonomous vehicle algorithms and valuable
insight papers have reported on the experience and lessons
learned [4]-[6]; nevertheless, insights, testing, and reduction of
development costs can be achieved by also exploiting benefits
of appropriately designed simulation environments.

In [7] a virtual urban environment was presented for con-
ducting experiments with a fleet of autonomous vehicles as
part of the project aiming to design novel transportation
systems based on a fleet of small electric cars supervised
by a central computer. An approach to urban traffic scenario
simulator implementation and pertaining requirements along
with an overview comparing at the time available simulators
and the possibility of simulating DARPA Urban Challenge
teams sensors were discussed in [8]. A lightweight simulator
aiming at replicating urban features, such as road networks,
curbs and general objects, including a realistic host vehicle was
proposed in [9]. Therein, for the purposes of motion planning
the authors also modeled other traffic participants which could
interact with each other relying on intelligent agent-based



approaches. In [10] a photo-realistic virtual version of the
KITTI dataset was presented that was automatically labeled
with accurate ground truth for object detection, tracking, scene
segmentation, depth and optical flow. The created dataset was
use to demonstrate that deep learning algorithms pretrained on
real data behave similarly in the real-world and the simulated
one, while pre-training on virtual data improves performance.
Research in [11] presented the development of an urban driv-
ing simulator named CARLA. It is an open-source simulator
for development, training and validation of urban autonomous
driving systems and offers flexible specification of sensor
suites and environmental conditions. In the paper, authors
also compared the performance of three different approaches
to autonomous driving. Furthermore, in [12] used CARLA
for analyzing the challenge of transferring driving policies
learned in simulated environments to the real world. Given the
above discussed advantages of simulated urban environments
for testing development of autonomous vehicles, there exists
multiple open source and commercial simulators [13]-[19].
NVIDIA Drive Constellation [14] uses the computing power
of two different servers to create a cloud-based computing
platform for autonomous vehicle testing. The first server
runs the DRIVE Sim software that uses GPUs to generate
a wide range of testing environments and scenarios. The
second server contains DRIVE AGX Pegasus Al car com-
puter that processes the simulated data as if it were coming
from the sensors of an actual car. DRIVE Sim positions
virtual car in the environment and sends data from sensors
to Pegasus. Pegasus processes the data and sends driving
commands back to DRIVE Sim. Together, the two servers
create a digital feedback loop. Cognata [16] uses computer
vision and deep learning algorithms to automatically generate
a whole virtual city environment. Different weather conditions
and lighting are added to stress test the system. Simulation
engine combines TrueLife and PhysicsStudio to simulate the
sensor interaction with the external materials to receive the
most comprehensive autonomous driving simulation feedback
loop. Virtual simulator enables to run thousands of different
scenarios based on various geographic locations and driver
behaviors. Apollo Simulation [15] is one of the solutions of
the Apollo3.5 Platform. Its open functionality allows users to
input different road types, obstacles, driving plans and traffic
light states. Likewise, execution modes give users complete
setup to run multiple scenarios and verify uploaded modules
in the Apollo environment. Integrated Automatic Grading
System in simulations tests via ten metrics; some of which are:
speed limit, collision detection, traffic light recognition etc. It
also provides users with 3D visualization of real-time road
conditions and visualizes module output while showing the
status of the autonomous vehicle. Cvedias SynCity [17] simu-
lates various environments for autonomous applications, also
providing sensor simulations of a vast number of real-world
phenomena such as weather, day/night cycle and different
traffic situations. It has flexible API that gives users the ability
to customize before mentioned environment and independently
control parameter and the scenario. It automatically generates

ground truth for users with various occlusions and visibility
constraints.

In the present paper we construct a simulated urban en-
vironment based on the freely available Unity engine. We
model an urban-like neighborhood including other agents,
such as cars and pedestrians, including intersections with
traffic lights. The present paper focuses on the perception
side of the autonomous vehicle control challenge; concretely,
stereo vision. Stereo cameras are an omnipresent and popular
sensor setup for autonomous vehicles, since they enables
accurate ego-motion estimation and simultaneous localization
and mapping, while also, being a vision sensor, they can
be directly used for other vision-based challenges, such as
semantic scene interpretation. The simulated vehicle with a
stereo camera can drive along any predefined path and record
data (examples of left camera images are shown in Fig. 1).
Besides the two cameras simulating a stereo sensor setup, we
placed a third camera that uses a special shader, so called Z-
buffer, to generate ground truth depth information. Given that,
disparity estimation algorithm accuracy can be compared to
this reference data having at all times also available ground
truth motion of the vehicle itself. We present an example of
stereo disparity estimation from simulated stereo images using
the semi-global matching algorithm [20].

The paper is organized as follows. In Section II we present
the Unity 3D framework and describe some of its capabilities
relating to simulating environments for autonomous vehicles.
In Section III we describe the static and dynamic parts of
the constructed urban environment, while in Section IV stereo
image capture as well as ground truth generation is explained.
In the end, Section V concludes the paper.

II. UNITY 3D SIMULATION FRAMEWORK

Unity is a cross-platform game engine developed by Unity
Technologies and can be used for three-dimensional and
two-dimensional games as well as simulations. It was first
released in 2005 as an OS X-exclusive game engine. Over the
years, Unity become available on 27 platforms; from standard
computer operating systems and popular consoles to virtual
and mixed reality devices. In the sequel we describe some of
the used Unity features and tools [21].

A. Lighting

Lighting is provided by light objects or by creating ambient
light and emissive materials. Unity has two basic lighting
techniques: realtime and precomputed. In some situations both
techniques can be combined to create a more realistic lighting
scene. Directional, spot and point lights are set to realtime by
default. Realtime lighting is basic way of lighting objects in
the scene, where light rays from realtime lights do not bounce
from the surface of object. In order to make a more realistic
scenes we need to use global illumination that is part of
the precomputed lighting technique. Static lighting effects are
calculated and then stored in a reference texture map called a
lightmap and this process is named baking. The effects of light
sources on static objects in the scene are calculated and stored



to textures. Static lightmaps cannot react to changes in lighting
conditions but precomputed realtime global illumination offers
us a technique for updating scene lighting interactively. Lights
can cast shadows from an object onto itself or onto other
objects in scene. Shadows, naturally, add a degree of realism
to the scene, because they bring out the scale and position of
objects. Furthermore, for vision algorithms they can pose an
additional challenge or be switched off for simplicity.

B. Cameras

Cameras in Unity are objects that transform a three-
dimensional scene to a two-dimensional one which can be
reproduced to viewer’s screen. Position of camera defines the
viewpoint and other components define the size and shape
of the region that will be reproduced to viewer. A camera
in the real world simulates perspective projection and this
effect is for creating a realistic image. A camera that does
not change the size of objects with distance is known as
orthographic. Unity supports both views of the scene and they
are known as camera projections. Perpendicular plane is set
to the cameras forward direction to define the limit to how far
camera can see. It is called the clipping plane, because objects
at greater distance from the camera are clipped. There is also
a corresponding near clipping plane that defines distance from
camera at which objects will not be seen.

C. Mesh Geometry

Solid objects are made of a group of triangles arranged in
three-dimensional space and is called a mesh. The mesh class
stores all vertices in a single array, where each vertex is stored
just once and each triangle is specified using three indexes of
the vertex array. For correct shading the normal vector must
be supplied for each vertex. A normal vector is perpendicular
to the mesh surface at the position it is associated with.
During shading each normal is compared with the direction
of incoming light, thus when the two vectors are aligned the
surface receives full brightness, otherwise it will be somewhere
in between full brightness and complete dark.

D. Shader

Unity supports a wide range of shader types. Its features
are enabled by using various texture slots and parameters.
The standard shader incorporates Physically Based Shading.
Physically Based Shading simulates the interactions between
materials and light and has only recently become possible in
real-time graphics. Physically Based Shading has a number
of useful concepts, some of them are energy conservation
and High Dynamic Range. Energy conservation ensures that
objects never reflect more light than they receive.

E. Textures

Textures are standard bitmap images that are applied on
the mesh to give better details since mesh only gives a rough
approximation of the shape. For best representation of textures
materials are applied. Materials use shaders to render texture
on the surface of mesh, while shaders implement lighting and

colouring effects to simulate different materials, because some
materials are very complex they can combine multiple shaders.
To ensure best representation of bumpy surfaces heightmaps
are used. Heightmap stores an area where each point has a
particular height from a baseline and are than converted to
coordinates that are used to generate mesh.

F. Physics

Unity has implemented convincing physical behaviour that
makes objects accelerate correctly and be affected by collisions
and other forces. Two main components are rigid body and
collider. When a rigid body is connected to an object it will
immediately respond to gravity. Object with rigid body do
not need rotation and position transformation to be moved
around scene, instead forces should apply to push the object
and let engine calculate the movements. Collider defines the
shape of an object which responds in contact with other objects
that have colliders applied to them. Collider is invisible and
it approximates objects mesh to improve efficiency because
mesh is usually complex object and calculations collisions
between complex object slows down the physics engine.

III. CONSTRUCTED URBAN SIMULATION

The constructed simulation is placed in an urban envi-
ronment implemented using the previously described Unity
game engine. The environment contains typical city objects
and participants like roads, sidewalks, buildings, pedestrians,
traffic signs, and vehicles. To understand the implementation
of these elements, Unity editor is briefly introduced. Most of
the elements are constructed using standard assets provided by
Unity or free assets from the Unity Asset Store.

A. Unity Editor interface

Unity provides a simple and user friendly interface. Two
main tabs are Scene and Game. Scene tab shows current
appearance of scene and enables numerous ways of editing
added game objects and prefabs. All objects added in the scene
are shown in Hierarchy tab where they can be arranged in
desirable groups and order. Clicking on object in a scene or in
the Hierarchy tab shows the objects Inspector tab. Inspector tab
provides basic information about object and all components
attached to it. Every object has Transform component that
gives information about its local position, rotation and scale
while wide range of other components (scripts, colliders and
mashes, to name a few) is attached depending on objects
usage. All imported assets and packages can be seen in Project
tab and added to scene by simple drag and drop. Game tab, on
the other hand, shows current game (or in this case, simulation)
state. By clicking on play icon all components compile,
notifying about potential errors and warnings in Console tab,
and simulation starts from the main camera perspective.

B. Roads and sidewalks

Building of the proposed simulation starts by adding a Ter-
rain game object on which sample scene of urban environment
is placed. For the purpose of this simulation, terrain will be a



Fig. 2: Example of a generated intersection

big plain surface to simplify the rendering. To have a faithful
representation of a city, it i necessary to add realistic roads
and intersections. To achieve this, Simple Modular Street Kit
and Low Poly Street Pack assets were used.These assets are
available in Unity’s Asset Store for free and enable various
ways of implementing roads and intersections. Furthermore,
the Low Poly Street Pack contains a large number of models
of street signs and other street elements. By combining those
two assets, making of city streets becomes a relatively fast
process. The example of an intersection together with some
other street elements is shown in Fig. 2.

C. Buildings

Besides roads, an integral part of every urban environment
are its buildings. To surround the already implemented streets
with them, the Simple Urban Buildings Pack 1, also free
to import for Unity Asset Store, was utilized. It contains
prefabs of five low poly buildings with already implemented
optimisation technique called Level Of Detail (LOD) which
reduces the load on the hardware and improves rendering
performance when main camera is not close to them. Despite
having only five buildings provided in asset, the city does not
seem too repetitive thanks to diverse possibilities of modeling
and rearranging the before mentioned prefabs.

D. Vehicles and pedestrians

Essential part of every urban environment simulation are
agents, i.e., vehicles and pedestrians that populate it. To
simulate these agents, available vehicles from Unity’s Standard
Assets were used. Standard Assets have everything needed for
vehicles to move through streets by following defined way-
points. CarWaypointBased prefab has an already implemented

script components such as Car Controller, Car Al Control
and Way-point Progress Tracker, that have numerous variables
that can be changed to fine tune vehicle motion and physics.
One of the vehicles is equipped with the main camera, whose
perspective is seen when simulation is started, and two other
cameras that simulate the stereo camera sensor. The main
vehicle and game view are shown in Fig. 3.

E. The final urban scene

Using all the previously mentioned methods and elements,
the implemented urban environment looks as shown in Fig. 4.
The Terrains component for adding already existing trees in
Unity was used to hide parts of it that should not be seen
through main camera and to keep cities landlocked looks.
Also, in Fig. 5 we shown the full Hierarchy tab with all the
objects used to implement this example of an urban simulation.

IV. CAPTURING STEREO IMAGES AND REFERENCE DATA

Two cameras are used for capturing frames of the simulated
city. They are mounted on the front of the car object and
are symmetrical with respect to the car’s main axis. These
cameras are used to simulate the stereo camera with a fixed
baseline and capture two images. Cameras were simulated
with physical properties and had the focal length f = 20 mm,
baseline b = 40 cm, and sensor size of 36 mm x 36 mm, while
images were in ARGB32 color format and had resolution of
1024 x 1024. The quality of obtained disparity can then be
checked by comparing it with the ground truth. Accompanying
video showing an excerpt from the scene is available '.

Uhttps://youtu.be/2P0y YFx1Vts



Fig. 3: Main vehicle and game view

A. Constructing the disparity map and ground truth

The semi-global block matching algorithm [20] is used to
construct the disparity map from simulated stereo images. Im-
plementation of this algorithm used in the paper is included in
the OpenCV Library. The resulting image shows the distance
of objects from the camera in a given frame. The distances
are shown in the form of a gray-scale image, where parts of
the disparity image that are closer to the camera are brighter
and vice versa.

To compute the ground truth, a separate third camera was
placed in between the stereo pair and used a special shader
(Z-buffer) that is ran on the graphics card for every pixel
in the frame. The shader encodes the depth in the form of
grayscale images. Note that this discretizes the depth and for
scenes with large depth variations various Z-buffer images
should be created with different clipping planes as was done
in the Tsukuba dataset [22]. Given the known depth Z, the
corresponding ground truth disparity d* for either left or right
camera can be computed using the formula

&=k = (1)

where k is the sensor scaling factor. Figures 6 and 7 show
examples of the SGM computed disparity and the pertaining
ground truth. We calculated the total error as percentage of
erroneous disparities defined those that differ either absolutely
by 5px or relatively by 5% from the ground truth.

V. CONCLUSION

In this paper we presented a Unity based urban environ-
ment simulation for testing of autonomous vehicle perception
algorithms. A model of a city was created together with other
agents, such as cars and pedestrians, as well as intersections
with traffic lights. A simulated vehicle equipped with sensors
can then drive along a predefined trajectory and collect data.
Specifically, in this paper we have demonstrated these capabil-
ities for the omnipresent stereo camera by placing two virtual
cameras on the moving vehicle. Besides capturing left and
right camera images, the vehicle also has a dedicated third
camera using a special shader that enables creation of depth
ground truth data. Given that, we have shown how virtual
stereo images can be used to compute the disparity image and
compare it to the generated ground truth. For future work we
plan to the city can be populated with more agents and other
sensors can be added to the vehicle. Ground truth data can
then be extended to 3D pointclouds and semantic labels.
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