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Abstract

High dimensional robot motion planning has recently been approached with trajectory optimization methods that efficiently min-
imize a suitable objective function in order to generate robot trajectories that are both optimal and feasible. However, finding a
globally optimal solution is often an insurmountable problem in practice and state-of-the-art trajectory optimization methods are
thus prone to local minima, mainly in cluttered environments. In this paper, we propose a novel trajectory planning algorithm that
employs stochastic optimization in order to find a collision-free trajectory generated from a continuous-time Gaussian process (GP).
The contributions of the proposed motion planning method stem from introducing the heteroscedasticity of the GP, together with
exploited sparsity for efficient covariance estimation, and a cross-entropy based stochastic optimization for importance sampling
based trajectory optimization. We evaluate the proposed method on three simulated scenarios: a maze benchmark, a 7 DOF robot
arm planning benchmark and a 10 DOF mobile manipulator trajectory planning example and compare it to a state-of-the-art GP
trajectory optimization method, namely the Gaussian process motion planner 2 algorithm (GPMP2). Our results demonstrate the
following: (i) the proposed method yields a more thorough exploration of the solution space in complex environments than GPMP2,
while having comparable execution time, (ii) the introduced heteroscedasticity generates GP priors better suited for collision avoid-
ance and (iii) the proposed method has the ability to efficiently tackle high-dimensional trajectory planning problems.

Keywords: robot motion planning, trajectory optimization, continuous-time gaussian processes, stochastic optimization, cluttered
environments

1. Introduction

Motion planning is an indispensable tool for robots that as-
pire to navigate through an environment without collisions.
Motion planning algorithms attempt to generate trajectories
through the robot’s configuration space that are both feasible
and optimal based on some performance criterion that may vary
depending on the task, robot or environment. Generally, feasi-
bility is congruous to a robot satisfying constraints such as be-
ing collision-free while reaching the desired goal and optimality
corresponds to the cost efficiency, often referring to the smooth-
ness of the trajectory. The initial attempts to solve motion plan-
ning problems included grid-based methods such as the A∗ al-
gorithm [1], reactive planners such as bug algorithms [2], com-
binatorial planning methods originating from computational ge-
ometry such as cell decompositions [3], visibility graphs [4]
and Voronoi diagrams [5]. All of the mentioned methods are
complete, meaning that they find a solution if it exists and re-
port failure otherwise. They present elegant solutions for low
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dimensional configuration spaces with static obstacles. How-
ever, bug algorithms produce unnecessarily long paths, while
grid-based methods and combinatorial approaches suffer from
the so-called curse of dimensionality, i.e. they quickly become
computationally intractable with the increase of the configura-
tion space dimension. That also means that replanning is im-
possible, making those approaches ineffective in dynamic envi-
ronments.

The increasing complexity of robots and the environments
that they operate in has spurred the need for high-dimensional
motion planning. Consider, for instance, a personal robot op-
erating in a cluttered household environment or a humanoid
robot performing navigation and manipulation tasks in an un-
structured environment. Efficient motion planning is important
to enable these high degree-of-freedom (DOF) robots to per-
form tasks, subject to motion constraints while avoiding col-
lisions with obstacles in the environment. Processing time is
especially important in dynamic environments where replan-
ning is necessary. Those considerations lead to the development
of grid-based methods with ameliorated efficiency [6, 7, 8, 9]
and to the development of sampling-based motion planning al-
gorithms [10] which offer weaker guarantees than combinato-
rial methods but are more efficient. Since grid-based meth-
ods are complete, they are often used for planning in environ-
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ments featuring bottlenecks and other such narrow passages.
The main drawback of grid-based methods is their computa-
tional complexity, as even the state-of-the-art methods suffer
from the curse of dimensionality, and become computationally
intractable for high DOF systems such as humanoid robots or
mobile manipulators.

The central tenet of sampling-based methods [11, 10, 12]
is the idea of connecting points randomly sampled from the
free configuration space. Such approaches abandon the concept
of explicitly characterizing the configuration space – they use a
collision detection algorithm to probe the configuration space
to determine whether some configuration lies in free space or
not. Sampling-based methods are probabilistically complete,
meaning that the probability they will produce a solution ap-
proaches one as more time is spent [12]. Sampling-based meth-
ods have become popular in the domain of high-dimensional
motion planning, including planning for manipulation. Per-
haps the most commonly used algorithms are the probabilis-
tic roadmap (PRM) [11] and rapidly exploring random trees
(RRT) [13, 14]. Both methods were shown to be well suited
for path planning in configuration spaces with many DOFs and
with kinodynamic constraints [15, 16]. Sampling based meth-
ods typically do not explicitly optimize an objective function,
although variants of PRM and RRT which are provably asymp-
totically optimal have been proposed in [12]. However, sam-
pling based methods can still be computationally inefficient for
high-dimensional problems with challenging constraints. The
main disadvantage of sampling-based planning methods is that
the obtained paths often exhibit jerky and redundant motion
and therefore require post processing to smooth and shorten
the computed trajectories. Furthermore, considerable compu-
tational effort is expended in sampling the portions of the con-
figuration space that might not be relevant to the task.

All of the discussed techniques so far aim at capturing the
connectivity of free configuration space into a graph. Recently,
trajectory optimization methods, appropriate for very high DOF
robots, have become a subject of increased interest. In these ap-
proaches the trajectory is encoded as a sequence of states and
controls, which offers several advantages for robot motion plan-
ning. First, they can be used to smooth and shorten trajectories
computed by other planning methods such as sampling-based
planners. Second, they can be used to compute collision-free
trajectories from scratch by starting with naive trajectory initial-
izations, that might be in collision with obstacles [17], and then
minimize an appropriate objective function. Those methods
are computationally efficient; however, unlike sampling-based
planners, they only find a locally optimal solution. A semi-
nal work in the modern trajectory optimization is the covari-
ant Hamiltonian optimization for motion planning (CHOMP)
[18, 19]. CHOMP revived the interest in trajectory optimization
by demonstrating the effectiveness on several robotic platforms,
including a mobile manipulation platform and a quadruped. It
utilizes a precomputed signed distance field for collision check-
ing and covariant gradient descent to minimize obstacle and
smoothness costs. Inspired by CHOMP, stochastic trajectory
optimization for motion planning (STOMP) algorithm [20] was
introduced, which samples a series of noisy trajectories to ex-

plore the space around an initial trajectory which are then com-
bined to produce an updated trajectory with lower cost. The key
trait of STOMP is its ability to optimize non-differentiable con-
straints. An important shortcoming of CHOMP and STOMP is
the need for many trajectory states to reason about fine resolu-
tion obstacle representations and to find feasible solutions when
there are many constraints. To address this shortcoming, the
TrajOpt [21, 17] algorithm formulates trajectory optimization
as sequential quadratic programming. The key feature of Tra-
jOpt is the ability to solve complex motion planning problems
with few states, since swept volumes are considered to ensure
continuous-time safety. However, if the smoothness is required
in the output trajectory, either a densely parameterized trajec-
tory or post-processing of the trajectory might still be needed,
thus increasing the computation time.

The Gaussian process (GP) motion planning family of al-
gorithms [22, 23, 24, 25] employs continuous-time trajectory
representation in order to overcome the computational cost in-
curred by using large number of states. The GPMP algorithm
[22] parameterizes the trajectory with few support states and
then uses efficient GP interpolation to query the trajectory at
any time of interest. Its extension, GPMP2 [23], represents tra-
jectories as samples from a continuous-time GP and then for-
mulates the planning problem as probabilistic inference. It ex-
ploits the sparsity of the underlying system by using preexist-
ing efficient optimization tools developed by the simultaneous
localization and mapping (SLAM) community [26] to generate
fast solutions. A useful property of GPMP2 is its extensibility
and applicability to a wide range of problems. For example,
combined learning from demonstration and motion planning
[27] presented an efficient approach to skill learning and gener-
alizable skill reproduction. In [28], authors provided a frame-
work for avoidance of singular robot configurations as manipu-
lability maximization, while a unified probabilistic framework
for trajectory estimation and planning was provided in [29].

Although trajectory optimization methods generate fast solu-
tions in high-dimensional spaces, they have limited exploration
ability, and in complex environments often converge to infea-
sible local minima, since they rely on gradient-based optimiza-
tion techniques. In general optimization problems, gradient-
free stochastic optimization is often employed in problems with
plethora of local minima, and is the approach that we will rely
on in the current paper. In motion planning, this is a relatively
unexplored direction with only a few existing works. A re-
cently proposed particle swarm filter for trajectory optimization
[30] showed better local minima avoidance than gradient-based
methods; however, it did not demonstrate effectiveness in com-
plex, highly cluttered environments and carries the aforemen-
tioned problems associated with discrete-time trajectory repre-
sentations. In [31], the authors proposed a general randomized
path planning method based on sampling in the space of tra-
jectories. At its core lies the cross-entropy method for estima-
tion of rare-event probabilities. However, this approach relies
on sampling from a probability distribution over the set of fea-
sible paths – sampling whole trajectories that are collision-free,
which can become infeasible in cluttered environments or high-
dimensional spaces.
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In this paper, we propose a gradient-free stochastic optimiza-
tion method for trajectory planning with continuous time GP
trajectory representations. The proposed method is the exten-
sion of our preliminary work presented in a conference paper
[32]. The contributions of the current method stem from intro-
ducing the heteroscedastic GP, together with exploited sparsity
for efficient covariance estimation, and a cross-entropy based
stochastic optimization for importance sampling based trajec-
tory optimization for motion planning. The main advantages
of the proposed method are: (i) continuous time representation
leading to smooth trajectories that can be queried at any time
of interest, (ii) powerful heteroscedastic priors better suited for
collision avoidance in motion planning problems, (iii) estima-
tion of the collision-free trajectories distribution for a given en-
vironment allowing for faster convergence, and (iv) stochastic
trajectory optimization allowing for better exploration while be-
ing less prone to local minima than gradient based methods.
While our method belongs to the trajectory optimization ap-
proaches, it relies on random trajectory samples which raises
a connection to the sampling based planning. The proposed
method is an example of bridging the gap between sampling
based and trajectory optimization approaches in order to gen-
erate fast solutions in high dimensional spaces while retaining
the ability to thoroughly explore the environment. We evaluated
our method on three simulation scenarios: a maze benchmark,
a 7 DOF robot arm planning benchmark and a 10 DOF mobile
manipulator trajectory planning example. In the benchmark ex-
amples we compared the proposed method to GPMP2, a state-
of-the-art gradient-based method, while the mobile manipula-
tor example showcases the applicability of the method in a high
DOF planning problem. The results show that the proposed
method yields a higher success rate in complex environments
with comparable execution time.

2. Heteroscedastic Gaussian Processes for Motion Planning

A continuous-time GP robot trajectory representation allows
efficient reasoning about collisions and querying the robot state
at any time of interest. In this section, we present the GP tra-
jectory representation framework for motion planning based on
[25], which includes constructing a GP prior suited for motion
planning and an efficient GP interpolation procedure. We intro-
duce the heteroscedasticity in the time-domain of the proposed
GP and discuss its benefits with regards to motion planning
problems. We also provide a principled way to draw trajec-
tory samples from the pertaining GP. For an in-depth treatment
of GP trajectory representations in robotics, including the de-
tailed derivations of the stated equations, we refer the reader to
[25, 33, 34].

2.1. The Gaussian Process Trajectory Representations
Consider a continuous-time trajectory as a sample from a

continuous-time Gaussian process [35]

θ(t) ∼ GP
(
µ(t),K(t, t′)

)
(1)

that is parameterized with N support states at discrete time in-
stants, θi ∈ RD, i ∈ N, where D is the state dimensionality. This

implies that, for any collection of times t = {t0, . . . , tN}, µ(t) is
a vector-valued mean function and K(t, t′) is a matrix-valued
covariance function [25], the two defined as

µ = [µ(t0) . . .µ(tN)]T , K = [K(ti, t j)]|i, j,0≤i, j≤N . (2)

A vector-valued GP provides a principled representation of
continuous-time trajectories, where trajectories are regarded as
functions that map time to robot state. We employ a structured
kernel belonging to a special class of GP priors generated by a
linear time-varying stochastic differential equation (LTV-SDE)

θ̇(t) = F(t)θ(t) + v(t) + L(t)w(t), (3)

where F and L are system matrices and v is a known exogenous
input. The white noise process w(t) itself is a GP with zero
mean value

w(t) ∼ GP(0,Qc(t)δ(t − t′)), (4)

where Qc(t) is a positive semi-definite time-varying power-
spectral density matrix. A similar dynamical system has
been utilized to generate trajectory distributions in estimation
[36, 37], calibration [38] and planning [25, 29]. However, the
crucial difference in our approach is that the covariance Qc(t) is
time-varying and consequently generates a heteroscedastic GP
[27], i.e. the covariance Qc(t) of the white noise process w(t) is
non-constant through time. We discuss benefits of this approach
in Section 2.6.

The mean and the covariance of the GP generated by the
LTV-SDE given in (3) evaluate to

µ̃(t) = Φ(t, t0)µ0 +

∫ t

t0
Φ(t, s)v(s) ds, (5)

K̃(t, t′) = Φ(t, t0)K0Φ(t′, t0)T +∫ min(t,t′)

t0
Φ(t, s)L(s)Qc(s)L(s)TΦ(t′, s)T ds, (6)

where µ0 andK0 are the initial mean and covariance of the first
state, and Φ(t, s) is the state transition matrix [36].

2.2. GP Prior for Motion Planning
Due to the Markov property of the LTV-SDE in (3), the pre-

cision matrix K̃
−1

is exactly sparse block tridiagonal [36]

K̃
−1

= F̃
−T

Q̃
−1

F̃
−1
, (7)

where

F̃
−1

=



1 0 ... 0 0
−Φ(t1, t0) 1 ... 0 0

0 −Φ(t2, t1)
. . .

...
...

...
...

. . . 1 0
0 0 ... −Φ(tN , tN−1) 1


(8)

and
Q̃
−1

= diag(K−1
0 ,Q−1

0,1, ...,Q
−1
N−1,N) (9)
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with

Qa,b =

∫ tb

ta
Φ(tb, s)L(s)Qc(s)L(s)TΦ(tb, s)T ds. (10)

The GP defined by mean and covariance in (5) and (6) is well
suited for estimation problems. However, in motion planning
problems there exists a desired fixed goal state. Given that, we
need to condition this GP with a fictitious observation on the
goal state with mean µN and covariance KN . Since we do not
want trajectories to deviate from the goal state, the covariance
of the goal stateKN should be relatively small thus keeping the
desired goal state fixed. This can be accomplished while still
preserving the sparsity of the precision matrix [25]

K
−1 =

 F̃
−1

0 . . . 0 I

> Q̃−1

K
−1
N

  F̃
−1

0 . . . 0 I


B GT Q−1G. (11)

While the mean vector µ and the precision matrix K−1 fully
determine a continuous-time GP in (1), in some situations the
covariance matrix K might still be needed, i.e. for data visu-
alization or when optimizing trajectories while learning from
demonstration [27]. A naive approach is to compute K by in-
verting the precision matrix. However, due to the exact sparsity
of the precision matrix K−1, the covariance matrix K can be
computed efficiently [39]. First we carry out a sparse lower-
diagonal-upper decomposition,

K
−1 = LDLT , (12)

where D is diagonal and L is lower-triangular with ones on the
main diagonal. Since K is symmetric, only the calculation of
the main diagonal and the lower-half blocks is required. Blocks
of the covariance matrix indexed with j, k can then be computed
through backward substitution

KN,N = D−1
N,N , (13)

KN,N−1 = −KN,N LN,N−1, (14)

KN−1,N−1 = D−1
N−1,N−1 −KN−1,N LN,N−1, (15)

... (16)

K j,k = δ( j, k)D−1
j,k −

N∑
l=k+1

K j,lLl,k ( j ≥ k). (17)

For a more in-depth treatment of this covariance matrix calcu-
lation procedure, the reader is referred to [40, 39].

2.3. Fast GP interpolation
A major benefit of modelling continuous-time trajectories

in motion planning with GPs, is the possibility to query the
planned state θ(τ) at any time of interest τ, and not only at
the discrete support state time instants. The precision matrix
defined in (11) allows for computationally efficient, structure-
exploiting GP interpolation with O(1) complexity. State θ(τ) at
τ ∈ [ti, ti+1] is a function only of its neighboring states [23]

θ(τ) = µ(τ) + Λ(τ)(θi − µi) +Ψ(τ)(θi+1 − µi+1), (18)

Λ(τ) B Φ(τ, ti) −Ψ(τ)Φ(ti+1, ti), (19)

Ψ(τ) B Qi,τΦ(ti+1, τ)T Q−1
i,i+1, (20)

where Qa,b is given in (10). Efficient GP interpolation can be
exploited for reasoning about small obstacles while keeping a
relatively small number of support states which reduces the in-
curred computational burden. It can also be utilized for provid-
ing a dense output trajectory that a robot can execute without
any post-processing.

2.4. Constant-velocity motion model

Robot dynamics are represented with the double integrator
linear system with white noise injected in acceleration. The tra-
jectory is thus generated by the LTV-SDE (3), where the Marko-
vian state θ(t) consists of position and velocity in configuration
space with the following system matrices

F(t) =

[
0 I
0 0

]
, L(t) =

[
0
I

]
. (21)

The state transition matrixΦ(t, s) can then be evaluated as [33]

Φ(t, s) = exp
{
(t − s)F

}
=

[
1 (t − s)1
0 1

]
. (22)

This formulation generates a constant velocity GP prior which
is centered around a zero acceleration trajectory. Applying this
motion model minimizes actuator acceleration in the configu-
ration space, thus minimizing the energy consumption and pro-
viding the physical meaning of smoothness [25].

2.5. Drawing trajectory samples

A sample trajectory can be generated using [41]

θ = µ + AZ, (23)

where A is a lower triangular matrix obtained by Cholesky de-
composition of the covariance matrix, K = AAT , and Z is a
vector of N standard normal variables Z ∼ N(0, I).

The sampling process in (23) requires knowledge of the co-
variance matrix K . While calculation of the covariance matrix
K employing the procedure described in (13)-(17) is efficient
in comparison to the straightforward inversion of the preci-
sion matrix, it can still be computationally expensive in higher-
dimensional state-spaces with dense parameterization of the
GP. Alternatively, a sample trajectory can be generated without
computing the covariance matrix [41]

θ = µ + B−T Z, (24)

where B is a lower triangular matrix obtained by Cholesky de-
composition of the precision matrix, K−1 = BBT , and Z is
a vector of N standard normal variables Z ∼ N(0, I). Since
the precision matrix K−1 has block-tridiagonal structure, its
Cholesky decomposition leads to a lower bidiagonal matrix
which can be efficiently inversed with exploited sparsity.
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(a) Homoscedastic GP (b) Heteroscedastic GP (c) White noise process w(t) covariance through time

Figure 1: Comparison of the homoscedastic and the proposed heteroscedastic GP priors which depend on the covariance of the white noise process w(t)

2.6. Benefits of proposed heteroscedasticity
State-of-the-art GP based methods [23, 25] work by mini-

mizing the sum of two costs: the obstacle cost and the smooth-
ness cost. The obstacle cost measures how close the trajectory
is to obstacles, while the smoothness cost measures the devia-
tion of the trajectory from the GP prior mean. Those methods
use covariance as a parameter in optimization, with smaller val-
ues of K penalizing trajectory deviation from the prior mean.
For therein employed homoscedastic GPs, small constant val-
ues of Qc allow high variance of states near the midpoint of
trajectory, while states close to the trajectory start or goal have
relatively small variance. If the prior mean of those states
passes through an obstacle, the Levenberg-Marquardt optimiza-
tion, utilized in [23, 25], will have difficulty escaping the col-
lision. The collision happens when the incurred smoothness
cost becomes relatively large in comparison to obstacle cost
thus creating a local minimum. Figure 1a shows that sample
trajectories drawn from a homoscedastic GP do not have large
deviation from the mean near the first and the last state. With
larger constant values of Qc this problem diminishes; however,
states near the trajectory midpoint then have too high variance
and trajectories lose the desirable smoothness property.

By introducing heteroscedasticity of the underlying white
noise process, we can design GPs that are better suited for mo-
tion planning problems and help alleviate the problem of lo-
cal minima. Ideally, the GP should be able to generate trajec-
tories that maneuver around the obstacles near start and goal
states, while retaining the smoothness property in the middle.
With careful selection of the proposed time-varying white noise
power-spectral density matrix Qc(t), we are able to model GPs
that achieve the stated goal. We propose modelling Qc(t) as
an isotropic matrix Qc(t) = Qc(t)I with parameter Qc(t) mod-
elled as a parabola. A parabola has high values at the beginning
and end, while the lowest value lies at the temporal midpoint
of the trajectory, leading to GPs that have the aforementioned
desirable features. Note that the GP covariance K(t, t′) is ob-
tained by propagating Qc(t) with the underlying motion model,
as defined in (7), and thus low (or even zero) value of Qc(t) at
a particular time instant does not imply small GP covariance.
An example of such Qc(t) is depicted in Figure 1c and it leads
to a heteroscedastic GP shown in Figure 1b. Notably, sample

trajectories drawn from the example heteroscedastic GP have
large deviation from the mean near the first and the last state.
The example GP would be able to thoroughly explore the envi-
ronment and generate trajectories that bypass obstacles near the
first and the last state. Note that any non-negative function can
be used for Qc(t), depending on the specific context of the mo-
tion planning problem at hand. For example, one could model
Qc(t) as a monotonically decreasing function, resembling the
aim of exploring more at the beginning and less towards the
end.

3. Proposed Stochastic Trajectory Optimization

In this section we describe the proposed gradient-free
stochastic optimization method for motion planning. First,
we formalize the motion planning problem as trajectory opti-
mization with trajectories considered as samples from the het-
eroscedastic GP proposed in Section 2. Then, we present the
cross-entropy optimization method adapted to the motion plan-
ning problem setting and derive the GP mean and covariance
update rules. Finally, we state the proposed algorithm steps and
give remarks regarding its computational efficiency.

3.1. Problem formulation
Formally, the goal of trajectory optimization for motion plan-

ning is to find a smooth, collision-free trajectory through the
robot’s configuration space between the start and end points.
Prior work in this area [18, 21, 23] models the cost of a tra-
jectory using two terms: a prior term, which usually encodes
smoothness that minimizes higher-order derivatives of the robot
states, and an arbitrary state-dependent term, which usually
measures the cost of being near obstacles. However, our opti-
mization criteria consists solely of an arbitrary state-dependent
cost term. We reason that our trajectory carries an inherent
property of smoothness since we model it as a sample from the
GP defined in (1) with the underlying constant-velocity model
described in Section 2.4. Therefore, our method starts with the
following optimization problem:

minimize
θ(t)

f [θ(t)]

subject to θ(t) ∼ GP(µ(t),K(t, t′)).
(25)
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The state-dependent cost term f [θ(t)] can include any cost func-
tion corresponding to the desired trajectory properties. In the
scope of this work we consider only collision avoidance. Other
than collision avoidance, the state-dependent cost term can in-
corporate task-space constraints (e.g. holding the cup of coffee
upright) [23], motor torques [20] and manipulability [28].

Similarly to GPMP2 [23], the robot body is represented as
a set of spheres. The obstacle cost function for any robot con-
figuration θi is then evaluated by computing the hinge loss for
each sphere and collecting it into a single scalar

f [θi] =

S∑
j=1

c
[
d
(
x(θi, S j),O

)]
(26)

where x is the forward kinematics of a robot, O is the set of
obstacles in the environment, d is the Euclidean signed distance
function, c is the hinge loss function and S is the number of
spheres that accurately represent the robot model.

Forward kinematics x(θi, S j) maps any configuration θi to the
robot’s task space in order to find the center position of a sphere
S j of the robot model. Given a sphere radius and its center po-
sition, we compute the Euclidean signed distance d(x,O) from
the sphere at position x to the closest obstacle surface in the
task space. The pertaining distance is easy to calculate with
a robot represented as set of spheres, since it corresponds to
the distance between a sphere center and its closest obstacle
surface minus the sphere radius. A Euclidean signed distance
field (SDF) can be precomputed with a desired resolution and
stored in a voxel grid. The signed distance of any position in
the task space can then be efficiently queried by using trilinear
interpolation on the voxel grid. The aforementioned hinge loss
function is defined as

c(d) =

ε − d if d ≤ ε
0 if d > ε

, (27)

where d is the calculated signed distance between the sphere
and the closest obstacle, and ε is the parameter that can be seen
as a safety distance indicating the boundary of the area near
obstacle surfaces that is considered dangerous [25]. Even if
a given trajectory is collision-free but passes too close to the
obstacles, its incurred obstacle cost would be non-zero. The
optimization thus guides the robot to stay a minimum distance
ε away from obstacles.

3.2. Cross-entropy optimization method
Most of the state-of-the-art approaches use gradient-based

methods which find locally optimal trajectories. In this
work, we instead optimize using a derivative-free cross-entropy
stochastic optimization method. This allows for better explo-
ration while being less prone to local minima. It also enables
optimization of arbitrary costs which are non-differentiable or
non-smooth. Herein, we provide a brief introduction to the
stochastic framework for solving the optimization problem in
(25) by sampling trajectories from a GP in (1). Our develop-
ment follows [42], but with a GP instead of a general parametric
distribution and with notation adapted to our setting.

Consider the optimization problem in (25). Let us denote its
minimum by γ∗. We can thus write

f [θ∗(t)] = γ∗ = min
θ(t)∼GP(µ,K)

f [θ(t)]. (28)

The starting point of the cross-entropy method is associating
an estimation problem with the optimization problem in (28).
First, a collection of indicator functions I{ f [θ]≤γ} for various
thresholds γ ∈ R is defined

I{ f [θ]≤γ} =

1 if f [θ] ≤ γ
0 if f [θ] > γ

. (29)

For a certain GP defined by its mean µ and covarianceK let us
associate the optimization problem in (28) with the problem of
estimating the probability that a cost function f (θ) has smaller
value than a given threshold γ

ι(γ) B Pµ,K ( f [θ] ≤ γ)

=

∫
θ

I{ f [θ]≤γ}p(θ;µ,K)dθ

= Eµ,K [I{ f [θ]≤γ}],

(30)

where Pµ,K denotes the probability measure under which the
random trajectory θ has probability density function p(θ;µ,K)
and Eµ,K is the corresponding expectation operator. To see how
the problems in (30) and (28) are associated, suppose that a cer-
tain threshold γ is close to the optimal value γ∗. In a typical case
the probability of a randomly sampled trajectory θ being near
the optimal one is rather small, thus f [θ] ≤ γ is a rare event.
Note that, for a globally optimal θ∗, ι(γ∗) = p(θ∗;µ,K). There-
fore, for γ = γ∗ a natural way to estimate ι(γ) would be to use
the rare-event estimation framework [43] which can solve this
problem efficiently by making adaptive changes to the cross-
entropy and thus iteratively generate GPs that are steered in the
direction of the theoretically optimal density.

This is achieved by employing the likelihood-ratio estimator
[42] with reference parameters {µ,K} given by

µ∗,K∗ = argmax
µ,K

Eµ,K [I{ f [θ]≤γ}lnp(θ;µ,K)]. (31)

In other words, we try to find the GP parameters µ∗,K∗ that
maximize the expectation of finding the optimal trajectory θ∗

which minimizes the cost function f (θ). In motion planning
context, our approach can be seen as trying to find a GP that is
the best approximation (in a Kullback-Leibler sense) of the un-
derlying distribution of collision-free trajectories for a given en-
vironment. In implementation, cross-entropy method adapted
for motion planning starts with drawing K sample trajectories
from the GP defined in (1), where the mean µ is initialized as
a constant-velocity straight line in configuration space and co-
variance matrixK arises from the exactly sparse precision ma-
trix defined in (11). We sample trajectories from the GP with
(24). Subsequently, for each sampled trajectory we evaluate the
cost using the aforementioned hinge loss with a precomputed
signed distance field defined in (26), with the cost of k-th tra-
jectory being γk = f [θk(t)]. From the evaluated K trajectories,
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we pick the M best ones according to the optimization criteria,
i.e. ones with the lowest cost f [θ(t)]. In a cross-entropy op-
timization framework, this can be seen as setting the indicator
function threshold as f [θ] ≤ γM . Using the sampled trajecto-
ries and evaluated costs, the GP parameters µ∗,K∗ for the next
iteration can be computed with (31). For Gaussian sampling
distributions, it was shown that the problem in (31) admits a
closed-form solution given by the sample (empirical) mean and
covariance [44, 31].

3.3. Updating the mean and the covariance

We modify the cross-entropy optimization method described
in previous section by modifying the indicator function in (29).
A similar modification was done in [44]. After sampling, the
cross-entropy method takes into account M best trajectories ac-
cording to the computed cost and their contribution to the new
mean and covariance is equal regardless of their cost. In mo-
tion planning context, if we pick M best trajectory samples in a
given highly cluttered environment and one of them has signifi-
cantly lower cost than others (i.e. it is closer to being collision-
free), the computed mean will average it out together with the
other M − 1 and valuable information will be lost. Since we try
to find collision-free trajectories, it makes sense to value more
the trajectory with the smallest cost. Therefore, we introduce
an alternative, soft indicator function

I{ f [θ]≤γ} =

1/ f [θ] if f [θ] ≤ γ
0 if f [θ] > γ

. (32)

With the introduced alternative indicator function, trajectories
with lower cost posses a higher indicator value. The solution
to the problem in (31) then corresponds to the weighted sample
mean and covariance [44]. The cost-weighted arithmetic sam-
ple mean of the M best trajectories forms a new GP mean µ for
next iteration

µ(t) =

M∑
m=1

λmθ
m(t) (33)

where weights λm correspond to the normalized indicator val-
ues of given trajectories

λm =
1/ f [θm(t)]∑M

m=1 1/ f [θm(t)]
. (34)

When computing the GP covarianceK or precisionK−1 ma-
trix for the next iteration from the provided M best trajectories,
we need to take into account the pertaining sparse structure of
the precision matrix and the underlying motion model. Since
trajectories are sampled at discrete time instances, we only have
access to the support states θi. A discrete version of the LTV-
SDE in (3) is defined as

θi+1 = Φ(ti+1, ti)θi + vi,i+1 + wi,i+1, (35)

where
wi,i+1 ∼ N(0,Qi,i+1). (36)

Mean trajectory of the discrete LTV-SDE in (35) can be written
as

µi+1 = Φ(ti+1, ti)µi + vi,i+1. (37)

Now we can write exogenous input vi,i+1 as

vi,i+1 = µi+1 −Φ(ti+1, ti)µi, (38)

and after substituting back to (35) get the residual

wm
i,i+1 = θm

i+1 −Φ(ti+1, ti)θm
i − µi+1 +Φ(ti+1, ti)µi. (39)

The weighted sample covariance matrix between states i and
i + 1 can be estimated using the calculated mean and sampled
trajectories

Qest
i,i+1 = E[wi,i+1wT

i,i+1] (40)

=

M∑
m=1

λmwm
i,i+1wmT

i,i+1. (41)

By calculating Qest
i,i+1 with (41), we implicitly solved the inte-

gral in (10), determining Qc(t) in the process. After calculating
the covariance estimates Qest

i,i+1 for each pair of states, we can

construct the matrix Q̃
est

similarly to (9)

Q̃est = diag(K0,Qest
0,1, ...,Q

est
N−1,N), (42)

and calculate the precision matrix similarly to (11)

[Kest]−1 = GT [Qest]−1G, (43)

thus retaining the initial and goal covariances K0, KN in order
to keep the start and goal states fixed and preserving the block-
tridiagonal structure.

The constant-velocity model that underpins our GP remains
intact through iterations, meaning that smoothness is retained
while searching for collision-free trajectory. The shape of the
estimated covariance matrix determines relatively how the tra-
jectories sampled in next iteration will deviate from the mean,
e.g. in parts of the environment with tight spaces, trajectories
will only slightly deviate from the mean, while the parts of tra-
jectories that pass through open space will deviate more. While
the described covariance estimation process correctly captures
the shape of the covariance, it might have trouble capturing the
correct value. This problem stems from normalizing the indi-
cator value - we lose information about absolute values of the
cost i.e. how close our trajectories actually are to being colli-
sion free. This means that such method will have similar covari-
ance values for problems where sampled trajectories are highly
in collision and problems where only small parts of sampled
trajectories are in collision. Intuitively, we know that if most
parts of trajectories are in collision we want larger values of
covariance to reinforce exploration, while if only small parts
are in collision smaller covariance should be enough to explore
around the area locally and find a collision-free trajectory. To
obviate this problem, we opt to scale the estimated covariance
with the cost value of the calculated mean

K = α f [µ(t)]Kest, (44)
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(a) Initialize GP (b) Draw sample trajectories from the GP (c) Evaluate the cost of each trajectory and select
M best ones

(d) Compute the new GP mean (e) Compute the new GP covariance (f) Repeat until a collision-free sample trajectory
is found

Figure 2: An example illustrating the steps of the proposed algorithm in a 2D environment with three obstacles. In this simple example the number of sampled
trajectories is set as K = 10 and the number of chosen best ones M = 3.

or equivalently scale the precision matrix

K
−1 =

1
α f [µ(t)]

[Kest]−1, (45)

where α is a scalar parameter that regulates the sensitivity of
the covariance or precision matrix scaling. Larger mean cost
imposes larger covariance values and thus encourages explo-
ration. The current mean can be used in the next iteration as
one of the sampled trajectories so that computing its cost does
not introduce additional computational burden.

To summarize, we start by sampling K trajectories from a GP
initialized with a constant-velocity straight line. For each sam-
pled trajectory we compute its associated cost and select M best
ones according to the cost. We then form the new GP mean and
precision matrix with (33) and (45). This process is repeated
until a collision-free trajectory is found. The described method
is summarized in Algorithm 1 and illustrated in Figure 2.

3.4. Computational Efficiency Remarks

In order to thoroughly explore the environment, our approach
requires cost evaluation for relatively many drawn trajectory
samples, which naturally leads to a slower computation than
the state-of-the-art gradient based methods. However, due to
the fact that cost evaluation for each trajectory is independent,
the inner for loop in the proposed Algorithm 1 can be paral-
lelized with computational efficiency scaling linearly with the

Algorithm 1 Stochastic Trajectory Optimization with GPs
Input: Start and goal states θ0, θN , a state-dependent cost func-

tion f [θk(t)]
Precompute: Initial mean µ and covarianceK

1: for 1 . . .Niter do
2: for 1 . . .K do
3: Sample trajectory θk(t) ∼ GP(µ(t),K(t, t′))
4: Evaluate trajectory cost f [θk(t)]
5: if f [θk(t)] = 0 then
6: Return collision free trajectory θk(t)
7: end if
8: end for
9: From K sampled trajectories take M with lowest cost

10: Compute weights λm using (34)
11: Compute new mean µ(t) =

∑M
m=1[λmθ

m(t)]
12: Compute new precision matrix using (41)-(45)
13: end for

number of processing cores. In our implementation, we ex-
ploit this property and parallelize the inner loop on 4 processing
cores. A GPU implementation presents an interesting possibil-
ity that would allow sampling and cost evaluation for a huge
number of trajectories, leading to fast environment exploration
and discovering optimal trajectories allowing real-time replan-
ning in dynamic environments [45].

We use GP interpolation for dense collision checking, sim-
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ilarly to [23]. Since trajectory support states are temporally
equidistant and each sampled trajectory is drawn from the
same GP, matrices Λ and Ψ in (19) and (20) can be precom-
puted, instead of computing them each time interpolation is
needed. This provides another significant increase in the pro-
posed method’s computational efficiency.

4. Test Results

In this section, we demonstrate the performance of the pro-
posed method. We conducted three simulation experiments to
evaluate the proposed method. The method was quantitatively
tested in two simulated benchmarks and compared with the
state-of-the-art trajectory optimization techniques GPMP2 [23]
and STOMP [20]. We also demonstrate our method’s capabil-
ities in a qualitative test. In Section 4.1, we demonstrate the
improvement of the proposed method over GPMP2 with ran-
dom restarts and STOMP in solving a 2D maze, which is a suit-
able benchmark for an optimization-based planner effectiveness
at finding a collision-free solution in a haystack of local min-
ima. This experiment aims to show benefits of the proposed
stochastic method, which allows for better exploration in com-
parison to gradient-based methods. In Section 4.2, we show the
improvement of the proposed method over prior techniques in
finding a collision-free trajectory for a 7 DOF manipulator in
cluttered environment. This experiment attests to the benefits
of the proposed heteroscedastic GP prior since the environment
was set up so that obstacles are placed near the start and goal
state. In Section 4.3, we qualitatively demonstrate the ability
of the proposed method to find a collision-free trajectory for a
10 DOF mobile manipulator in a cluttered environment. This
experiment aims to show general capabilities of the proposed
method in motion planning for high DOF robots in complex
environments.

In all three experiments, our method was always initialized
with a constant-velocity straight line trajectory in the configura-
tion space. Signed distance parameter was set as ε = 0.1 m. We
keep the parameter ε, which indicates safety distance, relatively
small since our primary goal is collision avoidance. Larger
values of ε sometimes tend to penalize trajectories that are
collision-free but close to obstacles more than trajectories that
are in collision at one point but far from obstacles for the most
part. The covariance scaling parameter was set as α = 0.5, for
which we empirically determined that it provides good balance
between thorough exploration and fast convergence. In the two
conducted benchmarks, along with testing the proposed method
we also tested the variant without the proposed covariance esti-
mation procedure, keeping the covariance matrixK unchanged
through iterations, as was done in [32]. The unchanged covari-
ance matrix allows for exhaustive exploration around the mean
in each iteration. Changing only mean µ while keeping the co-
variance matrix K unchanged is permitted in the proposed GP
framework described in Section 2, as change in µ can be at-
tributed to some implicitly imposed exogenous input v(t) which
does not impact covariance.

For GPMP2, we used a straight line initialization as a base-
line, and in our experiments we designate to this model as line.

(a) (b)

(c) (d)

Figure 3: Examples of 4 × 4 mazes where the proposed approach finds a
collision-free solution. Blue line represents trajectory found by GPMP2, while
red line represents trajectory found by our method. Slight undulation of tra-
jectories obtained by the proposed method is due to the criterion of finding a
collision-free trajectory, unlike the GPMP2 criterion which explicitly encour-
ages smoothness.

Since GPMP2 always converges very quickly, but often fails in
cluttered environments due to infeasible local minima, we also
employed random restarts, which is a commonly used method
to tackle the local minima problems in gradient-based trajec-
tory optimization methods [18]. In this technique, the optimizer
is first initialized with a straight-line and then, on failure, re-
initialized with a random trajectory. Our implementation sam-
ples the random restart trajectory from a homoscedastic GP,
similarly to [24]. We designate to this model as rr. For STOMP,
we also used a constant-velocity straight line initialization. The
parameter that determines the number of noisy trajectories gen-
erated at each STOMP iteration was set to K = 5, which was
demonstrated to achieve good performance in prior work [20].

We used the GPMP2 C++ library [23, 46] and its respec-
tive MATLAB toolbox based on the GTSAM C++ library [26],
while we used our own implementation of STOMP. Experi-
ments were performed on a system with a 2.8-GHz Intel Core
i7-7700HQ processor and 16 GB of RAM.

4.1. The Maze Benchmark

The maze benchmark, appropriate for quantitative evalua-
tion, consisted of 1000 synthetic environments created by the
Wilson’s algorithm [47], which generates uniformly sampled
mazes with a single solution (i.e. perfect mazes). Mazes were
generated on grids with sizes of 3 × 3, 4 × 4 and 5 × 5 and af-
terwards inflated to realistic dimensions. While the 2D maze
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problem is generally suitable for grid-based or sampling-based
motion planning approaches which achieve 100% success rate,
it can be used to measure an optimization-based planner’s effec-
tiveness at finding the unique collision-free solution in a clut-
tered environment.

For each maze environment, we plan motion for a 2D holo-
nomic circular robot with the radius of 0.5 m. For both variants
of our method, we chose the number of sampled trajectories
K ∈ [200, 400], while the number of best trajectories chosen for
the weighted mean in each iteration was set to M = 3. Although
these parameters may seem disproportionate, choosing a large
K ensures exhaustive exploration, while a small M induces
drastic changes in the GP mean µ between iterations, which
helps in finding the solution faster in complex environments.
We set the total trajectory time (i.e. the timespan in which the
robot moves from the start to goal state) to ttotal = 20 s, while
time-varying covariance matrix of the white noise governing the
heteroscedastic GP was calculated as Qc(t) = (t− ttotal

2 )2I, which
generates a parabola with its vertex at the midpoint of the tra-
jectory. For GPMP2 we set ε = 2 and Qc = 1 according to the
Matlab toolbox 2D example. To achieve the best performance
on our benchmark, we tuned the GPMP2 algorithm, testing it
with the parameter σobs in range [0.01, 0.1] with increments
of 0.01 and in range [0.1, 1] with increments of 0.1. For the
3x3 benchmark, reported GPMP2 performance was achieved
with σobs = 0.3, while for the 4x4 and 5x5 benchmark it was
achieved with σobs = 0.1.

For the proposed method and GPMP2, the trajectory was
parameterized with N = 10 support states and 5 interpola-
tion steps in-between for which the trajectory cost is evaluated.
While larger number of support states N would likely lead to
somewhat better performance, it would negatively impact com-
putation time. GPMP2 demonstrated that using less support
states with more interpolated states inbetween provides optimal
performance and this translates to the proposed method since
we utilize similar underlying GP framework. For STOMP, the
trajectory was parameterized with N = 50 discrete states. We
set the maximum runtime for our algorithm, STOMP and ran-
dom restarts as tmax = 1 s, with one exception where we set
tmax = 2 s in order to investigate the ability of our algorithm
to find solutions given more time. We measure the number of
mazes solved (success rate) and the execution time. Figure 3
depicts examples of four 4x4 mazes with obtained trajectories
with the proposed method and GPMP2. We do not depict tra-
jectories obtained with STOMP since it consistently achieved
both the worst success rate and execution time in the maze ex-
periment. Table 1 shows the experiment results in detail.

For every maze complexity level, the proposed method with
covariance estimation achieved better results (higher success
rate and lower execution time) than the variant without covari-
ance estimation when the maximum algorithm runtime was set
to tmax = 1 s. While calculating the new covariance matrix in
each iteration takes additional computation time, the method
converges faster, i.e. it needs less iterations to find a collision-
free solution. On average, it required approximately 2.5× less
iterations. If a trajectory that is close to being collision-free
is found, the estimated covariance is rather small and thus the

focus shifts to exploring the area around that trajectory locally.
Without covariance estimation, the initial covariance carries ex-
haustive exploration of the space in each iteration, which can be
sample inefficient since the algorithm will sample trajectories
through the whole environment even when the mean is close
to a collision-free trajectory. In other words, covariance esti-
mation reduces the search space and thus leads to faster con-
vergence. However, when given additional computation time
(algorithm runtime set to tmax = 2 s), the proposed approach
without covariance estimation achieves marginally better suc-
cess rate in all three maze types. This stems from the aforemen-
tioned fact that the covariance estimation reduces the search
space which can sometimes lead to exploring locally around lo-
cal minima. The variant without covariance estimation is more
reliant on "lucky" sampling, it possesses better ability to stum-
ble upon a collision-free trajectory given enough time. It is also
worth noting that, through covariance estimation, the proposed
method approximates the covariance of the underlying distri-
bution of collision-free trajectories. It is thus less reliant on
finely tuned initialization than the variant without covariance
estimation, where providing too large initial covariance matrix
K leads to degraded performance. Without covariance estima-
tion, sampling K = 200 and K = 400 trajectories in each iter-
ation lead to similar results; however, with covariance estima-
tion, sampling K = 200 trajectories proved to find the solution
significantly faster than sampling K = 400 trajectories. This
attests to the benefits of covariance estimation where the algo-
rithm adapts to the given environment through iterations and is
more sample-efficient.

STOMP achieved both the worst success rate and execution
time for every maze complexity level. While STOMP does not
require gradient and samples noisy trajectories, it tries to com-
bine sampled trajectories to produce an update rule that pro-
duces smooth trajectories, but often fails to explore the environ-
ment. Unlike the proposed method, if one of sampled noisy tra-
jectories is collision-free, it is not used as a solution, but utilized
to produce an update to the mean trajectory. In a complex envi-
ronment such as maze, this often leads to the reuslting trajectory
being in collision, even if a collision-free trajectory was found
during the sampling process. While the GPMP2 without ran-
dom restarts has almost an order of magnitude faster execution
time than every other tested method, it has significantly worse
success rate than random restarts and the proposed method for
every maze complexity level. This was expected, as it is a clas-
sical gradient-based trajectory optimization algorithm meaning
that it is prone to local minima which are omnipresent in a maze
environment. The proposed approach also outperformed the
GPMP2 with random restarts for every maze complexity level.
For the mazes created from a 3×3 grid, our algorithm managed
similarly high success rate with twice as fast computation. For
the mazes created from a 4 × 4 grid our algorithm vastly out-
performed random restarts, having notably higher success rate
with similar reported times. The most complex mazes created
from a 5 × 5 grid demonstrated the inability of gradient-based
methods to find solutions in environments plagued with mul-
titude of local minima, while the proposed method achieved
moderate success. Note that the reported execution time for our
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Figure 4: A simulated WAM robotic arm in an environment featuring a table
and a drawer cabinet. Plotted lines depict the end effector trajectories. This is
an example where the proposed approach finds a collision free solution, while
GPMP2 converges to the infeasible local minimum. Initial straight-line trajec-
tory in configuration space is also shown.

algorithm is the actual time it took to compute on all cores, and
not the sum of times over them.

4.2. The Robot Arm Planning Benchmark

The robot arm planning benchmark consisted of a simulated
WAM robotic arm in an environment featuring a table and a
drawer cabinet. We conducted 20 unique planning experiments,
all with different start and goal states with starting points being
under the table and end states being inside the cabinet. This set
of problems is not particularly difficult since most of the states
are initially collision free; however, it was set up to accentuate
the proneness of the homoscedastic GP motion planning meth-
ods to get stuck in local minima near start or goal states.

In this benchmark we tested both variants of the proposed
method with heteroscedastic and homoscedastic GP priors in
order to demonstrate the benefits of heteroscedasticity. For both
variants of our method, we chose the number of sampled tra-
jectories K = 400, while the number of best trajectories chosen
for the weighted mean in each iteration was set as M = 3. We
set the total trajectory time to ttotal = 20 s. For homoscedas-
tic cases we chose Qc = 0.02I, while for a heteroscedastic
GPs we calculated Qc(t) = 0.01(t − ttotal

2 )2I. The optimal co-
efficients of Qc were found empirically, as is the case in other
applications of the GP trajectory representation [22, 36]. We
utilized grid search to tune the GPMP2 algorithm, searching
for both ε in range [0.01, 0.1] with increments of 0.1 and σobs

in range [0.1, 1] with increments of 0.1. The reported GPMP2
performance on this benchmark was achieved with parameters
ε = 0.02 and σobs = 0.2. For the proposed method and GPMP2,
the trajectory was parameterized with N = 10 equidistant sup-
port states and 10 interpolation steps in-between for which the
trajectory cost was evaluated. For STOMP, the trajectory was
parameterized with N = 100 discrete states. We again set

the fixed time budget for our algorithm, STOMP and random
restarts as tmax = 1 s and measured the success rate and the exe-
cution time. Due to stochastic nature of the results, we repeated
every planning experiment with our method and with STOMP
20 times to correctly assess the required computation time. We
measured the average success rate and the average algorithm
execution time. The results of the experiment are shown in Ta-
ble 1, where we can see that while the baseline GPMP2 often
fails, the stochasticity introduced by random restarts helps in
achieving higher success rates. An example of a case where
our method finds a solution and GPMP2 fails is depicted in Fig-
ure 4. Interestingly, when the proposed approach with covari-
ance estimation was initialized with a homoscedastic GP, the
covariance estimation guided the GP towards more exploration
near the start and end points, leading to better success rate than
a homoscedastic GP without covariance estimation, albeit re-
quiring additional computational time to converge. Both vari-
ants of the proposed method with heteroscedastic GPs achieved
a perfect score within the fixed time budget, thus demonstrating
the advantage of the proposed heteroscedastic prior for solving
problem instances with obstacles near the start or end points of
the robot trajectory.

4.3. Mobile Manipulator Trajectory Planning
To demonstrate the ability of the proposed method to find a

collision-free trajectory for high DOF robots in complex envi-
ronments, we conducted a mobile manipulator trajectory plan-
ning experiment. The simulated mobile manipulator consisted
of a simulated WAM robotic arm mounted on top of an omni-
directional platform in an environment featuring two tables, a
drawer cabinet and a generic static obstacle. The system has
10 DOF corresponding to mobile platform’s 3 DOF pose and
robot arm’s 7 joint angles. We planned the trajectory of the
whole system, simultaneously planning the motion of the arm
and the platform.

We chose the number of sampled trajectories K = 200, while
the number of best trajectories chosen for the weighted mean
in each iteration was set as M = 3. We set the total trajec-
tory time ttotal = 10 s. We modelled the time-varying covari-
ance matrix of the white noise governing the heteroscedastic
GP as an anisotropic diagonal matrix. The elements of the
matrix associated with the omnidirectional platform were cal-
culated as Qc(t) = 0.1(t − ttotal

2 )2, while the elements associ-
ated with the robot arm states were calculated as in the robot
arm planning benchmark Qc(t) = 0.01(t − ttotal

2 )2. The coef-
ficients of Qc(t) were found empirically. The noise induced
for a 2D mobile platform was much smaller in comparison
to the 2D maze benchmark since start and end points of this
problem were much closer to each other and the environment
required less exploration. In such case, smaller Qc(t) should
still lead to a collision-free solution, but the resulting trajec-
tory will be smoother. The trajectory was parameterized with
N = 20 equidistant support states and 10 interpolation steps in-
between for which the trajectory cost was evaluated. To assess
the required computation time, we repeated this experiment 30
times. Every take resulted in successfully finding a collision-
free trajectory and the average algorithm execution time was
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Table 1: Success rate (%) / average execution time (ms) on maze and robot arm planning benchmarks.
The proposed approach with covariance estimation The proposed approach without covariance estimation GPMP2 STOMP

Maze K = 400 K = 400 K = 200 K = 400 K = 400 K = 200 rr line
tmax = 2 s tmax = 1 s tmax = 1 s tmax = 2 s tmax = 1 s tmax = 1 s

3x3 92 / 107 91.5 / 97 90.2 / 55 95.2 / 197 92.9 / 171 89.0 / 160 89.2 / 96 55.3 / 28 51.4 / 600
4x4 72.4 / 240 70.9 / 209 66.9 / 128 79.1 / 489 66.9 / 324 61.8 / 297 58.1 / 298 20.5 / 40 9.5 / 786
5x5 42.7 / 520 37.3 / 381 37.4 / 299 43.8 / 858 26.7 / 493 26.3 / 429 19.8 / 273 9.6 / 36 0.2 / 742

Arm
Heteroscedastic Homoscedastic Heteroscedastic Homoscedastic rr line

K = 400, tmax = 1 s K = 400, tmax = 1 s K = 400, tmax = 1 s K = 400, tmax = 1 s
100 / 494 90 / 680 100 / 458 75 / 569 85 / 372 65 / 84 30 / 832

(a) 3d view (b) 2d view

Figure 5: An example of a trajectory obtained with the proposed method on a simulated mobile manipulator in a static environment.

788 ms, while the worst case computation time was 1362 ms.
The result of this experiment is shown in Figure 5. The experi-
ment demonstrated the ability of the proposed approach to find
collision-free trajectories for a mobile manipulator in a clut-
tered environment.

5. Conclusion

In this paper, we have presented a stochastic optimization
method for trajectory planning, representing robot trajectories
as samples from a continuous-time GP. By introducing the het-
eroscedasticity of the underlying GP, we were able to gen-
erate trajectory priors better suited for collision avoidance in
motion planning problems. We derived a cross-entropy based
derivative-free stochastic optimization method, utilizing im-
portance sampling in order to contend with the local minima
problem present in trajectory optimization methods. Due to
the sparsity of the employed GP framework, we were able to
efficiently estimate the GP covariance at each iteration. We
evaluated our method on three simulation scenarios: a maze
benchmark, a 7 DOF robot arm planning benchmark and a
10 DOF mobile manipulator trajectory planning example. In
a maze benchmark, the proposed method yielded a more thor-
ough exploration of the solution space in complex environments
than GPMP2, while having comparable execution time. The
robot arm planning benchmark demonstrated the benefits of
heteroscedastic GP, while the mobile manipulator planning ex-
periments showed that the proposed method is capable of effi-
ciently tackling high-dimensional trajectory planning problems.

The subject of future research is to utilize the strong explo-
ration capacity of our algorithm for finding different homotopy
classes in the environment, which could be useful for replan-
ning when a given trajectory becomes infeasible due to changes
in the environment. Another possible direction is to exploit the
parallelization capability of our algorithm with a GPU imple-
mentation. The proposed approach could also be coupled with
learning from demonstration algorithms for generalized skill
learning and reproduction.
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