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Abstract— A significant challenge in manipulation motion
planning is to ensure agility in the face of unpredictable
changes during task execution. This requires the identification
and possible modification of suitable joint-space trajectories,
since the joint velocities required to achieve a specific end-
effector motion vary with manipulator configuration. For a
given manipulator configuration, the joint space-to-task space
velocity mapping is characterized by a quantity known as
the manipulability index. In contrast to previous control-based
approaches, we examine the maximization of manipulability
during planning as a way of achieving adaptable and safe joint
space-to-task space motion mappings in various scenarios. By
representing the manipulator trajectory as a continuous-time
Gaussian process (GP), we are able to leverage recent advances
in trajectory optimization to maximize the manipulability index
during trajectory generation. Moreover, the sparsity of our
chosen representation reduces the typically large computational
cost associated with maximizing manipulability when addi-
tional constraints exist. Results from simulation studies and
experiments with a real manipulator demonstrate increases
in manipulability, while maintaining smooth trajectories with
more dexterous (and therefore more agile) arm configurations.

I. INTRODUCTION

Motion planning is a fundamental challenge for robotic
manipulators executing complex tasks. To perform a task
successfully, the motion planner must generate a joint space
trajectory that respects constraints induced by the task (e.g.,
collision avoidance). The existence of these constraints may
cause the planning algorithm to generate trajectories that con-
tain configurations with suboptimal joint space-to-task space
mappings. Consequently, in scenarios where the manipulator
is operating autonomously in non-static environments (e.g.,
during collaborative task execution), large joint motions
may be required in order for the manipulator to adapt to
unexpected changes in constraints during task execution. A
configuration’s capacity for movement in the task space can
be inferred from the manipulability ellipsoid [1], whose axis
lengths give a measure of how effectively joint velocities map
to directions in task space. The manipulability index intro-
duced by Yoshikawa in [2] is proportional to this ellipsoid’s
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Fig. 1: Comparison of two solutions for reaching a position goal
from a given near-singular starting configuration (caused by fully
extending the arm initially). The right image shows a solution based
purely on inverse kinematics, which maintains low manipulability
throughout. The image on the left shows a trajectory generated by
our method, which avoids excessive arm extension.

volume and is commonly used in pose-tracking controllers to
avoid particularly unfavourable mappings that are known as
singularities. It follows that, by maximizing manipulability,
we can ensure that the manipulator possesses a higher level
of overall dexterity throughout the planned trajectory—while
avoiding large and potentially hazardous joint movements.
This enables rapid and predictable manipulator responses in
safety-critical applications as diverse as robotically-assisted
surgery [3] or satellite capture [4]. Rather than relying on
the incorporation of singularity avoidance in the tracking
controller itself, our method generates a motion plan that
preemptively maximizes the overall manipulability through-
out the manipulator’s trajectory.

Our goal is to optimize the trajectory such that, in the
face of unexpected task changes (e.g., to the final end-
effector pose), the manipulator is able to adapt its motion
with minimal joint position changes. The arm trajectory
shown on the right side of Fig. 1 is an example in which the
configuration is initially (and throughout the motion) nearly
singular, with the arm fully extended. Hence, even small
movements of the end-effector along the extended axis will
result in large joint velocities at the elbow. On the left side
of Fig. 1 is a trajectory with high manipulability that reaches
the same end-effector goal position in task space while
avoiding the elbow singularity. By choosing to represent the
complete joint trajectory as a sample from a continuous-time
Gaussian process (GP) [5], the manipulability maximization
problem defined above can be formulated as probabilistic
inference; a maximum a posteriori (MAP) estimator can be
used [6], [7] to find a solution that is, locally, relatively
far from near-singular regions while also enforcing a notion
of smoothness through a trajectory prior. We build on the
approach presented in [7], by introducing a likelihood factor
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which helps avoid low manipulability configurations induced
by task constraints. To the best of the authors’ knowledge,
this is the first method to directly integrate manipulability
maximization within a trajectory optimization formulation.
We make the following contributions:

(i) we formulate manipulability maximization as a
continuous-time trajectory optimization problem,

(ii) we demonstrate that this approach can be applied to a
variety of planning scenarios,

(iii) we show that, for our chosen trajectory representation,
the problem can be efficiently solved, and

(iv) we compare our approach to existing singularity avoid-
ance and manipulability maximization techniques.

II. RELATED WORK

Manipulability maximization has been extensively studied
from the perspective of robust kinematic control. Redun-
dancy resolution schemes such as [8] and [9] have long
been used for singularity avoidance, and consequently to
increase overall manipulability. More recently, quadratic pro-
gramming (QP) has been examined as an efficient method
for manipulability maximization in constrained inverse kine-
matics solvers [10]–[12]. These kinematic control policies
are efficient for end-effector tracking tasks, although their
success ultimately depends on the trajectory and on manipu-
lator redundancy. Moreover, many common tasks cannot be
efficiently defined in this manner (e.g., the task of reaching
a goal configuration while avoiding an obstacle).

Previous attempts to generate joint-space trajectories or
paths with high manipulability have resorted to methods that
suffer from high computational cost. For example, in [13],
a maximum manipulability discrete joint-space path for a
five degrees-of-freedom (DOF) manipulator is produced by
a genetic algorithm. The resolution-complete search in [14]
generates a sequence of high manipulability configurations
from an end-effector path in obstacle-free environments.
In [15], a singularity-free joint-space path is generated
by parameterizing the end-effector trajectory using Bezier
curves and finding optimal configurations through simulated
annealing. In [16] a manipulability cost is learned as one of
several cost terms in a formulation similar to CHOMP [17],
with the aim of completing a ‘disentangling’ task from a
provided demonstration. Additional interpolation may also
be required in order to ensure smooth transitions between
the states generated by these methods. However, no prior in-
formation will be available on the manipulability or collision
of the arm with the environment for these interpolated states.

Trajectory optimization algorithms [17]–[20] minimize a
cost function composed of both optimality and feasibility
terms and have been used for online planning and replanning
due to their low computational demands. However, avoid-
ing singularities presents a difficult problem for such ap-
proaches, since they require dense discretizations to produce
smooth and feasible solutions when handling complicated
constraints. This is especially true when the problem is
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Fig. 2: Illustration of the manipulability ellipsoid of volume V for
a manipulator end-effector at configuration θi. Larger axis lengths
indicate higher mobility.

additionally constrained by the end-effector pose or by the
need to avoid obstacles in the environment.

A continuous-time trajectory representation can sidestep
many of these difficulties by reducing the number of states
used in the optimization. Mukadam et al. [7] use a GP
trajectory representation, which allows them to treat the
motion planning problem as probabilistic inference on a
factor graph; as such, they are able to interpolate over
a trajectory and generate additional gradient information.
Consequently, highly constrained problems can be solved
efficiently using a MAP estimator while requiring only a
relatively small number of states. The resulting trajectory can
be queried at any point, allowing the robot’s manipulability
to be monitored throughout.

III. MANIPULABILITY

Consider a joint configuration θi as the state of a trajectory
θ at time ti. The kinematic relationship between configura-
tion space and task space velocities at θi for an n-DOF robot
is defined as

ẋ = J (θi)ω, (1)

where J (θi) ∈ Rp×n is the manipulator Jacobian matrix at
θi, while ω ∈ Rn and ẋ ∈ Rp are the configuration and
task space velocities at ti, respectively. Now, consider an
n-dimensional sphere in the space of unit joint velocities
‖ω‖2 = 1; using Eq. (1) we can define the mapping to the
Cartesian (task) velocity space as

‖ω‖2 = ẋT
(
JJT

)−1
ẋ. (2)

From Eq. (2), we see that the scaling of joint velocities to
the task space depends on the conditioning of the symmetric
positive semi-definite matrix JJT . Manipulability provides
a computationally tractable measure of the conditioning of
JJT for any joint configuration [2].

A. Manipulability

The matrix JJT in Eq. (2) also defines the manipula-
bility ellipsoid [1] of the end-effector. The principal axes
σ1u1, σ2u2, . . . , σpup of this ellipsoid can be determined
through singular value decomposition of J = UΣVT . The
manipulability measure (index) of a given kinematic chain
at θi is defined as

m =
√

det (JJT ) = σ1σ2 . . . σk . . . σp, (3)



0 2 4 6 8 10
0

0.1

0.2

0.3

Time [s]

V
al

ue
σmin
m

−10 −8 −6 −4 −2 0
0

2

4

6

8

10

log (m)

h
S̄

c = 0
c = 0.001
c = 0.01
c = 0.1

Fig. 3: Left: Comparison of the manipulability measure (dashed
line) and the smallest singular value of the Jacobian throughout
a trajectory. Right: Shape of the likelihood function in Eq. (10),
which depends on the parameter c.

and is proportional to the volume, V , of the manipulability
ellipsoid [1]. Here, σk ≥ 0 is the k-th largest singular
value of J, while uk is the k-th column vector of U.
A low manipulability corresponds to a low volume of the
manipulability ellipsoid, inhibiting motion in the task space.
An example of the manipulability ellipsoid of the end-
effector frame of a simple manipulator is depicted in Fig. 2.
The gradient of Eq. (3) can be calculated numerically [10],
but it is also possible to derive the gradient analytically with
respect to the j-th joint of the configuration θi using Jacobi’s
identity [9],

∂ m

∂ θi,j
= mTr

(
∂J

∂θi,j
J†
)
. (4)

Moreover, the components of Eq. (4), J and ∂J
∂θi,j

, can be
calculated via geometrical methods [21].

B. Singularities

The concept of manipulability relates directly to the con-
ditioning of the manipulator Jacobian matrix. Configurations
that result in the matrix JJT in Eq. (2) being non-invertible
are termed singularities. Consider a kinematic chain and
corresponding manipulability ellipsoid with a volume V ∝
m, as shown in Fig. 2. If the ellipsoid contains one or more
zero-length principal axes, it follows that V = 0 and m = 0;
configurations yielding such ellipsoids are known as singular
configurations. We can define a minimum acceptable ellip-
soid volume VS ∈ R+, and regard configurations that result
in a manipulability m < m (VS) to be nearly singular.

Conversely, a high manipulability value does not guarantee
that a configuration is not nearly singular, as an ellipsoid
with one ‘degenerate’ (i.e., of very small magnitude) axis
may still have a large overall volume. The volume of any
manipulability ellipsoid for the chain is bounded by the
value Vmax, determined by the chain’s kinematic parame-
ters. Assuming that the axes σ1u1, σ2u2, . . . , σpup are of
an acceptable length for all such ellipsoids, we infer that
configurations whose ellipsoid volume are sufficiently close
to Vmax are not nearly singular (labelled as S̄). Fig. 3 com-
pares the smallest singular value of the manipulator Jacobian
to the manipulability measure (index) throughout a sample
trajectory; the manipulability measure roughly follows the
magnitude of the smallest singular value, matching its peaks
and troughs.

IV. MANIPULABILITY MAXIMIZATION FORMULATION

If we consider the joint space trajectory θ as a function
which maps every time instance 0 ≤ t ≤ T to a configuration
θ(t), manipulability maximization can be formulated as
trajectory optimization,

minimize
θ(t)

F [θ(t)] + λM [θ(t)] + µC [θ(t)] , (5)

where F [θ(t)] is a cost functional encoding smoothness,
M [θ(t)] is a cost functional relating manipulability to the
trajectory space, and C [θ(t)] is a cost functional that enforces
collision avoidance (necessary in many environments).

A. Representing the Trajectory as a GP

Using the definition of trajectory optimization in Eq. (5),
we follow the derivation in [6], representing the continuous-
time trajectory as a sample from a vector-valued GP, θ(t) ∼
GP(µ(t),K(t, t′)), with mean µ(t) and covariance K(t, t′),
generated by a linear time-varying stochastic differential
equation (LTV-SDE),

θ̇(t) = A(t)θ(t) + u(t) + F(t)w(t), (6)

where A and F are system matrices, u is a known control
input and w ∼ N (0,Qc). For any set of times t, the
corresponding support states θ = [θ0 . . .θN ]

T can be
matched to an exponential prior distribution resulting from
the system in Eq. (6), with the mean µ and kernel K:

p(θ) ∝ exp{−1

2
‖θ − µ‖2K}. (7)

The Markovian property of the process in Eq. (6) allows us
to factor the prior in Eq. (7) as

p(θ) ∝ fp0 (θ0) fpN (θN )

N−1∏
i=0

fgpi (θi,θi+1) . (8)

where fp0 and fpN define the prior distributions on the start
and end states, and fgpi is the GP prior factor as defined
in [7]. Furthermore, this property allows for interpolation of
the trajectory in O(1) time [6].

B. Manipulability Likelihood Function

Representing a trajectory using the GP in Eq. (6) allows us
to intuitively (locally) search for high manipulability variants
using probabilistic inference. We formulate the likelihood of
the trajectory θ being free of singular (low manipulability)
configurations, denoting this event by S̄. The singularity
factor f S̄i defines this likelihood for the support states, while
f S̄τ does so for the interpolated states at times ti < τ < ti+1:

f S̄i = exp
{
−1

2
‖hS̄,i(θi)‖2ΣS̄

}
,

f S̄τ = exp
{
−1

2

∥∥hS̄,i(µ(τ) + Λ(τ)(θi − µi)

Ψ(τ)(θi+1 − µi+1)
∥∥2

ΣS̄

} (9)

Matrices Λ and Ψ are defined as in [7], and hS̄,i is the
cost function. Parametrizing the distributions of the factors



in Eq. (9) using the manipulability index allows us to find a
maximum manipulability posterior using a MAP estimator.

The manipulability index may vary by several orders of
magnitude throughout a trajectory, as it is proportional to
a p-dimensional volume. Additionally, large changes in ma-
nipulability can be caused by small shifts in the manipulator
configuration. This presents a problem when maximizing a
likelihood of the form in Eq. (9), as ‖hS̄,i‖2ΣS̄

needs to
be minimized. To this end, we choose the cost hS̄,i to be
logarithmic,

hS̄,i = log

(
mmax + c

m+ c

)
, (10)

where the value mmax is the manipulability value at Vmax
or higher. The constant c serves to limit the log-linear cost
change when the value is below a certain order of magnitude,
resulting in the gradient

∂hS̄,i
∂θi,j

= − m

m+ c
Tr

(
∂J

∂θi,j
J†
)
. (11)

This reduces the range of possible gradient values, simplify-
ing the choice of weighing parameter ΣS̄ . In Fig. 3, on the
right we can see the effect of the value c on the overall cost
in Eq. (11).

C. Optimizing the Trajectory

By representing the initial trajectory as the prior in Eq. (8),
we can find a continuous trajectory which (locally) maxi-
mizes the likelihood in Eq. (9) by using a MAP estimator
over the support states

θ∗ = arg max
θ

p(θ) l(θ; S̄) l(θ; C̄). (12)

The maximization in Eq. (12) can be achieved by computing

θ∗ = arg min
θ

1

2

∥∥θ − µ∥∥2

K +
1

2

∥∥hS̄ (θ)
∥∥2

ΣS̄

+
1

2

∥∥hC̄ (θ)
∥∥2

ΣC̄
.

(13)

This is equivalent to the negative log of the posterior, where
hS̄ and hC̄ are vectors of manipulability and collision
costs for both support and interpolated states. By linearizing
Eq. (13) around the current trajectory θ, we arrive at a least
squares problem.

Barfoot et. al [6] show that the GP generated by Eq. (6)
results in a kernel K that induces sparsity in the problem
defined by Eq. (13), making it easily solvable using sparse
Cholesky decomposition. Mukadam et. al [7] show that
a constant velocity prior (i.e., forming a straight line in
joint space between start and goal states), parametrized by
the process noise covariance Qc, generates a kernel which
penalizes deviation from the prior in a planning context. This
clearly corresponds to the smoothness functional F [θ(t)] in
the trajectory optimization definition from Eq. (5).

The likelihood l(θ; S̄) assumes the role of M [θ(t)],
with the covariance ΣS̄ serving as the weighing term λ.
Similarly, the collision-free likelihood l(θ; C̄), defined in [7]
(derived from [17]) as the signed distance of the robot’s
body from an obstacle, naturally represents the collision

(a) Initial trajectory. (b) Solution with ΣS̄ = 10−3
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Fig. 4: Reaching a goal configuration. Top: Visualization, the final
state is opaque. Bottom: The manipulability and smoothness costs
for different ΣS̄ .

avoidance functional C [θ(t)]. In [7], likelihoods constraining
end-effector position and orientation over support states are
also defined.

V. EXPERIMENTS

In this section, we demonstrate how our formulation can
be used to optimize constrained trajectories, as well as to
avoid constraint-induced singularities, and show how the GP
trajectory representation can help make this process more
efficient. We also compare the approach to manipulability
maximization presented in this paper to existing control-
based formulations, by quantitatively evaluating performance
on a constrained planning problem with randomized initial
manipulator configurations. Finally, we present results for
a singularity avoidance scenario involving a real Universal
Robots UR-10 manipulator available in our laboratory at the
University of Toronto, which is able to move throughout
a 6-DOF task space that contains many singular and near-
singular configurations. All planning computations were per-
formed on a laptop with an Intel i7-8750H CPU running at
2.20 GHz and with 16 GB of RAM.

A. Maximizing Manipulability

In the scenario shown in Fig. 4, the goal configuration
needs to be reached by the manipulator in T = 10 s. A
simple linear interpolation in joint space between the start
and goal configurations is used as an initializing trajectory,
with 11 support states, 89 interpolated states, Qc = 105 I,
and with the covariance in Eq. (8) of the start and goal state
priors set to Σθ = 10−3I.1 Examining the manipulability of
the initial trajectory in Fig. 4c, we can see that the starting
configuration at t = 0 is clearly singular. After optimizing
the joint trajectory to maximize our likelihood function (i.e.,
Eq. 10) using the method described in Section IV, the
time spent in high manipulability configurations is much

1Unless specified otherwise, we use these parameters in all experiments.



(a) Initial trajectory (b) Solution.
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Fig. 5: Reaching a goal configuration while avoiding an obstacle.
Top: Visualization, the final state is opaque. Bottom: The manip-
ulability and smallest singular values with and without the use of
interpolated states.

greater; the computation (planning) time is 20 ms. Figs. 4a
and 4b illustrate that, because we have only constrained the
maximization by fixing the starting and final manipulator
configuration and the velocity, the optimized trajectory re-
sults in a different end-effector path (blue line) than the
initialization (red line). The covariance parameter ΣS̄ serves
as a gain parameter, where lower values put greater weight
on the manipulability cost term. As shown in Figs. 4c and
4d, a greater ΣS̄ will reduce the effect of manipulability
maximization, while a very low value will suppress over-
all smoothness, leading to a noisy and infeasible result.
Even though trajectory optimization methods like the one
described in Section IV find only a locally optimal solution,
formulating the problem by constraining the trajectory in this
manner results in low sensitivity to the exact parametrization
when a reasonable initialization is used.

B. Collision Avoidance

Manipulability is often overlooked in tasks that include
collision avoidance. In Fig. 5a, we visualize a trajectory
generated by a motion planning algorithm that reaches a
goal configuration while avoiding collision with a table-
shaped obstacle in the workspace. The manipulability index
and smallest singular value plots in Figs. 5c and 5d show
that this trajectory contains singularities induced by collision
avoidance. If a change in task space constraints were to
happen during trajectory execution, and if this change re-
quired a rapid response (e.g., if another obstacle appeared or
a collaborator pushed the end-effector in a certain direction),
the poor conditioning of the Jacobian matrix would cause
violent joint movements. To give a numerical example, had
this happened at the 6.5 s mark, generating an end-effector
velocity of 1 cm/s in the x direction in task space by
computing the pseudo-inverse of the kinematic relationship
in Eq. (1) would have resulted in joint velocities exceeding
150 rad/s.

This possibility is prevented by optimizing the initial
trajectory for (locally) maximum manipulability. In addition
to the start and goal states, we set the state prior at the
fifth support state (4.5 s) to that of the initial trajectory,
with a covariance of Σθ = 103 I. Since the initial trajec-
tory successfully avoids collision, this improves the default
straight line prior; multiple states can be fixed in this manner.
To maintain distance from the obstacle, we add collision
avoidance factors as described in [7] to each support state,
with the parameters Σobs = 102 I and ε = 0.3. Due to
the local nature of the trajectory optimization method, the
choices for Σobs and ΣS̄ determine the trade off between
collision avoidance and manipulability maximization, and so
this selection needs to be made carefully. The optimization
is carried out within 5 ms and 50 ms without and with
interpolated states, respectively. Fig. 5b shows that collisions,
as well as the singularities caused by collision avoidance, are
completely prevented.

C. Reaching Task

Reaching a Cartesian goal point with the end-effector
is a very common manipulation task, often performed in
situations where unexpected changes in the task are possible
and where maintaining high manipulability is therefore very
important (e.g., in kinesthetic teaching). As mentioned in
Section II, most manipulability maximization methods use
kinematic control or global optimization to follow a path ini-
tialized in Cartesian space. The local nature of our approach
allows for fast computation, comparable to [10], [11], when
used for planning a trajectory.

To further illustrate the benefits of our technique, we
compare with the QP formulation in [11] and the established
singularity avoidance approach in [8]. We plan a trajectory
to reach a desired end-effector position from 50 random
(feasible) initial configurations. Here, a joint-space trajectory
(position and velocity profile) must be generated, with a
time step of T = 0.02, that maximizes the average manip-
ulability and maintains joint velocities below π

3 rad/s. We
initialize the problem with 50 support states, parametrizing
the optimization with Qc = 106 I, ΣS̄ = 0.0013 and
Σθ = 10−3 I. To identify the final configuration used to
initialize the trajectory, we iterate over 20 possible inverse
kinematics solutions generated by the quadprog function
in MATLAB. We avoid initializations that inevitably pass
through a singularity by using the fast interpolation prop-
erty to choose an initialization with the greatest minimum
manipulability index.

In Table I, we compare the results produced by these three
algorithms by examining the (average) minimum, maximum,
and mean trajectory manipulability scores, as well as the
computation times and the joint velocities involved. It is
clear that, even when searching over a large number of
possible initializations, our method achieves dramatically
lower computation times. Consequently, it reaches the high-
est average and maximum manipulabilities, with the average
lowest manipulability index value comparable to [11]. The
computation time and success rate for [11] matches the



TABLE I: Trajectory generation performance comparison for reaching task.

Manipulability Velocities [rad/s] Solve Time [s]

Avg. Min Max Max Avg Total Opt. Init. Solved

This paper - No Intp. 0.1316 0.0460 0.1984 0.2830 0.2009 0.2560 0.0213 0.2347 50/50
This paper - Intp. 0.1422 0.0450 0.2206 0.3529 0.2425 0.3158 0.0870 0.2288 50/50
Method in [11] 0.1385 0.0481 0.2077 0.3178 0.1173 1.5064 1.5064 0 46/50
Method in [8] 0.0748 0.0286 0.1193 0.1310 0.0482 0.8155 0.8155 0 50/50
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Fig. 6: Performance of our method for the task described in Section
V-C with respect to the number of initial trajectories computed. Top:
Average manipulability during task execution. Bottom: Solve time.

comparison in [12], where it is concluded that the volatility
of the manipulability gradient has a significant effect on
convergence. The method in [8] primarily focusses on avoid-
ing singularities, and also reaches the lowest manipulability
index values. However, it converges faster than [11] and it
always finds a solution.

Initializing over multiple final states (IK solutions) helps
avoid singular configurations that would inevitably need
to be traversed in joint space, given a bad initialization.
Consequently, the smoothness cost is centered around a
trajectory with the minimum number of singularities, which
we can then easily optimize as described in Section V-A. It
is worth noting that most of the computation time for our
method is taken up by finding the best initialization; this
averages around 0.22 s for a 6-DOF manipulator. We posit
that this could be substantially reduced by employing task-
or robot-specific heuristics2, or fast kinematics solvers like
TRAC-IK [22]. Our hypothesis is supported by the results
in Fig. 6, where the average manipulability value clearly
rises with the number of precomputed solutions. There is
a diminishing return, however, as increasing the number of
solutions past 20 has little effect on the average value, with
computation time growing proportionally.

D. Experiments on a Real Robot

Lastly, we show that the trajectories generated using our
method are smooth and can be executed on a real UR-
10 manipulator. The goal is again to generate a maximum
manipulability trajectory reaching a final state which is

2For example, avoiding initializations that pass through the elbow singu-
larity, which is trivial to do.

constrained by end-effector position. We pick a starting con-
figuration that situates the manipulator to one side, as shown
in Fig. 7. In Fig. 8 we can see that the velocities generated
using our method remain smooth and relatively low, with
some noise caused by dynamic effects. As expected, the
method in [11] follows the shortest Cartesian path towards
the goal position, reaching a similar final configuration to
that of our method. However, our method maintains a higher
manipulability value throughout the motion.

VI. CONCLUSION AND FUTURE WORK

We have presented a novel trajectory planning and replan-
ning method that both maximizes the overall manipulability
along a trajectory and inherently avoids singularities. Our
work shows that maximizing manipulability is highly useful
for tasks that must be carried out in uncontrolled environ-
ments, or when additional constraints are present. Unlike
tracking methods that are commonly used for trajectory
planning, our method searches for solutions in joint space,
allowing for the efficient use of prior information about the
task at hand. This results in lower computation times and
greater overall performance for many tasks. As an interesting
avenue for future work, we believe that our method can be
extended to end-effector path tracking tasks by projecting the
gradient information into the appropriate null space.
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