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Abstract

In this paper we propose a new state estimation algorithm called the extended information filter on Lie groups. The proposed
filter is inspired by the extended Kalman filter on Lie groups and exhibits the advantages of the information filter with regard
to multisensor update and decentralization, while keeping the accuracy of stochastic inference on Lie groups. We present the
theoretical development and demonstrate its performance on multisensor rigid body attitude tracking by forming the state
space on the SO(3)×R3 group, where the first and second component represent the orientation and angular rates, respectively.
The performance of the filter is compared with respect to the accuracy of attitude tracking with parametrization based on
Euler angles and with respect to execution time of the extended Kalman filter formulation on Lie groups. The results show
that the filter achieves higher performance consistency and smaller error by tracking the state directly on the Lie group and
that it keeps smaller computational complexity of the information form with respect to high number of measurements.
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1 Introduction

The information filter (IF) is the dual of the Kalman
filter (KF) relying on the state representation by a
Gaussian distribution [1], and hence is the subject of
the same assumptions underlying the KF. Whereas the
KF family of algorithms is represented by the first
two moments involving the mean and covariance, the
IF relies on the canonical parametrization consisting
of an information matrix and information vector [2].
Both the KF and IF operate cyclically in two steps: the
prediction and update step. The advantages of the IF
lie in the update step, especially when the number of
measurements is significantly larger than the size of the
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+3851-6129-795.
This work has been supported from the Unity Through
Knowledge Fund under the project Cooperative Cloud
based Simultaneous Localization and Mapping in Dynamic
Environments (cloudSLAM) and the research has also been
carried out within the activities of the Centre of Research
Excellence for Data Science and Cooperative Systems
supported by the Ministry of Science, Education and Sports
of the Republic of Croatia.

Email addresses: josip.cesic@fer.hr (Josip Ćesić),
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state space, since this step is additive for the IF. For the
KF, the opposite applies; it is the prediction step which
is additive and computationally less complex. What is
computationally complex in one parametrization turns
out to be simple in the other (and vice-versa) [3].

Given this duality, the IF has proven its mettle in
a number of applications facing large number of
measurements, features or demanding a decentralized
filter form. For example, if the system is linear and
the state is modeled as Gaussian, then multisensor
fusion can be performed with the decentralized KF
proposed in [4], which enables fusion of not only the
measurements, but also of the local independent KFs.
Therein, the inverse covariance form is utilized, thus
resulting in additive fusion equations, which can further
be elegantly translated to the IF form as shown in [5].
In [6] an IF is presented for robust decentralized
estimation based on the robustness property of the
H∞ filter with respect to noise statistics, whereas
in [7] stability of consensus extended Kalman filter for
distributed state estimation was investigated. In [8]
collaborative target tracking is developed for wireless
sensor networks and a mutual-information-based sensor
selection is adopted for participation in the IF form
fusion process. In [9] the IF form is used in multitarget
tracking sensor allocation based on solving a constrained
optimization problem. In [10] a sigma-point IF was
used for decentralized target tracking, in [11] a square
root form of the same filter was used for cooperative
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tracking with unmanned aerial vehicles, and in [12, 13]
square-root information filtering was further explored
with respect to numerical stability. The unscented IF
was presented in [14] for tracking of a re-entry vehicle
entering into an atmosphere from space, and in [15] the
square root cubature IF was proposed and demonstrated
on the example of speed and rotor position estimation
of a two phase permanent magnet synchronous motor.

Another important aspect of estimation is the state
space geometry, hence many works have been dedicated
to dealing with uncertainty and estimation techniques
accounting for it. For example, Lie groups are natural
ambient (state) spaces for description of the dynamics
of rigid body mechanical systems [16, 17]. Furthermore,
error propagation on the SE(3) group with applications
to manipulator kinematics was presented in [18] by
developing closed-form solutions for the convolution
of the concentrated Gaussian distributions on SE(3).
Furthermore, in [19] the authors propose a solution to
Bayesian fusion on Lie groups by assuming conditional
independence of observations on the group, thus setting
the fusion result as a product of concentrated Gaussian
distributions, and finding the single concentrated
Gaussian distribution parameters which are closest
to the starting product. Uncertainty association,
propagation and fusion on SE(3) was investigated
in [20] along with sigma point method for uncertainty
propagation through a nonlinear camera model. In [21]
the authors preintegrated a large number of inertial
measurement unit measurements for visual-inertial
navigation into a single relative motion constraint
by respecting the structure of the SO(3) group and
defining the uncertainty thereof in the pertaining
tangent space. A state estimation method based on
an observer and a predictor cascade for invariant
systems on Lie groups with delayed measurements
was proposed in [22]. Recently, some works have also
addressed the uncertainty on the SE(2) group proposing
new distributions [23, 24]; however, these approaches
do not yet provide a closed-form Bayesian recursion
framework (involving both the prediction and update)
that can include higher order motion and non-linear
models. A least squares optimization and nonlinear
KF on manifolds in the vein of the unscented KF was
proposed in [25] along with an accompanying software
library. Therein the authors demonstrate the filter on a
synthetic dataset addressing the problem of trajectory
estimation by posing the system state to reside on the
manifold R3×SO(3)×R3, i.e., the position, orientation
and velocity. In the end, the authors also demonstrate
the approach on real-world simultaneous localization
and mapping (SLAM) data and perform pose relation
graph optimization. In the vein of the extended Kalman
filter (EKF) a nonlinear continuous-discrete extended
Kalman filter on Lie groups (LG-EKF) was proposed
in [26]. Therein, the prediction step is presented in the
continuous domain, while the update step is discrete.
The authors have demonstrated the efficiency of the

filter on a synthetic camera pose filtering problem by
forming the system state to reside on the SO(3) × R9

group, i.e. the camera orientation, position, angular
and radial velocities. In an earlier publication [27], the
authors have presented a discrete version of the LG-
EKF, which servers as the inspiration for the filter
proposed in the present paper. In [28] we have explored
modeling of the pose of tracked objects on the SE(2)
group within the LG-EKF framework, and applied it on
the problem of multitarget tracking by fusing a radar
sensor and stereo vision. Given the advantages of the IF
and filtering on Lie groups, a natural question arises;
Can LG-EKF be cast in the information form and will
the corresponding information filter on Lie groups keep
the additivity and computational advantages of the
update step?

A quite prominent example of an application where
the need arises for computational benefits of the IF
and the geometric accuracy of Lie groups is SLAM.
SLAM is of great practical importance in many robotic
and autonomous system applications and the earliest
solutions were based on the EKF. However, EKF in
practice can handle maps that contain a few hundred
features, while in many applications maps are orders
of magnitude larger [29]. Therefore, the extended
information filter (EIF) is often employed and widely
accepted for SLAM [30], and has reached its zenith
with sparsification approaches resulting with sparse
EIF (SEIF) [29] and exactly sparse delayed-state filter
(ESDF) [31]. However, the localization component of
SLAM conforms the pose estimation problem as arising
on Lie groups, i.e., describing the pose in the special
euclidean group SE(3) [20]. Furthermore, the mapping
part of SLAM consists of landmarks whose position,
as well, arises on SE(3). Therefore, some recent SLAM
solutions approached the problem by respecting the
geometry of the state space [32, 33], since significant
cause of error in such application was determined to
stem from the state space geometry approximations.
However, these SLAM solutions, although able to
account for the geometry of the state space, exclusively
rely on graph optimization [34, 35], but not on filtering
approaches. By using the herein proposed algorithm, one
can extend the SLAM filtering approaches, such as SEIF
or ESDF, and at the same time respect the geometry of
the state space via formulation on Lie groups.

The main contribution of this paper is a new state
estimation algorithm called the extended information
filter on Lie groups (LG-EIF), which exhibits the
advantages of the IF with regard to multisensor update
and decentralization, while keeping the accuracy of
the LG-EKF for stochastic inference on Lie groups.
We present the theoretical development of the LG-
EIF recursion equations and the applicability of the
proposed approach is demonstrated on a rigid body
attitude tracking problem with multiple sensors. In
the experiments we define the state space to reside on
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the Cartesian product of the special orthogonal group
SO(3) and R3, with the first component representing the
attitude of the rigid body and the second component
representing the pertaining angular rates. Given that,
the model of the system is then set as a constant angular
rate model acting on the state space SO(3) × R3. Note
that, just like the LG-EKF, the proposed filter can
be applied on any matrix Lie group or combination
thereof. In the end, we compare the proposed LG-EIF
to an EIF based on Euler angles, and we analyze the
computational complexity of the LG-EIF multisensor
update with respect to the LG-EKF. The results show
that the proposed filter achieves higher performance
consistency and smaller error by tracking the state
directly on the Lie group and that it keeps smaller
computational complexity of the information form with
respect to large number of measurements.

The rest of the paper is organized as follows. In Section 2
we present the theoretical preliminaries addressing Lie
groups and uncertainty definition in the form of the
concentrated Gaussian distribution. In Section 3 we
derive the proposed LG-EIF, while in Section 4 we
present the experimental results. In the end, Section 5
concludes the paper.

2 Preliminaries

2.1 Lie groups and Lie algebras

Generally, a Lie group is a group which has also the
structure of a differentiable manifold and the group
operations (product and inversion) are differentiable.
In this paper we restrict our attention to a special class
of Lie groups, the matrix groups over the field of reals,
where the group operations are matrix multiplication
and inversion, with the identity matrix Id being
the identity element of the group. These groups are
frequently called, especially in the engineering literature,
matrix Lie groups. The name emphasizes the fact
that every matrix group is a Lie group, as well as
the differential geometric viewpoint that is regularly
employed. A matrix Lie group G can be characterized
as a closed subgroup of a general linear group GL(d;R),
in the sense that: if (An) is a sequence of matrices in
G and An converges to a matrix A, with respect to a
norm on Rd×d, then A ∈ G or A /∈ GL(d;R), i.e., A is
not invertible [36]. Ubiquitous examples of real matrix
Lie groups are the general linear group GL(d;R), special
linear group SL(d;R), orthogonal O(d) and special
orthogonal SO(d) groups, etc. For an introductory, but
rigorous mathematical treatment of matrix Lie groups,
the interested reader is advised to confer [36].

To every Lie group G, there is an associated Lie algebra
g — a linear space (of the same dimension as G) endowed
with a binary operation [·, ·] called the Lie bracket. From
the differential geometric point of view, it is an open

Fig. 1. An illustration of mappings within the triplet of Lie
group G – Lie algebra g – Euclidean space Rp.

neighborhood of the origin in the tangent space of G at
the identity element. A local diffeomorphism between a
Lie group (manifold) and associated Lie algebra (tangent
space) is established through the exponential mapping
exp : g → G and its inverse log : G → g called the
logarithm. This is a crucial mechanism for transfer of
information between the group and its algebra. In case
of matrix Lie groups, the exponential mapping is simply
the matrix exponential

exp(X) =
∞∑

n=0

1

n!
Xn ,

and its inverse is of course the matrix logarithm defined
for all d×dmatricesA satisfying ‖A−Id‖ < 1. Moreover,
the matrix exponential can even be used to characterize
the matrix Lie algebra — if G is a matrix Lie group, then
its Lie algebra, denoted by g, is the set of all matrices
X such that exp(tX) ∈ G for all t ∈ R [36]. Being a
linear space, a (real) p-dimensional matrix Lie algebra g
is naturally related to the Euclidean space Rp through a
linear isomorphism (·)∨ : g→ Rp and its inverse denoted
by (·)∧ : Rp → g. An illustration of these concepts is
given in Fig. 1 [26].

The adjoint representation of a matrix Lie group G is the
map Ad : G→ GL(g) defined by A 7→ AdA, where AdA
is a linear invertible operator AdA : g→ g given by

AdA(X) = AXA−1 , X ∈ g .

Due to the natural isomorphism between g and Rp,
essentially GL(g) = GL(p;R) and Ad is to be understood
as a group homomorphism. Therefore, there exists a
unique linear map ad : g → GL(g), called the adjoint
representation of the Lie algebra g, defined by X 7→
adX, where adX is a linear operator on g given by

adX(Y ) = [X,Y ] = XY − Y X , Y ∈ g .

In fact, from the differential geometric point of view, ad
is the differential of Ad at the identity of G, and they are
related through the following [36]

Ad exp(X) = exp(adX) , for all X ∈ g . (1)
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The action of both adjoints can be further transferred
from g to Rp by the above isomorphism, and we denote
them by Ad∨ and ad∨, respectively.

2.2 Concentrated Gaussian Distribution

Let G be a connected unimodular real matrix group.
Unimodular means that its integration (Haar) measure ζ
is both left and right translation invariant, i.e., ζ(AE) =
ζ(EA) = ζ(E) for all A ∈ G and all Borel subsets
E of G. Prominent examples like SO(3) and SE(3) are
unimodular matrix groups [37]. Let us assume that a
random variableX taking values in G has the probability
distribution with the probability density function (pdf)
of the following form [38]

p(X; Σ) = β exp

(
−1

2
(log(X)∨)TΣ−1 log(X)∨

)
, (2)

where β is a normalizing constant such that (2)
integrates to unity (over G with respect to ζ), and Σ is
a positive definite p × p matrix. Seemingly, in notation
ε = log(X)∨ ∈ Rp, density (2) has the structure of a
zero mean Gaussian with covariance matrix Σ. However,
observe that the normalizing constant β differs from
(2π)−p/2(det Σ)−1/2 and, in the sense of Rp, it is only
defined on an open neighborhood of the origin, which
is the image of the log∨ map. Random variables on G
having the probability distribution given by density
(2) are therefore called normally (or Gauss) distributed
with mean Id and covariance Σ. Additionally, we
will assume that all eigenvalues of Σ are small, thus,
almost all the mass of the distribution is concentrated
in a small neighborhood around the mean value, and
such a distribution is called a concentrated Gaussian
distribution [38]. Furthermore, we say that a random
variable X has a concentrated Gaussian distribution
of mean M ∈ G and covariance matrix Σ, written
X ∼ G (M,Σ), if M−1X has the concentrated Gaussian
distribution of mean Id and covariance Σ [38], i.e., the
density of G (M,Σ) is given by

p(X;M,Σ)

= β exp
(
−1

2
(log(M−1X)∨)TΣ−1 log(M−1X)∨

)
.

(3)

An illustration of the concentrated Gaussian
distribution is provided in Fig. 2.

It is well known that in the Euclidean setting
multivariate Gaussian distributions G(m,Σ) form
an exponential family [39] and in the canonical
representation source parameters (m,Σ) are replaced
by the corresponding natural parameters (y, Y ) =
(Σ−1m, 12Σ−1), which also uniquely determine the
Gaussian distribution. Canonical representation has

Fig. 2. An illustration of the concentrated Gaussian
distribution G(Id,Σ). The mean value Id resides on the
group G ⊂ GL(d;R) while the covariance matrix Σ belongs to
GL(p;R). On the right we depict the truncated or compactly
supported correspondingN c Gaussian in Rp with mean value
0p and covariance matrix Σ.

many advantages, in particular, it is very useful for
implementation of the standard IF. In the present paper
we pursue the same idea for concentrated Gaussian
distribution G(M,Σ) defined on matrix Lie groups.
Using the BCH expansion (A.2) we have

log(M−1X) = − logM + logX − 1

2
[logX, logM ] + . . . ,

(4)

thus, according to (3), G(M,Σ) is also completely
determined by the so called information vector-matrix
pair (y, Y ) given by

y = Σ−1(logM)∨ and Y = Σ−1 . (5)

Given that, we have formed the basis for the derivation
of the LG-EIF.

3 The Extended Information Filter on Matrix
Lie Groups

Just as the standard KF, the LG-EIF recursion is divided
in two steps: prediction and update and in the sequel
we derive the equations of the proposed information
form of the LG-EKF. First, we start with the prediction
step where the same logic applies as in the case of
the standard IF; namely, the computational burden is
increased since, in order to apply the motion model,
we need to convert the information vector to the mean.
Second, the update step of the filter is derived where
the advantages of the information form are kept, thus
facilitating updates with multiple sensors or opening the
way for decentralization approaches.

3.1 Motion and measurement models

Let G be a matrix Lie group andXk ∈ G denote a system
state at time step k ≥ 0. We assume that the motion
model of the system (the state equation) is described by
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a non-linear twice continuously differentiable function 1

Ω : U ⊃ G→ Rp and the left action of the current state
as follows [26]

Xk+1 = Xk exp (Ω(Xk)∧ + n∧k ) , k ≥ 0 , (6)

where nk ∼ NRp (0p×1, Qk) is Gaussian noise in Rp.
For example, such models have appeared in [26, 28,
40] modeling motion as constant velocity on SE(2)
and constant acceleration on SO(2), SO(3) and SE(3),
respectively.

The discrete measurement model on the matrix Lie
group is modeled by a continuously differentiable
function h : U ⊃ G → G′ and the group perturbation
as [26]

Zk+1 = h(Xk+1) exp
(
r∧k+1

)
, (7)

where rk+1 ∼ NRq

(
0q×1, Rk+1

)
is a Gaussian noise in

Rq and exp denotes the exponential mapping on a q-
dimensional matrix Lie group G′.

3.2 LG-EIF prediction

We assume that the posterior distribution at time step
k is given by the concentrated Gaussian distribution
G(Mk,Σk), shortly Gk. In fact, we assume that Gk
is known through the canonical parameters (yk, Yk),
for which we aim to derive the filter recursions. Note
that, according to relation (5), Σk = Y −1k and Mk =

exp((Y −1k yk)∧).

Following the idea proposed in [26], we first consider
the covariance propagation under the motion model.
For that purpose the Lie algebraic error, defined by
ε∧k = log(M−1k Xk), is propagated under the motion
model according to

exp
(
ε∧k+1|k

)
= M−1k+1|kXk+1 ,

where Mk+1|k = Mk exp(Ω(Mk)∧). Therefore, the
predicted state error on G can be expressed as

exp
(
ε∧k+1|k

)
= exp (−Ω∧k ) exp (ε∧k ) exp (Ω(Xk)∧ + n∧k ) ,

where Ω∧k = Ω(Mk)∧. Linearizing Ω inMk and using the
BCH expansion (A.2), defined in the Appendix A, one
obtains the following propagated Lie algebraic error

εk+1|k = Fkεk + Ψ(Ωk)nk +O
(
|εk, nk|2

)
, (8)

1 For the ease of differentiability requirement, we assume
that Ω is defined on U , which is an open subset of Rd×d

containing the group G.

where O(|εk, nk|2) is short for O(|εk|2) + O(|nk|2) +
O(|εknk|). Operators Fk, the matrix Lie group
equivalent to the Jacobian of the nonlinearity of the
motion model, and Ψ are given by the following formulae:

Fk = Ad∨ (exp (−Ω∧k )) + Ψ(Ωk)Ck, (9)

Ψ(v) =

∞∑
m=0

(−1)m

(m+ 1)!
ad∨(v)m , v ∈ Rp, (10)

Ck =
∂

∂ε
Ω (Mk exp (ε∧))|ε=0 . (11)

Operator Ψ is called the right Jacobian of G [20], while
Ck denotes the linearization of the motion model (6)
at Mk. The above formulae can be found in [26, 27];
however, without a detailed derivation, which we provide
for the reader’s convenience in Appendix A. Neglecting
the second-order terms in (8) and using the fact that
E(εk) = 0, which is satisfied by the construction of
the concentrated Gaussian distribution (see (3)), the
expectation of εk+1|k becomes

E(εk+1|k) = FkE(εk) = 0 .

The predicted covariance matrix Σk+1|k is the covariance
matrix of the predicted Lie algebraic error εk+1|k and
due to the linear equation (8) it evaluates to

Σk+1|k = E
[
εk+1|kε

T
k+1|k

]
= FkΣkFT

k + Ψ(Ωk)QkΨ(Ωk)T .

Applying the Woodbury’s matrix identity [41], Yk+1|k =

Σ−1k+1|k evaluates to

Yk+1|k = Q̃−1k − Q̃
−1
k Fk

(
Yk + FT

k Q̃
−1
k Fk

)−1
FT

k Q̃
−1
k ,

where Q̃ = ΨkQkΨT
k , Ψk = Ψ(Ωk), and all inverse

matrices are assumed to exist. Finally, the predicted
information vector yk+1|k = Yk+1|k(logMk+1|k)∨

amounts to

yk+1|k = Yk+1|k log
(
exp((Y −1k yk)∧) exp(Ω∧k )

)∨
. (12)

Remark 1 Assuming that Mk and exp(Ω∧k ) are such
that according to the BCH expansion (A.2)

log
(

exp((Y −1k yk)∧) exp(Ω∧k )
)∨

≈ Y −1k yk + Ωk +
1

2
[Y −1k yk,Ωk]∨ ,

then the prediction formula (12) simplifies to

yk+1|k = Yk+1|k

(
Y −1k yk + Ωk +

1

2
[Y −1k yk,Ωk]∨

)
. (13)
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3.3 LG-EIF update

Let us define the innovation term as

zk+1 = log
(
h
(
Mk+1|k

)−1
Zk+1

)∨
Again, applying the BCH formula (A.2) and linearizing
the nonlinear terms at Mk+1|k, we obtain [26]

zk+1 = Hk+1εk+1|k + rk+1 +O
(
|εk+1|krk+1|

)
, (14)

with

Hk+1 =
∂

∂ε

[
log
(
h(Mk+1|k)−1

h
(
Mk+1|k exp (ε∧)

))]∣∣∨
ε=0

.
(15)

Since (14) is linear in the Lie algebraic error εk+1|k, we
assert that the standard update equations of the IF [3]
can be applied. From the previous section we know that
εk+1|k is distributed according to the truncated zero
mean Gaussian with covariance matrix Σk+1|k, which
is assumed to be well approximated by the Gaussian
of the same parameters. Given that, the updated Lie
algebraic error ε−k+1 will be Gaussian distributed with
natural parameters

y−k+1 = HT
k+1R

−1
k+1zk+1 ,

Y −k+1 = Yk+1|k +HT
k+1R

−1
k+1Hk+1 .

(16)

However, we have not completed the update step for
the following reasons. Namely, from the definition of
ε−k+1, the conditional random variable Xk+1|k+1 :=
Xk+1|{Z1, . . . , Zk+1} has the form

Xk+1|k+1 = Mk+1|k exp(ε− ∧k+1) , (17)

but, the mean value of ε−k+1 now equals m−k+1 =

(Y −k+1)−1y−k+1, which in general differs from the zero
vector, and (17) is not in the form suitable for description
by the concentrated Gaussian distribution. To overcome
that issue, the state reparametrization, as proposed in
[26], is performed. Let us define ξk+1 = ε−k+1 − m

−
k+1,

then E(ξk+1) = 0 and using formula (A.3) from the
Appendix A we obtain (up to O(|ξk+1|2) terms)

Xk+1|k+1 = Mk+1|k exp
(
m− ∧k+1 + ξ∧k+1

)
= Mk+1|k exp

(
m− ∧k+1

)
exp

(
Ψ(m−k+1)ξ∧k+1

)
.

Now defining Mk+1 = Mk+1|k exp
(
m− ∧k+1

)
and εk+1 =

Ψ(m−k+1)ξk+1, we haveXk+1|k+1 in a more suitable form

Xk+1|k+1 = Mk+1 exp(ε∧k+1) , (18)

Algorithm 1 The pseudocode of the LG-EIF

Require: Gk = G
(
yk, Yk

)
, Ω(X), Qk

Prediction

1: Evaluate Ωk, Ck and Q̃k

2: Fk = Ad∨
(

exp
(
− Ω∧k

))
+ Ψ

(
Ωk

)
Ck

3: Yk+1|k = Q̃−1k − Q̃
−1
k Fk

(
Yk+

FT
k Q̃
−1
k Fk

)−1FT
k Q̃
−1
k

4: yk+1|k = Yk+1|k log
(

exp
((
Y −1k yk

)∧)
exp

(
Ω∧k
))∨

Require: Gk+1|k = G
(
yk+1|k, Yk+1|k

)
, h(X), Rk+1

Update

5: Evaluate Hk+1

6: Y −k+1 = Yk+1|k +HT
k+1R

−1
k+1Hk+1

7: y−k+1 = HT
k+1R

−1
k+1zk+1

8: m−k+1 =
(
Y −k+1

)−1
y−k+1

9: Yk+1 = Ψ
(
m−k+1

)−T
Y −k+1Ψ

(
m−k+1

)−1
10: yk+1 = Yk+1

(
log
(

exp
((
Y −1k yk

)∧)
exp

(
Ω∧k
)

exp
(
m−∧k+1

)))∨
11: return Gk+1 = G

(
yk+1, Yk+1

)
from which the posterior distribution can be plainly read
off. By definition

Σk+1 = E
[
εk+1ε

T
k+1

]
= E

[
Ψ(m−k+1)ξk+1ξ

T
k+1Ψ(m−k+1)T

]
= Ψ

(
m−k+1

)
(Y −k+1)−1Ψ

(
m−k+1

)T
,

and therefore, the finally updated information matrix
equals

Yk+1 = Ψ(m−k+1)
−T
Y −k+1Ψ(m−k+1)−1 . (19)

Concerning the information vector, we find

yk+1 = Yk+1(logMk+1)∨

= Yk+1

(
log
(
exp((Y −1k yk)∧)

exp(Ω∧k ) exp(m− ∧k+1)
))∨

. (20)

The update step is illustratively summarized in Figure 3.
Note that, in comparison to the standard EIF, we cannot
calculate the final information vector update in (20) by
using just the information form. However, this does not
preclude an advantage in computational complexity with
respect to the LG-EKF (as shown in Section 4). The
pseudocode of the LG-EIF is given in Algorithm 1.

Remark 2 Recall that one of the main advantages
of the IF lies in the simultaneous update of multiple
measurements in the same time step. In case that N
measurements are available at time step k + 1 through
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Fig. 3. An illustration of the LG-EIF update step. The predicted Gk+1|k on the group G is updated with N measurements

G′ ik+1 on group G′. First, the predicted mean value Mk+1|k is mapped to G′ via measurement function h(·) and innovations

N z,i
k+1 are calculated in the tangent space Rp′ of h(Mk+1|k). Then, the innovations are mapped to the tangent space Rp of

Mk+1|k, where the Nk+1|k corresponding to Gk+1|k is at the origin. The predicted distribution Nk+1|k is updated with the

mapped measurements N−,i
k+1 resulting with a distribution displaced from the origin N−k+1 which needs to be reparametrized

and mapped back to G as the finally updated Gk+1.

different measurement models hi and measurement noise
rik+1 ∼ NRq (0, Ri,k+1), the updated information vector
and matrix (prior to the reparametrization step) become

y−k+1 =

N∑
i=1

HT
i,k+1R

−1
i,k+1zi,k+1 ,

Y −k+1 = Yk+1|k +

N∑
i=1

HT
i,k+1R

−1
i,k+1Hi,k+1 .

(21)

Remark 3 Difficulties that could be encountered in
the filter design are twofold. First, the evaluation of
operators Ck and Hk, which arise in the linearization
of Ω(·) and h(·), could be mathematically involved. And
second, exp(·), log(·), Ad(·), ad(·), and Ψ(·) might not
allow closed-form expressions for some Lie groups. In
that case, it is necessary to apply a truncated Taylor
series expansion. However, many Lie groups that are
significant for engineering applications allow for closed
form expressions for the majority of aforementioned
maps.

4 Experiments

In this section we demonstrate the effectiveness and
applicability of the LG-EIF on the problem of rigid body
attitude tracking in 3D. We pose the experiment as a
multisensor estimation problem of a state residing on
the group G = SO(3)×R3, where the first group, SO(3),
represents the rigid body orientation in 3D, while the
second group, R3, represents pertaining angular rates.
This is a slight abuse of notation intended for clarity,
since when talking about Rp in the framework of groups,
we are actually referring to their matrix representation.
R3 can be thought of as a three-dimensional matrix Lie

group through the following identification

R3 3 (a1, a2, a3) 7→


1 0 0 a1

0 1 0 a2

0 0 1 a3

0 0 0 1

 ∈ GL(4;R) , (22)

which transfers the addition of vectors, as the group
operation in R3, to the multiplication of matrices.
Hence, G can be thought of as a subgroup of GL(7;R),
whose elements are block diagonal matrices where the
first 3 × 3 block belongs to SO(3), while the second
4 × 4 block is of the form (22). In that setting G is a
unimodular matrix Lie group with the Haar measure
being the tensor product of the Haar measure on SO(3)
and essentially the Lebesgue measure on R3. Thus, the
LG-EIF methodology developed in previous sections is
applicable on G.

4.1 Filtering on SO(3)× R3

Note that we designate the system state asXk ∈ SO(3)×
R3 which consists of the orientation component Φk ∈
SO(3) and the angular rate component Φ̇k ∈ R3.

4.1.1 Prediction

We propose to model the motion (6) by a constant
angular rate motion model

Ω(Xk) =
[
T ˙φ1,k T ˙φ2,k T ˙φ3,k 0 0 0

]T
nk =

[
T 2

2 n1,k
T 2

2 n2,k
T 2

2 n3,k Tn1,k Tn2,k Tn3,k

]T
,

(23)

where T is the discretization time. With such a defined
motion model, the system is corrupted with white noise
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over three separated components, i.e., n1,k the noise in
local φ1 direction, n2,k the noise in local φ2 direction
and n3,k the noise in local φ3 direction. Given that, the
components can be seen as resembling a Wiener process
over the associated axes.

The uncertainty propagation can be challenging,
since it requires the calculation of (11), which
needs to be patiently evaluated for each considered
problem. However, for the Lie algebraic error

ε =
[
ε1 ε2 ε3 ε̇1 ε̇2 ε̇3

]T
, and the motion model given

by (23), which extracts only the Euclidean part of the
state, we obtain

Ck =

[
03×3 T · I3
03×3 03×3

]
. (24)

Now, we have all the ingredients for applying the motion
model to predict the state in an LG-EIF manner.

4.1.2 Update

The measurement function is the map h : SO(3)×R3 →
SO(3), and although we have N measurements
we use the expression (21) for the update, hence
mapping dimensions correspond as if having a single
measurements. The element that specifically needs to
be derived is the measurement matrix Hk+1, which in
the vein of (15) requires evaluating partial derivatives
and multivariate limits. With having the Lie algebraic
error defined, the function to be partially derived is[

log
(
h(Mk+1|k)−1

h
(
Mk+1|k exp (ε∧)

))]∨
=
[
ε1 ε2 ε3

]T
.

(25)

The final measurement matrix, for this case, is obtained
by taking the partial derivatives of (25) with respect to
the Lie algebraic error. Finally, the measurement matrix
evaluates to Hk+1 = [I3 03×3]. Now, we have all the
ingredients to update the filter in the LG-EIF manner.

4.2 Evaluation

In order to demonstrate the performance of the proposed
filter we have simulated a rotating rigid body with the
constant angular rate model. First, the initial orientation
of the rigid body in SO(3) and initial angular rates
are defined. Note that the angular rates are defined
in the Rp isomorphic to the so(3), i.e., the Euler
axes representation (see Appendix B). Then, under
the assumption of the constant angular rate model,
random disturbances are added via accelerations in
the pertaining Euclidean space Rp. Measurements are
generated by corrupting the true orientation of the body

in Rp with white Gaussian noise, and then mapping the
result via the exponential map back to the SO(3).

In Fig. 4 we can see the result of LG-EIF and Euler angles
EIF comparison on 100 randomly generated trajectories
measured with N = 5 sensors for k = 100 steps. The

initial state of the system was set to [logX0]∨ = [01×6]
T

,
the standard deviation of random accelerations over the
three axes acting as disturbances was σp = 10◦/s2 and
standard deviation of measurement noise over the three
axes ranged from σm = 0.1◦ to σm = 20◦. The estimated
orientation of the LG-EIF is defined in SO(3), and in
Fig. 4 we show the the attitude error calculated as the
cosine angle between two rotation matrices

Φerr = arccos

(
1

2
(Tr[ΦT

t Φe]− 1)

)
, (26)

where Φt is the true orientation and Φe is estimated
orientation. We can see from Fig. 4 that for measurement
noise standard deviation larger than 2◦ on average
the LG-EIF achieves smaller attitude root-mean-square-
error (RMSE) and has significantly smaller variation
(not noticeable in the figure) in the results compared
to the Euler angles EIF. In Fig. 5 we show three
examples (with different measurement noise intensity)
of time behavior of the attitude estimation error for
different filters, where the smaller variation for LG-
EIF can be noticed. Furthermore, it could be argued
that other filtering methods inlieu of EIF could be used
which can better handle nonlinearities. However, the EIF
system and measurement equations are linear in this
case and we assert that the main reason behind larger
errors in EIF comes from the suboptimal state space
parametrization, rather than linearization errors in state
and measurement equations.

The main advantage of the IF form is the computational
efficiency of the update step with respect to a large
number of measurements. To verify that the same
advantage holds also for the Lie group EKF we have
compared the execution time of the LG-EKF and
LG-EIF on 100 examples of 100 step long simulated
trajectories. Fig. 6 shows the execution time ratio of
the LG-EKF and LG-EIF. We can see that for a
large number of sensors or features this difference is
prominent.

5 Conclusion

In this paper we have proposed a new state estimation
algorithm on Lie groups. We have embedded the
LG-EKF with an EIF form for non-linear systems,
thus endowing the filter with the information form
advantages with regard to multisensor update and
decentralization, while keeping the accuracy of the
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Fig. 4. Comparison of attitude RMSE with respect to
increase in measurement noise standard deviation. The
results represent the mean value of the RMSE and one
standard deviation of 100 MC runs. We can see that the
LG-EIF exhibits smaller error and has more consistent
performance over various trajectories.
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Fig. 5. Three examples of time behavior of the attitude
estimation error through 200 steps. The standard deviation
for measurement noise was set to σm = 2.5◦ (top), σm = 5◦

(middle), σm = 10◦ (bottom). The attitude RMSE for each
filter is given in the subfigure titles.

LG-EKF for stochastic inference on Lie groups. The
theoretical development of the LG-EIF recursion
equations was presented and the applicability of the
proposed approach demonstrated on the problem of
rigid body attitude tracking with multiple sensors by
setting the state on the Lie group SO(3) × R3. The
first component of the state represented the rigid
body orientation in 3D, while the second component

100 101 102 103
0

10

20

30

number of measurements

ex
ec

ut
io

n
tim

e
ra

tio
(L

G
-E

K
F

/
L

G
-E

IF
)

Fig. 6. Comparison of LG-EKF and LG-EIF time execution
with respect to the number of measurements in the update
step. We can see that after 100 measurements the difference
becomes extremely prominent. The figure represents mean
value of the execution time ratio for 50 Monte Carlo runs.

represented the pertaining angular rates. The system
model was then set as a constant angular rate model
acting on the state space SO(3) × R3. The results have
shown that the filter can accurately track the rigid
body attitude and that on average it exhibits lower
RMSE and more consistent performance than the Euler
angles based EIF. Furthermore, the information form of
the LG-EIF keeps the multisensor or decentralization
computational advantage of the update step with
respect to the LG-EKF.
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A Lie algebraic error prediction

Proposition 4 (Baker-Campbell-Hausdorff)
Given a Lie algebra g, for all a, b ∈ g such that |a∨|
and |b∨| are sufficiently small, the following identity
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holds [36]:

log(exp (a) exp (b))

= a+

∫ 1

0

ψ(exp(ad(a)) exp(t ad(b)))(b)dt , (A.1)

where ψ(z) = z log z/(z − 1).

This is an integral version of the famous Baker-
Campbell-Hausdorff (BCH) formula, which is better
known in an expanded form

log(exp (a) exp (b))

= a+ b+
1

2
[a, b] +

1

12
([a, [a, b]] + [b, [b, a]]) + . . . .

(A.2)

Another useful identity used in the derivation
of the predicted Lie algebraic error is a first-
order approximation relation between additive and
multiplicative perturbations on matrix Lie groups.
Namely, for every a, δ ∈ g and |δ∨| small, i.e., neglecting
the second-order terms in |δ∨|, it holds

exp(a+ δ) ≈ exp(a) exp(Ψ(a)δ) , (A.3)

where Ψ(a) denotes the right Jacobian of the Lie
group defined by (10). The latter identity implies the
approximation formula

log(exp(−a) exp(a+ δ)) = Ψ(a)δ . (A.4)

Now we proceed with the derivation of the Lie algebraic
error prediction. In Section 3.2 we computed the
exponential of the predicted Lie algebraic error εk+1|k
at time step k

exp(ε∧k+1|k) = exp (−Ω∧k ) exp (ε∧k ) exp (Ω(Xk)∧ + n∧k ) ,

where we recall Ωk = Ω(Mk) and εk is the Lie algebraic
error at time step k. Linearizing the map Ω at Mk we
have

exp(ε∧k+1|k) (A.5)

= exp (−Ω∧k ) exp (ε∧k ) exp (Ω∧k + (Ckεk)∧ + n∧k ) ,

where

Ck =
∂

∂ε
Ω (Mk exp (ε∧))|ε=0 .

Using the BCH formula (A.2) by considering only the
first four members from the expansion and neglecting

O(|ε∧k , n∧k |2) terms, we obtain

z∧k = log(exp (ε∧k ) exp (Ω∧k + (Ckεk)∧ + n∧k ))

= ε∧k + Ω∧k + (Ckεk)∧ + n∧k +
1

2
[ε∧k ,Ω

∧
k ]

+
1

12
[Ω∧k , [Ω

∧
k , ε
∧
k ]] . (A.6)

Inserting (A.6) into (A.5) one has

exp(ε∧k+1|k) = exp (−Ω∧k ) exp(z∧k ) ,

thus, using the approximation identity (A.4), the
following expression holds

ε∧k+1|k = Ψ(Ωk)
(
ε∧k + (Ckεk)∧ + n∧k +

1

2
[ε∧k ,Ω

∧
k ]

+
1

12
[Ω∧k , [Ω

∧
k , ε
∧
k ]]
)
.

Recognizing terms Ψ(Ωk)(Ckεk)∧ and Ψ(Ωk)n∧k in the
prediction formula (8), it remains to discuss terms

Ψ(Ωk)
(
ε∧k +

1

2
[ε∧k ,Ω

∧
k ] +

1

12
[Ω∧k , [Ω

∧
k , ε
∧
k ]]
)
. (A.7)

Evaluating (A.7):

ε∧k +
1

2
[ε∧k ,Ω

∧
k ] +

1

12
[Ω∧k , [Ω

∧
k , ε
∧
k ]]

− 1

2

[
Ω∧k , ε

∧
k +

1

2
[ε∧k ,Ω

∧
k ] +

1

12
[Ω∧k , [Ω

∧
k , ε
∧
k ]]
]

+
1

6

[
Ω∧k ,

[
Ω∧k , ε

∧
k +

1

2
[ε∧k ,Ω

∧
k ] +

1

12
[Ω∧k , [Ω

∧
k , ε
∧
k ]]
]]

− 1

24

[
Ω∧k ,

[
Ω∧k ,

[
Ω∧k , ε

∧
k +

1

2
[ε∧k ,Ω

∧
k ] +

1

12
[Ω∧k , [Ω

∧
k , ε
∧
k ]]
]]]

+ . . .

leads to the expression

ε∧k + [−Ω∧k , ε
∧
k ] +

1

2
[−Ω∧k , [−Ω∧k , ε

∧
k ]]

+
1

6
[−Ω∧k , [−Ω∧k , [−Ω∧k , ε

∧
k ]]]

+
5

144
[−Ω∧k , [−Ω∧k , [−Ω∧k , [−Ω∧k , ε

∧
k ]]]]

+
1

288
[−Ω∧k , [−Ω∧k , [−Ω∧k , [−Ω∧k , [−Ω∧k , ε

∧
k ]]]]] + . . . ,

which can be finally recognized as an approximation of

exp(ad(−Ω∧k ))ε∧k = Ad(exp(−Ω∧k )))ε∧k .

This finishes the derivation of the Lie algebraic error
prediction.

11



B The Special Orthogonal group SO(3)

The SO(3) group is a set of orthogonal matrices
with determinant one, whose elements geometrically
represent rotations. Rotations in 3D can also be
represented with an Euler vector (also called the axis-
angle notation), where a vector φ = [φ1 φ2 φ3]T ∈ R3

denotes a rotation about the unit vector φ/|φ| by the
angle |φ|. An interesting notion is that the Lie algebra
so(3) is given as the skew symmetric matrix of the Euler
vector

φ∧ =


0 −φ3 φ2

φ3 0 −φ1
−φ2 φ1 0

 ∈ so(3) , (B.1)

where (·)∧ : R3 → so(3) and its inverse, (·)∨ : so(3) →
R3, follow trivially. The exponential map exp : so(3)→

SO(3) is given as [20]

exp(φ∧) = cos(|φ|)I3

+ (1− cos(|φ|))φφ
T

|φ|2
+ sin(|φ|)φ

∧

|φ|
.

(B.2)

Furthermore, for an Φ ∈ SO(3), the matrix logarithm,
performing mapping log : SO(3)→ so(3), is given as

log(Φ) =


γ

2 sin(γ)
(Φ− ΦT ), if γ 6= 0

0, if γ = 0 ,
(B.3)

where 1 + 2 cos γ = Tr(Φ) and Tr( · ) designates the
matrix trace. The adjoint operators Ad and ad for SO(3)
are respectively given as

Ad(Φ) = Φ and ad(φ∧) = φ∧ . (B.4)

Given the above definitions, we have all the needed
ingredients to use the SO(3) group within the LG-EIF.
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